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Image restoration with BCs

Using boundary conditions (BC), the restored image f is obtained solving:

Af = g + n

• g = blurred image

• n = noise (random vector)

• A = two-level matrix depending on PSF and BC

BC A
Dirichlet Toeplitz
periodic circulant

Neumann (reflective) DCT III
anti-reflective DST I + low-rank



Generating function of PSF

• 1D problem with gaussian PSF:

x = −5 : 0.1 : 5 101 points

a = e−x2
PSF’s coefficients

a = (a−50, . . . , a0, . . . , a50), ai = a−i

z(y) =
∑50

i=−50 aie
−iy generating function

The eigenvalues of A(z) are about a uniform
sampling of z in [0, π]
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• The ill-conditioned subspace is mainly constituted by the high frequencies.



Smoothing

• Iterative regularizing methods (e.g. Landweber, CG, . . . ) firstly reduce the error
in the low frequencies (well-conditioned subspace).

• Example: f = sin(x), x ∈ [0, π] and g = Af . Solving the linear system Af̃ = g

by Richardson
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• The error is highly oscillating after ten iterations as well.



Multigrid structure

• Idea: project the system in a subspace of lower dimension, solve the resulting
system in this space and interpolate the solution in order to improve the previous
approximation in the greater space.

• The j-th iteration of the Two-Grid Method(TGM) for the system Ax = b:

(1) x̃ = Smooth(A,x(j),b, ν)

(2) r1 = P(b − Ax̃)

(3) A1 = PAPH

(4) e1 = A−1
1 r1

(5) x(j+1) = x(j) + PHe1

• Multigrid (MGM): the step (4) becomes a recursive application of the algorithm.



Algebraic Multigrid (AMG)

• The AMG uses information on the coefficient matrix and no geometric information
on the problem.

• Different classic smoothers have a similar behavior: in the initial iterations they
are not able to reduce effectively the error in the subspace generated by the
eigenvectors associated to small eigenvalues (ill-conditioned subspace)

⇓

the projector is chosen in order to project the error equation in such subspace.

• A good choice for the projector leads to MGM with a rapid convergence.

• For instance, for Toeplitz and algebra of matrices, see [Aricò, Donatelli, Serra
Capizzano, SIMAX, Vol. 26–1 pp. 186–214.].



Geometric Multigrid

• The MGM is an optimal solver for elliptic PDE

For elliptic PDE the ill-conditioned
subspace is made by low frequencies
(complementary with respect to the
gaussian blur).

Poisson’s problem
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• For the projector a simple and powerful choice is:

P =
1
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(full weighting)

PT = 2P (linear interpolation)



Image restoration and Multigrid

• In the images deblurring the ill-conditioned subspace is related to high frequencies,
while the well-conditioned subspace is generated to low frequencies.

• In order to obtain a rapid convergence the algebraic multigrid projects in the
high frequencies where the noise “lives” =⇒ noise explosion already at the first
iteration (it requires Tikhonov regularization [NLAA in press]).

• In this case the geometric multigrid projects in the well-conditioned subspace (low
frequencies) =⇒ it is slowly convergent but it can be a good iterative regularizer.

If we have an iterative regularizing method we can improve its regu-
larizing property using it as smoother in a Multigrid algorithm.



Projector structure

• In order to apply recursively the MGM it is necessary to maintain the same struc-
ture at each level (Toeplitz, circulant, . . . ).

• Projector: Pi = KNi
TNi

(2 + 2 cos(x)) s.t. i is the recursion level and

TNi
(2 + 2 cos(x)) =











2 1

1 2 . . .
. . . . . . 1

1 2











Ni×Ni

circulant Toeplitz&DST − I DCT − III

KNi
∈ R

Ni−1×Ni

[

1 0
1 0 ... ...

1 0

] [

0 1 0
0 1 0... ... ...

0 1 0

] [

1 1 0
1 1 0... ... ...

0 1 1

]



Two-Level (TL) regularization

• Two-Level (TL) regularization (specialization of the TGM):

1. No smoothing at step (1): x̃ = x(j)

2. Step (4): e1 = A−1
1 r1 → Smooth(A1, e1, r1, ν)

As smoother a generic regularizing method can be used.

• Since in the finer grid we do not apply the smoother we can project the system
Ax = b instead of the error equation Ae = r.

• The P = full weighting applied to the observed image b leads to a reblurring
effect followed by a down-sampling (noise damping like a low-pass filter).

