Structures preserved by the QR-algorithm

Steven Delvaux Marc Van Barel

Department of Computer Science Katholieke Universiteit Leuven Leuven, Belgium

Structured Numerical Linear Algebra Problems: Algorithms and Applications, Cortona, Italy, 2004

< ロト (周) (日) (日)

Outline

Introduction

- The shifted QR-algorithm
- 2 Polynomial structures
 - Definition
 - Examples

3 Rank structures

- Definition
- Examples
- Nonsingular case

④ Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

(日) (日) (日) (日) (日)

Outline

Introduction

- The shifted QR-algorithm
- 2 Polynomial structures
 - Definition
 - Examples

3 Rank structures

- Definition
- Examples
- Nonsingular case

4 Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

< □ > < □ > < □ >

Outline

- The shifted QR-algorithm
- 2 Polynomial structures
 - Definition
 - Examples

3 Rank structures

- Definition
- Examples
- Nonsingular case

4 Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

・ 同 ト・ ・ ヨート・ ・ ヨ

Outline

- The shifted QR-algorithm
- 2 Polynomial structures
 - Definition
 - Examples

3 Rank structures

- Definition
- Examples
- Nonsingular case

④ Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

• 3 > 4

Introduction

Polynomial structures Rank structures Singular case

The shifted QR-algorithm

Outline

Introduction

- The shifted QR-algorithm
- 2 Polynomial structures
 - Definition
 - Examples

3 Rank structures

- Definition
- Examples
- Nonsingular case

4 Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

(日) (日) (日) (日) (日)

The shifted QR-algorithm

The shifted *QR*-algorithm

- Given a matrix A ∈ C^{n×n}.
 We want to compute the eigenvalues, eigenvectors of A.
- Initialization of the shifted QR-algorithm: $A^{(0)} = A$. QR-step: given $A^{(\nu)}$, we compute

$$A^{(\nu)} - \lambda I = QR$$
(1)
$$A^{(\nu+1)} = RQ + \lambda I,$$
(2)

イロト イポト イヨト イヨト

with $\lambda \in \mathbb{C}$ the *shift*, Q unitary and R upper triangular.

The shifted QR-algorithm

The shifted QR-algorithm

Given a matrix A ∈ C^{n×n}. We want to compute the eigenvalues, eigenvectors of A.
Initialization of the shifted QR-algorithm: A⁽⁰⁾ = A.

QR-step: given $A^{(\nu)}$, we compute

$$A^{(\nu)} - \lambda I = QR \tag{1}$$

$$A^{(\nu+1)} = RQ + \lambda I, \qquad (2)$$

< ロト (周) (日) (日)

with $\lambda \in \mathbb{C}$ the *shift*, Q unitary and R upper triangular.

The shifted QR-algorithm

The shifted QR-algorithm

- Given a matrix A ∈ C^{n×n}. We want to compute the eigenvalues, eigenvectors of A.
 Initialization of the shifted QR-algorithm: A⁽⁰⁾ = A.
 - QR-step: given $A^{(\nu)}$, we compute

$$A^{(\nu)} - \lambda I = QR$$
(1)
$$A^{(\nu+1)} = RQ + \lambda I,$$
(2)

(日) (同) (三) (三) (三)

with $\lambda \in \mathbb{C}$ the *shift*, Q unitary and R upper triangular.

• (1) and (2) imply the similarity relations

 $A^{(\nu+1)} = Q^H A^{(\nu)} Q$ $A^{(\nu+1)} = R A^{(\nu)} R^{-1}.$ Introduction Polynomial structures Rank structures

Singular case

The shifted QR-algorithm

The shifted *QR*-algorithm

• Similarity relations

$$A^{(\nu+1)} = Q^H A^{(\nu)} Q$$
 (3)

$$A^{(\nu+1)} = R A^{(\nu)} R^{-1}.$$
 (4)

・ロト ・ 日ト ・ モト・

3

The shifted QR-algorithm

The shifted QR-algorithm

• Similarity relations

$$A^{(\nu+1)} = Q^H A^{(\nu)} Q$$
 (3)

$$A^{(\nu+1)} = RA^{(\nu)}R^{-1}.$$
 (4)

★問▶ ★注▶ ★注▶

æ

- Preservation of structure under the shifted QR-algorithm:
 - (3) \Rightarrow polynomial structures
 - (4) \Rightarrow rank structures.

Definition Examples

Outline

Introduction

• The shifted *QR*-algorithm

2 Polynomial structures

- Definition
- Examples

3 Rank structures

- Definition
- Examples
- Nonsingular case

4 Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

(4月) (1日) (日)

Definition Examples

Definition

- A polynomial structure on $\mathbb{C}^{n \times n}$ is defined as a collection $\mathcal{P} = \{p_k\}_k$, where each p_k is a polynomial in 7 variables.
- A matrix A is said to satisfy the structure $\mathcal{P} = \{p_k\}_k$ if for every k,

 $p_k(A, A^H, A^{-1}, A^{-H}, \operatorname{Herm}_k, \operatorname{Uni}_k, (\operatorname{Rk} r)_k) = 0,$

for certain

- Herm_k Hermitian,
- Uni_k unitary,
- $(\operatorname{Rk} r)_k$ of rank at most r.
- *M*: set of matrices satisfying *P*.

イロン イヨン イヨン イヨン

Definition Examples

Definition

- A polynomial structure on $\mathbb{C}^{n \times n}$ is defined as a collection $\mathcal{P} = \{p_k\}_k$, where each p_k is a polynomial in 7 variables.
- A matrix A is said to satisfy the structure $\mathcal{P} = \{p_k\}_k$ if for every k,

$$p_k(A, A^H, A^{-1}, A^{-H}, \operatorname{Herm}_k, \operatorname{Uni}_k, (\operatorname{Rk} r)_k) = 0,$$

for certain

- Herm_k Hermitian,
- Uni_k unitary,
- $(\operatorname{Rk} r)_k$ of rank at most r.

