Nonlinear matrix equations and canonical factorizations

Beatrice Meini joint work with Dario A. Bini

Dipartimento di Matematica, Università di Pisa, Italy

Structured numerical linear algebra problems Cortona, Sept. 19–24, 2004

Outline

Some examples

- Quadratic matrix equations
- Matrix *p*th root: $X^p = A$
- Power series matrix equations

2 Canonical factorization

3 Canonical factorization and matrix equations

- Some questions
- Existence of solutions
- Shift technique

◆□ → ◆□ → ◆ 三 → ◆ 三 → ◆ □ → ◆ へへの

Outline

Some examples

- Quadratic matrix equations
- Matrix *p*th root: $X^p = A$
- Power series matrix equations

2 Canonical factorization

3 Canonical factorization and matrix equations

- Some questions
- Existence of solutions
- Shift technique

◆□ → ◆□ → ◆ 三 → ◆ 三 → ◆ □ → ◆ へへの

Outline

Some examples

- Quadratic matrix equations
- Matrix *p*th root: $X^p = A$
- Power series matrix equations

2 Canonical factorization

- 3 Canonical factorization and matrix equations
 - Some questions
 - Existence of solutions
 - Shift technique

Quadratic matrix equations Matrix *p*th root Power series matrix equations

Outline

Some examples

- Quadratic matrix equations
- Matrix *p*th root: $X^p = A$
- Power series matrix equations

2 Canonical factorization

3 Canonical factorization and matrix equations

- Some questions
- Existence of solutions
- Shift technique

Quadratic matrix equations Matrix *p*th root Power series matrix equations

Quadratic matrix equations

Given the $m \times m$ matrix polynomial $A(z) = A_{-1} + zA_0 + z^2A_1$ such that det A(z) has zeros

$$|\xi_1| \leq \cdots \leq |\xi_m| < |\xi_{m+1}| \leq \cdots \leq |\xi_{2m}|$$

compute the solution G of

$$A_{-1} + A_0 X + A_1 X^2 = 0$$

such that $\lambda(G) = \{\xi_1, \dots, \xi_m\}$. Such G is called the minimal solvent (Gohberg, Lancaster, Rodman '82)

Applications Quadratic eigenvalue problems (damped vibration problems), polynomial factorization, Markov chain^{S,VERSTA DI PRE}etc.

Some examples Canonical factorization Canonical factorization and matrix equations Matrix pth root Power series matrix equations

Functional interpretation (Gohberg, Lancaster, Rodman '82)

The

matrix function $S(z) = z^{-1}A_{-1} + A_0 + zA_1$ can be factorized as

$$S(z) = (A_0 + zA_1G)(I - z^{-1}G)$$

where

- $det(A_0 + zA_1G) \neq 0$ for $|z| \le 1$;
- $\det(I z^{-1}G) \neq 0$ for $|z| \ge 1$.

2 Conversely: if

$$S(z) = (U_0 + zU_1)(L_0 + z^{-1}L_{-1}) = U(z)L(z)$$

where det $U(z) \neq 0$ for $|z| \leq 1$ and det $L(z) \neq 0$ for $|z| \geq 1$, then $G = -L_0^{-1}L_{-1}$ is the minimal right solvent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目目 のへで

Some examples Canonical factorization Canonical factorization and matrix equations Matrix pth root Power series matrix equations

Functional interpretation (Gohberg, Lancaster, Rodman '82)

The

matrix function $S(z) = z^{-1}A_{-1} + A_0 + zA_1$ can be factorized as

$$S(z) = (A_0 + zA_1G)(I - z^{-1}G)$$

where

- det $(A_0 + zA_1G) \neq 0$ for $|z| \le 1$;
- $\det(I z^{-1}G) \neq 0$ for $|z| \ge 1$.

Onversely: if

$$S(z) = (U_0 + zU_1)(L_0 + z^{-1}L_{-1}) = U(z)L(z)$$

where det $U(z) \neq 0$ for $|z| \leq 1$ and det $L(z) \neq 0$ for $|z| \geq 1$, then $G = -L_0^{-1}L_{-1}$ is the minimal right solvent.

