Adaptive Low Complexity Algorithms for Unconstrained Minimization

Carmine Di Fiore, Stefano Fanelli, Paolo Zellini mailto:difiore@mat.uniroma2.it

Cortona, September 2004

1 The minimization problem and classical solvers

2 Previous contribution: *LQN* descent methods

3 New contribution: Adaptive *LQN* descent methods

Cortona, September 2004 C. Di Fiore, S. Fanelli, P. Zellini Adaptive Low Complexity Algorithms for Unconstrained Min

The minimization problem and classical solvers

 $f(\mathbf{x}_*) = \min_{\mathbf{x} \in R^n} f(\mathbf{x})$, find \mathbf{x}_*

・ロト ・ 日ト ・ モト・

The minimization problem and classical solvers

 $f(\mathbf{x}_*) = \min_{\mathbf{x} \in R^n} f(\mathbf{x})$, find \mathbf{x}_*

Descent methods

generate a minimizing sequence $\{\mathbf{x}_k\}_{k=0}^{+\infty}$ by the iterative scheme:

$$\begin{aligned} \mathbf{x}_{0} &\in R^{n}, \quad \mathbf{g}_{0} = \nabla f(\mathbf{x}_{0}), \quad \mathbf{d}_{0} = -\mathbf{g}_{0} \\ For \quad k = 0, 1, \dots \\ \begin{cases} \mathbf{x}_{k+1} = \mathbf{x}_{k} + \lambda_{k} \mathbf{d}_{k} & \lambda_{k} > 0 \\ \mathbf{g}_{k+1} = \nabla f(\mathbf{x}_{k+1}) \\ B_{k+1} = n \times n \text{ matrix, positive definite (pd)} \\ \mathbf{d}_{k+1} = \underbrace{-B_{k+1}^{-1} \mathbf{g}_{k+1}}_{\text{descent direction}} \end{aligned}$$

(日) (周) (王) (王)

The Newton descent method

- $B_{k+1} = \nabla^2 f(\mathbf{x}_{k+1})$
- A quadratic rate of convergence
- $O(n^3)$ arithmetic operations to compute \mathbf{x}_{k+1} from \mathbf{x}_k

The Newton descent method

- $B_{k+1} = \nabla^2 f(\mathbf{x}_{k+1})$
- A quadratic rate of convergence
- $O(n^3)$ arithmetic operations to compute \mathbf{x}_{k+1} from \mathbf{x}_k

Quasi-Newton (QN) descent methods

- B_{k+1} defined in terms of ∇f
- A superlinear rate of convergence
- Convergence under weak analytical assumptions
- $O(n^2)$ arithmetic operations to compute \mathbf{x}_{k+1} from \mathbf{x}_k
- $O(n^2)$ memory allocations for implementation

· 曰 › · (司 › · (글 › · (글 › ·) 글

The Newton descent method

- $B_{k+1} = \nabla^2 f(\mathbf{x}_{k+1})$
- A quadratic rate of convergence
- $O(n^3)$ arithmetic operations to compute \mathbf{x}_{k+1} from \mathbf{x}_k

Quasi-Newton (QN) descent methods

- B_{k+1} defined in terms of ∇f
- A superlinear rate of convergence
- Convergence under weak analytical assumptions
- $O(n^2)$ arithmetic operations to compute \mathbf{x}_{k+1} from \mathbf{x}_k
- $O(n^2)$ memory allocations for implementation

Main example: the BFGS method (Broyden et al.'70)

(日) (同) (三) (三) (三)

The minimization problem and classical solvers

Previous contribution: $\mathcal{L}QN$ descent methods New contribution: Adaptive $\mathcal{L}QN$ descent methods

<u>BFGS</u>

$$\mathbf{x}_{0} \in \mathbb{R}^{n}, \quad \mathbf{d}_{0} = -\mathbf{g}_{0}$$

For $k = 0, 1, ...$
$$\begin{cases} \mathbf{x}_{k+1} = \mathbf{x}_{k} + \lambda_{k} \mathbf{d}_{k} \quad \lambda_{k} \mid \mathbf{s}_{k}^{T} \mathbf{y}_{k} > 0 \\ B_{k+1} = \varphi \left(B_{k}, \underbrace{\mathbf{x}_{k+1} - \mathbf{x}_{k}}_{\mathbf{s}_{k}}, \underbrace{\mathbf{g}_{k+1} - \mathbf{g}_{k}}_{\mathbf{y}_{k}}\right) \\ \mathbf{d}_{k+1} = -B_{k+1}^{-1} \mathbf{g}_{k+1} \end{cases}$$

