Structures preserved by the $Q R$-algorithm

Steven Delvaux Marc Van Barel

Department of Computer Science Katholieke Universiteit Leuven

Leuven, Belgium
Structured Numerical Linear Algebra Problems: Algorithms and
Applications, Cortona, Italy, 2004

Outline

(1) Introduction

- The shifted $Q R$-algorithm
(2) Polynomial structures
- Definition
- Examples
- Definition
- Examples
- Nonsingular case

Outline

(1) Introduction

- The shifted $Q R$-algorithm
(2) Polynomial structures
- Definition
- Examples

Rank structures

- Definition
- Examples
- Nonsingular case

Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

Outline

(1) Introduction

- The shifted $Q R$-algorithm
(2) Polynomial structures
- Definition
- Examples
(3) Rank structures
- Definition
- Examples
- Nonsingular case

Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

Outline

(1) Introduction

- The shifted $Q R$-algorithm
(2) Polynomial structures
- Definition
- Examples
(3) Rank structures
- Definition
- Examples
- Nonsingular case

4 Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

Outline

(1) Introduction

- The shifted $Q R$-algorithm
(2) Polynomial structures
- Definition
- Examples
(3) Rank structures
- Definition
- Examples
- Nonsingular case

4) Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

The shifted $Q R$-algorithm

- Given a matrix $A \in \mathbb{C}^{n \times n}$.

We want to compute the eigenvalues, eigenvectors of A. QR-step: given $A^{(\nu)}$, we compute

with $\lambda \in \mathbb{C}$ the shift, Q unitary and R upper triangular

The shifted $Q R$-algorithm

- Given a matrix $A \in \mathbb{C}^{n \times n}$.

We want to compute the eigenvalues, eigenvectors of A.

- Initialization of the shifted QR-algorithm: $A^{(0)}=A$.

QR-step: given $A^{(\nu)}$, we compute

$$
\begin{gather*}
A^{(\nu)}-\lambda I=Q R \tag{1}\\
A^{(\nu+1)}=R Q+\lambda I, \tag{2}
\end{gather*}
$$

with $\lambda \in \mathbb{C}$ the shift, Q unitary and R upper triangular.

The shifted $Q R$-algorithm

- Given a matrix $A \in \mathbb{C}^{n \times n}$.

We want to compute the eigenvalues, eigenvectors of A.

- Initialization of the shifted QR-algorithm: $A^{(0)}=A$.

QR-step: given $A^{(\nu)}$, we compute

$$
\begin{gather*}
A^{(\nu)}-\lambda I=Q R \tag{1}\\
A^{(\nu+1)}=R Q+\lambda I, \tag{2}
\end{gather*}
$$

with $\lambda \in \mathbb{C}$ the shift, Q unitary and R upper triangular.

- (1) and (2) imply the similarity relations

$$
\begin{aligned}
& A^{(\nu+1)}=Q^{H} A^{(\nu)} Q \\
& A^{(\nu+1)}=R A^{(\nu)} R^{-1}
\end{aligned}
$$

The shifted $Q R$-algorithm

- Similarity relations

$$
\begin{align*}
& A^{(\nu+1)}=Q^{H} A^{(\nu)} Q \tag{3}\\
& A^{(\nu+1)}=R A^{(\nu)} R^{-1} . \tag{4}
\end{align*}
$$

The shifted $Q R$-algorithm

- Similarity relations

$$
\begin{align*}
& A^{(\nu+1)}=Q^{H} A^{(\nu)} Q \tag{3}\\
& A^{(\nu+1)}=R A^{(\nu)} R^{-1} . \tag{4}
\end{align*}
$$

- Preservation of structure under the shifted QR-algorithm:
(3) \Rightarrow polynomial structures
(4) \Rightarrow rank structures.

Outline

(1) Introduction

- The shifted $Q R$-algorithm
(2) Polynomial structures
- Definition
- Examples
(3) Rank structures
- Definition
- Examples
- Nonsingular case

4. Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

Definition

- A polynomial structure on $\mathbb{C}^{n \times n}$ is defined as a collection $\mathcal{P}=\left\{p_{k}\right\}_{k}$, where each p_{k} is a polynomial in 7 variables.
- A matrix A is said to satisfy the structure $\mathcal{P}=\left\{p_{k}\right\}_{k}$ if for every k,

for certain
- Herm_{k} Hermitian
- Uni ${ }_{k}$ unitary,
- $(\mathrm{Rk} r)_{k}$ of rank at most r - \mathcal{M} : set of matrices satisfying \mathcal{P}

Definition

- A polynomial structure on $\mathbb{C}^{n \times n}$ is defined as a collection $\mathcal{P}=\left\{p_{k}\right\}_{k}$, where each p_{k} is a polynomial in 7 variables.
- A matrix A is said to satisfy the structure $\mathcal{P}=\left\{p_{k}\right\}_{k}$ if for every k,

$$
p_{k}\left(A, A^{H}, A^{-1}, A^{-H}, \operatorname{Herm}_{k}, \operatorname{Uni}_{k},(\operatorname{Rk} r)_{k}\right)=0
$$

for certain

- Herm_{k} Hermitian,
- Uni ${ }_{k}$ unitary,
- (Rk $r)_{k}$ of rank at most r.
- \mathcal{M} : set of matrices satisfying \mathcal{P}.

