PCA for Distributed Data Sets

Raymond H. Chan Department of Mathematics The Chinese University of Hong Kong

Joint work with Franklin Luk (RPI) and Z.-J. Bai (CUHK)

Grid

New York State TeraGrid Initiative

- State University of NY at Albany
- Rensselaer Polytechnic Institute
- Brookhaven National Laboratory
- State University of NY at Stony Brook
- in partnership with IBM and NYSERNet

Grid Topology

Four sites, scalable grid architecture

10 to 20 Gb/sec connection

6TF Processors

 $\frac{\text{Computation}}{\text{Communication}} = \frac{6 \times 10^{12}}{0.3 \times 10^9} = 20,000!$

Communication Bottleneck: computation done locally.

Principal Component Analysis

Let *X* be an $n \times p$ data matrix, where $n \gg p$. Data covariace matrix *S* is given by

$$nS = X^T (I - \frac{1}{n} \mathbf{e}_n \mathbf{e}_n^T) X,$$

where $\mathbf{e}_{n}^{T} = (1, 1, ..., 1).$

 $\begin{array}{rcl} \mathsf{PCA} & \Longleftrightarrow & \mathsf{Karhunen-Loève\ transform} \\ & \Longleftrightarrow & \mathsf{Hotelling\ transform} \end{array}$

PCA means

• get spectral decomposition of $n \cdot S$:

 $nS = V\Sigma^2 V^T.$

- choose few largest eigenvalues and eigenvectors \widetilde{V} .
- form principal component vectors $X \cdot \widetilde{V}$.
- Iow-dimension representation of original data

PCA involves only V and Σ

Since $(I - \frac{1}{n} \mathbf{e}_n \mathbf{e}_n^T)$ is symmetric and idempotent, $nS = X^T (I - \frac{1}{n} \mathbf{e}_n \mathbf{e}_n^T) X$ $= X^T (I - \frac{1}{n} \mathbf{e}_n \mathbf{e}_n^T) (I - \frac{1}{n} \mathbf{e}_n \mathbf{e}_n^T) X$

 Σ and *V* can be obtained from SVD of:

$$(I - \frac{1}{n}\mathbf{e}_n\mathbf{e}_n^T)X = U\Sigma V^T.$$

Low-dim'l representation $X \cdot \tilde{V}$ can still be done.

Distributed PCA

Big data matrix *X*: $n \approx 10^{12}$. E.g. visualization, data mining.

Problem:

Data are distributed amongst *s* processors. Can we find Σ and *V* without moving *X* across processors?

Data among *s* processors

Denote

where X_i is $n_i \times p$, resides on processor i. Typical: $n_i \approx 10^{12}$ and $p \approx 10^3$.

Aim

- Compute PCA of X without moving the data matrix X_i.
- Move O(p^α) data across processors instead of O(n_i).

Distributed PCA by Qu et al.

1. At processor *i*, calculate local PCA using SVE

$$(I - \frac{1}{n_i} \mathbf{e}_{n_i} \mathbf{e}_{n_i}^T) X_i = U_i \Sigma_i V_i^T$$

Say matrix has numerical rank *k*_{*i*}.

Send $\bar{\mathbf{x}}_i$ (column sum of X_i), and k_i largest principal components $\hat{\Sigma}_i$ and \hat{V}_i to central processor.

Communication costs = $O(pk_i)$.

2. At central processor: Assemble $p \times p$ covariance matrix and find its PCA

$$n\widehat{S} = \sum_{i=0}^{s-1} \widehat{V}_i \widehat{\Sigma}_i^2 \widehat{V}_i^T + \sum_{i=0}^{s-1} n_i (\bar{\mathbf{x}}_i - \bar{\mathbf{x}}) (\bar{\mathbf{x}}_i - \bar{\mathbf{x}})^T$$

= $V \Sigma^2 V^T$.

Broadcast \tilde{V} , the first *k* columns of *V*. Communication costs = O(pk).

