Nonlinear matrix equations and canonical factorizations

Beatrice Meini joint work with Dario A. Bini

Dipartimento di Matematica, Università di Pisa, Italy
Structured numerical linear algebra problems Cortona, Sept. 19-24, 2004

Outline

(1) Some examples

- Quadratic matrix equations
- Matrix pth root: $X^{p}=A$
- Power series matrix equations
(2) Canonical factorization
- Some questions
- Existence of solutions

Università di Pisa

Outline

(1) Some examples

- Quadratic matrix equations
- Matrix pth root: $X^{p}=A$
- Power series matrix equations
(2) Canonical factorization
(3) Canonical factorization and matrix equations
- Some questions
- Existence of solutions
- Shift technique

Università di Pisa

Outline

(1) Some examples

- Quadratic matrix equations
- Matrix pth root: $X^{p}=A$
- Power series matrix equations
(2) Canonical factorization
(3) Canonical factorization and matrix equations
- Some questions
- Existence of solutions
- Shift technique

Outline

(1) Some examples

- Quadratic matrix equations
- Matrix pth root: $X^{p}=A$
- Power series matrix equations
(2) Canonical factorization
(3) Canonical factorization and matrix equations
- Some questions
- Existence of solutions
- Shift technique

Quadratic matrix equations

Given the $m \times m$ matrix polynomial $A(z)=A_{-1}+z A_{0}+z^{2} A_{1}$ such that $\operatorname{det} A(z)$ has zeros

$$
\left|\xi_{1}\right| \leq \cdots \leq\left|\xi_{m}\right|<\left|\xi_{m+1}\right| \leq \cdots \leq\left|\xi_{2 m}\right|
$$

compute the solution G of

$$
A_{-1}+A_{0} X+A_{1} X^{2}=0
$$

such that $\lambda(G)=\left\{\xi_{1}, \ldots, \xi_{m}\right\}$.
Such G is called the minimal solvent (Gohberg, Lancaster, Rodman '82)
Applications Quadratic eigenvalue problems (damped vibration problems), polynomial factorization, Markov chainS, ${ }^{\text {LINEREstid i P PsA }}$ etc.

Functional interpretation (Gohberg, Lancaster, Rodman '82)

(1) The
matrix function $S(z)=z^{-1} A_{-1}+A_{0}+z A_{1}$ can be factorized as

$$
S(z)=\left(A_{0}+z A_{1} G\right)\left(I-z^{-1} G\right)
$$

where

- $\operatorname{det}\left(A_{0}+z A_{1} G\right) \neq 0$ for $|z| \leq 1$;
- $\operatorname{det}\left(I-z^{-1} G\right) \neq 0$ for $|z| \geq 1$.
(2) Conversely: if

$$
S(z)=\left(U_{0}+z U_{1}\right)\left(L_{0}+z^{-1} L_{-1}\right)=U(z) L(z)
$$

where $\operatorname{det} U(z) \neq 0$ for $|z| \leq 1$ and $\operatorname{det} L(z) \neq 0$ for $|z| \geq 1$ then $G=-L_{0}^{-1} L_{-1}$ is the minimal right solvent.

Functional interpretation (Gohberg, Lancaster, Rodman '82)

(1) The
matrix function $S(z)=z^{-1} A_{-1}+A_{0}+z A_{1}$ can be factorized as

$$
S(z)=\left(A_{0}+z A_{1} G\right)\left(I-z^{-1} G\right)
$$

where

- $\operatorname{det}\left(A_{0}+z A_{1} G\right) \neq 0$ for $|z| \leq 1$;
- $\operatorname{det}\left(I-z^{-1} G\right) \neq 0$ for $|z| \geq 1$.
(2) Conversely: if

$$
S(z)=\left(U_{0}+z U_{1}\right)\left(L_{0}+z^{-1} L_{-1}\right)=U(z) L(z)
$$

where $\operatorname{det} U(z) \neq 0$ for $|z| \leq 1$ and $\operatorname{det} L(z) \neq 0$ for $|z| \geq 1$, then $G=-L_{0}^{-1} L_{-1}$ is the minimal right solvent.

Matrix pth root

Assumptions $A \in \mathbb{C}^{m \times m}$ with no eigenvalues on the closed negative real axis.
Definition The principal matrix p th root of $A, A^{1 / p}$, is the unique matrix X such that:
(1) $X^{p}=A$.
(2) The eigenvalues of X lie in the segment $\{z:-\pi / p<\arg (z)<\pi / p\}$.
Applications Computation of the matrix logarithm, computation of the matrix sector function (control theory).