Definition

- A polynomial structure on $\mathbb{C}^{n \times n}$ is defined as a collection $\mathcal{P}=\left\{p_{k}\right\}_{k}$, where each p_{k} is a polynomial in 7 variables.
- A matrix A is said to satisfy the structure $\mathcal{P}=\left\{p_{k}\right\}_{k}$ if for every k,

$$
p_{k}\left(A, A^{H}, A^{-1}, A^{-H}, \operatorname{Herm}_{k}, \operatorname{Uni}_{k},(\operatorname{Rk} r)_{k}\right)=0
$$

for certain

- Herm_{k} Hermitian,
- Uni ${ }_{k}$ unitary,
- (Rk r) $)_{k}$ of rank at most r.
- \mathcal{M} : set of matrices satisfying \mathcal{P}.

Theorem

Polynomial structure is strictly preserved by the shifted $Q R$-algorithm, i.e. $A^{(\nu)} \in \mathcal{M} \Leftrightarrow A^{(\nu+1)} \in \mathcal{M}$.

Theorem

Polynomial structure is strictly preserved by the shifted $Q R$-algorithm, i.e. $A^{(\nu)} \in \mathcal{M} \Leftrightarrow A^{(\nu+1)} \in \mathcal{M}$.

PROOF.

- Any unitary matrix Q can be 'pulled through' such a polynomial relation:

$$
\begin{aligned}
Q^{H} p(A, & \left.A^{H}, A^{-1}, A^{-H}, \operatorname{Herm}, \mathrm{Uni}, \operatorname{Rk} r\right) Q \\
& =p\left(A_{Q}, A_{Q}^{H}, A_{Q}^{-1}, A_{Q}^{-H}, \operatorname{Herm}_{Q}, \operatorname{Uni}_{Q},(\operatorname{Rk} r)_{Q}\right)
\end{aligned}
$$

where

$$
\begin{array}{r}
A_{Q}:=Q^{H} A Q, \quad \operatorname{Herm}_{Q}:=Q^{H}(\operatorname{Herm}) Q, \quad \operatorname{Uni}_{Q}:=Q^{H}(\mathrm{Uni}) Q, \\
(\operatorname{Rkr})_{Q}:=Q^{H}(\mathrm{Rk} r) Q .
\end{array}
$$

- Any unitary matrix Q can be 'pulled through'

Theorem

Polynomial structure is strictly preserved by the shifted $Q R$-algorithm, i.e. $A^{(\nu)} \in \mathcal{M} \Leftrightarrow A^{(\nu+1)} \in \mathcal{M}$.

PROOF.

- Any unitary matrix Q can be 'pulled through'.
- \Rightarrow Polynomial structures satisfied by A, must carry over to $A_{Q}=Q^{H} A Q$. And conversely, by applying the same argument to $Q A_{Q} Q^{H}=Q\left(Q^{H} A Q\right) Q^{H}=A$. In particular, this holds for the Q-factor of the shifted QR-algorithm, and hence for the matrices $A^{(\nu)}$ and

Theorem

Polynomial structure is strictly preserved by the shifted $Q R$-algorithm, i.e. $A^{(\nu)} \in \mathcal{M} \Leftrightarrow A^{(\nu+1)} \in \mathcal{M}$.

PROOF.

- Any unitary matrix Q can be 'pulled through'.
- \Rightarrow Polynomial structures satisfied by A, must carry over to $A_{Q}=Q^{H} A Q$. And conversely, by applying the same argument to $Q A_{Q} Q^{H}=Q\left(Q^{H} A Q\right) Q^{H}=A$.
- In particular, this holds for the Q-factor of the shifted QR-algorithm, and hence for the matrices $A^{(\nu)}$ and $A^{(\nu+1)}=Q^{H} A^{(\nu)} Q$.

Theorem

Polynomial structure is strictly preserved by the shifted $Q R$-algorithm, i.e. $A^{(\nu)} \in \mathcal{M} \Leftrightarrow A^{(\nu+1)} \in \mathcal{M}$.

PROOF.

- Any unitary matrix Q can be 'pulled through'.
- \Rightarrow Polynomial structures satisfied by A, must carry over to $A_{Q}=Q^{H} A Q$. And conversely, by applying the same argument to $Q A_{Q} Q^{H}=Q\left(Q^{H} A Q\right) Q^{H}=A$.
- In particular, this holds for the Q-factor of the shifted QR-algorithm, and hence for the matrices $A^{(\nu)}$ and $A^{(\nu+1)}=Q^{H} A^{(\nu)} Q$.

Theorem

Polynomial structure is strictly preserved by the shifted $Q R$-algorithm, i.e. $A^{(\nu)} \in \mathcal{M} \Leftrightarrow A^{(\nu+1)} \in \mathcal{M}$.

PROOF.

- Any unitary matrix Q can be 'pulled through'.
- \Rightarrow Polynomial structures satisfied by A, must carry over to $A_{Q}=Q^{H} A Q$. And conversely, by applying the same argument to $Q A_{Q} Q^{H}=Q\left(Q^{H} A Q\right) Q^{H}=A$.
- In particular, this holds for the Q-factor of the shifted QR-algorithm, and hence for the matrices $A^{(\nu)}$ and $A^{(\nu+1)}=Q^{H} A^{(\nu)} Q$.