3. Calculate principal component vectors at processor *i*:

 $X_i\widetilde{V}.$

Analysis of Qu's Approach

Advantage: Reduce communication costs:

$$O(pn) \longrightarrow O(p(\sum_{i=0}^{s-1} k_i)).$$

Disadvantages:

Local SVD's introduce approximation errors.

Central processor becomes bottleneck for communications and computation.

Luk's Algorithms

Replace SVD by QR

1a. At processor *i*

Calculate QR decomposition of $(I - \frac{1}{n_i} \mathbf{e}_{n_i} \mathbf{e}_{n_i}^T) X_i$:

$$(I - \frac{1}{n_i} \mathbf{e}_{n_i} \mathbf{e}_{n_i}^T) X_i = Q_i^{(0)} R_i^{(0)},$$

where $R_i^{(0)}$ is $p \times p$. Send n_i and $\bar{\mathbf{x}}_i$ to central processor. If $i \ge s/2$, send $R_i^{(0)}$ to processor i - s/2. No need to send $Q_i^{(0)}$.

1b. At processor i < s/2

Calculate QR decomposition

$$\begin{pmatrix} R_i^{(0)} \\ R_{i+s/2}^{(0)} \end{pmatrix} = Q_i^{(1)} R_i^{(1)},$$

where $R_i^{(1)}$ is $p \times p$. Equals to QRD of

 $(I - \frac{1}{n_i} \mathbf{e}_{n_i} \mathbf{e}_{n_i}^T) X_i$ and $(I - \frac{1}{n_{i+s/2}} \mathbf{e}_{n_{i+s/2}} \mathbf{e}_{n_{i+s/2}}^T) X_{i+s}$

If $i \ge s/4$, send $R_i^{(1)}$ to processor i - s/4. No need to send $Q_i^{(1)}$.

1c. At processor i < s/4

Calculate QR decomposition

$$\begin{pmatrix} R_i^{(1)} \\ R_{i+s/4}^{(1)} \end{pmatrix} = Q_i^{(2)} R_i^{(2)},$$

where $R_i^{(2)}$ is $p \times p$.

If $i \ge s/8$, send $R_i^{(2)}$ to processor i - s/8. No need to send $Q_i^{(2)}$.

1d. Eventually, at processor 0

Calculate QR decomposition of

$$\left(\begin{array}{c} R_0^{(l-1)} \\ R_1^{(l-1)} \end{array} \right) = Q_0^{(l)} R_0^{(l)},$$

where $l = \lceil \log_2 s \rceil$.

Send $R_0^{(l)}$ to central processor.

No need to send $Q_0^{(l)}$.

Main Results

Total communication costs = O([log₂ s]p²).
The covariance matrix
nS = X^T(I - ¹/_n e_n e^T_n)X,

is given by:

$$nS = R_0^{(\ell)^T} R_0^{(\ell)} + \sum_{i=0}^{s-1} n_i (\bar{\mathbf{x}}_i - \bar{\mathbf{x}}) (\bar{\mathbf{x}}_i - \bar{\mathbf{x}})^T.$$

2. At central processor

Assemble $(s + p) \times p$ data matrix:

$$Z = \begin{pmatrix} \sqrt{n_0} (\bar{\mathbf{x}}_0 - \bar{\mathbf{x}})^T \\ \sqrt{n_1} (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}})^T \\ \vdots \\ \sqrt{n_{s-1}} (\bar{\mathbf{x}}_{s-1} - \bar{\mathbf{x}})^T \\ R_0^{(l)} \end{pmatrix}$$

Notice that: $nS = Z^T Z$.

2. At central processor

Compute SVD: $Z = U\Sigma V^T$ (after triangulation). Say *Z* has numerical rank *k*. Broadcast $\bar{\mathbf{x}}$ and \tilde{V} , first *k* columns of *V*.

Communication costs = O(pk).