Functional interpretation

Theorem (Bini, Higham, Meini 04)

Assume $p=2 q$, where q is odd. Let

$$
S(z)=z^{-q} \sum_{j=0}^{p} z^{j}\binom{p}{j}\left(A+(-1)^{j+1} /\right) .
$$

If $U(z)=U_{0}+z U_{1}+\cdots+z^{q} U_{q}$ is such that $\operatorname{det} U(z) \neq 0$ for $|z| \leq 1$, and $S(z)=U(z) U\left(z^{-1}\right)$ then

$$
A^{1 / p}=-\sigma^{-1}\left(q I+2 U^{\prime}(-1) U(-1)^{-1}\right)
$$

where $\sigma=1+2 \sum_{j=1}^{\lfloor q / 2\rfloor} \cos (2 \pi j / p)$.

Power series matrix equations

An application M/G/1-type Markov chains, introduced by M. F. Neuts in the 80 's, which model a large variety of queueing problems.
Problem Given nonnegative matrices $A_{i} \in \mathbb{R}^{m \times m}, i \geq-1$, such that $\sum_{i=-1}^{+\infty} A_{i}$ is stochastic, compute the minimal component-wise solution G, among the nonnegative solutions, of

$$
X=A_{-1}+A_{0} X+A_{1} X^{2}+\cdots
$$

Some properties of G

Let $\phi(z)=z l-\sum_{i=-1}^{+\infty} z^{i+1} A_{i}$.
If the $M / G / 1$-type Markov chain is positive recurrent, then:

- G is row stochastic.
- $\operatorname{det} \phi(z)$ has exactly m zeros in the closed unit disk.
- The eigenvalues of G are the zeros of $\operatorname{det} \phi(z)$ in the closed unit disk.

Therefore G is the spectral minimal solution, i.e., $\rho(G) \leq \rho(X)$ for any other possible solution X.

The induced factorization

The function $S(z)=I-\sum_{i=-1}^{+\infty} z^{i} A_{i}$ can be factorized as

$$
S(z)=\left(1-\sum_{i=0}^{+\infty} z^{i} U_{i}\right)\left(I-z^{-1} G\right), \quad|z|=1,
$$

where:

The induced factorization

The function $S(z)=I-\sum_{i=-1}^{+\infty} z^{i} A_{i}$ can be factorized as

$$
S(z)=\left(1-\sum_{i=0}^{+\infty} z^{i} U_{i}\right)\left(I-z^{-1} G\right), \quad|z|=1,
$$

where:

- $U(z)=I-\sum_{i=0}^{+\infty} z^{i} U_{i}$ is analytic for $|z|<1$, convergent for $|z| \leq 1$, and $\operatorname{det} U(z) \neq 0$ for $|z| \leq 1$;
- $L(z)=I-z^{-1} G$ is analytic for $|z|>1$, convergent for $|z| \geq 1$, and $\operatorname{det} L(z) \neq 0$ for $|z|>1$, $\operatorname{det} L(1)=0$.

The induced factorization

The function $S(z)=I-\sum_{i=-1}^{+\infty} z^{i} A_{i}$ can be factorized as

$$
S(z)=\left(1-\sum_{i=0}^{+\infty} z^{i} U_{i}\right)\left(I-z^{-1} G\right), \quad|z|=1,
$$

where:

- $U(z)=I-\sum_{i=0}^{+\infty} z^{i} U_{i}$ is analytic for $|z|<1$, convergent for $|z| \leq 1$, and $\operatorname{det} U(z) \neq 0$ for $|z| \leq 1$;
- $L(z)=I-z^{-1} G$ is analytic for $|z|>1$, convergent for $|z| \geq 1$, and $\operatorname{det} L(z) \neq 0$ for $|z|>1$, $\operatorname{det} L(1)=0$.

Outline

(1) Some examples

- Quadratic matrix equations
- Matrix pth root: $X^{p}=A$
- Power series matrix equations
(2) Canonical factorization
(3) Canonical factorization and matrix equations
- Some questions
- Existence of solutions
- Shift technique

Wiener algebra

Definition (\mathcal{W})

The Wiener algebra \mathcal{W} is the set of complex $m \times m$ matrix valued functions $A(z)=\sum_{i=-\infty}^{+\infty} z^{i} A_{i}$ such that $\sum_{i=-\infty}^{+\infty}\left|A_{i}\right|$ is finite.