• \mathcal{M} : set of matrices satisfying \mathcal{P} .

<ロ> (日) (日) (日) (日) (日)

Definition Examples

Definition

- A polynomial structure on $\mathbb{C}^{n \times n}$ is defined as a collection $\mathcal{P} = \{p_k\}_k$, where each p_k is a polynomial in 7 variables.
- A matrix A is said to satisfy the structure $\mathcal{P} = \{p_k\}_k$ if for every k,

$$p_k(A, A^H, A^{-1}, A^{-H}, \operatorname{Herm}_k, \operatorname{Uni}_k, (\operatorname{Rk} r)_k) = 0,$$

for certain

- Herm_k Hermitian,
- Uni_k unitary,
- $(\operatorname{Rk} r)_k$ of rank at most r.
- \mathcal{M} : set of matrices satisfying \mathcal{P} .

イロト イポト イヨト イヨト

Definition Examples

Theorem

Polynomial structure is strictly preserved by the shifted QR-algorithm, i.e. $A^{(\nu)} \in \mathcal{M} \Leftrightarrow A^{(\nu+1)} \in \mathcal{M}$.

PROOF.

- Any unitary matrix Q can be 'pulled through'
- ⇒ Polynomial structures satisfied by A, must carry over to A_Q = Q^HAQ. And conversely, by applying the same argument to QA_QQ^H = Q(Q^HAQ)Q^H = A.
- In particular, this holds for the Q-factor of the shifted of QR-algorithm, and hence for the matrices A^(P) and A^(P+1) = Q^(P)A^(P)Q.

イロト イヨト イヨト イヨト

4

Definition Examples

Theorem

Polynomial structure is strictly preserved by the shifted QR-algorithm, i.e. $A^{(\nu)} \in \mathcal{M} \Leftrightarrow A^{(\nu+1)} \in \mathcal{M}$.

PROOF.

• Any unitary matrix Q can be 'pulled through' such a polynomial relation:

$$\begin{aligned} Q^{H} p(A, A^{H}, A^{-1}, A^{-H}, \operatorname{Herm}, \operatorname{Uni}, \operatorname{Rk} r) Q \\ &= p(A_{Q}, A_{Q}^{H}, A_{Q}^{-1}, A_{Q}^{-H}, \operatorname{Herm}_{Q}, \operatorname{Uni}_{Q}, (\operatorname{Rk} r)_{Q}), \end{aligned}$$

where

$$\begin{split} A_Q &:= Q^H A Q, \quad \mathrm{Herm}_Q := Q^H (\mathrm{Herm}) Q, \quad \mathrm{Uni}_Q := Q^H (\mathrm{Uni}) Q, \\ & (\mathrm{Rk} \ r)_Q := Q^H (\mathrm{Rk} \ r) Q. \end{split}$$

• Any unitary matrix Q can be 'pulled through'.

• \Rightarrow Polynomial structures satisfied by A, must carry over to $_$

Definition Examples

Theorem

Polynomial structure is strictly preserved by the shifted QR-algorithm, i.e. $A^{(\nu)} \in \mathcal{M} \Leftrightarrow A^{(\nu+1)} \in \mathcal{M}$.

PROOF.

- Any unitary matrix Q can be 'pulled through'.
- \Rightarrow Polynomial structures satisfied by A, must carry over to $A_Q = Q^H A Q$. And conversely, by applying the same argument to $QA_QQ^H = Q(Q^H A Q)Q^H = A$.
- In particular, this holds for the Q-factor of the shifted QR-algorithm, and hence for the matrices $A^{(\nu)}$ and $A^{(\nu+1)} = Q^H A^{(\nu)} Q$.

(日) (部) (注) (注)

Definition Examples

Theorem

Polynomial structure is strictly preserved by the shifted QR-algorithm, i.e. $A^{(\nu)} \in \mathcal{M} \Leftrightarrow A^{(\nu+1)} \in \mathcal{M}$.

PROOF.

- Any unitary matrix Q can be 'pulled through'.
- \Rightarrow Polynomial structures satisfied by A, must carry over to $A_Q = Q^H A Q$. And conversely, by applying the same argument to $QA_QQ^H = Q(Q^H A Q)Q^H = A$.
- In particular, this holds for the *Q*-factor of the shifted QR-algorithm, and hence for the matrices $A^{(\nu)}$ and $A^{(\nu+1)} = Q^H A^{(\nu)} Q$.

イロト イポト イヨト イヨト

Definition Examples

Theorem

Polynomial structure is strictly preserved by the shifted QR-algorithm, i.e. $A^{(\nu)} \in \mathcal{M} \Leftrightarrow A^{(\nu+1)} \in \mathcal{M}$.

PROOF.

- Any unitary matrix Q can be 'pulled through'.
- \Rightarrow Polynomial structures satisfied by A, must carry over to $A_Q = Q^H A Q$. And conversely, by applying the same argument to $QA_QQ^H = Q(Q^H A Q)Q^H = A$.
- In particular, this holds for the *Q*-factor of the shifted QR-algorithm, and hence for the matrices $A^{(\nu)}$ and $A^{(\nu+1)} = Q^H A^{(\nu)} Q$.

(D) (A) (A)

Definition Examples

Theorem

Polynomial structure is strictly preserved by the shifted QR-algorithm, i.e. $A^{(\nu)} \in \mathcal{M} \Leftrightarrow A^{(\nu+1)} \in \mathcal{M}$.

PROOF.

- Any unitary matrix Q can be 'pulled through'.
- \Rightarrow Polynomial structures satisfied by A, must carry over to $A_Q = Q^H A Q$. And conversely, by applying the same argument to $QA_QQ^H = Q(Q^H A Q)Q^H = A$.
- In particular, this holds for the *Q*-factor of the shifted QR-algorithm, and hence for the matrices $A^{(\nu)}$ and $A^{(\nu+1)} = Q^H A^{(\nu)} Q$.

