Structures preserved by matrix inversion

Steven Delvaux Marc Van Barel

Department of Computer Science
Katholieke Universiteit Leuven
Leuven, Belgium

Cortona 2004
1 Introduction
 - Structures preserved by matrix inversion

2 Displacement structures
 - Definition
 - Examples

3 Rank structures
 - Definition
 - Examples

4 Inversion of rank structures: some extensions
 - Singular shift matrices
 - Generally positioned rank structures
Introduction

- Structures preserved by matrix inversion

Displacement structures

- Definition
- Examples

Rank structures

- Definition
- Examples

Inversion of rank structures: some extensions

- Singular shift matrices
- Generally positioned rank structures
Introduction

Displacement structures

Rank structures

Inversion of rank structures: some extensions

Outline

1. Introduction
 - Structures preserved by matrix inversion

2. Displacement structures
 - Definition
 - Examples

3. Rank structures
 - Definition
 - Examples

4. Inversion of rank structures: some extensions
 - Singular shift matrices
 - Generally positioned rank structures
Outline

1. Introduction
 - Structures preserved by matrix inversion

2. Displacement structures
 - Definition
 - Examples

3. Rank structures
 - Definition
 - Examples

4. Inversion of rank structures: some extensions
 - Singular shift matrices
 - Generally positioned rank structures
Outline

1. Introduction
 - Structures preserved by matrix inversion

2. Displacement structures
 - Definition
 - Examples

3. Rank structures
 - Definition
 - Examples

4. Inversion of rank structures: some extensions
 - Singular shift matrices
 - Generally positioned rank structures

Delvaux, Van Barel
Introduction

Suppose given a matrix A.

Which structures of A carry over to the inverse matrix A^{-1}?

- Displacement structures
 - Toeplitz-like and Hankel-like
 - Cauchy-like and Vandermonde-like.
 - circulant
- Rank structures
 - upper triangular
 - Hessenberg and (lower) semiseparable
 - (lower) semiseparable plus diagonal.
- Some other structures
 - Hermitian
 - unitary
 - normal.

\Rightarrow We will handle these structures from a general point of view.
Suppose given a matrix A. Which structures of A carry over to the inverse matrix A^{-1}?

- **Displacement structures**
 - Toeplitz-like and Hankel-like
 - Cauchy-like and Vandermonde-like.
 - circulant

- **Rank structures**
 - upper triangular
 - Hessenberg and (lower) semiseparable
 - (lower) semiseparable plus diagonal.

- **Some other structures**
 - Hermitian
 - unitary
 - normal.

⇒ We will handle these structures from a general point of view.
Introduction

Suppose given a matrix A. Which structures of A carry over to the inverse matrix A^{-1}?

- **Displacement structures**
 - Toeplitz-like and Hankel-like
 - Cauchy-like and Vandermonde-like.
 - circulant

- **Rank structures**
 - upper triangular
 - Hessenberg and (lower) semiseparable
 - (lower) semiseparable plus diagonal.

- **Some other structures**
 - Hermitian
 - unitary
 - normal.

⇒ We will handle these structures from a general point of view.
Introduction

Suppose given a matrix A.

Which structures of A carry over to the inverse matrix A^{-1}?

- **Displacement structures**
 - Toeplitz-like and Hankel-like
 - Cauchy-like and Vandermonde-like.
 - circulant

- **Rank structures**
 - upper triangular
 - Hessenberg and (lower) semiseparable
 - (lower) semiseparable plus diagonal.

- **Some other structures**
 - Hermitian
 - unitary
 - normal.

\Rightarrow We will handle these structures from a general point of view.
Suppose given a matrix A. Which structures of A carry over to the inverse matrix A^{-1}?

- **Displacement structures**
 - Toeplitz-like and Hankel-like
 - Cauchy-like and Vandermonde-like.
 - circulant

- **Rank structures**
 - upper triangular
 - Hessenberg and (lower) semiseparable
 - (lower) semiseparable plus diagonal.

- **Some other structures**
 - Hermitian
 - unitary
 - normal.

\Rightarrow We will handle these structures from a general point of view.
Outline

1. Introduction
 - Structures preserved by matrix inversion

2. Displacement structures
 - Definition
 - Examples

3. Rank structures
 - Definition
 - Examples

4. Inversion of rank structures: some extensions
 - Singular shift matrices
 - Generally positioned rank structures
Displacement structure

- Stein type displacement

\[FAG + A = \operatorname{Rk} r \]

implies

\[A^{-1} + GA^{-1}F = \operatorname{Rk} r. \]

- Sylvester type displacement

\[FA + AG = \operatorname{Rk} r \]

implies

\[A^{-1}F + GA^{-1} = \operatorname{Rk} r. \]

Proof. Multiply by \(A^{-1} \) on the left and by \(A^{-1} \) on the right.

- Straightforward generalizations:
 - adding a constant and a quadratic term.
Displacement structure

- **Stein type displacement**

\[FAG + A = \text{Rk } r \]

implies

\[A^{-1} + GA^{-1}F = \text{Rk } r. \]

- **Sylvester type displacement**

\[FA + AG = \text{Rk } r \]

implies

\[A^{-1}F + GA^{-1} = \text{Rk } r. \]

Proof. Multiply by \(A^{-1}\) on the left and by \(A^{-1}\) on the right.

- **Straightforward generalizations:**
 - adding a constant and a quadratic term.
Displacement structure

- Stein type displacement
 \[FAG + A = \text{Rk } r \]
 implies
 \[A^{-1} + GA^{-1}F = \text{Rk } r. \]

- Sylvester type displacement
 \[FA + AG = \text{Rk } r \]
 implies
 \[A^{-1}F + GA^{-1} = \text{Rk } r. \]

Proof. Multiply by \(A^{-1} \) on the left and by \(A^{-1} \) on the right.

- Straightforward generalizations:
 - adding a constant and a quadratic term.
Displacement structure

- **Stein type displacement**
 \[FAG + A = R_k r \]
 implies
 \[A^{-1} + GA^{-1}F = R_k r. \]

- **Sylvester type displacement**
 \[FA + AG = R_k r \]
 implies
 \[A^{-1}F + GA^{-1} = R_k r. \]

Proof. Multiply by \(A^{-1} \) on the left and by \(A^{-1} \) on the right.