Definition $\left(\mathcal{W}_{+}\right.$and $\left.\mathcal{W}_{-}\right)$

The set $\mathcal{W}_{+}\left(\mathcal{W}_{-}\right)$is the subalgebra of \mathcal{W} made up by power series of the kind $\sum_{i=0}^{+\infty} z^{i} A_{i}\left(\sum_{i=0}^{+\infty} z^{-i} A_{i}\right)$.

Canonical factorization

Definition (Canonical factorization)

Let $A(z)=\sum_{i=-\infty}^{+\infty} z^{i} A_{i} \in \mathcal{W}$. A canonical factorization of $A(z)$ is a decomposition

$$
A(z)=U(z) L(z), \quad|z|=1
$$

where $U(z)=\sum_{i=0}^{+\infty} z^{i} U_{i} \in \mathcal{W}_{+}$and $L(z)=\sum_{i=0}^{+\infty} z^{-i} L_{-i} \in \mathcal{W}_{-}$ are invertible for $|z| \leq 1$ and $1 \leq|z| \leq \infty$, respectively.

Definition (Weak canonical factorization)

The above decomposition is a weak canonical factorization if

Canonical factorization

Definition (Canonical factorization)

Let $A(z)=\sum_{i=-\infty}^{+\infty} z^{i} A_{i} \in \mathcal{W}$. A canonical factorization of $A(z)$ is a decomposition

$$
A(z)=U(z) L(z), \quad|z|=1
$$

where $U(z)=\sum_{i=0}^{+\infty} z^{i} U_{i} \in \mathcal{W}_{+}$and $L(z)=\sum_{i=0}^{+\infty} z^{-i} L_{-i} \in \mathcal{W}_{-}$ are invertible for $|z| \leq 1$ and $1 \leq|z| \leq \infty$, respectively.

Definition (Weak canonical factorization)

The above decomposition is a weak canonical factorization if $U(z)=\sum_{i=0}^{+\infty} z^{i} U_{i} \in \mathcal{W}_{+}$and $L(z)=\sum_{i=0}^{+\infty} z^{-i} L_{-i} \in \mathcal{W}_{-}$are invertible for $|z|<1$ and $1<|z| \leq \infty$, respectively.

An example: $S(z)=\sum_{i=-1}^{+\infty} z^{i} A_{i}$

Location of the zeros of $\operatorname{det}(z S(z))$

Canonical factorization

Weak canonical factorization

Outline

(1) Some examples

- Quadratic matrix equations
- Matrix pth root: $X^{P}=A$
- Power series matrix equations
(2) Canonical factorization
(3) Canonical factorization and matrix equations
- Some questions
- Existence of solutions
- Shift technique

Some questions

Let $S(z)=\sum_{i=-1}^{+\infty} z^{i} A_{i} \in \mathcal{W}$ and define $A(z)=z S(z)$. Consider

$$
\begin{equation*}
\sum_{i=-1}^{+\infty} A_{i} X^{i+1}=0 \tag{1}
\end{equation*}
$$

(1) Existence of a canonical factorization \Longrightarrow existence of a spectral minimal solution? Viceversa?
(2) What can we say if the canonical factorization is weak?
(3) Can we transform a weak canonical factorization into a canonical factorization?

Existence of solutions and canonical factorization

Theorem

If there exists a c.f.

$$
S(z)=U(z) L(z), \quad L(z)=L_{0}+z^{-1} L_{-1}, \quad|z|=1
$$

then $G=-L_{0}^{-1} L_{-1}$ is the unique solution of (1) such that $\rho(G)<1$, and it is the spectral minimal solution.
Conversely, if there exists a solution G of (1) such that $\rho(G)<1$ and if $A(z)$ has exactly m roots in the open unit disk, $\operatorname{det} A(z) \neq 0$ for $|z|=1$, then $S(z)$ has a c.f.

