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Grid

Powerful processors with relatively slow links.
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New York State TeraGrid Initiative

� State University of NY at Albany
� Rensselaer Polytechnic Institute
� Brookhaven National Laboratory
� State University of NY at Stony Brook
� in partnership with IBM and NYSERNet
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Grid Topology

� Four sites, scalable grid architecture
� 10 to 20 Gb/sec connection
� 6TF Processors

Computation
Communication

=
6× 1012

0.3× 109 = 20, 000!

Communication Bottleneck:
computation done locally.
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Principal Component Analysis

Let X be an n× p data matrix, where n� p.

Data covariace matrix S is given by

nS = XT(I − 1
neneT

n)X,

where eT
n = (1, 1, . . . , 1).

PCA ⇐⇒ Karhunen-Loève transform
⇐⇒ Hotelling transform
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PCA means

� get spectral decomposition of n · S:

nS = VΣ2VT.

� choose few largest eigenvalues and
eigenvectors Ṽ.

� form principal component vectors X · Ṽ.
� low-dimension representation of original data.
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PCA involves only V and Σ

Since (I − 1
neneT

n) is symmetric and idempotent,

nS = XT(I − 1
neneT

n)X

= XT(I − 1
neneT

n)(I − 1
neneT

n)X

Σ and V can be obtained from SVD of:

(I − 1
neneT

n)X = UΣVT.

Low-dim’l representation X · Ṽ can still be done.
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Distributed PCA

Big data matrix X: n ≈ 1012.

E.g. visualization, data mining.

Problem:
Data are distributed amongst s processors.

Can we find Σ and V without moving X across
processors?
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Data among s processors

Denote

X =




X0

X1
...

Xs−1








n =
s−1

∑
i=0

ni,

where Xi is ni × p, resides on processor i.

Typical: ni ≈ 1012 and p ≈ 103.
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Aim

� Compute PCA of X without moving the data
matrix Xi.

� Move O(pα) data across processors instead of
O(ni).
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Distributed PCA by Qu et al.

1. At processor i, calculate local PCA using SVD:

(I − 1
ni

enie
T
ni
)Xi = UiΣiVT

i .

Say matrix has numerical rank ki.

Send x̄i (column sum of Xi), and ki largest
principal components Σ̂i and V̂i to central
processor.

Communication costs = O(pki).
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2. At central processor: Assemble p× p
covariance matrix and find its PCA

nŜ =
s−1

∑
i=0

V̂iΣ̂
2
i V̂T

i +
s−1

∑
i=0

ni(x̄i − x̄)(x̄i − x̄)T

= VΣ2VT.

Broadcast Ṽ, the first k columns of V.

Communication costs = O(pk).
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3. Calculate principal component vectors at
processor i:

XiṼ.
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Analysis of Qu’s Approach

Advantage: Reduce communication costs:

O(pn) −→ O
(

p
( s−1

∑
i=0

ki
))

.

Disadvantages:

� Local SVD’s introduce approximation errors.
� Central processor becomes bottleneck for

communications and computation.
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Luk’s Algorithms

Replace SVD by QR
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1a. At processor i

Calculate QR decomposition of (I − 1
ni

enie
T
ni
)Xi:

(I − 1
ni

enie
T
ni
)Xi = Q(0)

i R(0)
i ,

where R(0)
i is p× p.

Send ni and x̄i to central processor.

If i ≥ s/2, send R(0)
i to processor i− s/2.

No need to send Q(0)
i .
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1b. At processor i < s/2

Calculate QR decomposition
(

R(0)
i

R(0)
i+s/2

)
= Q(1)

i R(1)
i ,

where R(1)
i is p× p. Equals to QRD of

(I− 1
ni

enie
T
ni
)Xi and (I− 1

ni+s/2
eni+s/2eT

ni+s/2
)Xi+s/2.

If i ≥ s/4, send R(1)
i to processor i− s/4.

No need to send Q(1)
i . – p. 18/34



1c. At processor i < s/4

Calculate QR decomposition
(

R(1)
i

R(1)
i+s/4

)
= Q(2)

i R(2)
i ,

where R(2)
i is p× p.