3. At processor *i*

Calculate principal component vectors:

 $X_i \widetilde{V}.$

Analysis of Luk's Algorithm

Advantage over Qu's Approach:Communication costs on PCA:

$$O\left(p\left(\sum_{i=0}^{s-1}k_i\right)\right) \longrightarrow O\left(p^2\lceil \log_2 s\rceil\right),$$

No local PCA approximation errors.

- Less congestion in central processor for communications and computation.
- Work directly with data matrices.

Data Updating

Assume global synchronization at $t_0, t_1, ..., t_k$, i.e. at $[t_{k-1}, t_k]$, new data are added to $X_i^{(k)}$ on processor *i*.

Aim:

Find the PCA for the new extended matrix, without moving $X_i^{(k)}$ across processors.

-p.27/3

At time t_k

Let

$$X^{(k)} = \begin{pmatrix} X_0^{(k)} \\ X_1^{(k)} \\ \vdots \\ X_{s-1}^{(k)} \end{pmatrix} \right\} \quad n^{(k)} = \sum_{i=0}^{s-1} n_i^{(k)},$$

where $X_i^{(k)}$ is $n_i^{(k)} \times p$.

Assume PCA of original matrix $X^{(0)} = X$ is available by Luk's algorithm.

Global Data Matrix at t_m

Denote

$$\mathbb{X}^{(m)} = \begin{pmatrix} X^{(0)} \\ X^{(1)} \\ \vdots \\ X^{(s-1)} \end{pmatrix} \} \quad g(m) = \sum_{i=0}^{m} n^{(k)}.$$

Aim: Find PCA for its covariance matrix:

$$g(m) \cdot \mathbb{S}_{g(m)} = \mathbb{X}^{(m)^T} \left(I - \frac{1}{g(m)} \mathbf{e}_{g(m)} \mathbf{e}_{g(m)}^T \right) \mathbb{X}^{(m)}.$$

Our Theorem

Let

$$n^{(k)} \cdot S_k = X^{(k)^T} (I - \frac{1}{n^{(k)}} \mathbf{e}_{n^{(k)}} \mathbf{e}_{n^{(k)}}^T) X^{(k)}.$$

Then

$$g(m)S_{g(m)} = \sum_{k=0}^{m} n^{(k)}S_k + \sum_{k=1}^{m} \frac{g(k-1)n^{(k)}}{g(k)} (\bar{\mathbf{x}}_{g(k-1)} - \bar{\mathbf{x}}_{n^{(k)}}) (\bar{\mathbf{x}}_{g(k-1)} - \bar{\mathbf{x}}_{n^{(k)}})$$

Explanation

PCA of update data matrix $X^{(k)}$ can be obtained be Luk's algorithm, i.e. $n^{(k)}S_k = R_k^T R_k$. Then

$$g(m)S_{g(m)} = \sum_{k=0}^{m} R_k^T R_k$$

+ $\sum_{k=1}^{m} \frac{g(k-1)n^{(k)}}{g(k)} (\bar{\mathbf{x}}_{g(k-1)} - \bar{\mathbf{x}}_{n^{(k)}}) (\bar{\mathbf{x}}_{g(k-1)} - \bar{\mathbf{x}}_{n^{(k)}})$

Assemble them to construct global PCA for $X^{(m)}$.

Analysis of Our Algorithm

- Global PCA can be computed without movin *X*^(k).
- Communication costs still $O(p^2 \lceil \log_2 s \rceil)$,
- No local PCA approximation errors.
- Work directly with data matrices and update matrices.
- Load balancing for communications and computation.

Load Balancing

Let $s = 2^{\ell}$. We can allocate all processors to do the QR factorizations such that:

- PCA of $X^{(k)} \leftarrow$ PCA of $X^{(k-1)}$ + R factor of $X^{(k)}$.
- PCA of $X^{(k)}$ obtained in $t_{k+\ell}$.
- The procedure is periodic with period ℓ .
- Well-balanced among the processors.