- **Straightforward generalizations:**
 - adding a constant and a quadratic term.
Displacement structure

- Stein type displacement

\[FAG + A = Rk\ r \]

implies

\[A^{-1} + GA^{-1}F = Rk\ r. \]

- Sylvester type displacement

\[FA + AG = Rk\ r \]

implies

\[A^{-1}F + GA^{-1} = Rk\ r. \]

Proof. Multiply by \(A^{-1} \) on the left and by \(A^{-1} \) on the right.

- Straightforward generalizations:
 - adding a constant and a quadratic term.
Displacement structure

- **Stein type displacement**

 \[FAG + A = \text{Rk } r \]

 implies

 \[A^{-1} + GA^{-1}F = \text{Rk } r. \]

- **Sylvester type displacement**

 \[AEA + FA + AG + H = \text{Rk } r \]

 implies

 \[E + A^{-1}F + GA^{-1} + A^{-1}HA^{-1} = \text{Rk } r. \]

Proof. Multiply by \(A^{-1} \) on the left and by \(A^{-1} \) on the right.

- **Straightforward generalizations:**
 - adding a constant and a quadratic term.
 - ‘decoupling’ the variable \(A \) into \(A \) and \(B \).
Displacement structure

- Stein type displacement

\[FAG + A = \text{Rk } r \]
implies
\[A^{-1} + GA^{-1}F = \text{Rk } r. \]

- Sylvester type displacement

\[AEA + FA + AG + H = \text{Rk } r \]
implies
\[E + A^{-1}F + GA^{-1} + A^{-1}HA^{-1} = \text{Rk } r. \]

Proof. Multiply by \(A^{-1} \) on the left and by \(A^{-1} \) on the right.

- Straightforward generalizations:
 - adding a constant and a quadratic term.
 - ‘decoupling’ the variable \(A \) into \(A \) and \(B \).
Displacement structure

- Stein type displacement

\[FAG + B = \text{Rk } r \]

implies

\[A^{-1} + GB^{-1}F = \text{Rk } r. \]

- Sylvester type displacement

\[BEA + FA + BG + H = \text{Rk } r \]

implies

\[E + B^{-1}F + GA^{-1} + B^{-1}HA^{-1} = \text{Rk } r. \]

Proof. Multiply by \(B^{-1} \) on the left and by \(A^{-1} \) on the right.

- Straightforward generalizations:
 - adding a constant and a quadratic term.
 - ‘decoupling’ the variable \(A \) into \(A \) and \(B \).
Outline

1. Introduction
 - Structures preserved by matrix inversion

2. Displacement structures
 - Definition
 - Examples

3. Rank structures
 - Definition
 - Examples

4. Inversion of rank structures: some extensions
 - Singular shift matrices
 - Generally positioned rank structures
Why should we ‘decouple’?

Illustration:

Corollary

Let A and B be nonsingular matrices satisfying

$$A - B = \text{Rk} \; r,$$

then

$$A^{-1} - B^{-1} = \text{Rk} \; r.$$

Examples:

- $B = \text{Herm}$: Hermitian plus low rank.
- $B = \text{Uni}$: unitary plus low rank.
Examples

Why should we ‘decouple’?
Illustration:

Corollary

Let A and B be nonsingular matrices satisfying

\[A - B = \text{Rk } r, \]

then

\[A^{-1} - B^{-1} = \text{Rk } r. \]

Examples:

- $B = \text{Herm}$: Hermitian plus low rank.
- $B = \text{Uni}$: unitary plus low rank.
Examples

Why should we ‘decouple’?
Illustration:

Corollary

Let A and B be nonsingular matrices satisfying

$$A - B = \text{Rk} \ r,$$

then

$$A^{-1} - B^{-1} = \text{Rk} \ r.$$

Examples:

- $B = \text{Herm}$: Hermitian plus low rank.
- $B = \text{Uni}$: unitary plus low rank.
Why should we ‘decouple’?

Illustration:

Corollary

Let A and B be nonsingular matrices satisfying

$$A - B = \text{Rk } r,$$

then

$$A^{-1} - B^{-1} = \text{Rk } r.$$

Examples:

- $B = \text{Herm}$: Hermitian plus low rank.
- $B = \text{Uni}$: unitary plus low rank.
Example: Hermitian plus low rank

We supposed Herm to be nonsingular.

What if Herm is singular?

Theorem

The following are equivalent:

(i) \(A = \text{Herm} + \text{Rk} \ r; \)

(ii) \(A - A^H = \text{Rk} \ 2r, \) where \(\text{Inertia}(\sqrt{-1}\text{Rk} \ 2r) = (\pi, \nu, \zeta) \) with \(\max\{\pi, \nu\} \leq r. \)

Corollary

The structure \(A = \text{Herm} + \text{Rk} \ r \) is always preserved under matrix inversion.
Example: Hermitian plus low rank

We supposed \texttt{Herm} to be nonsingular. What if \texttt{Herm} is singular?

Theorem

The following are equivalent:

(i) \(A = \text{Herm} + \text{Rk} \ r; \)

(ii) \(A - A^H = \text{Rk} \ 2r, \) where \(\text{Inertia}(\sqrt{-1} \text{Rk} \ 2r) = (\pi, \nu, \zeta) \) with \(\max\{\pi, \nu\} \leq r. \)

Corollary

The structure \(A = \text{Herm} + \text{Rk} \ r \) is always preserved under matrix inversion.
Example: Hermitian plus low rank

We supposed Herm to be nonsingular. What if Herm is singular?

Theorem

The following are equivalent:

(i) $A = \text{Herm} + \text{Rk } r$;

(ii) $A - A^H = \text{Rk } 2r$, where $\text{Inertia}(\sqrt{-1}\text{Rk } 2r) = (\pi, \nu, \zeta)$ with $\max\{\pi, \nu\} \leq r$.

Corollary

The structure $A = \text{Herm} + \text{Rk } r$ is always preserved under matrix inversion.
Example: Hermitian plus low rank

We supposed Herm to be nonsingular. What if Herm is singular?

Theorem

The following are equivalent:

(i) \(A = \text{Herm} + \text{Rk} \ r \);

(ii) \(A - A^H = \text{Rk} \ 2r \), where \(\text{Inertia}(\sqrt{-1}\text{Rk} \ 2r) = (\pi, \nu, \zeta) \) with \(\max\{\pi, \nu\} \leq r \).