(D) (A) (A)

Definition Examples

Outline

- Introduction
 - The shifted QR-algorithm

2 Polynomial structures

- Definition
- Examples

3 Rank structures

- Definition
- Examples
- Nonsingular case

4 Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

(4月) (1日) (日)

Definition Examples

Examples of polynomial structures

- Hermitian matrices: $A A^H = 0$, or A Herm = 0,
- unitary matrices: $A^H A^{-1} = 0$, or A Uni = 0,
- normal matrices: $AA^H A^H A = 0$,
- unitary plus rank r correction: A Uni Rk r = 0,
- [Bini, Gemignani, Pan]: $A \text{Herm} \text{Rk} \ 1 = 0$,
- [Bini, Daddi, Gemignani]: A A^{-H} Rk 2 = 0 (Frobenius matrices).

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト

Definition Examples

Examples of polynomial structures

- Hermitian matrices: $A A^H = 0$, or A Herm = 0,
- unitary matrices: $A^H A^{-1} = 0$, or A Uni = 0,
- normal matrices: $AA^H A^H A = 0$,
- unitary plus rank r correction: A Uni Rk r = 0,
- [Bini, Gemignani, Pan]: A Herm Rk 1 = 0,
- [Bini, Daddi, Gemignani]: A A^{-H} Rk 2 = 0 (Frobenius matrices).

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Definition Examples

Examples of polynomial structures

- Hermitian matrices: $A A^H = 0$, or A Herm = 0,
- unitary matrices: $A^H A^{-1} = 0$, or A Uni = 0,
- normal matrices: $AA^H A^H A = 0$,
- unitary plus rank r correction: A Uni Rk r = 0,
- [Bini, Gemignani, Pan]: $A \text{Herm} \text{Rk} \ 1 = 0$,
- [Bini, Daddi, Gemignani]: A A^{-H} Rk 2 = 0 (Frobenius matrices).

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト

Definition Examples

Examples of polynomial structures

- Hermitian matrices: $A A^H = 0$, or A Herm = 0,
- unitary matrices: $A^H A^{-1} = 0$, or A Uni = 0,
- normal matrices: $AA^H A^H A = 0$,
- unitary plus rank r correction: A Uni Rk r = 0,
- [Bini, Gemignani, Pan]: A Herm Rk 1 = 0,
- [Bini, Daddi, Gemignani]: $A A^{-H} \text{Rk } 2 = 0$ (Frobenius matrices).

Definition Examples

Examples of polynomial structures

- Hermitian matrices: $A A^H = 0$, or A Herm = 0,
- unitary matrices: $A^H A^{-1} = 0$, or A Uni = 0,
- normal matrices: $AA^H A^H A = 0$,
- unitary plus rank r correction: A Uni Rk r = 0,
- [Bini, Gemignani, Pan]: A Herm Rk 1 = 0,
- [Bini, Daddi, Gemignani]: A A^{-H} Rk 2 = 0 (Frobenius matrices).

Definition Examples

Examples of polynomial structures

- Hermitian matrices: $A A^H = 0$, or A Herm = 0,
- unitary matrices: $A^H A^{-1} = 0$, or A Uni = 0,
- normal matrices: $AA^H A^H A = 0$,
- unitary plus rank r correction: A Uni Rk r = 0,
- [Bini, Gemignani, Pan]: A Herm Rk 1 = 0,
- [Bini, Daddi, Gemignani]: $A A^{-H} \text{Rk } 2 = 0$ (Frobenius matrices).

イロト イポト イヨト イヨト

Definition Examples Nonsingular case

Outline

Introduction

- The shifted *QR*-algorithm
- 2 Polynomial structures
 - Definition
 - Examples
- 3 Rank structures
 - Definition
 - Examples
 - Nonsingular case

4 Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

(日) (部) (注) (注)

Definition Examples Nonsingular case

Definition

• We define a rank structure on $\mathbb{C}^{n \times n}$ as a collection $\mathcal{R} = \{\mathcal{B}_k\}_k$ where each \mathcal{B}_k is a 'structure block'.

 $\mathcal{B}_k = (i_k, j_k, r_k, \lambda_k):$

- *i_k*: row index,
- *j_k*: column index,
- r_k: rank upper bound,
- $\lambda_k \in \mathbb{C}$: shift element.

• A matrix $A \in \mathbb{C}^{n \times n}$ satisfies the structure \mathcal{R} if for every k,

Rank $A_k(i_k : n, 1 : j_k) \leq r_k$, where $A_k := A - \lambda_k I$.

<ロ> (日) (日) (日) (日) (日)

æ

Definition Examples Nonsingular case

Definition

• We define a rank structure on $\mathbb{C}^{n \times n}$ as a collection $\mathcal{R} = \{\mathcal{B}_k\}_k$ where each \mathcal{B}_k is a 'structure block'.

$$\mathcal{B}_k = (i_k, j_k, r_k, \lambda_k)$$
:

- *i_k*: row index,
- *j_k*: column index,
- rk: rank upper bound,
- $\lambda_k \in \mathbb{C}$: shift element.

• A matrix $A \in \mathbb{C}^{n \times n}$ satisfies the structure \mathcal{R} if for every k,

Rank $A_k(i_k : n, 1 : j_k) \leq r_k$, where $A_k := A - \lambda_k I$.

