PCA for Distributed Data Sets

Raymond H. Chan
Department of Mathematics
The Chinese University of Hong Kong

Joint work with
Franklin Luk (RPI) and Z.-J. Bai (CUHK)

Grid

Powerful processors with relatively slow links. Powerful
Teraflop
Processors

New York State TeraGrid Initiative

- State University of NY at Albany
- Rensselaer Polytechnic Institute

■ Brookhaven National Laboratory

- State University of NY at Stony Brook

■ in partnership with IBM and NYSERNet

Grid Topology

- Four sites, scalable grid architecture
- 10 to 20 Gb / sec connection

■ 6TF Processors

$$
\frac{\text { Computation }}{\text { Communication }}=\frac{6 \times 10^{12}}{0.3 \times 10^{9}}=20,000!
$$

Communication Bottleneck:
computation done locally.

Principal Component Analysis

Let X be an $n \times p$ data matrix, where $n \gg p$.
Data covariace matrix S is given by

$$
n S=X^{T}\left(I-\frac{1}{n} \mathbf{e}_{n} \mathbf{e}_{n}^{T}\right) X
$$

where $\mathbf{e}_{n}^{T}=(1,1, \ldots, 1)$.

PCA \Longleftrightarrow Karhunen-Loève transform
\Longleftrightarrow Hotelling transform

PCA means

- get spectral decomposition of $n \cdot S$:

$$
n S=V \Sigma^{2} V^{T}
$$

- choose few largest eigenvalues and eigenvectors \widetilde{V}.
■ form principal component vectors $X \cdot \widetilde{V}$.
■ low-dimension representation of original dat

PCA involves only V and Σ

Since ($I-\frac{1}{n} \mathbf{e}_{n} \mathbf{e}_{n}^{T}$) is symmetric and idempotent,

$$
\begin{aligned}
n S & =X^{T}\left(I-\frac{1}{n} \mathbf{e}_{n} \mathbf{e}_{n}^{T}\right) X \\
& =X^{T}\left(I-\frac{1}{n} \mathbf{e}_{n} \mathbf{e}_{n}^{T}\right)\left(I-\frac{1}{n} \mathbf{e}_{n} \mathbf{e}_{n}^{T}\right) X
\end{aligned}
$$

Σ and V can be obtained from SVD of:

$$
\left(I-\frac{1}{n} \mathbf{e}_{n} \mathbf{e}_{n}^{T}\right) X=U \Sigma V^{T}
$$

Low-dim'l representation $X \cdot \widetilde{V}$ can still be done.

Distributed PCA

Big data matrix $X: n \approx 10^{12}$.
E.g. visualization, data mining.

Problem:
Data are distributed amongst s processors.
Can we find Σ and V without moving X across processors?

Data among sprocessors

Denote

$$
\left.X=\left(\begin{array}{c}
X_{0} \\
X_{1} \\
\vdots \\
X_{s-1}
\end{array}\right)\right\} n=\sum_{i=0}^{s-1} n_{i}
$$

where X_{i} is $n_{i} \times p$, resides on processor i.
Typical: $n_{i} \approx 10^{12}$ and $p \approx 10^{3}$.

Aim

■ Compute PCA of X without moving the data matrix X_{i}.

- Move $O\left(p^{\alpha}\right)$ data across processors instead of $O\left(n_{i}\right)$.

Distributed PCA by Qu et al.

1. At processor i, calculate local PCA using SVD

$$
\left(I-\frac{1}{n_{i}} \mathbf{e}_{n_{i}} \mathbf{e}_{n_{i}}^{T}\right) X_{i}=U_{i} \Sigma_{i} V_{i}^{T}
$$

Say matrix has numerical rank k_{i}.
Send $\overline{\mathbf{x}}_{i}$ (column sum of X_{i}), and k_{i} largest principal components $\widehat{\Sigma}_{i}$ and \widehat{V}_{i} to central processor.

Communication costs $=O\left(p k_{i}\right)$.
2. At central processor: Assemble $p \times p$ covariance matrix and find its PCA

$$
\begin{aligned}
n \widehat{S} & =\sum_{i=0}^{s-1} \widehat{V}_{i} \widehat{\Sigma}_{i}^{2} \widehat{V}_{i}^{T}+\sum_{i=0}^{s-1} n_{i}\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}\right)\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}\right)^{T} \\
& =V \Sigma^{2} V^{T} .
\end{aligned}
$$

Broadcast \widetilde{V}, the first k columns of V.
Communication costs $=O(p k)$.
3. Calculate principal component vectors at processor i :

$$
X_{i} \widetilde{V} .
$$

Analysis of Qu's Approach

Advantage: Reduce communication costs:

$$
O(p n) \longrightarrow O\left(p\left(\sum_{i=0}^{s-1} k_{i}\right)\right)
$$

Disadvantages:
■ Local SVD's introduce approximation errors.