Outline

(1) Introduction

- The shifted $Q R$-algorithm
(2) Polynomial structures
- Definition
- ExamplesRank structures
- Definition
- Examples
- Nonsingular case

4 Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

Examples of polynomial structures

- Hermitian matrices: $A-A^{H}=0$, or $A-\operatorname{Herm}=0$,

Examples of polynomial structures

- Hermitian matrices: $A-A^{H}=0$, or $A-\operatorname{Herm}=0$,
- unitary matrices: $A^{H}-A^{-1}=0$, or $A-\mathrm{Uni}=0$,

Examples of polynomial structures

- Hermitian matrices: $A-A^{H}=0$, or $A-\operatorname{Herm}=0$,
- unitary matrices: $A^{H}-A^{-1}=0$, or $A-\mathrm{Uni}=0$,
- normal matrices: $A A^{H}-A^{H} A=0$,
- unitary plus rank r correction: $A-U n i-R k r=0$, - [Bini, Gemignani, Pan]: $A-H e r m-R k 1=0$

Examples of polynomial structures

- Hermitian matrices: $A-A^{H}=0$, or $A-\operatorname{Herm}=0$,
- unitary matrices: $A^{H}-A^{-1}=0$, or $A-\mathrm{Uni}=0$,
- normal matrices: $A A^{H}-A^{H} A=0$,
- unitary plus rank r correction: A - Uni $-\mathrm{Rk} r=0$,

Examples of polynomial structures

- Hermitian matrices: $A-A^{H}=0$, or $A-\operatorname{Herm}=0$,
- unitary matrices: $A^{H}-A^{-1}=0$, or $A-\mathrm{Uni}=0$,
- normal matrices: $A A^{H}-A^{H} A=0$,
- unitary plus rank r correction: A - Uni $-\mathrm{Rk} r=0$,
- [Bini, Gemignani, Pan]: $A-\operatorname{Herm}-\mathrm{Rk} 1=0$, [Bini, Daddi, Gemignani]: $A-A^{-H}-R k 2=0$ (Frobenius matrices)

Examples of polynomial structures

- Hermitian matrices: $A-A^{H}=0$, or $A-\operatorname{Herm}=0$,
- unitary matrices: $A^{H}-A^{-1}=0$, or $A-\mathrm{Uni}=0$,
- normal matrices: $A A^{H}-A^{H} A=0$,
- unitary plus rank r correction: $A-\mathrm{Uni}-\mathrm{Rk} r=0$,
- [Bini, Gemignani, Pan]: $A-\operatorname{Herm}-\mathrm{Rk} 1=0$,
- [Bini, Daddi, Gemignani]: $A-A^{-H}-\mathrm{Rk} 2=0$ (Frobenius matrices).

Introduction

Definition

Examples
Nonsingular case

Outline

(1) Introduction

- The shifted $Q R$-algorithm
(2) Polynomial structures
- Definition
- Examples
(3) Rank structures
- Definition
- Examples
- Nonsingular case
(4) Singular case
- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

Definition

- We define a rank structure on $\mathbb{C}^{n \times n}$ as a collection $\mathcal{R}=\left\{\mathcal{B}_{k}\right\}_{k}$ where each \mathcal{B}_{k} is a 'structure block'.

```
- ik: row index,
- ik: column index,
- rk: rank upper bound,
- }\mp@subsup{\lambda}{k}{}\in\mathbb{C}\mathrm{ : shift element.
```


Definition

- We define a rank structure on $\mathbb{C}^{n \times n}$ as a collection $\mathcal{R}=\left\{\mathcal{B}_{k}\right\}_{k}$ where each \mathcal{B}_{k} is a 'structure block'.

$$
\mathcal{B}_{k}=\left(i_{k}, j_{k}, r_{k}, \lambda_{k}\right):
$$

- i_{k} : row index,
- j_{k} : column index,
- r_{k} : rank upper bound,
- $\lambda_{k} \in \mathbb{C}$: shift element.
- A matrix $A \in \mathbb{C}^{n \times n}$ satisfies the structure \mathcal{R} if for every k, $\operatorname{Rank} A_{k}\left(i_{k}: n, 1: j_{k}\right) \leq r_{k}, \quad$ where $A_{k}:=A-\lambda_{k} l$.

Definition

- We define a rank structure on $\mathbb{C}^{n \times n}$ as a collection $\mathcal{R}=\left\{\mathcal{B}_{k}\right\}_{k}$ where each \mathcal{B}_{k} is a 'structure block'.

$$
\mathcal{B}_{k}=\left(i_{k}, j_{k}, r_{k}, \lambda_{k}\right):
$$

- i_{k} : row index,
- j_{k} : column index,
- r_{k} : rank upper bound,
- $\lambda_{k} \in \mathbb{C}$: shift element.
- A matrix $A \in \mathbb{C}^{n \times n}$ satisfies the structure \mathcal{R} if for every k,
$\operatorname{Rank} A_{k}\left(i_{k}: n, 1: j_{k}\right) \leq r_{k}, \quad$ where $A_{k}:=A-\lambda_{k} l$.