Corollary

The structure \(A = \text{Herm} + \text{Rk} \ r \) is *always* preserved under matrix inversion.*
Outline

1. Introduction
 - Structures preserved by matrix inversion

2. Displacement structures
 - Definition
 - Examples

3. Rank structures
 - Definition
 - Examples

4. Inversion of rank structures: some extensions
 - Singular shift matrices
 - Generally positioned rank structures
Definition

We define a rank structure on $\mathbb{C}^{n \times n}$ as a collection $\{B_k\}_k$ where each B_k is a ‘structure block’.

$$B_k = (i_k, j_k, r_k, \Lambda_k) :$$

- i_k: row index,
- j_k: column index,
- r_k: rank upper bound,
- $\Lambda_k \in \mathbb{C}^{(j_k-i_k+1) \times (j_k-i_k+1)}$: shift matrix.

We say a matrix $A \in \mathbb{C}^{n \times n}$ to satisfy B_k if, after subtracting Λ_k as illustrated, we have $\text{Rank } A(i_k : n, 1 : j_k) \leq r_k$.
Definition

- We define a rank structure on $\mathbb{C}^{n \times n}$ as a collection $\{B_k\}_k$ where each B_k is a ‘structure block’.

$$B_k = (i_k, j_k, r_k, \Lambda_k):$$

- i_k: row index,
- j_k: column index,
- r_k: rank upper bound,
- $\Lambda_k \in \mathbb{C}^{(j_k-i_k+1) \times (j_k-i_k+1)}$: shift matrix.

- We say a matrix $A \in \mathbb{C}^{n \times n}$ to satisfy B_k if, after subtracting Λ_k as illustrated, we have $\text{Rank } A(i_k : n, 1 : j_k) \leq r_k$.

Delvaux, Van Barel Structures preserved by matrix inversion
Definition

- We define a rank structure on $\mathbb{C}^{n \times n}$ as a collection $\{B_k\}_k$ where each B_k is a ‘structure block’.

\[B_k = (i_k, j_k, r_k, \Lambda_k) : \]

- i_k: row index,
- j_k: column index,
- r_k: rank upper bound,
- $\Lambda_k \in \mathbb{C}^{(j_k - i_k + 1) \times (j_k - i_k + 1)}$: shift matrix.

- We say a matrix $A \in \mathbb{C}^{n \times n}$ to satisfy B_k if, after subtracting Λ_k as illustrated, we have $\text{Rank } A(i_k : n, 1 : j_k) \leq r_k$.
Definition

We define a rank structure on $\mathbb{C}^{n \times n}$ as a collection $\{B_k\}_k$ where each B_k is a ‘structure block’.

$$B_k = (i_k, j_k, r_k, \Lambda_k) :$$

- i_k: row index,
- j_k: column index,
- r_k: rank upper bound,
- $\Lambda_k \in \mathbb{C}^{(j_k-i_k+1) \times (j_k-i_k+1)}$: shift matrix.

We say a matrix $A \in \mathbb{C}^{n \times n}$ to satisfy B_k if, after subtracting Λ_k as illustrated, we have $\text{Rank } A(i_k : n, 1 : j_k) \leq r_k$.
A structure block $B_k = (i_k, j_k, r_k, \Lambda_k)$ is called pure if either

- $\Lambda_k = 0$,
- $i_k - j_k + 1 \leq 0$, i.e. the structure block does not intersect the diagonal.

Notation: $B_{\text{pure}, k}$.

Here are two examples of pure structure blocks $B_{\text{pure}, k}$:

- Left: $i_k, j_k, R_k = 6$
- Right: $i_k, j_k, R_k = 3$
Definition

(Continuation)

- A structure block $B_k = (i_k, j_k, r_k, \Lambda_k)$ is called pure if either
 - $\Lambda_k = 0$,
 - $i_k - j_k + 1 \leq 0$, i.e. the structure block does not intersect the diagonal.

- Notation: $B_{\text{pure}, k}$.

Here are two examples of pure structure blocks $B_{\text{pure}, k}$:

![Example 1](image1)

![Example 2](image2)
Definition

(Continuation)

- A structure block $B_k = (i_k, j_k, r_k, \Lambda_k)$ is called pure if either
 - $\Lambda_k = 0$,
 - $i_k - j_k + 1 \leq 0$, i.e. the structure block does not intersect the diagonal.

- Notation: $B_{\text{pure}, k}$.

Here are two examples of pure structure blocks $B_{\text{pure}, k}$:
Definition

(Continuation)

- A structure block $B_k = (i_k, j_k, r_k, \Lambda_k)$ is called pure if either
 - $\Lambda_k = 0$,
 - $i_k - j_k + 1 \leq 0$, i.e. the structure block does not intersect the diagonal.

- Notation: $B_{\text{pure},k}$.

Here are two examples of pure structure blocks $B_{\text{pure},k}$:

![Diagram](image-url)
Outline

1. Introduction
 - Structures preserved by matrix inversion

2. Displacement structures
 - Definition
 - Examples

3. Rank structures
 - Definition
 - Examples

4. Inversion of rank structures: some extensions
 - Singular shift matrices
 - Generally positioned rank structures
Here is an example of pure structure $\{B_{\text{pure, } k}\}_{k=1}^{n}$, yielding the class of lower semiseparable matrices:

Allowing shift matrices $\lambda_k \in \mathbb{C}^{1 \times 1}$, we get the structure $\{B_{k}\}_{k=1}^{n}$ of lower semiseparable...
Here is an example of pure structure $\{B_{\text{pure},k}\}_{k=1}^{n}$, yielding the class of lower semiseparable matrices:

Allowing shift matrices $\lambda_k \in \mathbb{C}^{1 \times 1}$, we get the structure $\{B_k\}_{k=1}^{n}$ of lower semiseparable plus diagonal matrices.
Here is an example of pure structure $\{B_{\text{pure},k}\}_{k=1}^n$, yielding the class of lower semiseparable matrices:

Allowing shift matrices $\lambda_k \in \mathbb{C}^{1 \times 1}$, we get the structure $\{B_k\}_{k=1}^n$ of lower semiseparable \textit{plus diagonal} matrices.