Cortona, September 2004 C. Di Fiore, S. Fanelli, P. Zellini Adaptive Low Complexity Algorithms for Unconstrained Min

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

3

The minimization problem and classical solvers

Previous contribution: $\mathcal{L}QN$ descent methods New contribution: Adaptive $\mathcal{L}QN$ descent methods

<u>BFGS</u>

$$\mathbf{x}_{0} \in \mathbb{R}^{n}, \quad \mathbf{d}_{0} = -\mathbf{g}_{0}$$

For $k = 0, 1, ...$
$$\begin{cases} \mathbf{x}_{k+1} = \mathbf{x}_{k} + \lambda_{k} \mathbf{d}_{k} \quad \lambda_{k} \mid \mathbf{s}_{k}^{T} \mathbf{y}_{k} > 0\\ B_{k+1} = \varphi \left(B_{k}, \underbrace{\mathbf{x}_{k+1} - \mathbf{x}_{k}}_{\mathbf{s}_{k}}, \underbrace{\mathbf{g}_{k+1} - \mathbf{g}_{k}}_{\mathbf{y}_{k}}\right)\\ \mathbf{d}_{k+1} = -B_{k+1}^{-1} \mathbf{g}_{k+1} \end{cases}$$

- arphi properties \Rightarrow
- B_{k+1} inherites positive definiteness from B_k Proof: B pd & $\mathbf{s}^T \mathbf{y} > 0 \Rightarrow \varphi(B, \mathbf{s}, \mathbf{y})$ pd
- $B_{k+1}(\mathbf{x}_{k+1} \mathbf{x}_k) = \mathbf{g}_{k+1} \mathbf{g}_k$ Proof: $\varphi(B, \mathbf{s}, \mathbf{y})\mathbf{s} = \mathbf{y}$

<ロ> (四) (四) (三) (三) (三)

The updating function φ in $B_{k+1} = \varphi(B_k, \mathbf{s}_k, \mathbf{y}_k)$ is

$$\varphi (B, \mathbf{s}, \mathbf{y}) = B + \frac{1}{\mathbf{y}^T \mathbf{s}} \mathbf{y} \mathbf{y}^T - \frac{1}{\mathbf{s}^T B \mathbf{s}} B \mathbf{s} \mathbf{s}^T B$$

 \Rightarrow BFGS is a secant method:

$$B_{k+1}(\underbrace{\mathbf{x}_{k+1} - \mathbf{x}_k}_{\mathbf{s}_k}) = \underbrace{\mathbf{g}_{k+1} - \mathbf{g}_k}_{\mathbf{y}_k} \quad secant \ equation$$

Proof (independent on B):

$$\varphi(B, \mathbf{s}, \mathbf{y})\mathbf{s} = \left(B + \frac{1}{\mathbf{y}^{T}\mathbf{s}}\mathbf{y}\mathbf{y}^{T} - \frac{1}{\mathbf{s}^{T}B\mathbf{s}}B\mathbf{s}\mathbf{s}^{T}B\right)\mathbf{s}$$

= $B\mathbf{s} + \frac{1}{\mathbf{y}^{T}\mathbf{s}}\mathbf{y}(\mathbf{y}^{T}\mathbf{s}) - \frac{1}{\mathbf{s}^{T}B\mathbf{s}}B\mathbf{s}(\mathbf{s}^{T}B\mathbf{s})$
= \mathbf{y}

(日) (周) (王) (王)

Quasi-Newton (QN) descent methods for large scale problems

- B_{k+1} defined in terms of ∇f
- A *fast* rate of convergence
- Convergence under weak analytical assumptions
- less than $O(n^2)$ arithmetic operations to compute \mathbf{x}_{k+1} from \mathbf{x}_k
- less than $O(n^2)$ memory allocations for implementation