Definition

(Continuation)

- As a special case, \mathcal{R} is called a pure rank structure if all structure blocks \mathcal{B}_{k} have shift element $\lambda_{k}=0$.
- \mathcal{M} : set of matrices which satisfy \mathcal{R} $\mathcal{R}_{\text {pure }}$: pure rank structure. $\mathcal{M}_{\text {pure }}$: set of matrices which satisfy $\mathcal{R}_{\text {pure }}$

Definition

(Continuation)

- As a special case, \mathcal{R} is called a pure rank structure if all structure blocks \mathcal{B}_{k} have shift element $\lambda_{k}=0$.
- \mathcal{M} : set of matrices which satisfy \mathcal{R}. $\mathcal{R}_{\text {pure }}$: pure rank structure. $\mathcal{M}_{\text {pure }}$: set of matrices which satisfy $\mathcal{R}_{\text {pure }}$.

Outline

(1) Introduction

- The shifted $Q R$-algorithm
(2) Polynomial structures
- Definition
- Examples
(3) Rank structures
- Definition
- Examples
- Nonsingular case

4 Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

Example

Here is an example of a rank structure $\mathcal{R}=\left\{\mathcal{B}_{1}, \mathcal{B}_{2}\right\}$. The structure block \mathcal{B}_{1} intersects the diagonal and has shift $\lambda_{1}=0.89$, while the structure block \mathcal{B}_{2} is pure:

Example

Here is an example of a rank structure $\mathcal{R}_{\text {pure }}=\left\{\mathcal{B}_{k}\right\}_{k=1}^{n}$, yielding the class of lower semiseparable matrices:

Allowing shift elements λ_{k}, we get the class $\mathcal{R}=\left\{\mathcal{B}_{k}\right\}_{k=1}^{n}$ of lower semiseparable plus diagonal matrices.
The diagonal $\Lambda=\operatorname{diag}\left(\lambda_{k}\right)_{k-1}^{n}$ is part of the structure

Example

Here is an example of a rank structure $\mathcal{R}_{\text {pure }}=\left\{\mathcal{B}_{k}\right\}_{k=1}^{n}$, yielding the class of lower semiseparable matrices:

Allowing shift elements λ_{k}, we get the class $\mathcal{R}=\left\{\mathcal{B}_{k}\right\}_{k=1}^{n}$ of lower semiseparable plus diagonal matrices.
The diagonal $\Lambda=\operatorname{diag}\left(\lambda_{k}\right)_{k=1}^{n}$ is part of the structure.

Example

Here is an example of a rank structure $\mathcal{R}_{\text {pure }}=\left\{\mathcal{B}_{k}\right\}_{k=1}^{n}$, yielding the class of lower semiseparable matrices:

Allowing shift elements λ_{k}, we get the class $\mathcal{R}=\left\{\mathcal{B}_{k}\right\}_{k=1}^{n}$ of lower semiseparable plus diagonal matrices.
The diagonal $\Lambda=\operatorname{diag}\left(\lambda_{k}\right)_{k=1}^{n}$ is part of the structure.

Examples of rank structures

- Hessenberg matrices (+symmetry: tridiagonal)
- lower-semiseparable matrices (+symmetry: semiseparable)

Examples of rank structures

- Hessenberg matrices (+symmetry: tridiagonal)
- lower-semiseparable matrices (+symmetry: semiseparable)

Examples of rank structures

- Hessenberg matrices (+symmetry: tridiagonal)
- lower-semiseparable matrices (+symmetry: semiseparable)
- [Fasino] lower-semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- [Fasino] lower-semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)

Examples of rank structures

- Hessenberg matrices (+symmetry: tridiagonal)
- lower-semiseparable matrices (+symmetry: semiseparable)
- [Fasino] lower-semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also 'poorly ordered' structures are possible

Examples of rank structures

- Hessenberg matrices (+symmetry: tridiagonal)
- lower-semiseparable matrices (+symmetry: semiseparable)
- [Fasino] lower-semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also 'poorly ordered' structures are possible

Examples of rank structures

- Hessenberg matrices (+symmetry: tridiagonal)
- lower-semiseparable matrices (+symmetry: semiseparable)
- [Fasino] lower-semiseparable plus diagonal (+symmetry: semiseparable plus diagonal)
- Higher semiseparability ranks
- Also 'poorly ordered' structures are possible

Outline

(1) Introduction

- The shifted $Q R$-algorithm
(2) Polynomial structures
- Definition
- Examples
(3) Rank structures
- Definition
- Examples
- Nonsingular case
(4) Singular case
- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

Theorem

(The nonsingular case:) For $A \in \mathcal{M}$ nonsingular we have
(1) rank structure is strictly preserved by applying a $Q R$-step without shift on A;
(2) factorizing $A=Q R$, then Q satisfies the pure structure induced by \mathcal{R}.
(1) Proof: use $A^{(\nu+1)}=R A^{(\nu)} R^{-1}$
(2) Example of induced pure structure:

Theorem

(The nonsingular case:) For $A \in \mathcal{M}$ nonsingular we have
(1) rank structure is strictly preserved by applying a $Q R$-step without shift on A;
(2) factorizing $A=Q R$, then Q satisfies the pure structure induced by \mathcal{R}.
(1) Proof: use $A^{(\nu+1)}=R A^{(\nu)} R^{-1}$.
(2) Example of induced pure structure:

Introduction

Singular case

Effectively eliminating QR-decompositions Sparse Givens patterns

Outline

(1) Introduction

- The shifted $Q R$-algorithm
(2) Polynomial structures
- Definition
- ExamplesRank structures
- Definition
- Examples
- Nonsingular case

4 Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

Singular case

- We proved preservation of structure if A is nonsingular. What happens in the singular case?