The diagonal correction $\text{diag}(\lambda_k)_{k=1}^n$ is part of the structure.
Example

Here is an example of pure structure $\{B_{\text{pure},k}\}_{k=1}^{n}$, yielding the class of lower semiseparable matrices:

Allowing shift matrices $\lambda_k \in \mathbb{C}^{1\times 1}$, we get the structure $\{B_k\}_{k=1}^{n}$ of lower semiseparable plus diagonal matrices. The diagonal correction $\text{diag}(\lambda_k)_{k=1}^{n}$ is part of the structure.
Examples of rank structures

- upper triangular matrices (including diagonal elements)
- upper triangular matrices (including diagonal elements)
- Hessenberg matrices
- lower semiseparable matrices (+symmetry: semiseparable)
- lower semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also ‘poorly ordered’ structures are possible
Examples of rank structures

- upper triangular matrices (including diagonal elements)
- Hessenberg matrices
- lower semiseparable matrices (+symmetry: semiseparable)
- lower semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also ‘poorly ordered’ structures are possible
Examples of rank structures

- upper triangular matrices (including diagonal elements)
- Hessenberg matrices
 - lower semiseparable matrices (+symmetry: semiseparable)
 - lower semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also ‘poorly ordered’ structures are possible
Examples of rank structures

- upper triangular matrices (including \textit{diagonal elements})
- Hessenberg matrices
- lower semiseparable matrices (+symmetry: semiseparable)
- lower semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also ‘poorly ordered’ structures are possible
Examples of rank structures

- upper triangular matrices (including diagonal elements)
- Hessenberg matrices
- lower semiseparable matrices (+symmetry: semiseparable)
- lower semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also ‘poorly ordered’ structures are possible
Examples of rank structures

- upper triangular matrices (including diagonal elements)
- Hessenberg matrices
- lower semiseparable matrices (+symmetry: semiseparable)
- lower semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also ‘poorly ordered’ structures are possible
Examples of rank structures

- upper triangular matrices (including diagonal elements)
- Hessenberg matrices
- lower semiseparable matrices (+symmetry: semiseparable)
- lower semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also ‘poorly ordered’ structures are possible
Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a nonsingular matrix satisfying the structure block $B = (i, j, r, \Lambda)$, with Λ nonsingular. Then the inverse matrix satisfies the structure block $B^{-1} := (i, j, r, \Lambda^{-1})$.

Proof. We have $A - B = \text{Rk } r$ with $B = \begin{bmatrix} X & X & X \\ 0 & \Lambda & X \\ 0 & 0 & X \end{bmatrix}$. Therefore, $A^{-1} - B^{-1} = \text{Rk } r$. □
Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a nonsingular matrix satisfying the structure block $B = (i, j, r, \Lambda)$, with Λ nonsingular. Then the inverse matrix satisfies the structure block $B^{-1} := (i, j, r, \Lambda^{-1})$.

Proof. We have $A - B = \text{Rk } r$ with $B = \begin{bmatrix} X & X & X \\ 0 & \Lambda & X \\ 0 & 0 & X \end{bmatrix}$.

$\Rightarrow A^{-1} - B^{-1} = \text{Rk } r$.

Delvaux, Van Barel

Structures preserved by matrix inversion
Inversion of rank structures

Theorem

Let \(A \in \mathbb{C}^{n \times n} \) be a nonsingular matrix satisfying the structure block \(B = (i, j, r, \Lambda) \), with \(\Lambda \) nonsingular. Then the inverse matrix satisfies the structure block \(B^{-1} := (i, j, r, \Lambda^{-1}) \).

\[
A = \begin{bmatrix}
 & & & Rk 6 \\
 & & \Lambda & \\
 & \Lambda & & \\
 Rk 6 & & & \\
\end{bmatrix} \quad \longrightarrow \quad A^{-1} = \begin{bmatrix}
 & & & Rk 6 \\
 & & \Lambda^{-1} & \\
 & \Lambda^{-1} & & \\
 Rk 6 & & & \\
\end{bmatrix}
\]

PROOF. We have \(A - B = Rk \ r \) with \(B = \begin{bmatrix} X & X & X \\ 0 & \Lambda & X \\ 0 & 0 & X \end{bmatrix} \).

\[A^{-1} - B^{-1} = Rk \ r. \]
outline

1. Introduction
 - Structures preserved by matrix inversion

2. Displacement structures
 - Definition
 - Examples

3. Rank structures
 - Definition
 - Examples

4. Inversion of rank structures: some extensions
 - Singular shift matrices
 - Generally positioned rank structures
Until now we assumed that Λ^{-1} exists. What happens if Λ is singular?

Singular value decomposition

$\Lambda = U \Sigma V^H$.

Behaviour of U, V under inversion is easy to handle.

\Rightarrow sufficient to define the structure block $B = (i, j, r, \Sigma^{-1})$.

We suppose from now on that $\Lambda = \Sigma$ is diagonal.
Until now we assumed that Λ^{-1} exists. What happens if Λ is singular?

Singular value decomposition

$$\Lambda = U \Sigma V^H.$$

Behaviour of U, V under inversion is easy to handle.
⇒ sufficient to define the structure block ‘$B = (i, j, r, \Sigma^{-1})$’.

We suppose from now on that $\Lambda = \Sigma$ is diagonal.
Until now we assumed that Λ^{-1} exists. What happens if Λ is singular?

Singular value decomposition

$$\Lambda = U \Sigma V^H.$$

Behaviour of U, V under inversion is easy to handle. ⇒ sufficient to define the structure block '$B = (i, j, r, \Sigma^{-1})$'.

We suppose from now on that $\Lambda = \Sigma$ is diagonal.
Singular shift matrices

- Until now we assumed that Λ^{-1} exists. What happens if Λ is singular?
- Singular value decomposition
 \[\Lambda = U\Sigma V^H. \]
 Behaviour of U, V under inversion is easy to handle.
 \[\Rightarrow \] sufficient to define the structure block $\mathcal{B} = (i, j, r, \Sigma^{-1})$.
- We suppose from now on that $\Lambda = \Sigma$ is diagonal.
Singular shift matrices

- Until now we assumed that Λ^{-1} exists. What happens if Λ is singular?
- Singular value decomposition
 \[
 \Lambda = U\Sigma V^H.
 \]
 Behaviour of U, V under inversion is easy to handle.
 \Rightarrow sufficient to define the structure block $\mathcal{B} = (i, j, r, \Sigma^{-1})$.
- We suppose from now on that $\Lambda = \Sigma$ is diagonal.
Shift elements ∞

Let Λ be diagonal, with some diagonal entries $\lambda_i = 0$. Corresponding diagonal entries of Λ^{-1} are $\frac{1}{\lambda_i} = \infty$.

Definition

We define $B = (i, j, r, \Lambda)$, having $\Lambda = \text{diag}(\lambda_i)$ with $\lambda_i \in \mathbb{C} \cup \{\infty\}$, as follows. We identify B with the ‘structure block’ obtained by dropping all rows and columns involving ∞, and with r decreased by the number of these dropped rows.