Quadratic matrix equations Matrix *p*th root Power series matrix equations

Matrix pth root

- Assumptions $A \in \mathbb{C}^{m \times m}$ with no eigenvalues on the closed negative real axis.
 - Definition The principal matrix pth root of A, $A^{1/p}$, is the unique matrix X such that:
 - $X^p = A.$
 - The eigenvalues of X lie in the segment $\{ z : -\pi/p < \arg(z) < \pi/p \}.$

Applications Computation of the matrix logarithm, computation of the matrix sector function (control theory).

Quadratic matrix equations Matrix *p*th root Power series matrix equations

Functional interpretation

Theorem (Bini, Higham, Meini 04)

Assume p = 2q, where q is odd. Let

$$S(z) = z^{-q} \sum_{j=0}^{p} z^{j} {p \choose j} (A + (-1)^{j+1} I).$$

If $U(z) = U_0 + zU_1 + \cdots + z^q U_q$ is such that det $U(z) \neq 0$ for $|z| \leq 1$, and $S(z) = U(z)U(z^{-1})$ then

$$A^{1/p} = -\sigma^{-1}(qI + 2U'(-1)U(-1)^{-1})$$

where $\sigma = 1 + 2 \sum_{j=1}^{\lfloor q/2 \rfloor} \cos(2\pi j/p)$.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ◆ □ → ◆ へへの

Quadratic matrix equations Matrix *p*th root Power series matrix equations

Power series matrix equations

An application M/G/1-type Markov chains, introduced by M. F. Neuts in the 80's, which model a large variety of queueing problems.

Problem Given nonnegative matrices $A_i \in \mathbb{R}^{m \times m}$, $i \ge -1$, such that $\sum_{i=-1}^{+\infty} A_i$ is stochastic, compute the minimal component-wise solution G, among the nonnegative solutions, of

$$X = A_{-1} + A_0 X + A_1 X^2 + \cdots$$

Quadratic matrix equations Matrix *p*th root Power series matrix equations

Some properties of G

Let $\phi(z) = zI - \sum_{i=-1}^{+\infty} z^{i+1}A_i$.

If the $M/G/1\mbox{-type}$ Markov chain is positive recurrent, then:

- G is row stochastic.
- det $\phi(z)$ has exactly *m* zeros in the closed unit disk.
- The eigenvalues of G are the zeros of det $\phi(z)$ in the closed unit disk.

Therefore G is the spectral minimal solution, i.e., $\rho(G) \le \rho(X)$ for any other possible solution X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目目 のへで

Quadratic matrix equations Matrix *p*th root Power series matrix equations

The induced factorization

The function $S(z) = I - \sum_{i=-1}^{+\infty} z^i A_i$ can be factorized as

$$S(z) = \left(I - \sum_{i=0}^{+\infty} z^i U_i\right) (I - z^{-1}G), \quad |z| = 1,$$

where:

- $U(z) = I \sum_{i=0}^{+\infty} z^i U_i$ is analytic for |z| < 1, convergent for $|z| \le 1$, and det $U(z) \ne 0$ for $|z| \le 1$;
- $L(z) = I z^{-1}G$ is analytic for |z| > 1, convergent for $|z| \ge 1$, and det $L(z) \ne 0$ for |z| > 1, det L(1) = 0.

Quadratic matrix equations Matrix *p*th root Power series matrix equations

The induced factorization

The function $S(z) = I - \sum_{i=-1}^{+\infty} z^i A_i$ can be factorized as

$$S(z) = \left(I - \sum_{i=0}^{+\infty} z^i U_i\right) (I - z^{-1}G), \quad |z| = 1,$$

where:

- $U(z) = I \sum_{i=0}^{+\infty} z^i U_i$ is analytic for |z| < 1, convergent for $|z| \le 1$, and det $U(z) \ne 0$ for $|z| \le 1$;
- $L(z) = I z^{-1}G$ is analytic for |z| > 1, convergent for $|z| \ge 1$, and det $L(z) \ne 0$ for |z| > 1, det L(1) = 0.