Classical example: the Limited memory BFGS method (Nocedal et al. '80)

(日) (周) (王) (王)

Quasi-Newton (QN) descent methods for large scale problems

- B_{k+1} defined in terms of ∇f
- A *fast* rate of convergence
- Convergence under weak analytical assumptions
- less than $O(n^2)$ arithmetic operations to compute \mathbf{x}_{k+1} from \mathbf{x}_k
- less than $O(n^2)$ memory allocations for implementation

Classical example: the Limited memory BFGS method (Nocedal et al. '80)

A recent proposal: <u>the LQN method</u> (Di Fiore, Fanelli, Zellini et al. '00)

· ロ > · (周 > · (日 > · (日 >)) 日

Previous contribution: $\mathcal{L}QN$ descent methods

Replace the matrix B_k in

$$B_{k+1} = \varphi(\mathbf{B}_k, \mathbf{s}_k, \mathbf{y}_k)$$

with a matrix A_k of a low complexity space \mathcal{L}

· □ > · (司 > · (日 > · (日 > ·)

Previous contribution: $\mathcal{L}QN$ descent methods

Replace the matrix B_k in

$$B_{k+1} = \varphi(\mathbf{B}_k, \mathbf{s}_k, \mathbf{y}_k)$$

with a matrix A_k of a low complexity space \mathcal{L}

<u>Choice of \mathcal{L} </u> $B_k \in sd \ U$ for some unitary matrix U, where

$$sd \ U = \{ \ Ud(\mathbf{z})U^* : \ \mathbf{z} \in C^n \}, \quad d(\mathbf{z}) = \begin{bmatrix} z_1 & 0 & \cdots & 0 \\ 0 & z_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & z_n \end{bmatrix}$$

 \Rightarrow choose $\mathcal{L} = sd U$, U = fast unitary transform (U = Fourier, Hartley, ...)

Cortona, September 2004 C. Di Fiore, S. Fanelli, P. Zellini Adaptive Low Complexity Algorithms for Unconstrained Min

 $\frac{\text{Choice of } A_k \text{ in } \mathcal{L}}{A_k = \text{the best least squares fit to } B_k \text{ in } \mathcal{L} = sd U, \text{ i.e.}} A_k = \mathcal{L}_{B_k} \text{ where}$

$$\|\mathcal{L}_{B_k} - B_k\|_F = \min_{X \in \mathcal{L}} \|X - B_k\|_F$$

The $\mathcal{L}QN$ algorithm

$$\mathbf{x}_{0} \in \mathbb{R}^{n}, \quad \mathbf{d}_{0} = -\mathbf{g}_{0}$$

For $k = 0, 1, ...$
$$\begin{cases} \mathbf{x}_{k+1} = \mathbf{x}_{k} + \lambda_{k} \mathbf{d}_{k} \quad \lambda_{k} \mid \mathbf{s}_{k}^{T} \mathbf{y}_{k} > 0 \\ B_{k+1} = \varphi(\mathcal{L}_{B_{k}}, \underbrace{\mathbf{x}_{k+1} - \mathbf{x}_{k}}_{\mathbf{s}_{k}}, \underbrace{\mathbf{g}_{k+1} - \mathbf{g}_{k}}_{\mathbf{y}_{k}}) \\ \mathbf{d}_{k+1} = -B_{k+1}^{-1} \mathbf{g}_{k+1} \end{cases}$$

・ロト ・ 日 ・ ・ ヨ ト ・ ・ ヨ ト ・

$$B_{k+1} = \varphi(\mathcal{L}_{B_k}, \mathbf{s}_k, \mathbf{y}_k)$$

• B_{k+1} inherites positive definiteness from B_k Proof: $B \text{ pd} \Rightarrow \mathcal{L}_B \text{ pd}$

Cortona, September 2004 C. Di Fiore, S. Fanelli, P. Zellini Adaptive Low Complexity Algorithms for Unconstrained Min

イロト イヨト イヨト イヨト

-2

$$\underline{B_{k+1}} = \varphi(\mathcal{L}_{B_k}, \mathbf{s}_k, \mathbf{y}_k)$$

• B_{k+1} inherites positive definiteness from B_k Proof: $B \text{ pd} \Rightarrow \mathcal{L}_B \text{ pd}$

