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Problems with Preconditioning

Au = b

A ∈ IRN×N SPD

M = R
T
R a SPD preconditioner

R
−T

AR
−1

Ru = R
−T

b

Â = R
−T

AR
−1, x = Ru, b̂ = R

−T
b.

Good clusterization but problem still ill-conditioned
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A PDE example

Ω ⊂ IR2 simply connected bounded polygonal. Let

a(u,v) ∀u,v ∈ H1
0 (Ω)

be a continuous and coercive bilinear form, and

L(v) ∈ H−1(Ω).

The problem
{

Find u ∈ H1
0 (Ω) such that

a(u,v) = L(v), ∀v ∈ H1
0 (Ω),

has a unique solution.
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A PDE example

a(u,v) =

∫

Ω

K(x)∇u · ∇vdx, ∀u,v ∈ H1
0 (Ω)

L(v) =
∫

Ω
10vdx, ∀v ∈ H1

0 (Ω)
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A PDE example

Using pdetool c©, we generated a mesh satisfying the usual regularity
conditions of Ciarlet and we computed a finite-element
approximation of the problem with the use of continuous piece-wise
linear elements. The approximated problem is equivalent to the
following system of linear equations:

Au = b.

In our mesh, the largest triangle has an area of 3.123×10−4, therefore,
the resulting linear system has 16256 triangles, 8289 nodes, and 7969
degrees of freedom.
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A PDE example

We used three kinds of preconditioners: the classical Jacobi diagonal
matrix, M = diag(A), the incomplete Cholesky decomposition of
A with zero fill-in, and the incomplete Cholesky decomposition of
A with drop tolerance 10−2. Using the incomplete Cholesky
decompositions, we computed the upper triangular matrix R such
that M = R

T
R.

M κ(M−1
A) λmin λmax

I 2.6 109 3.7 10−3 9.6 106

Jacobi 6.8 108 3.1 10−9 2.08

Inc. Cholesky(0) 9.4 107 1.7 10−8 1.6

Inc. Cholesky(10−2) 6.2 106 1.8 10−7 1.1
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A PDE example

Preconditioner M

µ Jacobi Inc. Cholesky(0) Inc. Cholesky(10−2)

λmax/103 3

λmax/500 5

λmax/200 18

λmax/100 43 3

λmax/50 11

λmax/20 32

λmax/10 >200 68 3

λmax/5 9

λmax/2 40

Number of eigenvalues in [λmin, µ].
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Problems with Preconditioning

Good clusterization but problem still ill-conditioned

Several right-hand sides in succession

Implicit matrix
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Techniques for improving the solvers

Deflation: compute the invariant space corresponding to the
smallest eigenvalues

Filtering + Lanczos
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The two-phase iterative approach

Fix µ such that λmin(Â) < µ < λmax(Â)

Start with an initial set of s randomly generated vectors (s is the
block-size), and “damp”, in these starting vectors, the
eigenfrequencies associated with all the eigenvalues in
[µ, λmax(Â)].

Compute all the eigenvectors associated with all the eigenvalues
in the range [λmin(Â), µ].

If the eigenvalues are well clustered the number of remaining eigen-
values in [λmin(Â), µ], with reasonable µ (λmax/100, or λmax/10),
should be small compared to the size of the linear system.
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Compute all the eigenvectors associated with all the eigenvalues
in the range [λmin(Â), µ].
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values in [λmin(Â), µ], with reasonable µ (λmax/100, or λmax/10),
should be small compared to the size of the linear system.

Cortona, 20-24 September, 2004 – p.11/30



The two-phase iterative approach

Fix µ such that λmin(Â) < µ < λmax(Â)
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The two-phase iterative approach
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The two-phase iterative approach

We can use Chebyshev polynomials to damp
{

T0(ω) = 1 , T1(ω) = ω

Tn+1(ω) = 2ωTn(ω) − Tn−1(ω) n ≥ 1.
.

If we consider d > 1 and

Hn(ω) =
Tn(ω)

Tn(d)
,

then Hn has minimum l∞ norm on the interval [−1, 1] over all
polynomials Qn of degree less than of equal to n and satisfying the
condition Qn(d) = 1, and we have

max
ω∈[−1,1]

Hn(ω) =
1

Tn(d)
.

Cortona, 20-24 September, 2004 – p.13/30



The two-phase iterative approach

λ ∈ R 7−→ ωµ(λ) =
λmax(Â) + µ − 2λ

λmax(Â) − µ
,

with λmin(Â) < µ < λmax(Â) given above.
This transformation maps λmax(Â) to −1, µ to 1, and 0 to

ωµ(0) = dµ =
λmax(Â) + µ

λmax(Â) − µ
> 1.