Delvaux, Van Barel

Structures preserved by matrix inversion
Shift elements ∞

Let Λ be diagonal, with some diagonal entries $\lambda_l = 0$. Corresponding diagonal entries of Λ^{-1} are $\frac{1}{\lambda_l} = \infty$.

Definition

We define $B = (i, j, r, \Lambda)$, having $\Lambda = \text{diag}(\lambda_l)$ with $\lambda_l \in \mathbb{C} \cup \{\infty\}$, as follows. We identify B with the ‘structure block’ obtained by dropping all rows and columns involving ∞, and with r decreased by the number of these dropped rows.
Let Λ be diagonal, with some diagonal entries $\lambda_l = 0$. Corresponding diagonal entries of Λ^{-1} are $\frac{1}{\lambda_l} = \infty$.

Definition

We define $B = (i, j, r, \Lambda)$, having $\Lambda = \text{diag}(\lambda_l)$ with $\lambda_l \in \mathbb{C} \cup \{\infty\}$, as follows. We identify B with the ‘structure block’ obtained by dropping all rows and columns involving ∞, and with r decreased by the number of these dropped rows.
Let Λ be diagonal, with some diagonal entries $\lambda_i = 0$. Corresponding diagonal entries of Λ^{-1} are $\frac{1}{\lambda_i} = \infty$.

Definition

We define $\mathcal{B} = (i, j, r, \Lambda)$, having $\Lambda = \text{diag}(\lambda_i)_i$ with $\lambda_i \in \mathbb{C} \cup \{\infty\}$, as follows. We identify \mathcal{B} with the ‘structure block’ obtained by dropping all rows and columns involving ∞, and with r decreased by the number of these dropped rows.
Let Λ be diagonal, with some diagonal entries $\lambda_i = 0$. Corresponding diagonal entries of Λ^{-1} are $\frac{1}{\lambda_i} = \infty$.

Definition

We define $\mathcal{B} = (i, j, r, \Lambda)$, having $\Lambda = \text{diag}(\lambda_i)_I$ with $\lambda_i \in \mathbb{C} \cup \{\infty\}$, as follows. We identify \mathcal{B} with the 'structure block' obtained by dropping all rows and columns involving ∞, and with r decreased by the number of these dropped rows.
Let Λ be diagonal, with some diagonal entries $\lambda_i = 0$. Corresponding diagonal entries of Λ^{-1} are $\frac{1}{\lambda_i} = \infty$.

Definition

We define $\mathcal{B} = (i, j, r, \Lambda)$, having $\Lambda = \text{diag}(\lambda_i)_i$ with $\lambda_i \in \mathbb{C} \cup \{\infty\}$, as follows. We identify \mathcal{B} with the ‘structure block’ obtained by dropping all rows and columns involving ∞, and with r decreased by the number of these dropped rows.
Let Λ be diagonal, with some diagonal entries $\lambda_i = 0$. Corresponding diagonal entries of Λ^{-1} are $\frac{1}{\lambda_i} = \infty$.

Definition

We define $\mathcal{B} = (i, j, r, \Lambda)$, having $\Lambda = \text{diag}(\lambda_i)_i$ with $\lambda_i \in \mathbb{C} \cup \{\infty\}$, as follows. We identify \mathcal{B} with the ‘structure block’ obtained by dropping all rows and columns involving ∞, and with r decreased by the number of these dropped rows.
Of course, we must motivate our definition for \(\lambda_l = \infty \).

Theorem

1. Our definition for \(\lambda_l = \infty \) was made in a ‘continuous’ way;
2. For \(B = (i, j, r, \Lambda) \) having \(\Lambda = \text{diag}(\lambda_l)_l \) with \(\lambda_l \in \mathbb{C} \cup \{\infty\} \), \(B \) can be written as the ‘limit’ of a family \(B_\epsilon \) with each \(\Lambda_\epsilon \) having entries in \(\mathbb{C} \).

⇒ Problems involving \(\lambda_l = \infty \) reduce to finite problems.

Example: Hessenberg matrices are limits of lower ss+d matrices:
Shift elements ∞

Of course, we must motivate our definition for ‘$\lambda_l = \infty$’.

Theorem

1. Our definition for $\lambda_l = \infty$ was made in a ‘continuous’ way;
2. for $B = (i, j, r, \Lambda)$ having $\Lambda = \text{diag}(\lambda_l)_l$ with $\lambda_l \in \mathbb{C} \cup \{\infty\}$, B can be written as the ‘limit’ of a family B_ϵ with each Λ_ϵ having entries in \mathbb{C}.

\Rightarrow Problems involving $\lambda_l = \infty$ reduce to finite problems.

Example: Hessenberg matrices are limits of lower ss+d matrices:
Of course, we must motivate our definition for ‘$\lambda_l = \infty$’.

Theorem

1. *Our definition for $\lambda_l = \infty$ was made in a ‘continuous’ way;*
2. *for $B = (i, j, r, \Lambda)$ having $\Lambda = \text{diag}(\lambda_l)_l$ with $\lambda_l \in \mathbb{C} \cup \{\infty\}$, B can be written as the ‘limit’ of a family B_ε with each Λ_ε having entries in \mathbb{C}.***

\implies Problems involving $\lambda_l = \infty$ reduce to *finite* problems.

Example: Hessenberg matrices are limits of lower ss+1 matrices:
Of course, we must motivate our definition for ‘$\lambda_l = \infty$’.

Theorem

1. **Our definition for $\lambda_l = \infty$ was made in a ‘continuous’ way;**
2. **for $\mathcal{B} = (i, j, r, \Lambda)$ having $\Lambda = \text{diag}(\lambda_l)_l$ with $\lambda_l \in \mathbb{C} \cup \{\infty\}$, \mathcal{B} can be written as the ‘limit’ of a family \mathcal{B}_ε with each Λ_ε having entries in \mathbb{C}.**

\Rightarrow Problems involving $\lambda_l = \infty$ reduce to finite problems.

Example: Hessenberg matrices are limits of lower ss+d matrices:
Shift elements ∞

Of course, we must motivate our definition for ‘$\lambda_l = \infty$’.

Theorem

1. *Our definition for $\lambda_l = \infty$ was made in a ‘continuous’ way;*
2. *for $B = (i, j, r, \Lambda)$ having $\Lambda = \text{diag}(\lambda_l)_l$ with $\lambda_l \in \mathbb{C} \cup \{\infty\}$, B can be written as the ‘limit’ of a family B_ϵ with each Λ_ϵ having entries in \mathbb{C}.***

\Rightarrow Problems involving $\lambda_l = \infty$ reduce to finite problems.