• $B_{k+1}\mathbf{s}_k = \mathbf{y}_k$, i.e. $\mathcal{L}QN$ is a secant method

$$B_{k+1} = \varphi(\mathcal{L}_{B_k}, \mathbf{s}_k, \mathbf{y}_k)$$

• B_{k+1} inherites positive definiteness from B_k

Proof:
$$B$$
 pd \Rightarrow \mathcal{L}_B pd

- $B_{k+1}\mathbf{s}_k = \mathbf{y}_k$, i.e. $\mathcal{L}QN$ is a secant method
- B_{k+1} projected on \mathcal{L} gives rise the Eigenvalue Updating Formula

$$\mathbf{z}_{k+1} = \mathbf{z}_k + \frac{1}{\mathbf{s}_k^T \mathbf{y}_k} |U^* \mathbf{y}_k|^2 - \frac{1}{\mathbf{z}_k^T |U^* \mathbf{s}_k|^2} d(\mathbf{z}_k)^2 |U^* \mathbf{s}_k|^2$$
(EUF)

where $\mathcal{L}_{B_k} = Ud(\mathbf{z}_k)U^*$.

(EUF) and the Sherman-Morrison formula imply that each step of $\mathcal{L}QN$ can be performed via two matrix-vector products $U \cdot \mathbf{z}$ and some inner products

$$B_{k+1} = \varphi(\mathcal{L}_{B_k}, \mathbf{s}_k, \mathbf{y}_k)$$

• B_{k+1} inherites positive definiteness from B_k

Proof:
$$B$$
 pd \Rightarrow \mathcal{L}_B pd

- $B_{k+1}\mathbf{s}_k = \mathbf{y}_k$, i.e. $\mathcal{L}QN$ is a secant method
- B_{k+1} projected on \mathcal{L} gives rise the Eigenvalue Updating Formula

$$\mathbf{z}_{k+1} = \mathbf{z}_k + \frac{1}{\mathbf{s}_k^T \mathbf{y}_k} |U^* \mathbf{y}_k|^2 - \frac{1}{\mathbf{z}_k^T |U^* \mathbf{s}_k|^2} d(\mathbf{z}_k)^2 |U^* \mathbf{s}_k|^2$$
(EUF)

where $\mathcal{L}_{B_k} = Ud(\mathbf{z}_k)U^*$.

(EUF) and the Sherman-Morrison formula imply that each step of $\mathcal{L}QN$ can be performed via two matrix-vector products $U \cdot \mathbf{z}$ and some inner products

Main result: $U = fast transform \Rightarrow$

Space complexity: O(n)= memory allocations for UTime complexity (per step): $O(n \log n)$ = cost of $U \cdot z$

(日) (同) (三) (三) (三)

$\mathcal{L}QN$ rate of convergence

Theory : linear rate of convergence

(日) (部) (注) (注)

$\mathcal{L}QN$ rate of convergence

Theory : linear rate of convergence

Experiments : fast rate of convergence, competitive with L-BFGS

< ロト (周) (日) (日)

$\mathcal{L}QN$ rate of convergence

Theory : linear rate of convergence

Experiments : fast rate of convergence, competitive with L-BFGS

• The lonosphere data set (n = 1408)

Figure: *LQN* and *L-BFGS* applied to a function of 1408 variables

Cortona, September 2004 C. Di Fiore, S. Fanelli, P. Zellini Adaptive Low Complexity Algorithms for Unconstrained Min

< 🗇 🕨 🔺 🚍 🕨

New contribution: Adaptive $\mathcal{L}QN$ descent methods

In the updating formula

$$B_{k+1} = \varphi(\mathcal{L}_{B_k}, \mathbf{s}_k, \mathbf{y}_k)$$

adapt the space \mathcal{L} to the current iteration

1

(D) (A) (A)