- Central processor becomes bottleneck for communications and computation.

Luk's Algorithms

Replace SVD by QR

1a. At processor i

Calculate QR decomposition of $\left(I-\frac{1}{n_{i}} \mathbf{e}_{n_{i}} \mathbf{e}_{n_{i}}^{T}\right) X_{i}$:

$$
\left(I-\frac{1}{n_{i}} \mathbf{e}_{n_{i}} \mathbf{e}_{n_{i}}^{T}\right) X_{i}=Q_{i}^{(0)} R_{i}^{(0)},
$$

where $R_{i}^{(0)}$ is $p \times p$.
Send n_{i} and $\overline{\mathbf{x}}_{i}$ to central processor.
If $i \geq s / 2$, send $R_{i}^{(0)}$ to processor $i-s / 2$.
No need to send $Q_{i}^{(0)}$.

1b. At processor $i<s / 2$

Calculate QR decomposition

$$
\binom{R_{i}^{(0)}}{R_{i+s / 2}^{(0)}}=Q_{i}^{(1)} R_{i}^{(1)},
$$

where $R_{i}^{(1)}$ is $p \times p$. Equals to QRD of
$\left(I-\frac{1}{n_{i}} \mathbf{e}_{n_{i}} \mathbf{e}_{n_{i}}^{T}\right) X_{i} \quad$ and $\quad\left(I-\frac{1}{n_{i+s / 2}} \mathbf{e}_{n_{i+s / 2}} \mathbf{e}_{n_{i+s / 2}}^{T}\right) X_{i+s}$.
If $i \geq s / 4$, send $R_{i}^{(1)}$ to processor $i-s / 4$.
No need to send $Q_{i}^{(1)}$.

1c. At processor $i<s / 4$

Calculate QR decomposition

$$
\binom{R_{i}^{(1)}}{R_{i+s / 4}^{(1)}}=Q_{i}^{(2)} R_{i}^{(2)},
$$

where $R_{i}^{(2)}$ is $p \times p$.
If $i \geq s / 8$, send $R_{i}^{(2)}$ to processor $i-s / 8$.
No need to send $Q_{i}^{(2)}$.

1d. Eventually, at processor 0

Calculate QR decomposition of

$$
\binom{R_{0}^{(l-1)}}{R_{1}^{(l-1)}}=Q_{0}^{(l)} R_{0}^{(l)}
$$

where $l=\left\lceil\log _{2} s\right\rceil$.
Send $R_{0}^{(l)}$ to central processor.
No need to send $Q_{0}^{(l)}$.

Main Results

- Total communication costs $=O\left(\left\lceil\log _{2} s\right\rceil p^{2}\right)$.
- The covariance matrix

$$
n S=X^{T}\left(I-\frac{1}{n} \mathbf{e}_{n} \mathbf{e}_{n}^{T}\right) X
$$

is given by:

$$
n S=R_{0}^{(\ell)^{T}} R_{0}^{(\ell)}+\sum_{i=0}^{s-1} n_{i}\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}\right)\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}\right)^{T}
$$

2. At central processor

Assemble $(s+p) \times p$ data matrix:

$$
\mathbf{Z}=\left(\begin{array}{c}
\sqrt{n_{0}}\left(\overline{\mathbf{x}}_{0}-\overline{\mathbf{x}}\right)^{T} \\
\sqrt{n_{1}}\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}\right)^{T} \\
\vdots \\
\sqrt{n_{s-1}}\left(\overline{\mathbf{x}}_{s-1}-\overline{\mathbf{x}}\right)^{T} \\
R_{0}^{(l)}
\end{array}\right) .
$$

Notice that: $n S=Z^{T} Z$.

2. At central processor

Compute SVD: $Z=U \Sigma V^{T}$ (after triangulation).
Say Z has numerical rank k.
Broadcast $\overline{\mathbf{x}}$ and \widetilde{V}, first k columns of V.
Communication costs $=O(p k)$.

3. At processor i

Calculate principal component vectors:

$$
X_{i} \widetilde{V}
$$

Analysis of Luk's Algorithm

Advantage over Qu's Approach:

- Communication costs on PCA:

$$
O\left(p\left(\sum_{i=0}^{s-1} k_{i}\right)\right) \longrightarrow O\left(p^{2}\left\lceil\log _{2} s\right\rceil\right)
$$

- No local PCA approximation errors.
- Less congestion in central processor for communications and computation.
- Work directly with data matrices.

