
PCA for Distributed Data Sets

Raymond H. Chan
Department of Mathematics

The Chinese University of Hong Kong

Joint work with
Franklin Luk (RPI) and Z.-J. Bai (CUHK)

– p. 1/34

Grid

Powerful processors with relatively slow links.
Powerful
Teraflop
Processors&%

'$
&%
'$

Slow
Gigabit
Networks

&%
'$

@
@

@
@@

&%
'$

�
�

�
�

�

&%
'$

�
�

�
��

0 1

23

4

– p. 2/34

New York State TeraGrid Initiative

� State University of NY at Albany
� Rensselaer Polytechnic Institute
� Brookhaven National Laboratory
� State University of NY at Stony Brook
� in partnership with IBM and NYSERNet

– p. 3/34

– p. 4/34

Grid Topology

� Four sites, scalable grid architecture
� 10 to 20 Gb/sec connection
� 6TF Processors

Computation
Communication

=
6× 1012

0.3× 109 = 20, 000!

Communication Bottleneck:
computation done locally.

– p. 5/34

Principal Component Analysis

Let X be an n× p data matrix, where n� p.

Data covariace matrix S is given by

nS = XT(I − 1
neneT

n)X,

where eT
n = (1, 1, . . . , 1).

PCA ⇐⇒ Karhunen-Loève transform
⇐⇒ Hotelling transform

– p. 6/34

PCA means

� get spectral decomposition of n · S:

nS = VΣ2VT.

� choose few largest eigenvalues and
eigenvectors Ṽ.

� form principal component vectors X · Ṽ.
� low-dimension representation of original data.

– p. 7/34

PCA involves only V and Σ

Since (I − 1
neneT

n) is symmetric and idempotent,

nS = XT(I − 1
neneT

n)X

= XT(I − 1
neneT

n)(I − 1
neneT

n)X

Σ and V can be obtained from SVD of:

(I − 1
neneT

n)X = UΣVT.

Low-dim’l representation X · Ṽ can still be done.

– p. 8/34

Distributed PCA

Big data matrix X: n ≈ 1012.

E.g. visualization, data mining.

Problem:
Data are distributed amongst s processors.

Can we find Σ and V without moving X across
processors?

– p. 9/34

Data among s processors

Denote

X =

X0

X1
...

Xs−1

n =
s−1

∑
i=0

ni,

where Xi is ni × p, resides on processor i.

Typical: ni ≈ 1012 and p ≈ 103.

– p. 10/34

Aim

� Compute PCA of X without moving the data
matrix Xi.

� Move O(pα) data across processors instead of
O(ni).

– p. 11/34

Distributed PCA by Qu et al.

1. At processor i, calculate local PCA using SVD:

(I − 1
ni

enie
T
ni
)Xi = UiΣiVT

i .

Say matrix has numerical rank ki.

Send x̄i (column sum of Xi), and ki largest
principal components Σ̂i and V̂i to central
processor.

Communication costs = O(pki).

– p. 12/34

2. At central processor: Assemble p× p
covariance matrix and find its PCA

nŜ =
s−1

∑
i=0

V̂iΣ̂
2
i V̂T

i +
s−1

∑
i=0

ni(x̄i − x̄)(x̄i − x̄)T

= VΣ2VT.

Broadcast Ṽ, the first k columns of V.

Communication costs = O(pk).

– p. 13/34

3. Calculate principal component vectors at
processor i:

XiṼ.

– p. 14/34

Analysis of Qu’s Approach

Advantage: Reduce communication costs:

O(pn) −→ O
(

p
(s−1

∑
i=0

ki
))

.

Disadvantages:

� Local SVD’s introduce approximation errors.
� Central processor becomes bottleneck for

communications and computation.
– p. 15/34

Luk’s Algorithms

Replace SVD by QR

– p. 16/34

1a. At processor i

Calculate QR decomposition of (I − 1
ni

enie
T
ni
)Xi:

(I − 1
ni

enie
T
ni
)Xi = Q(0)

i R(0)
i ,

where R(0)
i is p× p.

Send ni and x̄i to central processor.

If i ≥ s/2, send R(0)
i to processor i− s/2.

No need to send Q(0)
i .

– p. 17/34

1b. At processor i < s/2

Calculate QR decomposition
(

R(0)
i

R(0)
i+s/2

)
= Q(1)

i R(1)
i ,

where R(1)
i is p× p. Equals to QRD of

(I− 1
ni

enie
T
ni
)Xi and (I− 1

ni+s/2
eni+s/2eT

ni+s/2
)Xi+s/2.

If i ≥ s/4, send R(1)
i to processor i− s/4.

No need to send Q(1)
i . – p. 18/34

1c. At processor i < s/4

Calculate QR decomposition
(

R(1)
i

R(1)
i+s/4

)
= Q(2)

i R(2)
i ,

where R(2)
i is p× p.

If i ≥ s/8, send R(2)
i to processor i− s/8.

No need to send Q(2)
i .

– p. 19/34

1d. Eventually, at processor 0

Calculate QR decomposition of
(

R(l−1)
0

R(l−1)
1

)
= Q(l)

0 R(l)
0 ,

where l = dlog2 se.