New contribution: Adaptive $\mathcal{L}QN$ descent methods

In the updating formula

$$B_{k+1} = \varphi(\mathcal{L}_{B_k}, \mathbf{s}_k, \mathbf{y}_k)$$

adapt the space \mathcal{L} to the current iteration

The adaptive criterion A $\mathcal{L}QN$ drawback with respect to *BFGS* is that the updated matrix \mathcal{L}_{B_k} does not solve the previous secant equation $X\mathbf{s}_{k-1} = \mathbf{y}_{k-1}$

Let \mathcal{L}_{sy} be the matrix of $\mathcal{L} = sd U$ s.t.

$$\begin{split} \mathcal{L}_{\mathsf{sy}} \; & \mathsf{s}_{k-1} = \mathsf{y}_{k-1} \qquad (\mathcal{L}_{\mathsf{sy}} \neq \mathcal{L}_{B_k}) \\ \Rightarrow \qquad \mathcal{L}_{\mathsf{sy}} = U \mathsf{diag} \Big(\frac{[U^* \mathsf{y}_{k-1}]_i}{[U^* \mathsf{s}_{k-1}]_i} \Big) U^* \end{split}$$

< ロト (周) (日) (日)

New contribution: Adaptive $\mathcal{L}QN$ descent methods

In the updating formula

$$B_{k+1} = \varphi(\mathcal{L}_{B_k}, \mathbf{s}_k, \mathbf{y}_k)$$

adapt the space \mathcal{L} to the current iteration

The adaptive criterion A $\mathcal{L}QN$ drawback with respect to *BFGS* is that the updated matrix \mathcal{L}_{B_k} does not solve the previous secant equation $X\mathbf{s}_{k-1} = \mathbf{y}_{k-1}$

Let \mathcal{L}_{sy} be the matrix of $\mathcal{L} = sd U$ s.t.

$$\begin{aligned} \mathcal{L}_{sy} \ \mathbf{s}_{k-1} &= \mathbf{y}_{k-1} \qquad (\mathcal{L}_{sy} \neq \mathcal{L}_{B_k}) \\ \Rightarrow \quad \mathcal{L}_{sy} &= U \text{diag} \left(\frac{[U^* \mathbf{y}_{k-1}]_i}{[U^* \mathbf{s}_{k-1}]_i} \right) U^* \end{aligned}$$

AIM: \mathcal{L}_{B_k} close to \mathcal{L}_{sy} during the minimization procedure

< ロト (周) (日) (日)

New contribution: Adaptive $\mathcal{L}QN$ descent methods

In the updating formula

$$B_{k+1} = \varphi(\mathcal{L}_{B_k}, \mathbf{s}_k, \mathbf{y}_k)$$

adapt the space \mathcal{L} to the current iteration

The adaptive criterion A $\mathcal{L}QN$ drawback with respect to *BFGS* is that the updated matrix \mathcal{L}_{B_k} does not solve the previous secant equation $X\mathbf{s}_{k-1} = \mathbf{y}_{k-1}$

Let
$$\mathcal{L}_{sy}$$
 be the matrix of $\mathcal{L} = sd U$ s.t.

$$\begin{array}{l} \mathcal{L}_{\mathsf{sy}} \; \mathsf{s}_{k-1} = \mathsf{y}_{k-1} \qquad (\mathcal{L}_{\mathsf{sy}} \neq \mathcal{L}_{B_k}) \\ \Rightarrow \qquad \mathcal{L}_{\mathsf{sy}} = U \mathsf{diag} \Big(\frac{[U^* \mathsf{y}_{k-1}]_i}{[U^* \mathsf{s}_{k-1}]_i} \Big) U^* \end{array}$$

AIM: \mathcal{L}_{B_k} close to \mathcal{L}_{sy} during the minimization procedure

$$\rightarrow \mathcal{L}_{sy} \text{ positive definite like } \mathcal{L}_{B_k} U = \text{fast transform s.t.} \frac{[U^* \mathbf{y}_{k-1}]_i}{[U^* \mathbf{s}_{k-1}]_i} > 0$$