Then,

Pn(λ) =
Tn(ωµ(λ))

Tn(dµ)
,
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The two-phase iterative approach

Â = UΛU
T

the eigendecomposition of the SPD matrix Â, with Λ = diag(λi)

z =
n∑

i=1

uiξi,

with ξi = u
T
i z, i = 1, . . . , n,

v = Pn(Â)z =

n∑

i=1

ui (Pn(λi)ξi) ,

The eigencomponents of the resulting vector v are close to that of
the initial vector z for all i such that λi is close to 0 and relatively
much smaller for large enough degree n and all i such that
λi ∈ [µ, λmax(Â)].
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n∑

i=1

ui (Pn(λi)ξi) ,

The eigencomponents of the resulting vector v are close to that of
the initial vector z for all i such that λi is close to 0 and relatively
much smaller for large enough degree n and all i such that
λi ∈ [µ, λmax(Â)].
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The two-phase iterative approach
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after 51 Chebyshev iterations (the result-

ing 6 vectors have also been reorthonor-

malized).
• The eigenvectors of A are indexed on the X-axis (from 1 to 136) in increasing order of their corresponding eigenvalue.

• The indexes (from 1 to 6) of the vectors in the current set are indicated on the Y-axis.

• The Z-axis indicates the logarithm of the absolute values of the eigencomponents in each of the 6 vectors.
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The two-phase iterative approach

We can interpret the use of Chebyshev polynomials as a filtering tool
that increases the degree of colinearity with some selected
eigenvectors. Then, after “filtering” the initial starting vectors, we
obtain a set of s vectors with eigencomponents below a certain level
ε for those eigenvalues in the range [µ, λmax(Â)], and relatively
much bigger eigencomponents linked with the smallest eigenvalues
in Â.

The block-size s v.s. the number k of remaining eigenvalues outside
the interval [µ, λmax(Â)].

k ≤ s, a Ritz decomposition enables us to get the k wanted
eigenvectors.

k > s, we use a Block-Lanczos type of approach to build a
Krylov basis starting with these filtered vectors and to stop when
appropriate.
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The two-phase iterative approach

Lanczos/Block-Lanczos algorithm does not maintain the nice
property of the filtered vectors.
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Eigendecomposition of the Krylov basis obtained after 5 block-Lanczos steps (Block

Lanczos with block size 6 and full classical Gram-Schmidt reorthogonalization).
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Lanczos/Orthodir approach

To maintain the level of the unwanted eigenfrequencies in the
orthonormal block Krylov basis under ε, perform, at each
Block-Lanczos iteration, a few extra Chebyshev iterations on the
newly generated Block Lanczos vectors V

(k+1).
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Partial Spectral Factorization phase

Z = Chebyshev Filter(Y, ε, [µ, λmax], Â)

is the application of a Chebyshev polynomial in Â to Y, viz.

Z = Pn(Â)Y,

where Pn has a degree such that its L∞ norm over the interval
[µ, λmax] is less than ε.
Fixing the block size to s, the cut-off eigenvalue µ,
λmin(Â) < µ < λmax(Â), and the filtering level ε � 1:
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Partial Spectral Factorization phase
P(0) = random(n, s); and Q(0) = orthonormalize(P(0))

Z(0) = Chebyshev Filter(Q(0), ε, [µ, λmax],

�

A)

[Y(0),Σ
(0)
1 ,W] = SVD(Z(0), 0); and δ0 = σmin(Σ

(0)
1 )

�

Z(0) = Chebyshev Filter(Y(0), δ0, [µ, λmax],

�

A); and V(0) = orthonormalize(

�

Z(0))

V = V(0); and set δ2 = 1

for k = 0, 1, 2, . . . , until convergence do :

P(k+1) =

�

AV(k)
− VVT

�

AV(k); [V(k+1),Σ
(k+1)
1 ,W] = SVD(P(k+1), 0);

set δ1 = σmin(Σ
(k+1)
1 )/λmax and δ = max(ε, δ1 × δ2)

for i = 1, 2

Z(k+1) = Chebyshev Filter(V(k+1), δ, [µ, λmax],

�

A)

Y(k+1) = Z(k+1)
− VVT Z(k+1)

[V(k+1),Σ
(k+1)
2 ,W] = SVD(Y(k+1), 0)

δ2 = σmin(Σ
(k+1)
2 ) and set δ = δ2

end

V = [V;V(k+1)]
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Solution of the system

Once the near-invariant subspace linked to the smallest eigenvalues
is obtained, we can use it for the computation of further solutions.
The idea is to perform an oblique projection of the initial residual
(̂r0 = b̂ − Âx0) onto this near invariant subspace in order to get the
eigencomponents in the solution corresponding to the smallest
eigenvalues, viz.

r̂1 = r̂0 − ÂV

(
V

T
ÂV

)−1

V
T
r̂0,

with x1 = x0 + V

(
V

T
ÂV

)−1

V
T
r̂0.