Quadratic matrix equations Matrix *p*th root Power series matrix equations

The induced factorization

The function $S(z) = I - \sum_{i=-1}^{+\infty} z^i A_i$ can be factorized as

$$S(z) = \left(I - \sum_{i=0}^{+\infty} z^i U_i\right) (I - z^{-1}G), \quad |z| = 1,$$

where:

- $U(z) = I \sum_{i=0}^{+\infty} z^i U_i$ is analytic for |z| < 1, convergent for $|z| \le 1$, and det $U(z) \ne 0$ for $|z| \le 1$;
- $L(z) = I z^{-1}G$ is analytic for |z| > 1, convergent for $|z| \ge 1$, and det $L(z) \ne 0$ for |z| > 1, det L(1) = 0.

Outline

Some examples

- Quadratic matrix equations
- Matrix *p*th root: $X^p = A$
- Power series matrix equations

2 Canonical factorization

3 Canonical factorization and matrix equations

- Some questions
- Existence of solutions
- Shift technique

◆□ → ◆□ → ◆ 三 → ◆ 三 → ◆ □ → ◆ へへの

Wiener algebra

Definition (\mathcal{W})

The Wiener algebra \mathcal{W} is the set of complex $m \times m$ matrix valued functions $A(z) = \sum_{i=-\infty}^{+\infty} z^i A_i$ such that $\sum_{i=-\infty}^{+\infty} |A_i|$ is finite.

Definition $(\mathcal{W}_+ \text{ and } \mathcal{W}_-)$

The set \mathcal{W}_+ (\mathcal{W}_-) is the subalgebra of \mathcal{W} made up by power series of the kind $\sum_{i=0}^{+\infty} z^i A_i (\sum_{i=0}^{+\infty} z^{-i} A_i)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目目 のへで

Canonical factorization

Definition (Canonical factorization)

Let $A(z) = \sum_{i=-\infty}^{+\infty} z^i A_i \in \mathcal{W}$. A canonical factorization of A(z) is a decomposition

$$A(z) = U(z)L(z), \quad |z| = 1,$$

where $U(z) = \sum_{i=0}^{+\infty} z^i U_i \in \mathcal{W}_+$ and $L(z) = \sum_{i=0}^{+\infty} z^{-i} L_{-i} \in \mathcal{W}_$ are invertible for $|z| \leq 1$ and $1 \leq |z| \leq \infty$, respectively.

Definition (Weak canonical factorization)

The above decomposition is a *weak canonical factorization* if $U(z) = \sum_{i=0}^{+\infty} z^i U_i \in \mathcal{W}_+$ and $L(z) = \sum_{i=0}^{+\infty} z^{-i} L_{-i} \in \mathcal{W}_-$ are invertible for |z| < 1 and $1 < |z| \leq \infty$, respectively.

Canonical factorization

Definition (Canonical factorization)

Let $A(z) = \sum_{i=-\infty}^{+\infty} z^i A_i \in \mathcal{W}$. A canonical factorization of A(z) is a decomposition

$$A(z) = U(z)L(z), \quad |z| = 1,$$

where $U(z) = \sum_{i=0}^{+\infty} z^i U_i \in \mathcal{W}_+$ and $L(z) = \sum_{i=0}^{+\infty} z^{-i} L_{-i} \in \mathcal{W}_$ are invertible for $|z| \leq 1$ and $1 \leq |z| \leq \infty$, respectively.

Definition (Weak canonical factorization)

The above decomposition is a *weak* canonical factorization if $U(z) = \sum_{i=0}^{+\infty} z^i U_i \in W_+$ and $L(z) = \sum_{i=0}^{+\infty} z^{-i} L_{-i} \in W_-$ are invertible for |z| < 1 and $1 < |z| \le \infty$, respectively.