The adaptive $\mathcal{L}QN$ algorithm

Like the $\mathcal{L}QN$ algorithm, but

The adaptive $\mathcal{L}QN$ algorithm

Like the $\mathcal{L}QN$ algorithm, but

$$\dots \dots \lambda_k \mid \mathbf{s}_k^T \mathbf{y}_k > 0 \\ B_{k+1} = \varphi(\mathcal{L}_{B_k}, \mathbf{s}_k, \mathbf{y}_k) \\ \text{if } \mathcal{L}_{\mathbf{s}_k \mathbf{y}_k} \text{ is pd then} \\ \mathbf{d}_{k+1} = -B_{k+1}^{-1} \mathbf{g}_{k+1} \\ \}$$

The adaptive $\mathcal{L}QN$ algorithm

Like the $\mathcal{L}QN$ algorithm, but

$$\dots \lambda_k \mid \mathbf{s}_k^T \mathbf{y}_k > 0 B_{k+1} = \varphi(\mathcal{L}_{B_k}, \mathbf{s}_k, \mathbf{y}_k) \text{if } \mathcal{L}_{\mathbf{s}_k \mathbf{y}_k} \text{ is pd then} \{ \\ \mathbf{d}_{k+1} = -B_{k+1}^{-1} \mathbf{g}_{k+1} \\ \} \text{ else } \{ \\ \mathbf{d}_{k+1} = -(\mathcal{L}_{B_{k+1}})^{-1} \mathbf{g}_{k+1} \end{cases}$$

 \leftarrow temporary descent direction

The adaptive $\mathcal{L}QN$ algorithm

Like the $\mathcal{L}QN$ algorithm, but

 $\dots \dots \lambda_k \mid \mathbf{s}_k^T \mathbf{y}_k > 0$ $B_{k+1} = \varphi(\mathcal{L}_{B_k}, \mathbf{s}_k, \mathbf{y}_k)$ $\text{if } \mathcal{L}_{\mathbf{s}_k \mathbf{y}_k} \text{ is pd then} \{ \\ \mathbf{d}_{k+1} = -B_{k+1}^{-1} \mathbf{g}_{k+1} \\ \} \text{ else } \{ \\ \mathbf{d}_{k+1} = -(\mathcal{L}_{B_{k+1}})^{-1} \mathbf{g}_{k+1} \quad \leftarrow \text{temporary descent direction} \\ define a fast transform \ U \text{ s.t. } \mathcal{L}_{\mathbf{s}_k \mathbf{y}_k} \text{ is pd}$

< ロト (周) (日) (日)

The adaptive $\mathcal{L}QN$ algorithm

Like the $\mathcal{L}QN$ algorithm, but

 $\dots \ \lambda_{k} \mid \mathbf{s}_{k}^{\mathsf{T}} \mathbf{y}_{k} > 0$ $B_{k+1} = \varphi(\mathcal{L}_{B_{k}}, \mathbf{s}_{k}, \mathbf{y}_{k})$ $\text{if } \mathcal{L}_{\mathbf{s}_{k}\mathbf{y}_{k}} \text{ is pd then} \{ \\ \mathbf{d}_{k+1} = -B_{k+1}^{-1}\mathbf{g}_{k+1} \\ \} \text{ else } \{ \\ \mathbf{d}_{k+1} = -(\mathcal{L}_{B_{k+1}})^{-1}\mathbf{g}_{k+1} \quad \leftarrow \text{ temporary descent direction } \\ define a fast transform \ U \text{ s.t. } \mathcal{L}_{\mathbf{s}_{k}\mathbf{y}_{k}} \text{ is pd } \\ \text{set } \mathcal{L} = sd \ U \\ \}$

- (日) (日) (日)

The adaptive $\mathcal{L}QN$ algorithm

Like the $\mathcal{L}QN$ algorithm, but

 $\dots \ \lambda_k \mid \mathbf{s}_k^T \mathbf{y}_k > 0$ $B_{k+1} = \varphi(\mathcal{L}_{B_k}, \mathbf{s}_k, \mathbf{y}_k)$ $\text{if } \mathcal{L}_{\mathbf{s}_k \mathbf{y}_k} \text{ is pd then} \{ \\ \mathbf{d}_{k+1} = -B_{k+1}^{-1} \mathbf{g}_{k+1} \\ \} \text{ else } \{ \\ \mathbf{d}_{k+1} = -(\mathcal{L}_{B_{k+1}})^{-1} \mathbf{g}_{k+1} \quad \leftarrow \text{ temporary descent direction } \\ define \ a \ fast \ transform \ U \ \text{s.t.} \ \mathcal{L}_{\mathbf{s}_k \mathbf{y}_k} \text{ is pd } \\ \text{set } \mathcal{L} = sd \ U \\ \}$

How to define such U?