To compute the remaining part of the solution vector Âx2 = r̂1,
one can then use the classical Chebyshev algorithm with eigenvalue
bounds given by µ and λmax(Â).

Cortona, 20-24 September, 2004 – p.22/30



Solution phase

[̂r1,x1] = Chebyshev Solve(r̂0,x0, δ, [µ, λmax], Â)

Solution phase

For any right-hand side vector b̂, set x0 and r̂0 = b̂ − Âx0,

and perform the following consecutive steps:

[̂r1,x1] = Chebyshev Solve(r̂0,x0, ε, [µ, λmax], Â)

r̂ = r̂1 − ÂV

(
V

T
ÂV

)−1

V
T
r̂1; and

x = x1 + V

(
V

T
ÂV

)−1

V
T
r̂1
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Error Analysis

||̂r|| �

A−1 = ||x∗ − x|| �

A
e0 = Â

−1
r̂0 = x

∗ − x0

v = Pn(Â)r̂0/||Pn(Â)e0||2.

Theorem Let U1 ∈ R
n×m be the matrix of the eigenvectors of Â

corresponding to Λ1 and U2 ∈ R
n×(n−m) be the matrix of the

remaining eigenvectors of Â. Let V ∈ R
n×` be the full basis

generated by the Algorithm using a filtering level ε and
v = Pn(Â)r̂0/||Pn(Â)e0||2. If mε � 1 and ` ≥ m then

||(I −VV
T )v||2 ≤ 2ε

√
m + 2ε2m.
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2 ||2||Â− 1
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corresponding to Λ1 and U2 ∈ R
n×(n−m) be the matrix of the

remaining eigenvectors of Â. Let V ∈ R
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A−1

≤ 4
√

mε||Â 1
2 ||2||Â− 1

2 ||2.

Theorem Let U1 ∈ R
n×m be the matrix of the eigenvectors of Â

corresponding to Λ1 and U2 ∈ R
n×(n−m) be the matrix of the

remaining eigenvectors of Â. Let V ∈ R
n×` be the full basis

generated by the Algorithm using a filtering level ε and
v = Pn(Â)r̂0/||Pn(Â)e0||2. If mε � 1 and ` ≥ m then

||(I −VV
T )v||2 ≤ 2ε

√
m + 2ε2m.
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Error Analysis
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10
−2

Eigencomponents of residual Rk
Eigencomponents of error (Xk − Xsol)

Computation of the solution of a linear system with a right-hand side
vector b corresponding to a given random exact solution vector x

∗.
The filtering level ε has been fixed at 10−8 in both phases of the

algorithm.
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Influence of the different parameters

The choice of the starting block size s

The choice of the cut-off eigenvalue µ

The choice of the filtering level ε

ε = 10−8

||̂r||
A−1

||̂r0||A−1

≤ τ,

ε =
τ√
κ(Â)

.

κ(Â) = ‖Â‖‖Â−1‖ “a posteriori” good approximation
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Influence of the different parameters

Number of Chebyshev Iterations (s = 6)

µ = λmax/5 µ = λmax/10 µ = λmax/100

Block Krylov Value of ε Value of ε Value of ε

Iteration 10−14 10−8 10−14 10−8 10−14 10−8

Start

1

2

3

4

5

35 + 2

10

11

16

25

35

20 + 3

9

11

15

20

20

51 + 4

15

20

32

43

-

30 + 3

15

18

30

30

-

165 + 14

59

88

165

-

-

96 + 14

56

90

96

-

-

In the case µ = λmax/5, there are 33 eigenvectors to capture.

In the case µ = λmax/10, there are 26 eigenvectors to capture.

In the case µ = λmax/100, there are 19 eigenvectors to capture.
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Numerical experiments

Back to the starting example
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Numerical experiments

µ = λmax/γ Spectral Factorization Solution phase

γ Tot. Chebyshev Size V Chebyshev Error Energy

Iterations Iterations Norm

Jacobi

1000 1030 (1004) 3 231 7 10−3 (2.6 10−5)

500 1101 (1114) 5 163 6 10−4 (7.0 10−6)

200 2234 (2615) 1 103 2.5 10−4 (4 10−6)

Inc. Cholesky(0)

100 433 (248) 5 (3) 68 7.4 10−3 (1.8 10−5)

50 462 (503) 9 48 3 10−3 (1.3 10−5)

Inc. Cholesky(10−2)

10 55 (70) 3 19 8.2 10−3 (3.3 10−6)

Summary of the results
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THE END
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