Singular case

- We proved preservation of structure if A is nonsingular. What happens in the singular case?

Theorem
Let A satisfy a structure block \mathcal{B}_{k}
By applying a $Q R$-step without shift on A, the rank upper bound r_{k} of \mathcal{B}_{k} can increase by at most $\#\left(\mathcal{I}_{\text {dep }, A} \cap \mathcal{I}_{\text {left }, k}\right)$

Singular case

- We proved preservation of structure if A is nonsingular. What happens in the singular case?

Theorem

Let A satisfy a structure block \mathcal{B}_{k}.
By applying a $Q R$-step without shift on A, the rank upper bound r_{k} of \mathcal{B}_{k} can increase by at most $\#\left(\mathcal{I}_{\text {dep }, A} \cap \mathcal{I}_{\text {left }, k}\right)$.

Example of $\mathcal{I}_{\text {left }, k}$:

Singular case

- We proved preservation of structure if A is nonsingular. What happens in the singular case?

Theorem

Let A satisfy a structure block \mathcal{B}_{k}.
By applying a $Q R$-step without shift on A, the rank upper bound r_{k} of \mathcal{B}_{k} can increase by at most $\#\left(\mathcal{I}_{\text {dep }, A} \cap \mathcal{I}_{\text {left }, k}\right)$.

Example of $\mathcal{I}_{\text {left }, k}$:

Singular case

Theorem

The rank upper bound r_{k} of \mathcal{B}_{k} can increase by at most $\#\left(\mathcal{I}_{\text {dep }, A} \cap \mathcal{I}_{\text {left }, k}\right)$.

Problem: we want \mathcal{B}_{k} to be exactly preserved. Solution: apply a QR-step with 'suitable' choice of the QR-decomposition $A=Q R$

Singular case

Theorem

The rank upper bound r_{k} of \mathcal{B}_{k} can increase by at most $\#\left(\mathcal{I}_{\text {dep }, A} \cap \mathcal{I}_{\text {left }, k}\right)$.

Problem: we want \mathcal{B}_{k} to be exactly preserved. Solution: apply a QR-step with 'suitable' choice of the QR-decomposition $A=Q R$.

Singular case

Theorem

The rank upper bound r_{k} of \mathcal{B}_{k} can increase by at most $\#\left(\mathcal{I}_{\text {dep }, A} \cap \mathcal{I}_{\text {left }, k}\right)$.

Problem: we want \mathcal{B}_{k} to be exactly preserved.
Solution: apply a QR-step with 'suitable' choice of the QR-decomposition $A=Q R$.

Effectively eliminating QR-decompositions
Sparse Givens patterns

Singular case

Theorem

The rank upper bound r_{k} of \mathcal{B}_{k} can increase by at most $\#\left(\mathcal{I}_{\text {dep }, A} \cap \mathcal{I}_{\text {left }, k}\right)$.

Problem: we want \mathcal{B}_{k} to be exactly preserved.
Solution: apply a QR-step with 'suitable' choice of the QR-decomposition $A=Q R$.
$\Rightarrow\left\{\begin{array}{l}\text { Effectively eliminating QR-decompositions } \\ \text { Sparse Givens patterns }\end{array}\right.$

Outline

(1) Introduction

- The shifted $Q R$-algorithmPolynomial structures
- Definition
- ExamplesRank structures
- Definition
- Examples
- Nonsingular case

4 Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

Givens transformations

- Given a matrix A, we can search a QR-decomposition by solving

$$
\left\{\begin{array}{l}
Q^{H} A=R \\
Q^{H}=\left(G_{n-1, n}^{(n-1)}\right) \ldots\left(G_{2,3}^{(2)} \ldots G_{n-1, n}^{(2)}\right)\left(G_{1,2}^{(1)} \ldots G_{n-1, n}^{(1)}\right)
\end{array}\right.
$$

$G_{i-1, i}^{(j)}$: Givens transformation acting on rows $i-1$ and i.

Givens transformations

- Given a matrix A, we can search a QR-decomposition by solving

$$
\left\{\begin{array}{l}
Q^{H} A=R \\
Q^{H}=\left(G_{n-1, n}^{(n-1)}\right) \ldots\left(G_{2,3}^{(2)} \ldots G_{n-1, n}^{(2)}\right)\left(G_{1,2}^{(1)} \ldots G_{n-1, n}^{(1)}\right) .
\end{array}\right.
$$

$G_{i-1, i}^{(j)}$: Givens transformation acting on rows $i-1$ and i.