If i ≥ s/8, send R(2)
i to processor i− s/8.

No need to send Q(2)
i .
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1d. Eventually, at processor 0

Calculate QR decomposition of
(

R(l−1)
0

R(l−1)
1

)
= Q(l)

0 R(l)
0 ,

where l = dlog2 se.

Send R(l)
0 to central processor.

No need to send Q(l)
0 .
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Main Results

� Total communication costs = O(dlog2 sep2).
� The covariance matrix

nS = XT(I − 1
neneT

n)X,

is given by:

nS = R(`)
0

T
R(`)

0 +
s−1

∑
i=0

ni(x̄i − x̄)(x̄i − x̄)T.

– p. 21/34



2. At central processor

Assemble (s + p)× p data matrix:

Z =




√
n0(x̄0− x̄)T
√

n1(x̄1− x̄)T

...√
ns−1(x̄s−1 − x̄)T

R(l)
0




.

Notice that: nS = ZTZ.
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2. At central processor

Compute SVD: Z = UΣVT (after triangulation).

Say Z has numerical rank k.

Broadcast x̄ and Ṽ, first k columns of V.

Communication costs = O(pk).
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3. At processor i

Calculate principal component vectors:

XiṼ.
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Analysis of Luk’s Algorithm

Advantage over Qu’s Approach:
� Communication costs on PCA:

O
(

p
( s−1

∑
i=0

ki
))
−→ O(p2dlog2 se),

� No local PCA approximation errors.
� Less congestion in central processor for

communications and computation.
� Work directly with data matrices.
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Data Updating

Assume global synchronization at t0, t1, . . . , tk,
i.e. at [tk−1, tk], new data are added to X(k)

i on
processor i.

Aim:
Find the PCA for the new extended matrix,
without moving X(k)

i across processors.
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Processor

t
t0 t1 · · · tm

0

1

...

s− 1

X(0)
0

X(0)
1

X(0)
s−1

X(1)
0

X(1)
1

X(1)
s−1

X(m)
0

X(m)
1

X(m)
s−1

· · ·

X(0) X(1) · · · X(m)

X(m)
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At time tk

Let

X(k) =




X(k)
0

X(k)
1
...

X(k)
s−1








n(k) =
s−1

∑
i=0

n(k)
i ,

where X(k)
i is n(k)

i × p.

Assume PCA of original matrix X(0) = X is
available by Luk’s algorithm.
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Global Data Matrix at tm

Denote

X
(m) =




X(0)

X(1)

...
X(s−1)








g(m) =
m

∑
i=0

n(k).

Aim: Find PCA for its covariance matrix:

g(m) · Sg(m) = X
(m)T

(I − 1
g(m)eg(m)eT

g(m))X
(m).
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Our Theorem

Let

n(k) · Sk = X(k)T
(I − 1

n(k) en(k)eT
n(k))X(k).

Then

g(m)Sg(m) =
m

∑
k=0

n(k)Sk

+
m

∑
k=1

g(k−1)n(k)

g(k) (x̄g(k−1) − x̄n(k))(x̄g(k−1) − x̄n(k))T.
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Explanation

PCA of update data matrix X(k) can be obtained by
Luk’s algorithm, i.e. n(k)Sk = RT

k Rk. Then

g(m)Sg(m) =
m

∑
k=0

RT
k Rk

+
m

∑
k=1

g(k−1)n(k)

g(k) (x̄g(k−1) − x̄n(k))(x̄g(k−1) − x̄n(k))T,

Assemble them to construct global PCA for X(m).
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Analysis of Our Algorithm

� Global PCA can be computed without moving
X(k).

� Communication costs still O(p2dlog2 se),
� No local PCA approximation errors.
� Work directly with data matrices and update

matrices.
� Load balancing for communications and

computation.
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Load Balancing

Let s = 2`. We can allocate all processors to do the
QR factorizations such that:

� PCA of X(k)← PCA of X(k−1)

+ R factor of X(k).
� PCA of X(k) obtained in tk+`.
� The procedure is periodic with period `.
� Well-balanced among the processors.
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