Example: Hessenberg matrices are limits of lower ss+d matrices:
Theorem (General inversion theorem)

Let $B = (i, j, r, \Lambda)$ where Λ is diagonal with diagonal entries $\lambda_i \in \mathbb{C} \cup \{\infty\}$. Then B^{-1} is precisely the structure block (i, j, r, Λ^{-1}), using the rules $\frac{1}{0} = \infty$ and $\frac{1}{\infty} = 0$.

Example: Similarly: Hessenberg and lower semiseparable structure.
Theorem (General inversion theorem)

Let $B = (i, j, r, \Lambda)$ where Λ is diagonal with diagonal entries $\lambda_l \in \mathbb{C} \cup \{\infty\}$. Then B^{-1} is precisely the structure block (i, j, r, Λ^{-1}), using the rules $\frac{1}{0} = \infty$ and $\frac{1}{\infty} = 0$.

Example:

\[
\begin{array}{c}
\begin{array}{c}
A = \\
\end{array}
\end{array}
\quad \begin{array}{c}
\begin{array}{c}
\text{Rk 6}
\end{array}
\end{array}
\quad \begin{array}{c}
\begin{array}{c}
\rightarrow
\end{array}
\end{array}
\quad \begin{array}{c}
\begin{array}{c}
A^{-1} =
\end{array}
\end{array}
\quad \begin{array}{c}
\begin{array}{c}
\text{Rk 6}
\end{array}
\end{array}
\end{array}
\]

Similarly: Hessenberg and lower semiseparable structure.
Theorem (General inversion theorem)

Let $B = (i, j, r, \Lambda)$ where Λ is diagonal with diagonal entries $\lambda_i \in \mathbb{C} \cup \{\infty\}$. Then B^{-1} is precisely the structure block (i, j, r, Λ^{-1}), using the rules $\frac{1}{0} = \infty$ and $\frac{1}{\infty} = 0$.

Example:

Similarly: Hessenberg and lower semiseparable structure.
Theorem (General inversion theorem)

Let \(B = (i, j, r, \Lambda) \) where \(\Lambda \) is diagonal with diagonal entries \(\lambda_l \in \mathbb{C} \cup \{\infty\} \). Then \(B^{-1} \) is precisely the structure block \((i, j, r, \Lambda^{-1})\), using the rules \(\frac{1}{0} = \infty \) and \(\frac{1}{\infty} = 0 \).

Example:

\[
A = \begin{bmatrix}
& & & & & Rk 6 \\
& & & & \\
& & & \\
& & \\
& \\
\end{bmatrix} \quad \rightarrow \quad A^{-1} = \begin{bmatrix}
& & & & & Rk 2 \\
& & & & \\
& & & \\
& & \\
& \\
\end{bmatrix}
\]

Similarly: Hessenberg and lower semiseparable structure.
Example: arrowhead matrix

Let A be diagonal plus rank 1, with diagonal correction Λ.

- Λ nonsingular: then A^{-1} is again diagonal plus rank 1, with diagonal correction Λ^{-1}.
- Λ singular, say $\lambda_n = 0$. Then $\frac{1}{\lambda_n} = \infty$:

$\Rightarrow A^{-1}$ is arrowhead.
Example: arrowhead matrix

Let A be diagonal plus rank 1, with diagonal correction Λ.
- Λ nonsingular: then A^{-1} is again diagonal plus rank 1, with diagonal correction Λ^{-1}.
- Λ singular, say $\lambda_n = 0$. Then $\frac{1}{\lambda_n} = \infty$:

$\Rightarrow A^{-1}$ is arrowhead.
Example: arrowhead matrix

Let A be diagonal plus rank 1, with diagonal correction Λ.

- Λ nonsingular: then A^{-1} is again diagonal plus rank 1, with diagonal correction Λ^{-1}.
- Λ singular, say $\lambda_n = 0$. Then $\frac{1}{\lambda_n} = \infty$:

$\implies A^{-1}$ is arrowhead.
Let A be diagonal plus rank 1, with diagonal correction Λ.

- Λ nonsingular: then A^{-1} is again diagonal plus rank 1, with diagonal correction Λ^{-1}.
- Λ singular, say $\lambda_n = 0$. Then $\frac{1}{\lambda_n} = \infty$:

$$A = \begin{bmatrix} x & x & x & x & 0 \\ x & x & x & x \\ x & x \\ x \\ 0 \end{bmatrix} \quad \rightarrow \quad A^{-1} = \begin{bmatrix} x & x & x & x & \infty \\ x & x & x \\ x \\ x \\ \infty \end{bmatrix}$$

$\Rightarrow A^{-1}$ is arrowhead.
Let A be diagonal plus rank 1, with diagonal correction Λ.

- Λ nonsingular: then A^{-1} is again diagonal plus rank 1, with diagonal correction Λ^{-1}.
- Λ singular, say $\lambda_n = 0$. Then $\frac{1}{\lambda_n} = \infty$.

$A = \begin{bmatrix} * & * & \cdots & * \\ * & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & * & * \end{bmatrix}$ $\Rightarrow A^{-1}$ is arrowhead.
Example: arrowhead matrix

Let A be diagonal plus rank 1, with diagonal correction Λ.
- Λ nonsingular: then A^{-1} is again diagonal plus rank 1, with diagonal correction Λ^{-1}.
- Λ singular, say $\lambda_n = 0$. Then $\frac{1}{\lambda_n} = \infty$:

\[
A = \begin{bmatrix}
\times & \times & \times & \times \\
0 & 0 & 0 & 0 \\
\end{bmatrix} \quad \Rightarrow \quad A^{-1} = \begin{bmatrix}
\times & \times & \times & \times \\
\end{bmatrix}
\]

A^{-1} is arrowhead.
Example

Given a matrix \(A = \begin{bmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & \Lambda
\end{bmatrix} \) with \(\Lambda \in \mathbb{C}^{k \times k} \).

Then

\[
A^{-1} - \begin{bmatrix}
0 & 0 \\
0 & \Lambda^{-1}
\end{bmatrix} = \text{Rk } n - k.
\]

Idea: Connection with the Schur complement formula.

\[
(A^{-1})_{2,2} = S := A_{2,2} - A_{2,1}A_{1,1}^{-1}A_{1,2}.
\]
Example

Given a matrix

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & \Lambda \end{bmatrix}$$

with $\Lambda \in \mathbb{C}^{k \times k}$.