(日) (日) (日) (日) (日)

Definition Examples Nonsingular case

Definition

• We define a rank structure on $\mathbb{C}^{n \times n}$ as a collection $\mathcal{R} = \{\mathcal{B}_k\}_k$ where each \mathcal{B}_k is a 'structure block'.

$$\mathcal{B}_k = (i_k, j_k, r_k, \lambda_k)$$
:

- *i_k*: row index,
- *j_k*: column index,
- rk: rank upper bound,
- $\lambda_k \in \mathbb{C}$: shift element.
- A matrix $A \in \mathbb{C}^{n \times n}$ satisfies the structure \mathcal{R} if for every k,

Rank $A_k(i_k : n, 1 : j_k) \leq r_k$, where $A_k := A - \lambda_k I$.

<ロ> (日) (日) (日) (日) (日)

Definition Examples Nonsingular case

Definition

(Continuation)

- As a special case, *R* is called a pure rank structure if all structure blocks *B_k* have shift element λ_k = 0.
- *M*: set of matrices which satisfy *R*.
 *R*_{pure}: pure rank structure.
 *M*_{pure}: set of matrices which satisfy *R*_{pu}

イロト イヨト イヨト イヨト

-2

Definition Examples Nonsingular case

Definition

(Continuation)

- As a special case, *R* is called a pure rank structure if all structure blocks *B_k* have shift element λ_k = 0.
- \mathcal{M} : set of matrices which satisfy \mathcal{R} . $\mathcal{R}_{\mathrm{pure}}$: pure rank structure. $\mathcal{M}_{\mathrm{pure}}$: set of matrices which satisfy $\mathcal{R}_{\mathrm{pure}}$.

<ロ> (日) (日) (日) (日) (日)

Definition Examples Nonsingular case

Outline

Introduction

- The shifted *QR*-algorithm
- 2 Polynomial structures
 - Definition
 - Examples

3 Rank structures

Definition

Examples

Nonsingular case

4 Singular case

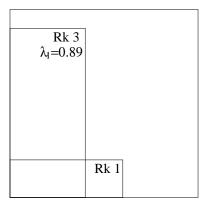
- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

(日) (部) (注) (注)

Definition Examples Nonsingular case

Example

Here is an example of a rank structure $\mathcal{R} = \{\mathcal{B}_1, \mathcal{B}_2\}$. The structure block \mathcal{B}_1 intersects the diagonal and has shift $\lambda_1 = 0.89$, while the structure block \mathcal{B}_2 is pure:



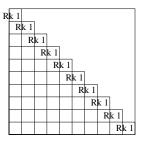
▲□→ ▲ □→ ▲ □→

æ

Definition Examples Nonsingular case

Example

Here is an example of a rank structure $\mathcal{R}_{pure} = {\{\mathcal{B}_k\}_{k=1}^n}$, yielding the class of lower semiseparable matrices:



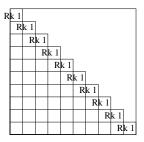
Allowing shift elements λ_k , we get the class $\mathcal{R} = \{\mathcal{B}_k\}_{k=1}^n$ of lower semiseparable *plus diagonal* matrices. The diagonal $\Lambda = \operatorname{diag}(\lambda_k)_{k=1}^n$ is part of the structure.

イロト イポト イヨト イヨト

Definition Examples Nonsingular case

Example

Here is an example of a rank structure $\mathcal{R}_{pure} = {\{\mathcal{B}_k\}_{k=1}^n}$, yielding the class of lower semiseparable matrices:



Allowing shift elements λ_k , we get the class $\mathcal{R} = {\mathcal{B}_k}_{k=1}^n$ of lower semiseparable *plus diagonal* matrices.

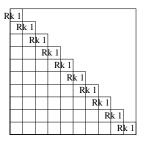
The diagonal $\Lambda = ext{diag}(\lambda_k)_{k=1}^n$ is part of the structure.

イロト イポト イヨト イヨト

Definition Examples Nonsingular case

Example

Here is an example of a rank structure $\mathcal{R}_{pure} = {\{\mathcal{B}_k\}_{k=1}^n}$, yielding the class of lower semiseparable matrices:



Allowing shift elements λ_k , we get the class $\mathcal{R} = \{\mathcal{B}_k\}_{k=1}^n$ of lower semiseparable *plus diagonal* matrices. The diagonal $\Lambda = \operatorname{diag}(\lambda_k)_{k=1}^n$ is part of the structure.

< ロト (周) (日) (日)

Definition Examples Nonsingular case

Examples of rank structures

- Hessenberg matrices (+symmetry: tridiagonal)
- lower-semiseparable matrices (+symmetry: semiseparable)
- [Fasino] lower-semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also 'poorly ordered' structures are possible

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト

Definition Examples Nonsingular case

Examples of rank structures

- Hessenberg matrices (+symmetry: tridiagonal)
- lower-semiseparable matrices (+symmetry: semiseparable)
- [Fasino] lower-semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also 'poorly ordered' structures are possible

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition Examples Nonsingular case

Examples of rank structures

- Hessenberg matrices (+symmetry: tridiagonal)
- lower-semiseparable matrices (+symmetry: semiseparable)
- [Fasino] lower-semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- [Fasino] lower-semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also 'poorly ordered' structures are possible

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition Examples Nonsingular case

Examples of rank structures

- Hessenberg matrices (+symmetry: tridiagonal)
- lower-semiseparable matrices (+symmetry: semiseparable)
- [Fasino] lower-semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also 'poorly ordered' structures are possible

(D) (A) (A)

Definition Examples Nonsingular case

Examples of rank structures

- Hessenberg matrices (+symmetry: tridiagonal)
- lower-semiseparable matrices (+symmetry: semiseparable)
- [Fasino] lower-semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also 'poorly ordered' structures are possible

(D) (A) (A)

Definition Examples Nonsingular case

Examples of rank structures

- Hessenberg matrices (+symmetry: tridiagonal)
- lower-semiseparable matrices (+symmetry: semiseparable)
- [Fasino] lower-semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also 'poorly ordered' structures are possible

< ロト (周) (日) (日)