• The PT = linear interpolation reconstruct exactly the piecewise linear function
damping the high oscillation deriving by the noise.



Multigrid regularization

• Applying recursively the Two-Level algorithm, we obtain a Multigrid method.

• V -cycle

• Using a greater number of recursive calls (e.g. W -cycle), the algorithm “works”
more in the well-conditioned subspace but it is more difficult to define an early
stopping criterium.



Computational cost

• Let n0 × n0 = n × n be the problem size at the finer level, where n0 = n = 2α,
α ∈ N, thus at the level j the problem size is nj × nj where nj = 2α−j.

• Projection j → j + 1: 7
4 n2

j flops. Interpolation j + 1 → j: 7
8 n2

j flops.

• Let W (n) be the computational cost of one smoother iteration for a problem of
size n × n with W (n) = cn2 + O(n), c ≫ 1.
The computational cost at the j-th level is about

cj = W (nj) +
21

8
n2

j flops.

• The total cost of one MGM iteration is:

21

8
n2 +

log2(n)−1
∑

j=1

cj < 4n2 +
4

3
W

(n

2

)

≈
1

3
W (n).



Example 1 (airplane)

• Periodic BCs

• Gaussian PSF (A spd)

• SNR = 100

Original
Image

Inner part 128 × 128 Blurred + SNR = 100 Restored with MGM



Restoration error (example 1)

Graph of the relative restoration error ej = ‖f̄ − f (j)‖2/‖f̄‖2 increasing the number
of iterations when solving Af = g+n (RichN = Landweber, CGN = CG for normal equations).
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Relative error vs. number of iterations

Method min
j=1,...

(ej) arg min
j=1,...

(ej)

CG 0.1215 4

Richardson 0.1218 8

TL(CG) 0.1132 8

TL(Rich) 0.1134 16

MGM(Rich, 1) 0.1127 12

MGM(Rich, 2) 0.1129 5

CGN 0.1135 178

RichN 0.1135 352

Minimum restoration error



Example 2 (SNR = 10)

• Same image and PSF but much more noise: SNR = 10.

• For CG and Richardson, it is necessary to resort to normal equations.
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Relative error vs. number of iterations

Method min
j=1,...

(ej) arg min
j=1,...

(ej)

CGN 0.1625 30

RichN 0.1630 59

TL(CGN) 0.1611 48

TL(RichN) 0.1613 97

MGM(RichN,1) 0.1618 69

MGM(RichN,2) 0.1621 26

MGM(Rich,1) 0.1648 3

MGM(Rich,2) 0.1630 1

Minimum relative error



Example 3 (Saturn)

• Periodic BCs (exacts)

• Gaussian PSF (λ(A) ≈ −10−4)

• SNR = 50

Original
image

Inner part 128 × 128 PSF Blurred + SNR = 50



Restoration error (example 3)

Graph of the relative restoration error ej = ‖f̄ − f (j)‖2/‖f̄‖2 increasing the number
of iterations when solving the linear system Af = g + n.
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Relative error vs. number of iterations

Method min
j=1,...

(ej) arg min
j=1,...

(ej)

CG 0.2033 6

Richardson 0.2035 12

TL(CG) 0.1539 18

TL(Rich) 0.1547 30

MGM(Rich,1) 0.1421 22

MGM(Rich,2) 0.1374 8

CGN 0.1302 2500

MGM(CGN,1) 0.1297 250

MGM(RichN,2) 0.1305 1700

Minimum relative error



Restored images

CG MGM(Rich,2) CGN

CG MGM(Rich,2) CGN (normal equation)

Minimum error 0.2033 0.1374 0.1302

Number of iterations 6 8 2500



Direct multigrid regularization

• Trend of the error after only one iteration of MGM(Rich,γ) varying γ.

• It is a direct regularization method with regularization parameter γ.
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γ e1

1 0.25747

2 0.18944

3 0.15723

4 0.14241

5 0.13658

6 0.13543

7 0.13674

8 0.13947

The CGN

reaches e

minimum equal

to 0.1302 after

2500 iterations

• The computational cost increase with γ but not so much (e.g. γ = 8 ⇒ O(N 1.5) ).



Conclusions

• The Multigrid (with a regularizing method as smoother) is a good regularizer ⇒
we can improve the power of an iterative regularizing method using it as smoother
inside a MGM scheme.

• The MGM regularization is robust for small negative eigenvalues as well.

• Usually it is not necessary to resort to normal equations.

• It can lead to several generalizations.