Existence of solutions and canonical factorization

Theorem

If there exists a c.f.

$$
S(z)=U(z) L(z), \quad L(z)=L_{0}+z^{-1} L_{-1}, \quad|z|=1
$$

then $G=-L_{0}^{-1} L_{-1}$ is the unique solution of (1) such that $\rho(G)<1$, and it is the spectral minimal solution.
Conversely, if there exists a solution G of (1) such that $\rho(G)<1$ and if $A(z)$ has exactly m roots in the open unit disk, $\operatorname{det} A(z) \neq 0$ for $|z|=1$, then $S(z)$ has a c.f.

$$
S(z)=\left(U_{0}+z U_{1}+\cdots\right)\left(I-z^{-1} G\right), \quad|z|=1
$$

Existence of solutions and weak factorization

Theorem

If there exists a weak c.f.

$$
S(z)=U(z) L(z), \quad L(z)=L_{0}+z^{-1} L_{-1}, \quad|z|=1
$$

such that $G=-L_{0}^{-1} L_{-1}$ is power bounded, then G is a spectral minimal solution of (1) such that $\rho(G) \leq 1$.
Conversely, if $S^{\prime}(z) \in \mathcal{W}$, if there exists a power bounded solution G of (1) such that $\rho(G)=1$, and if all the zeros of $\operatorname{det} A(z)$ in the open unit disk are eigenvalues of G then there exists a weak c.f. of $S(z)$

Existence of solutions and weak factorization

Theorem

If there exists a weak c.f.

$$
S(z)=U(z) L(z), \quad L(z)=L_{0}+z^{-1} L_{-1}, \quad|z|=1
$$

such that $G=-L_{0}^{-1} L_{-1}$ is power bounded, then G is a spectral minimal solution of (1) such that $\rho(G) \leq 1$.
Conversely, if $S^{\prime}(z) \in \mathcal{W}$, if there exists a power bounded solution G of (1) such that $\rho(G)=1$, and if all the zeros of $\operatorname{det} A(z)$ in the open unit disk are eigenvalues of G then there exists a weak c.f. of $S(z)$.

In general, weak c.f. \nRightarrow unique spectral minimal solution.

Existence of solutions and weak factorization

Theorem

If there exists a weak c.f.

$$
S(z)=U(z) L(z), \quad L(z)=L_{0}+z^{-1} L_{-1}, \quad|z|=1
$$

such that $G=-L_{0}^{-1} L_{-1}$ is power bounded, then G is a spectral minimal solution of (1) such that $\rho(G) \leq 1$.
Conversely, if $S^{\prime}(z) \in \mathcal{W}$, if there exists a power bounded solution G of (1) such that $\rho(G)=1$, and if all the zeros of $\operatorname{det} A(z)$ in the open unit disk are eigenvalues of G then there exists a weak c.f. of $S(z)$.

In general, weak c.f. \nRightarrow unique spectral minimal solution.
Can we transform a weak c.f. into a c.f?

Shift technique: removing zeros of modulus 1

Before shifting

After shifting

ERSITÀ DI PISA

Assumptions

- $S(z)=\sum_{i=-N}^{+\infty} z^{i} A_{i} \in \mathcal{W}$ and $S^{\prime}(z) \in \mathcal{W}$, where $N \geq 1$.
- There is only one simple zero λ of $\operatorname{det} S(\lambda)$ on the unit circle.
- \mathbf{v} is a vector such that $S(\lambda) \mathbf{v}=0, \mathbf{v} \neq 0$.

In problems arising in Markov chains these assumptions are satisfied, moreover $\lambda=1$ and $\mathbf{v}=(1,1, \ldots, 1)^{\mathrm{T}}$.

Shift technique

Define

$$
\widetilde{S}(z)=S(z)\left(I-z^{-1} \lambda Q\right)^{-1}, \quad Q=\mathbf{v u}^{\mathrm{T}}
$$

where \mathbf{u} is any fixed vector such that $\mathbf{v}^{\mathrm{T}} \mathbf{u}=1$. Let $\widetilde{A}(z)=z^{N} \widetilde{S}(z)$. Then:

Shift technique

Define

$$
\widetilde{S}(z)=S(z)\left(I-z^{-1} \lambda Q\right)^{-1}, \quad Q=\mathbf{v u}^{\mathrm{T}}
$$

where \mathbf{u} is any fixed vector such that $\mathbf{v}^{\mathrm{T}} \mathbf{u}=1$. Let $\widetilde{A}(z)=z^{N} \widetilde{S}(z)$. Then:

- $\widetilde{S}(z)=\sum_{i=-N}^{+\infty} z^{i} \widetilde{A}_{i} \in \mathcal{W}$.