An example: $S(z) = \sum_{i=-1}^{+\infty} z^i A_i$

Location of the zeros of det(zS(z))

Canonical factorization

Weak canonical factorization

D.A. Bini and B. Meini Nonlinear matrix equations and canonical factorizations

Some questions Existence of solutions Shift technique

Outline

Some examples

- Quadratic matrix equations
- Matrix *p*th root: $X^p = A$
- Power series matrix equations

2 Canonical factorization

3 Canonical factorization and matrix equations

- Some questions
- Existence of solutions
- Shift technique

Some questions Existence of solutions Shift technique

Some questions

Let
$$S(z) = \sum_{i=-1}^{+\infty} z^i A_i \in \mathcal{W}$$
 and define $A(z) = z S(z)$. Consider

$$\sum_{i=-1}^{+\infty} A_i X^{i+1} = 0$$
 (1)

- Existence of a canonical factorization ⇒ existence of a spectral minimal solution? Viceversa?
- What can we say if the canonical factorization is weak?
- Solution Can we transform a weak canonical factorization into a canonical factorization?

Some questions Existence of solutions Shift technique

Existence of solutions and canonical factorization

Theorem

If there exists a c.f.

$$S(z) = U(z)L(z), \quad L(z) = L_0 + z^{-1}L_{-1}, \quad |z| = 1,$$

then $G = -L_0^{-1}L_{-1}$ is the unique solution of (1) such that $\rho(G) < 1$, and it is the spectral minimal solution. Conversely, if there exists a solution G of (1) such that $\rho(G) < 1$ and if A(z) has exactly m roots in the open unit disk, det $A(z) \neq 0$ for |z| = 1, then S(z) has a c.f.

 $S(z) = (U_0 + zU_1 + \cdots)(I - z^{-1}G), \quad |z| = 1.$

DI PISA

Some questions Existence of solutions Shift technique

Existence of solutions and canonical factorization

Theorem

If there exists a c.f.

$$S(z) = U(z)L(z), \quad L(z) = L_0 + z^{-1}L_{-1}, \quad |z| = 1,$$

then $G = -L_0^{-1}L_{-1}$ is the unique solution of (1) such that $\rho(G) < 1$, and it is the spectral minimal solution. Conversely, if there exists a solution G of (1) such that $\rho(G) < 1$ and if A(z) has exactly m roots in the open unit disk, det $A(z) \neq 0$ for |z| = 1, then S(z) has a c.f.

$$S(z) = (U_0 + zU_1 + \cdots)(I - z^{-1}G), \quad |z| = 1.$$

di Pisa

Some questions Existence of solutions Shift technique

Existence of solutions and weak factorization

Theorem

If there exists a weak c.f.

$$S(z) = U(z)L(z), \quad L(z) = L_0 + z^{-1}L_{-1}, \quad |z| = 1,$$

such that $G = -L_0^{-1}L_{-1}$ is power bounded, then G is a spectral minimal solution of (1) such that $\rho(G) \leq 1$.

Conversely, if $S'(z) \in W$, if there exists a power bounded solution G of (1) such that $\rho(G) = 1$, and if all the zeros of det A(z) in the open unit disk are eigenvalues of G then there exists a weak c.f. of S(z).

In general, weak c.f. ≠⇒ unique spectral minimal solution. Can we transform a weak c.f. into a c.f?

D.A. Bini and B. Meini Nonlinear matrix equations and canonical factorizations

UNIVERSITÀ DI PISA

Some questions Existence of solutions Shift technique

Existence of solutions and weak factorization

Theorem

If there exists a weak c.f.

$$S(z) = U(z)L(z), \quad L(z) = L_0 + z^{-1}L_{-1}, \quad |z| = 1,$$

such that $G = -L_0^{-1}L_{-1}$ is power bounded, then G is a spectral minimal solution of (1) such that $\rho(G) \leq 1$. Conversely, if $S'(z) \in W$, if there exists a power bounded solution G of (1) such that $\rho(G) = 1$, and if all the zeros of det A(z) in the open unit disk are eigenvalues of G then there exists a weak c.f. of S(z).

