$Q R$ factorization and $Q R$ iteration methods for quasiseparable matrices

Yuli Eidelman and Israel Gohberg
Tel Aviv University, Israel
Vadim Olshevsky
University of Connecticut, USA

We study a class of block structured matrices $A=\left\{A_{i j}\right\}_{i, j=1}^{N}$ whose entries are specified as follows:

$$
A_{i j}= \begin{cases}p_{i} a_{i-1} \cdots a_{j+1} q_{j}, & 1 \leq j<i \leq N \\ d_{i}, & 1 \leq i=j \leq N \\ g_{i} b_{i+1} \cdots b_{j-1} h_{j}, & 1 \leq i<j \leq N\end{cases}
$$

Here p_{i}, q_{j}, a_{k} are matrices of sizes $m_{i} \times r_{i-1}^{\prime}, r_{j}^{\prime} \times m_{j}, r_{k}^{\prime} \times r_{k-1}^{\prime}$ respectively; these elements are said to be lower generators of the matrix R with orders r_{k}^{\prime}. The elements g_{i}, h_{j}, b_{k} are matrices of sizes $m_{i} \times r_{i}^{\prime \prime}, r_{j-1}^{\prime \prime} \times m_{j}, r_{k-1}^{\prime \prime} \times r_{k}^{\prime \prime}$ respectively; these elements are said to be upper generators of the matrix R with orders $r_{k}^{\prime \prime}$. The diagonal entries d_{k} are matrices of sizes $m_{k} \times m_{k}$. Set $n_{L}=\max _{1 \leq k \leq N-1} r_{k}^{\prime}, n_{U}=\max _{1 \leq k \leq N-1} r_{k}^{\prime \prime}$, then the matrix A is said to be quasiseparable of $\operatorname{order}\left(n_{L}, n_{U}\right)$.
For quasiseparable matrices using a modification of the Dewilde-Van der Veen method we obtain the $Q R$-type factorization $A=V U R$, where V, U are unitary matrices, V is a block lower triangular, U is a block upper triangular, S is a block upper triangular with square invertible blocks on the main diagonal. V, U, S are quasiseparable of the orders $\left(n_{L}, 0\right),\left(0, n_{L}\right),\left(0, n_{L}+n_{U}\right)$. Generators of V, U, S are computed in $O(N)$ operations using $Q R$ factorizations for the matrices of small sizes obtained via generators of original matrices.
Next for a quasiseparable matrix A with scalar entries we consider the $Q R$ iteration procedure

$$
\left\{\begin{array}{l}
A-\sigma I=Q R \\
A_{1}=\sigma I+R Q
\end{array}\right.
$$

where Q is a unitary matrix and R is an upper triangular matrix. We obtain that the iterant A_{1} is a lower quasiseparable of the order n_{L} matrix and develop a $O(N)$ algorithm to compute it lower generators. Thus for a Hermitian quasiseparable of any order matrix we obtain a fast $Q R$ iteration method with $O(N)$ operations per step.