Shift technique

Define

$$
\widetilde{S}(z)=S(z)\left(I-z^{-1} \lambda Q\right)^{-1}, \quad Q=\mathbf{v u}^{\mathrm{T}}
$$

where \mathbf{u} is any fixed vector such that $\mathbf{v}^{\mathrm{T}} \mathbf{u}=1$. Let $\widetilde{A}(z)=z^{N} \widetilde{S}(z)$. Then:

- $\widetilde{S}(z)=\sum_{i=-N}^{+\infty} z^{i} \widetilde{A}_{i} \in \mathcal{W}$.
- if $z \notin\{0, \lambda\}$, then $\operatorname{det} \widetilde{A}(z)=0 \Longleftrightarrow \operatorname{det} A(z)=0$;
- $\operatorname{det} A(0)=0$ and $A(0) v=0$;

Shift technique

Define

$$
\widetilde{S}(z)=S(z)\left(I-z^{-1} \lambda Q\right)^{-1}, \quad Q=\mathbf{v u}^{\mathrm{T}}
$$

where \mathbf{u} is any fixed vector such that $\mathbf{v}^{\mathrm{T}} \mathbf{u}=1$. Let $\widetilde{A}(z)=z^{N} \widetilde{S}(z)$.
Then:

- $\widetilde{S}(z)=\sum_{i=-N}^{+\infty} z^{i} \widetilde{A}_{i} \in \mathcal{W}$.
- if $z \notin\{0, \lambda\}$, then $\operatorname{det} \widetilde{A}(z)=0 \Longleftrightarrow \operatorname{det} A(z)=0$;
- $\operatorname{det} \widetilde{A}(0)=0$ and $\widetilde{A}(0) \mathbf{v}=0$;
- $\operatorname{det} A(z) \neq 0$ if $|z|=1$.

Shift technique

Define

$$
\widetilde{S}(z)=S(z)\left(I-z^{-1} \lambda Q\right)^{-1}, \quad Q=\mathbf{v u}^{\mathrm{T}}
$$

where \mathbf{u} is any fixed vector such that $\mathbf{v}^{\mathrm{T}} \mathbf{u}=1$. Let $\widetilde{A}(z)=z^{N} \widetilde{S}(z)$.
Then:

- $\widetilde{S}(z)=\sum_{i=-N}^{+\infty} z^{i} \widetilde{A}_{i} \in \mathcal{W}$.
- if $z \notin\{0, \lambda\}$, then $\operatorname{det} \widetilde{A}(z)=0 \Longleftrightarrow \operatorname{det} A(z)=0$;
- $\operatorname{det} \widetilde{A}(0)=0$ and $\widetilde{A}(0) \mathbf{v}=0$;
- $\operatorname{det} \widetilde{A}(z) \neq 0$ if $|z|=1$.

Weak \longrightarrow canonical factorization

If $S(z)$ has a weak canonical factorization

$$
S(z)=U(z) L(z)
$$

where $\operatorname{det} U(z) \neq 0$ if $|z|=1$, then $\widetilde{S}(z)$ has a canonical factorization

$$
\widetilde{S}(z)=\widetilde{U}(z) \widetilde{L}(z)
$$

where

$$
\begin{aligned}
& \widetilde{U}(z)=U(z) \\
& \widetilde{L}(z)=L(z)\left(I-z^{-1} \lambda Q\right)^{-1}
\end{aligned}
$$

Back to matrix equations

Let $S(z)=\sum_{i=-1}^{+\infty} z^{i} A_{i}$ and let G, with $\rho(G)=|\lambda|$, be the spectral minimal solution of $\sum_{i=-1}^{+\infty} A_{i} X^{i+1}=0$.
Then the matrix equation

$$
\sum_{i=-1}^{+\infty} \widetilde{A}_{i} X^{i+1}=0
$$

has one minimal spectral solution

$$
\tilde{G}=G-\lambda Q .
$$

Moreover $\rho(\widetilde{G})=\rho_{2}(G)<1$.

Computational issues

- Shift technique \Longrightarrow larger isolation ratio of the roots of $S(z)$ with respect to the unit circle.
- Experimentally, larger isolatio ratio \Longrightarrow faster speed of convergence of functional iterations, cyclic reduction.
- Experimentally, larger isolatio ratio \Longrightarrow better numerical stability

A theorethical proof of the latter experimental observations is still missing

New book

Numerical Methods for Structured Markov Chains
D.A. Bini (University of Pisa)
G. Latouche (Université Libre de Bruxelles)
B. Meini (University of Pisa)

Oxford University Press, 2005

