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The minimization problem and classical solvers

f (x∗) = minx∈Rn f (x), find x∗

Descent methods
generate a minimizing sequence {xk}+∞k=0 by the iterative scheme:

x0 ∈ Rn, g0 = ∇f (x0), d0 = −g0

For k = 0, 1, . . .

xk+1 = xk + λkdk λk > 0
gk+1 = ∇f (xk+1)
Bk+1 = n × n matrix, positive definite (pd)

dk+1 = −B−1
k+1gk+1︸ ︷︷ ︸

descent direction
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The minimization problem and classical solvers
Previous contribution: LQN descent methods

New contribution: Adaptive LQN descent methods

The Newton descent method

Bk+1 = ∇2f (xk+1)

A quadratic rate of convergence

O(n3) arithmetic operations to compute xk+1 from xk

Quasi-Newton (QN) descent methods

Bk+1 defined in terms of ∇f

A superlinear rate of convergence

Convergence under weak analytical assumptions

O(n2) arithmetic operations to compute xk+1 from xk

O(n2) memory allocations for implementation

Main example: the BFGS method (Broyden et al.’70)

Cortona, September 2004 C. Di Fiore, S. Fanelli, P. Zellini Adaptive Low Complexity Algorithms for Unconstrained Min



The minimization problem and classical solvers
Previous contribution: LQN descent methods

New contribution: Adaptive LQN descent methods

The Newton descent method

Bk+1 = ∇2f (xk+1)

A quadratic rate of convergence

O(n3) arithmetic operations to compute xk+1 from xk

Quasi-Newton (QN) descent methods

Bk+1 defined in terms of ∇f

A superlinear rate of convergence

Convergence under weak analytical assumptions

O(n2) arithmetic operations to compute xk+1 from xk

O(n2) memory allocations for implementation

Main example: the BFGS method (Broyden et al.’70)

Cortona, September 2004 C. Di Fiore, S. Fanelli, P. Zellini Adaptive Low Complexity Algorithms for Unconstrained Min



The minimization problem and classical solvers
Previous contribution: LQN descent methods

New contribution: Adaptive LQN descent methods

The Newton descent method

Bk+1 = ∇2f (xk+1)

A quadratic rate of convergence

O(n3) arithmetic operations to compute xk+1 from xk

Quasi-Newton (QN) descent methods

Bk+1 defined in terms of ∇f

A superlinear rate of convergence

Convergence under weak analytical assumptions

O(n2) arithmetic operations to compute xk+1 from xk

O(n2) memory allocations for implementation

Main example: the BFGS method (Broyden et al.’70)

Cortona, September 2004 C. Di Fiore, S. Fanelli, P. Zellini Adaptive Low Complexity Algorithms for Unconstrained Min



The minimization problem and classical solvers
Previous contribution: LQN descent methods

New contribution: Adaptive LQN descent methods

BFGS

x0 ∈ Rn, d0 = −g0

For k = 0, 1, . . .
xk+1 = xk + λkdk λk | sT

k yk > 0
Bk+1 = ϕ (Bk , xk+1 − xk︸ ︷︷ ︸

sk

, gk+1 − gk︸ ︷︷ ︸
yk

)

dk+1 = −B−1
k+1gk+1

ϕ properties ⇒
• Bk+1 inherites positive definiteness from Bk

Proof: B pd & sTy > 0 ⇒ ϕ(B, s, y) pd

• Bk+1(xk+1 − xk) = gk+1 − gk

Proof: ϕ(B, s, y)s = y
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The updating function ϕ in Bk+1 = ϕ (Bk , sk , yk) is

ϕ (B, s, y) = B +
1

yT s
yyT − 1

sTBs
BssTB

⇒ BFGS is a secant method:

Bk+1(xk+1 − xk︸ ︷︷ ︸
sk

) = gk+1 − gk︸ ︷︷ ︸
yk

secant equation

Proof (independent on B):

ϕ(B, s, y)s =
(
B + 1

yT s
yyT − 1

sT Bs
BssTB

)
s

= Bs + 1
yT s

y(yT s)− 1
sT Bs

Bs(sTBs)

= y
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Quasi-Newton (QN) descent methods for large scale problems

Bk+1 defined in terms of ∇f

A fast rate of convergence

Convergence under weak analytical assumptions

less than O(n2) arithmetic operations to compute xk+1 from
xk

less than O(n2) memory allocations for implementation

Classical example: the Limited memory BFGS method (Nocedal
et al. ’80)

A recent proposal: the LQN method (Di Fiore, Fanelli, Zellini
et al. ’00)
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Previous contribution: LQN descent methods

Replace the matrix Bk in

Bk+1 = ϕ(Bk , sk , yk)

with a matrix Ak of a low complexity space L

Choice of L
Bk ∈ sd U for some unitary matrix U, where

sd U = { Ud(z)U∗ : z ∈ Cn }, d(z) =


z1 0 · · · 0
0 z2 0
...