Definition Examples Nonsingular case

Outline

Introduction

- The shifted *QR*-algorithm
- 2 Polynomial structures
 - Definition
 - Examples

3 Rank structures

- Definition
- Examples
- Nonsingular case

4 Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

(日) (部) (注) (注)

Definition Examples Nonsingular case

Theorem

(The nonsingular case:) For $A \in \mathcal{M}$ nonsingular we have

- rank structure is strictly preserved by applying a QR-step without shift on A;
- factorizing A = QR, then Q satisfies the pure structure induced by R.
- Proof: use $A^{(\nu+1)} = RA^{(\nu)}R^{-1}$.
- ② Example of induced pure structure:

イロト イポト イヨト イヨト

3

Definition Examples Nonsingular case

Theorem

(The nonsingular case:) For $A \in \mathcal{M}$ nonsingular we have

- rank structure is strictly preserved by applying a QR-step without shift on A;
- factorizing A = QR, then Q satisfies the pure structure induced by R.
- Proof: use $A^{(\nu+1)} = RA^{(\nu)}R^{-1}$.
- Example of induced pure structure:

イロト イポト イヨト イヨト

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

(日) (部) (注) (注)

Outline

Introduction

- The shifted *QR*-algorithm
- 2 Polynomial structures
 - Definition
 - Examples

3 Rank structures

- Definition
- Examples
- Nonsingular case

4 Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

Singular case

• We proved preservation of structure if *A* is nonsingular. What happens in the singular case?

Theorem

Let A satisfy a structure block \mathcal{B}_k . By applying a QR-step without shift on A, the rank upper bound r_k of \mathcal{B}_k can increase by at most $\#(\mathcal{I}_{dep,A} \cap \mathcal{I}_{left,k})$.

Example of $\mathcal{I}_{\text{left},k}$:

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

Singular case

• We proved preservation of structure if A is nonsingular. What happens in the singular case?

Theorem

Let A satisfy a structure block \mathcal{B}_k . By applying a QR-step without shift on A, the rank upper bound r_k of \mathcal{B}_k can increase by at most $\#(\mathcal{I}_{dep,A} \cap \mathcal{I}_{left,k})$.

Example of $\mathcal{I}_{\text{left},k}$:

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

Singular case

• We proved preservation of structure if A is nonsingular. What happens in the singular case?

Theorem

Let A satisfy a structure block \mathcal{B}_k . By applying a QR-step without shift on A, the rank upper bound r_k of \mathcal{B}_k can increase by at most $\#(\mathcal{I}_{\text{dep},A} \cap \mathcal{I}_{\text{left},k})$.

Example of $\mathcal{I}_{\mathrm{left},k}$:

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

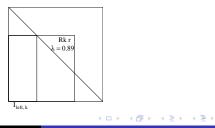
Singular case

• We proved preservation of structure if A is nonsingular. What happens in the singular case?

Theorem

Let A satisfy a structure block \mathcal{B}_k . By applying a QR-step without shift on A, the rank upper bound r_k of \mathcal{B}_k can increase by at most $\#(\mathcal{I}_{\text{dep},A} \cap \mathcal{I}_{\text{left},k})$.

Example of $\mathcal{I}_{\text{left},k}$:



Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

(日) (日) (日) (日) (日)

Singular case

Theorem

The rank upper bound r_k of \mathcal{B}_k can increase by at most $\#(\mathcal{I}_{\text{dep},A} \cap \mathcal{I}_{\text{left},k})$.

Problem: we want \mathcal{B}_k to be exactly preserved. Solution: apply a QR-step with 'suitable' choice of the QR-decomposition A = QR.

Effectively eliminating QR-decompositions

Sparse Givens patterns

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

(日) (日) (日) (日) (日)

Singular case

Theorem

The rank upper bound r_k of \mathcal{B}_k can increase by at most $\#(\mathcal{I}_{\text{dep},A} \cap \mathcal{I}_{\text{left},k})$.

Problem: we want \mathcal{B}_k to be exactly preserved.

Solution: apply a QR-step with 'suitable' choice of the QR-decomposition A = QR.

[Effectively eliminating QR-decompositions

Sparse Givens patterns

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト

Singular case

Theorem

The rank upper bound r_k of \mathcal{B}_k can increase by at most $\#(\mathcal{I}_{\text{dep},A} \cap \mathcal{I}_{\text{left},k})$.

Problem: we want \mathcal{B}_k to be exactly preserved. Solution: apply a QR-step with 'suitable' choice of the QR-decomposition A = QR.

∫ Effectively eliminating QR-decompositions

Sparse Givens patterns

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

<ロ> (四) (四) (三) (三)

Singular case

Theorem

The rank upper bound r_k of \mathcal{B}_k can increase by at most $#(\mathcal{I}_{\mathrm{dep},A} \cap \mathcal{I}_{\mathrm{left},k}).$

Problem: we want \mathcal{B}_k to be exactly preserved.

Solution: apply a QR-step with 'suitable' choice of the QR-decomposition A = QR.

- $\Rightarrow \left\{ \begin{array}{c} {\rm Effectively\ eliminating\ QR-decompositions}\\ {\rm Sparse\ Givens\ patterns} \end{array} \right.$

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

(日) (日) (日) (日) (日)

Outline

Introduction

- The shifted *QR*-algorithm
- 2 Polynomial structures
 - Definition
 - Examples

3 Rank structures

- Definition
- Examples
- Nonsingular case

④ Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

・ロト ・ 同ト ・ ヨト ・ ヨト

Givens transformations

• Given a matrix *A*, we can search a QR-decomposition by solving

$$\begin{cases} Q^{H}A = R \\ Q^{H} = (G_{n-1,n}^{(n-1)}) \dots (G_{2,3}^{(2)} \dots G_{n-1,n}^{(2)}) (G_{1,2}^{(1)} \dots G_{n-1,n}^{(1)}). \end{cases}$$

 $G_{i-1,i}^{(j)}$: Givens transformation acting on rows i-1 and i.