Then

$$A^{-1} - \begin{bmatrix} 0 & 0 \\ 0 & \Lambda^{-1} \end{bmatrix} = \text{Rk } n - k.$$
Example

Given a matrix

\[A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & \Lambda \end{bmatrix} \]

with \(\Lambda \in \mathbb{C}^{k \times k} \).

Then

\[A^{-1} - \begin{bmatrix} 0 & 0 \\ 0 & \Lambda^{-1} \end{bmatrix} = \text{Rk} \, n - k. \]

Idea:

Connection with the Schur complement formula

\[(A^{-1})_{2,2} = S^{-1} \quad \text{with} \quad S := A_{2,2} - A_{2,1}A_{1,1}^{-1}A_{1,2}. \]
Example

Given a matrix \(A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & \Lambda \end{bmatrix} \) with \(\Lambda \in \mathbb{C}^{k \times k} \).

Then

\[
A^{-1} - \begin{bmatrix} 0 & 0 \\ 0 & \Lambda^{-1} \end{bmatrix} = \text{Rk } n - k.
\]

Idea:

Connection with the Schur complement formula

\[
(A^{-1})_{2,2} = S^{-1} \quad \text{with } S := A_{2,2} - A_{2,1}A_{1,1}^{-1}A_{1,2}.
\]
Example

Given a matrix \(A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & \Lambda \end{bmatrix} \) with \(\Lambda \in \mathbb{C}^{k \times k} \).

Then

\[
A^{-1} - \begin{bmatrix} 0 & 0 \\ 0 & \Lambda^{-1} \end{bmatrix} = \text{Rk } n - k.
\]

Idea:

Connection with the Schur complement formula

\[
(A^{-1})_{2,2} = S^{-1} \quad \text{with } S := A_{2,2} - A_{2,1}A_{1,1}^{-1}A_{1,2}.
\]
Example

Given a matrix

\[A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & \Lambda \end{bmatrix} \]

with \(\Lambda \in \mathbb{C}^{k \times k} \).

Then

\[A^{-1} - \begin{bmatrix} 0 & 0 \\ 0 & \Lambda^{-1} \end{bmatrix} = \text{Rk } n - k. \]

Idea:

Connection with the Schur complement formula

\[(A^{-1})_{2,2} = S^{-1} \quad \text{with} \quad S := A_{2,2} - A_{2,1}A_{1,1}^{-1}A_{1,2}. \]
Example: unitary plus low rank

General inversion theorem relates A and A^{-1}.
What if $A = \text{Uni} + \text{Rk } r$?
Example:
Example: unitary plus low rank

General inversion theorem relates A and A^{-1}.
What if $A = \text{Uni} + \text{Rk } r$?
Example: unitary plus low rank

General inversion theorem relates A and A^{-1}.
What if $A = \text{Uni} + \text{Rk } r$?
Then $A^{-1} - A^H = \text{Rk } 2r$.
\Rightarrow General inversion theorem relates A with itself.

Example:
Example: unitary plus low rank

General inversion theorem relates A and A^{-1}.
What if $A = \text{Uni} + \text{Rk } r$?
Then $A^{-1} - A^H = \text{Rk } 2r$.
\Rightarrow General inversion theorem relates A with itself.

Example:
Example: unitary plus low rank

General inversion theorem relates A and A^{-1}.
What if $A = \text{Uni} + \text{Rk } r$?
Then $A^{-1} - A^H = \text{Rk } 2r$.
\Rightarrow General inversion theorem relates A with itself.
Example:

$$
\text{Uni} = \\
\text{Rk } 2
$$
Example: unitary plus low rank

General inversion theorem relates A and A^{-1}. What if $A = \text{Uni} + \text{Rk } r$? Then $A^{-1} - A^H = \text{Rk } 2r$.

\Rightarrow General inversion theorem relates A with itself.

Example:

\[
\text{Uni } = \begin{bmatrix}
\infty & & & & \\
& \infty & & & \\
& & \infty & & \\
& & & \infty & \\
& & & & \infty
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{Rk } 6 \\
& \infty & & \\
& & \infty & & \\
& & & \infty & \\
& & & & \infty
\end{bmatrix}
\]

\[
\begin{bmatrix}
& & & & \\
& & & & \\
& & \infty & & \\
& & & \infty & \\
& & & & \infty
\end{bmatrix}
\]

\[
\begin{bmatrix}
& & & & \\
& & & & \\
& & \infty & & \\
& & & \infty & \\
& & & & \infty
\end{bmatrix}
\]

\[
\begin{bmatrix}
& & & & \\
& & & & \\
& & \infty & & \\
& & & \infty & \\
& & & & \infty
\end{bmatrix}
\]

\[
\begin{bmatrix}
& & & & \\
& & & & \\
& & \infty & & \\
& & & \infty & \\
& & & & \infty
\end{bmatrix}
\]
Example: unitary plus low rank

General inversion theorem relates A and A^{-1}.

What if $A = \text{Uni} + \text{Rk } r$?

Then $A^{-1} - A^H = \text{Rk } 2r$.

\Rightarrow General inversion theorem relates A with itself.

Example:

$$
\text{Uni} = \\
\begin{array}{c|c}
\text{Rk 6} & \\
\hline
\text{Rk 2} & \\
\end{array}
$$
Introduction

Displacement structures

Rank structures

Inversion of rank structures: some extensions

Singular shift matrices

Generally positioned rank structures

Outline

1. Introduction
 - Structures preserved by matrix inversion

2. Displacement structures
 - Definition
 - Examples

3. Rank structures
 - Definition
 - Examples

4. Inversion of rank structures: some extensions
 - Singular shift matrices
 - Generally positioned rank structures
Generally positioned rank structures

For all P_1, P_2,

$$B := P_1^{-1}AP_2 \quad \Rightarrow \quad B^{-1} = P_2^{-1}A^{-1}P_1.$$

Choosing P_1 and P_2 permutation matrices: structure blocks can be moved to a general matrix position.

Here are some illustrations:
Generally positioned rank structures

For all P_1, P_2,

$$B := P_1^{-1} A P_2 \quad \Rightarrow \quad B^{-1} = P_2^{-1} A^{-1} P_1.$$

Choosing P_1 and P_2 permutation matrices: structure blocks can be moved to a **general matrix position**.

Here are some illustrations:
Generally positioned rank structures

For all P_1, P_2,

$$B := P_1^{-1} A P_2 \quad \Rightarrow \quad B^{-1} = P_2^{-1} A^{-1} P_1.$$

Choosing P_1 and P_2 permutation matrices: structure blocks can be moved to a general matrix position.