In general, weak c.f. ≠⇒ unique spectral minimal solution. Can we transform a weak c.f. into a c.f?

UNIVERSITÀ DI PISA

◆□ → ◆□ → ◆ 三 → ◆ 三 → ◆ □ → ◆ へへの

Some questions Existence of solutions Shift technique

Existence of solutions and weak factorization

Theorem

If there exists a weak c.f.

$$S(z) = U(z)L(z), \quad L(z) = L_0 + z^{-1}L_{-1}, \quad |z| = 1,$$

such that $G = -L_0^{-1}L_{-1}$ is power bounded, then G is a spectral minimal solution of (1) such that $\rho(G) \leq 1$. Conversely, if $S'(z) \in W$, if there exists a power bounded solution G of (1) such that $\rho(G) = 1$, and if all the zeros of det A(z) in the open unit disk are eigenvalues of G then there exists a weak c.f. of S(z).

In general, weak c.f. $\neq \Rightarrow$ unique spectral minimal solution. Can we transform a weak c.f. into a c.f?

UNIVERSITÀ DI PISA

◆□ → ◆□ → ◆ 三 → ◆ 三 → ◆ □ → ◆ へへの

Some questions Existence of solutions Shift technique

Shift technique: removing zeros of modulus 1

Before shifting

Some questions Existence of solutions Shift technique

Assumptions

- $S(z) = \sum_{i=-N}^{+\infty} z^i A_i \in \mathcal{W}$ and $S'(z) \in \mathcal{W}$, where $N \ge 1$.
- There is only one simple zero λ of det $S(\lambda)$ on the unit circle.
- **v** is a vector such that $S(\lambda)\mathbf{v} = 0$, $\mathbf{v} \neq 0$.

In problems arising in Markov chains these assumptions are satisfied, moreover $\lambda = 1$ and $\mathbf{v} = (1, 1, \dots, 1)^{\mathrm{T}}$.

Shift technique

Define

$$\widetilde{S}(z) = S(z)(I - z^{-1}\lambda Q)^{-1}, \quad Q = \mathbf{vu}^{\mathrm{T}}$$

Some questions

Shift technique

Existence of solutions

where **u** is any fixed vector such that $\mathbf{v}^{\mathrm{T}}\mathbf{u} = 1$. Let $\widetilde{A}(z) = z^{N}\widetilde{S}(z)$. Then:

- $\widetilde{S}(z) = \sum_{i=-N}^{+\infty} z^i \widetilde{A}_i \in \mathcal{W}.$
- if $z \notin \{0, \lambda\}$, then det $A(z) = 0 \iff \det A(z) = 0$;
- det A(0) = 0 and A(0)v = 0;
- det $\tilde{A}(z) \neq 0$ if |z| = 1

Shift technique

Define

$$\widetilde{S}(z) = S(z)(I - z^{-1}\lambda Q)^{-1}, \quad Q = \mathbf{vu}^{\mathrm{T}}$$

Some questions

Shift technique

Existence of solutions

where **u** is any fixed vector such that $\mathbf{v}^{\mathrm{T}}\mathbf{u} = 1$. Let $\widetilde{A}(z) = z^{N}\widetilde{S}(z)$. Then:

•
$$\widetilde{S}(z) = \sum_{i=-N}^{+\infty} z^i \widetilde{A}_i \in \mathcal{W}.$$

• if $z \notin \{0, \lambda\}$, then det $A(z) = 0 \iff \det A(z) = 0$;

- det A(0) = 0 and A(0)v = 0;
- det $A(z) \neq 0$ if |z| = 1

Shift technique

Define

$$\widetilde{S}(z) = S(z)(I - z^{-1}\lambda Q)^{-1}, \quad Q = \mathbf{vu}^{\mathrm{T}}$$

Some questions

Shift technique

Existence of solutions

where **u** is any fixed vector such that $\mathbf{v}^{\mathrm{T}}\mathbf{u} = 1$. Let $\widetilde{A}(z) = z^{N}\widetilde{S}(z)$. Then:

•
$$\widetilde{S}(z) = \sum_{i=-N}^{+\infty} z^i \widetilde{A}_i \in \mathcal{W}.$$

- if $z \notin \{0, \lambda\}$, then det $\widetilde{A}(z) = 0 \iff \det A(z) = 0$;
- det A(0) = 0 and A(0)v = 0;
- det $A(z) \neq 0$ if |z| = 1.