• For n = 3 this specializes to $(G_{2,3}^{(2)})(G_{1,2}^{(1)}G_{2,3}^{(1)})A = R$:

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

イロト イポト イヨト イヨト

Givens transformations

• Given a matrix *A*, we can search a QR-decomposition by solving

$$\begin{cases} Q^{H}A = R \\ Q^{H} = (G_{n-1,n}^{(n-1)}) \dots (G_{2,3}^{(2)} \dots G_{n-1,n}^{(2)}) (G_{1,2}^{(1)} \dots G_{n-1,n}^{(1)}). \end{cases}$$

 $G_{i-1,i}^{(j)}$: Givens transformation acting on rows i-1 and i.

• For n = 3 this specializes to $(G_{2,3}^{(2)})(G_{1,2}^{(1)}G_{2,3}^{(1)})A = R$:

X X X		X	х	Х		х	Х	Х		х	Х	х
x x x	\rightarrow	x	х	х	\rightarrow	0	х	х	\rightarrow	0	х	х
x x x		0	х	х		0	х	х		0	0	х

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

Effectively eliminating QR-decompositions

$$\begin{cases} Q^{H}A = R \\ Q^{H} = (G_{n-1,n}^{(n-1)}) \dots (G_{2,3}^{(2)} \dots G_{n-1,n}^{(2)}) (G_{1,2}^{(1)} \dots G_{n-1,n}^{(1)}). \end{cases}$$

Definition

A QR-decomposition A = QR is called effectively eliminating if each non-trivial $G_{i-1,i}^{(j)}$ realizes a transition

$$\begin{bmatrix} 0 & \dots & 0 & a \\ 0 & \dots & 0 & b \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & \dots & 0 & s \\ 0 & \dots & 0 & 0 \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & 0 \end{bmatrix}$$

where $b \neq 0$ lies in the strictly lower triangular part of A.

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

Effectively eliminating QR-decompositions

$$\begin{cases} Q^{H}A = R \\ Q^{H} = (G_{n-1,n}^{(n-1)}) \dots (G_{2,3}^{(2)} \dots G_{n-1,n}^{(2)}) (G_{1,2}^{(1)} \dots G_{n-1,n}^{(1)}). \end{cases}$$

Definition

4

A QR-decomposition A = QR is called effectively eliminating if each non-trivial $G_{i-1,i}^{(j)}$ realizes a transition

$$\begin{bmatrix} 0 & \dots & 0 & a \\ 0 & \dots & 0 & b \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & \dots & 0 & s \\ 0 & \dots & 0 & 0 \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & 0 \end{bmatrix},$$

where $b \neq 0$ lies in the strictly lower triangular part of A.

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

Effectively eliminating QR-decompositions

Example: for the matrix

$$A = \left[egin{array}{ccc} 0 & imes & imes \ 0 & 1 & imes \ 0 & 1 & imes \end{array}
ight],$$

we can solve $(G_{2,3}^{(2)})(G_{1,2}^{(1)}G_{2,3}^{(1)})A = R$ with

$$G_{2,3}^{(1)} = G_{1,2}^{(1)} = I_2, \quad G_{2,3}^{(2)} = rac{1}{\sqrt{2}} \left[egin{array}{c} 1 & 1 \ -1 & 1 \end{array}
ight]$$

Theorem

The effectively eliminating QR-decomposition of A is essentially unique, i.e. given $A = Q_1R_1$ and $A = Q_2R_2$ both effectively eliminating, we have that $Q_1 = Q_2D$ for a certain unitary diagonal matrix D.

(5)

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

(5)

Effectively eliminating QR-decompositions

Example: for the matrix

$$A = \left[egin{array}{ccc} 0 & imes & imes \ 0 & 1 & imes \ 0 & 1 & imes \end{array}
ight],$$

we can solve $(G_{2,3}^{(2)})(G_{1,2}^{(1)}G_{2,3}^{(1)})A = R$ with

$$G_{2,3}^{(1)} = G_{1,2}^{(1)} = I_2, \quad G_{2,3}^{(2)} = rac{1}{\sqrt{2}} \left[egin{array}{c} 1 & 1 \ -1 & 1 \end{array}
ight]$$

Theorem

The effectively eliminating QR-decomposition of A is essentially unique, i.e. given $A = Q_1R_1$ and $A = Q_2R_2$ both effectively eliminating, we have that $Q_1 = Q_2D$ for a certain unitary diagonal matrix D.

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

(日) (部) (注) (注)

Outline

Introduction

• The shifted *QR*-algorithm

2 Polynomial structures

- Definition
- Examples

3 Rank structures

- Definition
- Examples
- Nonsingular case

④ Singular case

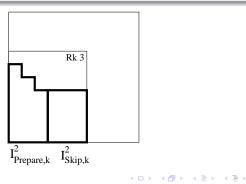
- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

Sparse Givens patterns

Definition

Given a pure structure block $\mathcal{B}_k = (i_k, j_k, r_k)$. We define the staircase shaped set $\mathcal{I}^2_{\operatorname{Prepare},k}$ and the rectangular shaped set $\mathcal{I}^2_{\operatorname{Skip},k}$ as illustrated.



Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

(日) (日) (日) (日) (日)

Sparse Givens patterns

Reason for introducing $\mathcal{I}^2_{\text{Prepare},k}$, $\mathcal{I}^2_{\text{Skip},k}$:

Definition

Let $\mathcal{R}_{pure} = \{\mathcal{B}_k\}_k$ be such that $r_k =: r$ for all k. A QR-decomposition A = QR is said to satisfy the sparse Givens pattern induced by \mathcal{R}_{pure} if $G_{i-1,i}^{(j)} = I_2$ for all $(i,j) \in \bigcup_k \mathcal{I}^2_{Skip,k}$.