Here are some illustrations:
For all P_1, P_2,

$$B := P_1^{-1}AP_2 \implies B^{-1} = P_2^{-1}A^{-1}P_1.$$

Choosing P_1 and P_2 permutation matrices: structure blocks can be moved to a general matrix position.

Here are some illustrations:

$$A = \begin{bmatrix}
\Lambda & Rk 4 \\
\end{bmatrix} \quad \begin{bmatrix}
\Lambda \\
Rk 4 \\
\end{bmatrix}
$$

$$A^{-1} = \begin{bmatrix}
\Lambda & Rk 4 \\
\end{bmatrix} \quad \begin{bmatrix}
\Lambda \\
Rk 4 \\
\end{bmatrix}$$
Generally positioned rank structures

For all P_1, P_2,

$$B := P_1^{-1} A P_2 \implies B^{-1} = P_2^{-1} A^{-1} P_1.$$

Choosing P_1 and P_2 permutation matrices: structure blocks can be moved to a general matrix position.

Here are some illustrations:

\[A = \begin{bmatrix}
\Lambda & 0 \\
0 & \Lambda
\end{bmatrix} \]

\[A^{-1} = \begin{bmatrix}
\Lambda^{-1} & 0 \\
0 & \Lambda^{-1}
\end{bmatrix} \]
Nullity theorem

What happens in the limiting case $\Lambda \to 0$ or $\Lambda \to \infty$?

Theorem (Fiedler)

Let $A \in \mathbb{C}^{n \times n}$ be nonsingular. Then for all index sets I and J,

$$\text{Null } A^{-1}(I, J) = \text{Null } A(N \setminus J, N \setminus I).$$

(1)

where $N := \{1, 2, \ldots, n\}$.
Nullity theorem

What happens in the limiting case $\Lambda \to 0$ or $\Lambda \to \infty I$?

Theorem (Fiedler)

Let $A \in \mathbb{C}^{n \times n}$ be nonsingular. Then for all index sets I and J,

$$\text{Null } A^{-1}(I, J) = \text{Null } A(N \setminus J, N \setminus I).$$

(1)

where $N := \{1, 2, \ldots, n\}$.
Nullity theorem

What happens in the limiting case $\Lambda \to 0$ or $\Lambda \to \infty$?

Theorem (Fiedler)

Let $A \in \mathbb{C}^{n \times n}$ be nonsingular. Then for all index sets I and J,

$$\text{Null } A^{-1}(I, J) = \text{Null } A(N \setminus J, N \setminus I).$$

(1)

where $N := \{1, 2, \ldots, n\}$.

\[A = \begin{bmatrix} Rk & 4 \\ \hline I & \end{bmatrix} \]

\[A^{-1} = \begin{bmatrix} \text{Rk} & 4 \\ \hline N \setminus I & \end{bmatrix} \]
Nullity theorem

What happens in the limiting case $\Lambda \to 0$ or $\Lambda \to \infty I$?

Theorem (Fiedler)

Let $A \in \mathbb{C}^{n \times n}$ be nonsingular. Then for all index sets I and J,

$$\text{Null } A^{-1}(I, J) = \text{Null } A(N \setminus J, N \setminus I).$$ \hspace{1cm} (1)

where $N := \{1, 2, \ldots, n\}$.

\[A = \begin{bmatrix} \text{Rk 4} \\
\end{bmatrix}
\]

\[A^{-1} = \begin{bmatrix} \text{Rk 2} \\
\end{bmatrix}
\]
Nullity theorem

What happens in the limiting case $\Lambda \to 0$ or $\Lambda \to \infty$?

Theorem (Fiedler)

Let $A \in \mathbb{C}^{n \times n}$ be nonsingular. Then for all index sets I and J,

$$\text{Null } A^{-1}(I, J) = \text{Null } A(N \setminus J, N \setminus I).$$

(1)

where $N := \{1, 2, \ldots, n\}$.

\[A = \begin{bmatrix} Rk 4 & & & \hline & Rk 4 & & \\ & & & \\ & & & \\
\end{bmatrix}, \quad A^{-1} = \begin{bmatrix} Rk 2 & & & \hline & & & \\ & & & \\ & & & \\
\end{bmatrix} \]
Nullity theorem

What happens in the limiting case $\Lambda \to 0$ or $\Lambda \to \infty$?

Theorem (Fiedler)

Let $A \in \mathbb{C}^{n \times n}$ be nonsingular. Then for all index sets I and J,

$$\text{Null } A^{-1}(I, J) = \text{Null } A(N \setminus J, N \setminus I).$$

(1)

where $N := \{1, 2, \ldots, n\}$.

\[A = \begin{pmatrix} 1 & \text{Rk 4} \\ \text{Rk 4} \\ \text{Rk 2} \end{pmatrix} \quad A^{-1} = \begin{pmatrix} \text{Rk 2} \\ \text{Rk 2} \end{pmatrix} \]
Nullity theorem

What happens in the limiting case $\Lambda \to 0$ or $\Lambda \to \infty I$?

Theorem (Fiedler)

Let $A \in \mathbb{C}^{n \times n}$ be nonsingular. Then for all index sets I and J,

$$\text{Null } A^{-1}(I, J) = \text{Null } A(N \setminus J, N \setminus I).$$ \hspace{1cm} (1)

where $N := \{1, 2, \ldots, n\}$.
Nullity theorem

What happens in the limiting case $\Lambda \to 0$ or $\Lambda \to \infty$?

Theorem (Fiedler)

Let $A \in \mathbb{C}^{n \times n}$ be nonsingular. Then for all index sets I and J,

$$\text{Null } A^{-1}(I, J) = \text{Null } A(N \setminus J, N \setminus I).$$

(1)

where $N := \{1, 2, \ldots, n\}$.

\[A = \begin{bmatrix}
1 & & & & \\
 & Rk 4 & & & \\
 & & Rk 4 & & \\
 & & & Rk 2 & \\
& N \setminus I & & N \setminus J & \\
N \setminus J & & & & \\
& & & Rk 2 & \\
& & & & Rk 4 \\
\end{bmatrix} \]

\[A^{-1} = \begin{bmatrix}
 & & & & \\
 & & & & \\
 & & & & \\
 & & & & \\
& & & Rk 2 & \\
& & N \setminus I & & \\
& & & & N \setminus J \\
& & N \setminus I & & \\
& & & & \\
\end{bmatrix} \]