- For $n=3$ this specializes to $\left(G_{2,3}^{(2)}\right)\left(G_{1,2}^{(1)} G_{2,3}^{(1)}\right) A=R$:

$$
\begin{array}{|ccc}
\mathrm{x} & \mathrm{x} & \mathrm{x} \\
\mathrm{x} & \mathrm{x} & \mathrm{x} \\
\mathrm{x} & \mathrm{x} & \mathrm{x}
\end{array} \rightarrow \begin{array}{|ccc}
\mathrm{x} & \mathrm{x} & \mathrm{x} \\
\mathrm{x} & \mathrm{x} & \mathrm{x} \\
0 & \mathrm{x} & \mathrm{x}
\end{array} \rightarrow-\begin{array}{|ccc|}
\mathrm{x} & \mathrm{x} & \mathrm{x} \\
0 & \mathrm{x} & \mathrm{x} \\
0 & \mathrm{x} & \mathrm{x}
\end{array} \rightarrow \begin{array}{|ccc|}
\hline \mathrm{x} & \mathrm{x} & \mathrm{x} \\
0 & \mathrm{x} & \mathrm{x} \\
0 & 0 & \mathrm{x}
\end{array}
$$

Introduction

Effectively eliminating QR-decompositions

$$
\left\{\begin{array}{l}
Q^{H} A=R \\
Q^{H}=\left(G_{n-1, n}^{(n-1)}\right) \ldots\left(G_{2,3}^{(2)} \ldots G_{n-1, n}^{(2)}\right)\left(G_{1,2}^{(1)} \ldots G_{n-1, n}^{(1)}\right) .
\end{array}\right.
$$

Definition

A $Q R$-decomposition $A=Q R$ is called effectively eliminating if each non-trivial $G_{i-1}^{(j)}$; realizes a transition

where $b \neq 0$ lies in the strictly lower triangular part of A.

Introduction
Polynomial structures
Rank structures
Singular case

Effectively eliminating QR-decompositions

$$
\left\{\begin{array}{l}
Q^{H} A=R \\
Q^{H}=\left(G_{n-1, n}^{(n-1)}\right) \ldots\left(G_{2,3}^{(2)} \ldots G_{n-1, n}^{(2)}\right)\left(G_{1,2}^{(1)} \ldots G_{n-1, n}^{(1)}\right) .
\end{array}\right.
$$

Definition

A $Q R$-decomposition $A=Q R$ is called effectively eliminating if each non-trivial $G_{i-1, i}^{(j)}$ realizes a transition

$$
\left[\begin{array}{cccc}
0 & \ldots & 0 & a \\
0 & \ldots & 0 & b \\
\vdots & & \vdots & \vdots \\
0 & \ldots & 0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
0 & \ldots & 0 & s \\
0 & \ldots & 0 & 0 \\
\vdots & & \vdots & \vdots \\
0 & \ldots & 0 & 0
\end{array}\right]
$$

where $b \neq 0$ lies in the strictly lower triangular part of A.

Introduction

Effectively eliminating QR-decompositions

Example: for the matrix

$$
A=\left[\begin{array}{ccc}
0 & \times & \times \tag{5}\\
0 & 1 & \times \\
0 & 1 & \times
\end{array}\right]
$$

we can solve $\left(G_{2,3}^{(2)}\right)\left(G_{1,2}^{(1)} G_{2,3}^{(1)}\right) A=R$ with

$$
G_{2,3}^{(1)}=G_{1,2}^{(1)}=I_{2}, \quad G_{2,3}^{(2)}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right] .
$$

Theorem

The effectively eliminating $Q R$-decomposition of A is essentially
unique, i.e. given $A=Q_{1} R_{1}$ and $A=Q_{2} R_{2}$ both effectively
eliminating, we have that $Q_{1}=Q_{2} D$ for a certain unitary diagonal
matrix D

Introduction
Polynomial structures
Rank structures
Singular case

Effectively eliminating QR-decompositions

Example: for the matrix

$$
A=\left[\begin{array}{ccc}
0 & \times & \times \tag{5}\\
0 & 1 & \times \\
0 & 1 & \times
\end{array}\right]
$$

we can solve $\left(G_{2,3}^{(2)}\right)\left(G_{1,2}^{(1)} G_{2,3}^{(1)}\right) A=R$ with

$$
G_{2,3}^{(1)}=G_{1,2}^{(1)}=I_{2}, \quad G_{2,3}^{(2)}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

Theorem

The effectively eliminating $Q R$-decomposition of A is essentially unique, i.e. given $A=Q_{1} R_{1}$ and $A=Q_{2} R_{2}$ both effectively eliminating, we have that $Q_{1}=Q_{2} D$ for a certain unitary diagonal matrix D.

Introduction

Outline

(1) Introduction

- The shifted $Q R$-algorithmPolynomial structures
- Definition
- Examples

Rank structures

- Definition
- Examples
- Nonsingular case

4 Singular case

- Singular case
- Effectively eliminating QR-decompositions
- Sparse Givens patterns

Sparse Givens patterns

Definition

Given a pure structure block $\mathcal{B}_{k}=\left(i_{k}, j_{k}, r_{k}\right)$.
We define the staircase shaped set $\mathcal{I}_{\text {Prepare }, k}^{2}$ and the rectangular shaped set $\mathcal{I}_{\text {Skip }, k}^{2}$ as illustrated.