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

(日) (日) (日) (日) (日)

Sparse Givens patterns

Reason for introducing $\mathcal{I}^2_{\text{Prepare},k}$, $\mathcal{I}^2_{\text{Skip},k}$:

Definition

Let $\mathcal{R}_{pure} = {\mathcal{B}_k}_k$ be such that $r_k =: r$ for all k. A QR-decomposition A = QR is said to satisfy the sparse Given pattern induced by \mathcal{R}_{pure} if $\mathcal{G}_{i-1}^{(j)}_i = l_2$ for all $(i, j) \in \bigcup_k \mathcal{I}_{Skip,k}^2$

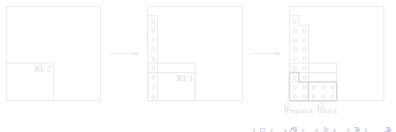
Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

Sparse Givens patterns

Reason for introducing $\mathcal{I}^2_{\text{Prepare},k}$, $\mathcal{I}^2_{\text{Skip},k}$:

Definition

Let $\mathcal{R}_{pure} = {\mathcal{B}_k}_k$ be such that $r_k =: r$ for all k. A QR-decomposition A = QR is said to satisfy the sparse Givens pattern induced by \mathcal{R}_{pure} if $G_{i-1,i}^{(j)} = I_2$ for all $(i,j) \in \bigcup_k \mathcal{I}^2_{\text{Skip},k}$.



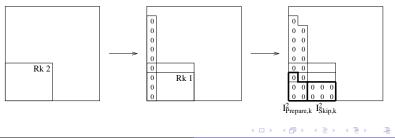
Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

Sparse Givens patterns

Reason for introducing $\mathcal{I}^2_{\text{Prepare},k}$, $\mathcal{I}^2_{\text{Skip},k}$:

Definition

Let $\mathcal{R}_{pure} = {\mathcal{B}_k}_k$ be such that $r_k =: r$ for all k. A QR-decomposition A = QR is said to satisfy the sparse Givens pattern induced by \mathcal{R}_{pure} if $G_{i-1,i}^{(j)} = I_2$ for all $(i,j) \in \bigcup_k \mathcal{I}^2_{\text{Skip},k}$.



Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

イロト イヨト イヨト イヨト

-2

Sparse Givens patterns

- Definition was given for $r_k =: r$ for all k.
- Suppose now that instead, $r_{\tilde{k}} \neq r_k$ for certain k and \tilde{k} . Relative position:

Types a, b: good behaviour (definition can be easily adapted)) Type c: bad behaviour (complicated): Introduction Singular case Polynomial structures Rank structures Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

Sparse Givens patterns

- Definition was given for $r_k =: r$ for all k.
- Suppose now that instead, $r_{\tilde{k}} \neq r_k$ for certain k and \tilde{k} . Relative position:

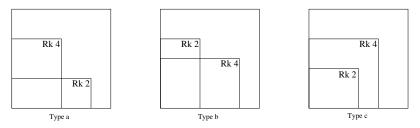
Types a, b: good behaviour (definition can be easily adapted) Type c: bad behaviour (complicated).

イロト イヨト イヨト イヨト

æ

Sparse Givens patterns

- Definition was given for $r_k =: r$ for all k.
- Suppose now that instead, $r_{\tilde{k}} \neq r_k$ for certain k and \tilde{k} . Relative position:

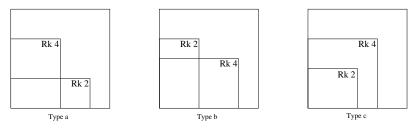


Types a, b: good behaviour (definition can be easily adapted). Type c: bad behaviour (complicated).

イロト イヨト イヨト イヨト

Sparse Givens patterns

- Definition was given for $r_k =: r$ for all k.
- Suppose now that instead, $r_{\tilde{k}} \neq r_k$ for certain k and \tilde{k} . Relative position:



Types a, b: good behaviour (definition can be easily adapted). Type c: bad behaviour (complicated).

イロト イヨト イヨト イヨト

Some properties

We introduced now sparse Givens pattern induced by any pure structure $\mathcal{R}_{\rm pure}.$

Some properties:

Theorem

- for A ∈ M_{pure}, we have the implication effectively eliminating ⇒ sparse Givens pattern induced by R_{pure};
- 2 R_{pure} is 'completely characterized' by its sparse Givens pattern.

(日) (部) (注) (注)

Some properties

We introduced now sparse Givens pattern induced by any pure structure $\mathcal{R}_{\rm pure}.$ Some properties:

Theorem

- for $A \in \mathcal{M}_{pure}$, we have the implication effectively eliminating \Rightarrow sparse Givens pattern induced by \mathcal{R}_{pure} ;
- R_{pure} is 'completely characterized' by its sparse Givens pattern.

(日) (日) (日) (日) (日)

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

(日) (部) (注) (注)

Preservation of structure

Preservation of structure by a QR-step:

Theorem

Given a structure \mathcal{R} and its induced pure structure \mathcal{R}_{pure} . Let $A \in \mathcal{M}$ be arbitrary, possibly singular. When applying a QR-step without shift on A, we have the implications

- **(**) sparse Givens pattern induced by $\mathcal{R}_{pure} \Rightarrow \mathcal{R}_{pure}$ is preserved;
- (a) effectively eliminating $\Rightarrow \mathcal{R}$ is preserved.

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

イロト イポト イヨト イヨト

Preservation of structure

Preservation of structure by a QR-step:

Theorem

Given a structure \mathcal{R} and its induced pure structure \mathcal{R}_{pure} . Let $A \in \mathcal{M}$ be arbitrary, possibly singular.