. . .
...

0 · · · 0 zn


⇒ choose L = sd U, U =fast unitary transform (U = Fourier,
Hartley, . . .)
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Choice of Ak in L
Ak = the best least squares fit to Bk in L = sd U, i.e.
Ak = LBk

where

‖LBk
− Bk‖F = min

X∈L
‖X − Bk‖F

The LQN algorithm

x0 ∈ Rn, d0 = −g0

For k = 0, 1, . . .
xk+1 = xk + λkdk λk | sT

k yk > 0
Bk+1 = ϕ( LBk

, xk+1 − xk︸ ︷︷ ︸
sk

, gk+1 − gk︸ ︷︷ ︸
yk

)

dk+1 = −B−1
k+1gk+1
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The minimization problem and classical solvers
Previous contribution: LQN descent methods
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Bk+1 = ϕ(LBk
, sk , yk)

• Bk+1 inherites positive definiteness from Bk

Proof: B pd ⇒ LB pd

• Bk+1sk = yk , i.e. LQN is a secant method

• Bk+1 projected on L gives rise the Eigenvalue Updating Formula

zk+1 = zk +
1

sT
k yk

|U∗yk |2 −
1

zk
T |U∗sk |2

d(zk)
2|U∗sk |2 (EUF)

where LBk
= Ud(zk)U∗.

(EUF) and the Sherman-Morrison formula imply that each step of
LQN can be performed via two matrix-vector products U · z and
some inner products
Main result: U = fast transform ⇒

Space complexity: O(n)= memory allocations for U

Time complexity (per step): O(n log n)= cost of U · z
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LQN rate of convergence
Theory : linear rate of convergence

Experiments : fast rate of convergence, competitive with L-BFGS
• The Ionosphere data set (n = 1408)
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Figure: LQN and L-BFGS applied to a function of 1408 variables
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New contribution: Adaptive LQN descent methods

In the updating formula

Bk+1 = ϕ(LBk
, sk , yk)

adapt the space L to the current iteration

The adaptive criterion A LQN drawback with respect to BFGS is
that the updated matrix LBk

does not solve the previous secant equation
X sk−1 = yk−1

Let Lsy be the matrix of L = sd U s.t.

Lsy sk−1 = yk−1 (Lsy 6= LBk
)

⇒ Lsy = Udiag
(

[U∗yk−1]i
[U∗sk−1]i

)
U∗

AIM: LBk
close to Lsy during the minimization procedure

→ Lsy positive definite like LBk
U =fast transform s.t.

[U∗yk−1]i
[U∗sk−1]i

> 0
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The adaptive LQN algorithm

Like the LQN algorithm, but

. . . . . . λk | sT
k yk > 0

Bk+1 = ϕ(LBk
, sk , yk)

if Lskyk
is pd then{

dk+1 = −B−1
k+1gk+1

}
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The adaptive LQN algorithm

Like the LQN algorithm, but

. . . . . . λk | sT
k yk > 0

Bk+1 = ϕ(LBk
, sk , yk)

if Lskyk
is pd then{

dk+1 = −B−1
k+1gk+1

} else {
dk+1 = −(LBk+1

)−1gk+1 ← temporary descent direction

define a fast transform U s.t. Lskyk
is pd

set L = sd U
}

How to define such U ?
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The minimization problem and classical solvers
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Definition of U

Lsy = Udiag
(

[U∗yk ]i
[U∗sk ]i

)
U∗ is positive definite iff

U is such that
[U∗yk ]i
[U∗sk ]i

> 0 ∀i (Crit)

Main results: Under our hypothesis on λk (λk | sT
k yk > 0) a

matrix U satisfying (Crit) exists and can be obtained as the
product of two Householder matrices:

U = H(u)H(p), H(z) = I − 2

‖z‖2
zz∗

(u,p suitable vectors), ⇒
Space complexity: O(n)= memory allocations for U

Time complexity (per step): O(n)= cost of U · z (better
than LQN)
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Rate of convergence of adaptive LQN
Experiments : fast rate of convergence, competitive with LQN

• The Ionosphere data set (n = 1408)
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Figure: LQN and adaptive LQN applied to a function of 1408 variables
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• The Ionosphere data set (n = 1408)
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• The Iris plant data set (n = 315)

Number of iterations to obtain f (xk) < 0.1
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Two strategies

Secant equation: Lsysk = yk

Best least squares approximation:
‖LBk

− Bk‖F = minX∈L ‖X − Bk‖F

How to apply both strategies ?

The adaptive LQN algorithm illustrated is a
possible solution

Work in progress: look for other solutions
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