Send R(l)
0 to central processor.

No need to send Q(l)
0 .

– p. 20/34

Main Results

� Total communication costs = O(dlog2 sep2).
� The covariance matrix

nS = XT(I − 1
neneT

n)X,

is given by:

nS = R(`)
0

T
R(`)

0 +
s−1

∑
i=0

ni(x̄i − x̄)(x̄i − x̄)T.

– p. 21/34

2. At central processor

Assemble (s + p)× p data matrix:

Z =

√
n0(x̄0− x̄)T
√

n1(x̄1− x̄)T

...√
ns−1(x̄s−1 − x̄)T

R(l)
0

.

Notice that: nS = ZTZ.

– p. 22/34

2. At central processor

Compute SVD: Z = UΣVT (after triangulation).

Say Z has numerical rank k.

Broadcast x̄ and Ṽ, first k columns of V.

Communication costs = O(pk).

– p. 23/34

3. At processor i

Calculate principal component vectors:

XiṼ.

– p. 24/34

Analysis of Luk’s Algorithm

Advantage over Qu’s Approach:
� Communication costs on PCA:

O
(

p
(s−1

∑
i=0

ki
))
−→ O(p2dlog2 se),

� No local PCA approximation errors.
� Less congestion in central processor for

communications and computation.
� Work directly with data matrices.

– p. 25/34

Data Updating

Assume global synchronization at t0, t1, . . . , tk,
i.e. at [tk−1, tk], new data are added to X(k)

i on
processor i.

Aim:
Find the PCA for the new extended matrix,
without moving X(k)

i across processors.

– p. 26/34

Processor

t
t0 t1 · · · tm

0

1

...

s− 1

X(0)
0

X(0)
1

X(0)
s−1

X(1)
0

X(1)
1

X(1)
s−1

X(m)
0

X(m)
1

X(m)
s−1

· · ·

X(0) X(1) · · · X(m)

X(m)

– p. 27/34

At time tk

Let

X(k) =

X(k)
0

X(k)
1
...

X(k)
s−1

n(k) =
s−1

∑
i=0

n(k)
i ,

where X(k)
i is n(k)

i × p.

Assume PCA of original matrix X(0) = X is
available by Luk’s algorithm.

– p. 28/34

Global Data Matrix at tm

Denote

X
(m) =

X(0)

X(1)

...
X(s−1)

g(m) =
m

∑
i=0

n(k).

Aim: Find PCA for its covariance matrix:

g(m) · Sg(m) = X
(m)T

(I − 1
g(m)eg(m)eT

g(m))X
(m).

– p. 29/34

Our Theorem

Let

n(k) · Sk = X(k)T
(I − 1

n(k) en(k)eT
n(k))X(k).

Then

g(m)Sg(m) =
m

∑
k=0

n(k)Sk

+
m

∑
k=1

g(k−1)n(k)

g(k) (x̄g(k−1) − x̄n(k))(x̄g(k−1) − x̄n(k))T.

– p. 30/34

Explanation

PCA of update data matrix X(k) can be obtained by
Luk’s algorithm, i.e. n(k)Sk = RT

k Rk. Then

g(m)Sg(m) =
m

∑
k=0

RT
k Rk

+
m

∑
k=1

g(k−1)n(k)

g(k) (x̄g(k−1) − x̄n(k))(x̄g(k−1) − x̄n(k))T,

Assemble them to construct global PCA for X(m).

– p. 31/34

Analysis of Our Algorithm

� Global PCA can be computed without moving
X(k).

� Communication costs still O(p2dlog2 se),
� No local PCA approximation errors.
� Work directly with data matrices and update

matrices.
� Load balancing for communications and

computation.

– p. 32/34

Load Balancing

Let s = 2`. We can allocate all processors to do the
QR factorizations such that:

� PCA of X(k)← PCA of X(k−1)

+ R factor of X(k).
� PCA of X(k) obtained in tk+`.
� The procedure is periodic with period `.
� Well-balanced among the processors.

– p. 33/34

Processor

0

1

2

3

4

5

6

7

Time

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

R R

R R

R R

R R R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R RR R

R R

R R

R R

R R

R R R R

R R

t2t0 t1 t6t3 t4 t5

CommunicationComputation

R R

R R R RR R

R R

R R

R R

R R

X R

R R

R R

R R

R R

R R

R R

– p. 34/34

	PCA for Distributed Data Sets
	Grid
	New York State TeraGrid Initiative
	Grid Topology
	Principal Component Analysis
	PCA means
	PCA involves only V and $Sigma $
	Distributed PCA
	Data among s processors
	Aim
	Distributed PCA by Qu et al.
	Analysis of Qu's Approach
	Luk's Algorithms
	1a. At processor i
	1b. At processor $i<s/2$
	1c. At processor $i< s/4$
	1d. Eventually, at processor 0
	Main Results
	2. At central processor
	2. At central processor
	3. At processor i
	Analysis of Luk's Algorithm
	Data Updating
	At time t_k
	Global Data Matrix at t_m
	Our Theorem
	Explanation
	Analysis of Our Algorithm
	Load Balancing