Shift technique

Define

$$\widetilde{S}(z) = S(z)(I - z^{-1}\lambda Q)^{-1}, \quad Q = \mathbf{vu}^{\mathrm{T}}$$

Some questions

Shift technique

Existence of solutions

where **u** is any fixed vector such that $\mathbf{v}^{\mathrm{T}}\mathbf{u} = 1$. Let $\widetilde{A}(z) = z^{N}\widetilde{S}(z)$. Then:

•
$$\widetilde{S}(z) = \sum_{i=-N}^{+\infty} z^i \widetilde{A}_i \in \mathcal{W}.$$

- if $z \notin \{0, \lambda\}$, then det $\widetilde{A}(z) = 0 \iff \det A(z) = 0$;
- det $\widetilde{A}(0) = 0$ and $\widetilde{A}(0)\mathbf{v} = 0$;
- det $A(z) \neq 0$ if |z| = 1.

Some questions Existence of solutions Shift technique

Shift technique

Define

$$\widetilde{S}(z)=S(z)(\mathit{I}-z^{-1}\lambda Q)^{-1}, \quad Q=\mathsf{vu}^{\mathrm{T}}$$

where **u** is any fixed vector such that $\mathbf{v}^{\mathrm{T}}\mathbf{u} = 1$. Let $\widetilde{A}(z) = z^{N}\widetilde{S}(z)$. Then:

•
$$\widetilde{S}(z) = \sum_{i=-N}^{+\infty} z^i \widetilde{A}_i \in \mathcal{W}.$$

• if
$$z \notin \{0, \lambda\}$$
, then det $\widetilde{A}(z) = 0 \iff \det A(z) = 0$;

• det
$$\widetilde{A}(0) = 0$$
 and $\widetilde{A}(0)\mathbf{v} = 0$;

• det $\widetilde{A}(z) \neq 0$ if |z| = 1.

Some questions Existence of solutions Shift technique

Weak — canonical factorization

If S(z) has a weak canonical factorization

$$S(z)=U(z)L(z)$$

where det $U(z) \neq 0$ if |z| = 1, then $\tilde{S}(z)$ has a canonical factorization

$$\widetilde{S}(z) = \widetilde{U}(z)\widetilde{L}(z),$$

where

$$\widetilde{U}(z) = U(z), \widetilde{L}(z) = L(z)(I - z^{-1}\lambda Q)^{-1}$$

UNIVERSITÀ DI PISA

Some questions Existence of solutions Shift technique

Back to matrix equations

Let $S(z) = \sum_{i=-1}^{+\infty} z^i A_i$ and let G, with $\rho(G) = |\lambda|$, be the spectral minimal solution of $\sum_{i=-1}^{+\infty} A_i X^{i+1} = 0$. Then the matrix equation

$$\sum_{i=-1}^{+\infty} \widetilde{A}_i X^{i+1} = 0$$

has one minimal spectral solution

$$\widetilde{G}=G-\lambda Q.$$

Moreover $\rho(\widetilde{G}) = \rho_2(G) < 1$.

UNIVERSITÀ DI PISA

Some questions Existence of solutions Shift technique

Computational issues

- Shift technique \implies larger isolation ratio of the roots of S(z) with respect to the unit circle.
- Experimentally, larger isolatio ratio \implies faster speed of convergence of functional iterations, cyclic reduction.
- Experimentally, larger isolatio ratio \implies better numerical stability

A theorethical proof of the latter experimental observations is still missing

Numerical Methods for Structured Markov Chains

D.A. Bini (University of Pisa)

- G. Latouche (Université Libre de Bruxelles)
- B. Meini (University of Pisa)

Oxford University Press, 2005