・ 同 ト・ ・ ヨート・ ・ ヨート

$$\frac{\text{Definition of } U}{\mathcal{L}_{sy}} = U \text{diag} \left(\frac{[U^* \mathbf{y}_k]_i}{[U^* \mathbf{s}_k]_i} \right) U^* \text{ is positive definite } iff$$

U is such that

$$\frac{[U^* \mathbf{y}_k]_i}{[U^* \mathbf{s}_k]_i} > 0 \quad \forall i$$
 (Crit)

・ロト ・個ト ・モト ・モト

-2

$$\frac{\text{Definition of } U}{\mathcal{L}_{sy}} = U \text{diag} \Big(\frac{[U^* \mathbf{y}_k]_i}{[U^* \mathbf{s}_k]_i} \Big) U^* \text{ is positive definite } iff$$

U is such that

$$\frac{[U^*\mathbf{y}_k]_i}{[U^*\mathbf{s}_k]_i} > 0 \quad \forall i$$
 (Crit)

Main results: Under our hypothesis on λ_k ($\lambda_k | \mathbf{s}_k^T \mathbf{y}_k > 0$) a matrix U satisfying (Crit) *exists* and can be obtained as the *product of two Householder matrices:*

$$U = H(\mathbf{u})H(\mathbf{p}), \quad H(\mathbf{z}) = I - \frac{2}{\|\mathbf{z}\|^2}\mathbf{z}\mathbf{z}^*$$

 $(\mathbf{u},\mathbf{p} \text{ suitable vectors}), \;\; \Rightarrow$

Space complexity: O(n)= memory allocations for UTime complexity (per step): O(n)= cost of $U \cdot z$ (better than $\mathcal{L}QN$)

Cortona, September 2004 C. Di Fiore, S. Fanelli, P. Zellini Adaptive Low Con

Adaptive Low Complexity Algorithms for Unconstrained Min

Rate of convergence of *adaptive* LQN

Experiments : fast rate of convergence, competitive with LQN

Rate of convergence of *adaptive* LQN

Experiments : fast rate of convergence, competitive with LQN

• The lonosphere data set (n = 1408)

Figure: $\mathcal{L}QN$ and *adaptive* $\mathcal{L}QN$ applied to a function of 1408 variables

Cortona, September 2004 C. Di Fiore, S. Fanelli, P. Zellini Adaptive Low Complexity Algorithms for Unconstrained Min

< 🗇 🕨 🔺 🖻

• The Iris plant data set (n = 315)

Number of iterations to obtain $f(\mathbf{x}_k) < 0.1$

f	\mathbf{x}_0^1	x ₀ ²	x ₀ ³	x ⁴ ₀
LQN	10930	13108	3854	7663
adaptive <i>LQN</i>	3430	1663	3647	1525

• The Iris plant data set (n = 315)

Number of iterations to obtain $f(\mathbf{x}_k) < 0.1$

f	\mathbf{x}_0^1	x ₀ ²	x ₀ ³	x ⁴ ₀
LQN	10930	13108	3854	7663
adaptive <i>LQN</i>	3430	1663	3647	1525

Number of iterations to obtain $f(\mathbf{x}_k) < 0.01$

f	\mathbf{x}_0^1	x ₀ ²	x ₀ ³	x ₀ ⁴
LQN	24085	42344	6184	33250
adaptive <i>LQN</i>	19961	2886	8306	3111

Two strategies

- Secant equation: $\mathcal{L}_{sy}\mathbf{s}_k = \mathbf{y}_k$
- Best least squares approximation: $\|\mathcal{L}_{B_k} - B_k\|_F = \min_{X \in \mathcal{L}} \|X - B_k\|_F$

How to apply both strategies ?

The *adaptive* $\mathcal{L}QN$ algorithm illustrated is a possible solution

Work in progress: look for other solutions