When applying a QR-step without shift on A, we have the implications

- **1** sparse Givens pattern induced by $\mathcal{R}_{pure} \Rightarrow \mathcal{R}_{pure}$ is preserved;
- 2) effectively eliminating $\Rightarrow \mathcal{R}$ is preserved.

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

イロト イポト イヨト イヨト

Preservation of structure

Preservation of structure by a QR-step:

Theorem

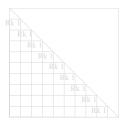
Given a structure \mathcal{R} and its induced pure structure \mathcal{R}_{pure} . Let $A \in \mathcal{M}$ be arbitrary, possibly singular. When applying a QR-step without shift on A, we have the implications

- **(**) sparse Givens pattern induced by $\mathcal{R}_{pure} \Rightarrow \mathcal{R}_{pure}$ is preserved;
- $effectively \ eliminating \Rightarrow \mathcal{R} \ is \ preserved.$

Singular case Effectively eliminating QR-decompositions Sparse Givens patterns

Example: lower semiseparable plus diagonal matrices

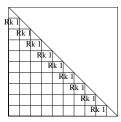
Example: let \mathcal{R} be a lower ss+d structure, for some $\Lambda = \operatorname{diag}(\lambda_k)$. Induced pure structure \mathcal{R}_{pure} :



Sparse Givens pattern induced by \mathcal{R}_{pure} : solve A = QR with $Q^{H} = (G_{n-1,n}^{(n-1)})(G_{n-2,n-1}^{(n-2)}) \dots (G_{2,3}^{(2)})(G_{1,2}^{(1)} \dots G_{n-1,n}^{(1)}).$ (6) Doing this in an effectively eliminating way: \mathcal{R} is preserved. By some additional theorems: when $A \in \mathcal{M}$ is unreduced, then (6) suffices to preserve \mathcal{R} .

Example: lower semiseparable plus diagonal matrices

Example: let \mathcal{R} be a lower ss+d structure, for some $\Lambda = \operatorname{diag}(\lambda_k)$. Induced pure structure \mathcal{R}_{pure} :

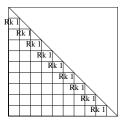


Sparse Givens pattern induced by \mathcal{R}_{pure} : solve A = QR with

Doing this in an effectively eliminating way: \mathcal{R} is preserved. By some additional theorems: when $A \in \mathcal{M}$ is unreduced, then (6) suffices to preserve \mathcal{R} .

Example: lower semiseparable plus diagonal matrices

Example: let \mathcal{R} be a lower ss+d structure, for some $\Lambda = \operatorname{diag}(\lambda_k)$. Induced pure structure \mathcal{R}_{pure} :



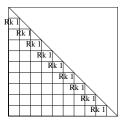
Sparse Givens pattern induced by \mathcal{R}_{pure} : solve A = QR with $Q^{H} = (G_{n-1,n}^{(n-1)})(G_{n-2,n-1}^{(n-2)}) \dots (G_{2,3}^{(2)})(G_{1,2}^{(1)} \dots G_{n-1,n}^{(1)}).$ (6) Doing this in an effectively eliminating way, \mathcal{R} is preserved

By some additional theorems: when $A \in \mathcal{M}$ is unreduced, then (6) suffices to preserve \mathcal{R} .

Steven Delvaux, Marc Van Barel

Example: lower semiseparable plus diagonal matrices

Example: let \mathcal{R} be a lower ss+d structure, for some $\Lambda = \operatorname{diag}(\lambda_k)$. Induced pure structure \mathcal{R}_{pure} :



Sparse Givens pattern induced by \mathcal{R}_{pure} : solve A = QR with

$$Q^{H} = (G_{n-1,n}^{(n-1)})(G_{n-2,n-1}^{(n-2)})\dots(G_{2,3}^{(2)})(G_{1,2}^{(1)}\dots G_{n-1,n}^{(1)}).$$
(6)

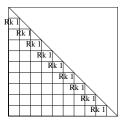
Doing this in an effectively eliminating way: \mathcal{R} is preserved. By some additional theorems: when $A \in \mathcal{M}$ is unreduced, then (6) suffices to preserve \mathcal{R} .

Steven Delvaux, Marc Van Barel

(

Example: lower semiseparable plus diagonal matrices

Example: let \mathcal{R} be a lower ss+d structure, for some $\Lambda = \operatorname{diag}(\lambda_k)$. Induced pure structure \mathcal{R}_{pure} :



Sparse Givens pattern induced by \mathcal{R}_{pure} : solve A = QR with

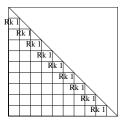
$$Q^{H} = (G_{n-1,n}^{(n-1)})(G_{n-2,n-1}^{(n-2)})\dots(G_{2,3}^{(2)})(G_{1,2}^{(1)}\dots G_{n-1,n}^{(1)}).$$
(6)

Doing this in an effectively eliminating way: \mathcal{R} is preserved. By some additional theorems: when $A \in \mathcal{M}$ is unreduced, then (6) suffices to preserve \mathcal{R} .

Steven Delvaux, Marc Van Barel

Example: lower semiseparable plus diagonal matrices

Example: let \mathcal{R} be a lower ss+d structure, for some $\Lambda = \operatorname{diag}(\lambda_k)$. Induced pure structure \mathcal{R}_{pure} :



Sparse Givens pattern induced by \mathcal{R}_{pure} : solve A = QR with

$$Q^{H} = (G_{n-1,n}^{(n-1)})(G_{n-2,n-1}^{(n-2)})\dots(G_{2,3}^{(2)})(G_{1,2}^{(1)}\dots G_{n-1,n}^{(1)}).$$
(6)

Doing this in an effectively eliminating way: \mathcal{R} is preserved. By some additional theorems: when $A \in \mathcal{M}$ is unreduced, then (6) suffices to preserve \mathcal{R} .

Steven Delvaux, Marc Van Barel