Sparse Givens patterns

Reason for introducing $\mathcal{I}_{\text {Prepare }, k}^{2}, \mathcal{I}_{\text {Skip }, k}^{2}$:

Definition

Sparse Givens patterns

Reason for introducing $\mathcal{I}_{\text {Prepare }, k}^{2}, \mathcal{I}_{\text {Skip }, k}^{2}$:

Definition

Let $\mathcal{R}_{\text {pure }}=\left\{\mathcal{B}_{k}\right\}_{k}$ be such that $r_{k}=: r$ for all k.
A $Q R$-decomposition $A=Q R$ is said to satisfy the sparse Givens pattern induced by $\mathcal{R}_{\text {pure }}$ if $G_{i-1, i}^{(j)}=I_{2}$ for all $(i, j) \in \bigcup_{k} \mathcal{I}_{\text {Skip }, k}^{2}$.

Sparse Givens patterns

Reason for introducing $\mathcal{I}_{\text {Prepare }, k}^{2}, \mathcal{I}_{\text {Skip }, k}^{2}$:

Definition

Let $\mathcal{R}_{\text {pure }}=\left\{\mathcal{B}_{k}\right\}_{k}$ be such that $r_{k}=: r$ for all k.
A $Q R$-decomposition $A=Q R$ is said to satisfy the sparse Givens pattern induced by $\mathcal{R}_{\text {pure }}$ if $G_{i-1, i}^{(j)}=I_{2}$ for all $(i, j) \in \bigcup_{k} \mathcal{I}_{\text {Skip }, k}^{2}$.

Idea:

Sparse Givens patterns

Reason for introducing $\mathcal{I}_{\text {Prepare }, k}^{2}, \mathcal{I}_{\text {Skip }, k}^{2}$:

Definition

Let $\mathcal{R}_{\text {pure }}=\left\{\mathcal{B}_{k}\right\}_{k}$ be such that $r_{k}=: r$ for all k.
A $Q R$-decomposition $A=Q R$ is said to satisfy the sparse Givens pattern induced by $\mathcal{R}_{\text {pure }}$ if $G_{i-1, i}^{(j)}=I_{2}$ for all $(i, j) \in \bigcup_{k} \mathcal{I}_{\text {Skip }, k}^{2}$.

Idea:

$\mathrm{I}_{\text {Prepare,k }}^{2} \mathrm{I}_{\text {Skip,k }}^{2}$

Sparse Givens patterns

- Definition was given for $r_{k}=: r$ for all k.
- Suppose now that instead, $r_{\tilde{k}} \neq r_{k}$ for certain k and \tilde{k}.

Sparse Givens patterns

- Definition was given for $r_{k}=: r$ for all k.
- Suppose now that instead, $r_{\tilde{k}} \neq r_{k}$ for certain k and \tilde{k}. Relative position:

Sparse Givens patterns

- Definition was given for $r_{k}=: r$ for all k.
- Suppose now that instead, $r_{\tilde{k}} \neq r_{k}$ for certain k and \tilde{k}. Relative position:

Type a

Type b

Type c

Types a, b: good behaviour (definition can be easily adapted) Type c: bad behaviour (complicated).

Sparse Givens patterns

- Definition was given for $r_{k}=: r$ for all k.
- Suppose now that instead, $r_{\tilde{k}} \neq r_{k}$ for certain k and \tilde{k}. Relative position:

Type a

Type b

Type c

Types a, b: good behaviour (definition can be easily adapted). Type c: bad behaviour (complicated).

Some properties

We introduced now sparse Givens pattern induced by any pure structure $\mathcal{R}_{\text {pure }}$.
Some properties:
Theorem
(1) for $A \in \mathcal{M}_{\text {pure, }}$ we have the implication effectively eliminating \Rightarrow sparse Givens pattern induced by $\mathcal{R}_{\text {pure }}$;
(2) $\mathcal{R}_{\text {pure }}$ is 'completely characterized' by its sparse Givens pattern

Some properties

We introduced now sparse Givens pattern induced by any pure structure $\mathcal{R}_{\text {pure }}$.
Some properties:

Theorem

(1) for $A \in \mathcal{M}_{\text {pure }}$, we have the implication effectively eliminating \Rightarrow sparse Givens pattern induced by $\mathcal{R}_{\text {pure }}$;
(2) $\mathcal{R}_{\text {pure }}$ is 'completely characterized' by its sparse Givens pattern.

Preservation of structure

Preservation of structure by a QR-step:

Preservation of structure

Preservation of structure by a QR-step:

Theorem

Given a structure \mathcal{R} and its induced pure structure $\mathcal{R}_{\text {pure }}$. Let $A \in \mathcal{M}$ be arbitrary, possibly singular.
When applying a $Q R$-step without shift on A, we have the implications
(1) sparse Givens pattern induced by $\mathcal{R}_{\text {pure }} \Rightarrow \mathcal{R}_{\text {pure }}$ is preserved,
(2) effectively eliminating $\Rightarrow \mathcal{R}$ is preserved.