Data Updating

Assume global synchronization at $t_{0}, t_{1}, \ldots, t_{k}$, i.e. at $\left[t_{k-1}, t_{k}\right]$, new data are added to $X_{i}^{(k)}$ on processor i.

Aim:

Find the PCA for the new extended matrix, without moving $X_{i}^{(k)}$ across processors.
$\mathbb{X}^{(m)}$

$$
\begin{array}{llll}
\hline X^{(0)} & X^{(1)} & \cdots & X^{(m)}
\end{array}
$$

Processor
$s-1$

- $X_{s-1}^{(0)} \bullet X_{s-1}^{(1)}$
- $X_{s-1}^{(m)}$
- $X_{1}^{(m)}$
- $X_{0}^{(m)}$

At time t_{k}

Let

$$
\left.X^{(k)}=\left(\begin{array}{c}
X_{0}^{(k)} \\
X_{1}^{(k)} \\
\vdots \\
X_{s-1}^{(k)}
\end{array}\right)\right\} \quad n^{(k)}=\sum_{i=0}^{s-1} n_{i}^{(k)}
$$

where $X_{i}^{(k)}$ is $n_{i}^{(k)} \times p$.
Assume PCA of original matrix $X^{(0)}=X$ is available by Luk's algorithm.

Global Data Matrix at t_{m}

Denote

$$
\left.\mathbb{X}^{(m)}=\left(\begin{array}{c}
X^{(0)} \\
X^{(1)} \\
\vdots \\
X^{(s-1)}
\end{array}\right)\right\} \quad g(m)=\sum_{i=0}^{m} n^{(k)}
$$

Aim: Find PCA for its covariance matrix:

$$
g(m) \cdot \mathrm{S}_{g(m)}=\mathbb{X}^{(m)^{T}}\left(I-\frac{1}{g(m)} \mathbf{e}_{g(m)} \mathbf{e}_{g(m)}^{T}\right) \mathbb{X}^{(m)}
$$

Our Theorem

Let

$$
n^{(k)} \cdot S_{k}=X^{(k)^{T}}\left(I-\frac{1}{n^{(k)}} \mathbf{e}_{n^{(k)}} \mathbf{e}_{n^{(k)}}^{T}\right) X^{(k)} .
$$

Then

$$
\begin{aligned}
& g(m) S_{g(m)}=\sum_{k=0}^{m} n^{(k)} S_{k} \\
& \quad+\sum_{k=1}^{m} \frac{g(k-1) n^{(k)}}{g(k)}\left(\overline{\mathbf{x}}_{g(k-1)}-\overline{\mathbf{x}}_{n^{(k)}}\right)\left(\overline{\mathbf{x}}_{g(k-1)}-\overline{\mathbf{x}}_{n^{(k)}}\right)
\end{aligned}
$$

Explanation

PCA of update data matrix $X^{(k)}$ can be obtained b Luk's algorithm, i.e. $n^{(k)} S_{k}=R_{k}^{T} R_{k}$. Then

$$
\begin{aligned}
& g(m) S_{g(m)}=\sum_{k=0}^{m} R_{k}^{T} R_{k} \\
& \quad+\sum_{k=1}^{m} \frac{g(k-1) n^{(k)}}{g(k)}\left(\overline{\mathbf{x}}_{g(k-1)}-\overline{\mathbf{x}}_{n^{(k)}}\right)\left(\overline{\mathbf{x}}_{g(k-1)}-\overline{\mathbf{x}}_{n^{(k)}}\right)
\end{aligned}
$$

Assemble them to construct global PCA for $\mathbb{X}^{(m)}$.

Analysis of Our Algorithm

■ Global PCA can be computed without movin $X^{(k)}$.

- Communication costs still $O\left(p^{2}\left\lceil\log _{2} s\right\rceil\right)$,
- No local PCA approximation errors.
- Work directly with data matrices and update matrices.
- Load balancing for communications and computation.

Load Balancing

Let $s=2^{\ell}$. We can allocate all processors to do th QR factorizations such that:

- PCA of $\mathbb{X}^{(k)} \leftarrow$ PCA of $\mathbb{X}^{(k-1)}$ +R factor of $X^{(k)}$.
■ PCA of $\mathbb{X}^{(k)}$ obtained in $t_{k+\ell}$.
- The procedure is periodic with period ℓ.
- Well-balanced among the processors.