Preservation of structure

Preservation of structure by a QR-step:

Theorem

Given a structure \mathcal{R} and its induced pure structure $\mathcal{R}_{\text {pure }}$. Let $A \in \mathcal{M}$ be arbitrary, possibly singular. When applying a $Q R$-step without shift on A, we have the implications
(1) sparse Givens pattern induced by $\mathcal{R}_{\text {pure }} \Rightarrow \mathcal{R}_{\text {pure }}$ is preserved;
(2) effectively eliminating $\Rightarrow \mathcal{R}$ is preserved.

Example: lower semiseparable plus diagonal matrices

Example: let \mathcal{R} be a lower $s s+d$ structure, for some $\Lambda=\operatorname{diag}\left(\lambda_{k}\right)$. nduced pure structure $\mathcal{R}_{\text {pure }}$

Example: lower semiseparable plus diagonal matrices

Example: let \mathcal{R} be a lower ss+d structure, for some $\Lambda=\operatorname{diag}\left(\lambda_{k}\right)$. Induced pure structure $\mathcal{R}_{\text {pure }}$:

Sparse Givens pattern induced by $\mathcal{R}_{\text {pure }}$: solve $A=Q R$ with $Q^{H}=\left(G_{n-1, n}^{(n-1)}\right)\left(G_{n-2, n-1}^{(n-2)}\right) \ldots\left(G_{2,3}^{(2)}\right)\left(G_{1,2}^{(1)} \ldots G_{n-1, n}^{(1)}\right)$.

Doing this in an effectively eliminating way: \mathcal{R} is preserved

Example: lower semiseparable plus diagonal matrices

Example: let \mathcal{R} be a lower ss +d structure, for some $\Lambda=\operatorname{diag}\left(\lambda_{k}\right)$. Induced pure structure $\mathcal{R}_{\text {pure }}$:

Sparse Givens pattern induced by $\mathcal{R}_{\text {pure }}$: solve $A=Q R$ with

$$
\begin{equation*}
Q^{H}=\left(G_{n-1, n}^{(n-1)}\right)\left(G_{n-2, n-1}^{(n-2)}\right) \ldots\left(G_{2,3}^{(2)}\right)\left(G_{1,2}^{(1)} \ldots G_{n-1, n}^{(1)}\right) . \tag{6}
\end{equation*}
$$

Doing this in an effectively eliminating way: \mathcal{R} is preserved.

Example: lower semiseparable plus diagonal matrices

Example: let \mathcal{R} be a lower ss +d structure, for some $\Lambda=\operatorname{diag}\left(\lambda_{k}\right)$. Induced pure structure $\mathcal{R}_{\text {pure }}$:

Sparse Givens pattern induced by $\mathcal{R}_{\text {pure }}$: solve $A=Q R$ with

$$
\begin{equation*}
Q^{H}=\left(G_{n-1, n}^{(n-1)}\right)\left(G_{n-2, n-1}^{(n-2)}\right) \ldots\left(G_{2,3}^{(2)}\right)\left(G_{1,2}^{(1)} \ldots G_{n-1, n}^{(1)}\right) \tag{6}
\end{equation*}
$$

Doing this in an effectively eliminating way: \mathcal{R} is preserved.
By some additional theorems: when $A \in \mathcal{M}$ is unreduced, then (6)
suffices to preserve \mathcal{R}

Example: lower semiseparable plus diagonal matrices

Example: let \mathcal{R} be a lower ss +d structure, for some $\Lambda=\operatorname{diag}\left(\lambda_{k}\right)$. Induced pure structure $\mathcal{R}_{\text {pure }}$:

Sparse Givens pattern induced by $\mathcal{R}_{\text {pure }}$: solve $A=Q R$ with

$$
\begin{equation*}
Q^{H}=\left(G_{n-1, n}^{(n-1)}\right)\left(G_{n-2, n-1}^{(n-2)}\right) \ldots\left(G_{2,3}^{(2)}\right)\left(G_{1,2}^{(1)} \ldots G_{n-1, n}^{(1)}\right) . \tag{6}
\end{equation*}
$$

Doing this in an effectively eliminating way: \mathcal{R} is preserved. By some additional theorems: when $A \in \mathcal{M}$ is unreduced, then (6) suffices to preserve \mathcal{R}.

Example: lower semiseparable plus diagonal matrices

Example: let \mathcal{R} be a lower ss +d structure, for some $\Lambda=\operatorname{diag}\left(\lambda_{k}\right)$. Induced pure structure $\mathcal{R}_{\text {pure }}$:

Sparse Givens pattern induced by $\mathcal{R}_{\text {pure }}$: solve $A=Q R$ with

$$
\begin{equation*}
Q^{H}=\left(G_{n-1, n}^{(n-1)}\right)\left(G_{n-2, n-1}^{(n-2)}\right) \ldots\left(G_{2,3}^{(2)}\right)\left(G_{1,2}^{(1)} \ldots G_{n-1, n}^{(1)}\right) . \tag{6}
\end{equation*}
$$

Doing this in an effectively eliminating way: \mathcal{R} is preserved. By some additional theorems: when $A \in \mathcal{M}$ is unreduced, then (6) suffices to preserve \mathcal{R}.

