On the regularizing power of multigrid-type algorithms

MARCO DONATELLI

Stefano Serra Capizzano

Università dell'Insubria, Dip. Fisica e Matematica - Sede di Como Via Valleggio 11 - 22100 Como, Italy (donatelli@uninsubria.it)

Outline

- Image restoration using boundary conditions (BC)
- Spectral properties of the coefficient matrices
- Multi-Grid Methods (MGM)
- Two-Level (TL) regularization
- Multigrid regularization
- Numerical experiments
- Direct Multigrid regularization

Using boundary conditions (BC), the restored image f is obtained solving:

 $A\mathbf{f} = \mathbf{g} + \mathbf{n}$

- $\bullet \ \mathbf{g} = \mathsf{blurred} \ \mathsf{image}$
- **n** = noise (random vector)
- A = two-level matrix depending on PSF and BC

BC	A
Dirichlet	Toeplitz
periodic	circulant
Neumann (reflective)	DCT III
anti-reflective	DST I + Iow-rank

• 1D problem with gaussian PSF:

• The ill-conditioned subspace is mainly constituted by the high frequencies.

- Iterative regularizing methods (e.g. Landweber, CG, ...) firstly reduce the error in the low frequencies (well-conditioned subspace).
- Example: $\mathbf{f} = \sin(x), x \in [0, \pi]$ and $\mathbf{g} = A\mathbf{f}$. Solving the linear system $A\mathbf{\tilde{f}} = \mathbf{g}$ by Richardson

• The error is highly oscillating after ten iterations as well.

- Idea: project the system in a subspace of lower dimension, solve the resulting system in this space and interpolate the solution in order to improve the previous approximation in the greater space.
- The *j*-th iteration of the Two-Grid Method(TGM) for the system $A\mathbf{x} = \mathbf{b}$:

(1)
$$\tilde{\mathbf{x}} = Smooth(A, \mathbf{x}^{(j)}, \mathbf{b}, \nu)$$

(2) $\mathbf{r}_1 = \mathbf{P}(\mathbf{b} - A\tilde{\mathbf{x}})$
(3) $A_1 = \mathbf{P}A\mathbf{P}^H$
(4) $\mathbf{e}_1 = A_1^{-1}\mathbf{r}_1$
(5) $\mathbf{x}^{(j+1)} = \mathbf{x}^{(j)} + \mathbf{P}^H\mathbf{e}_1$

• Multigrid (MGM): the step (4) becomes a recursive application of the algorithm.

- The AMG uses information on the coefficient matrix and no geometric information on the problem.
- Different classic smoothers have a similar behavior: in the initial iterations they are not able to reduce effectively the error in the subspace generated by the eigenvectors associated to small eigenvalues (ill-conditioned subspace)

 \Downarrow

the projector is chosen in order to project the error equation in such subspace.

- A good choice for the projector leads to MGM with a rapid convergence.
- For instance, for Toeplitz and algebra of matrices, see [Aricò, Donatelli, Serra Capizzano, SIMAX, Vol. 26–1 pp. 186–214.].

• The MGM is an optimal solver for elliptic PDE

For elliptic PDE the ill-conditioned subspace is made by low frequencies (complementary with respect to the gaussian blur).

• For the projector a simple and powerful choice is:

$$\mathbf{P} = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 & & \\ & 1 & 2 & 1 & \\ & & \ddots & \ddots & \\ & & & 1 & 2 & 1 \end{bmatrix}$$
(full weighting)
$$\mathbf{P}^{T} = 2\mathbf{P}$$
(linear interpolation)

- In the images deblurring the ill-conditioned subspace is related to high frequencies, while the well-conditioned subspace is generated to low frequencies.
- In order to obtain a rapid convergence the algebraic multigrid projects in the high frequencies where the noise "lives" ⇒ noise explosion already at the first iteration (it requires Tikhonov regularization [NLAA in press]).
- In this case the geometric multigrid projects in the well-conditioned subspace (low frequencies) \implies it is slowly convergent but it can be a good iterative regularizer.

If we have an iterative regularizing method we can improve its regularizing property using it as smoother in a Multigrid algorithm.

- In order to apply recursively the MGM it is necessary to maintain the same structure at each level (Toeplitz, circulant, ...).
- Projector: $P_i = K_{N_i}T_{N_i}(2 + 2\cos(x))$ s.t. *i* is the recursion level and

$$T_{N_i}(2+2\cos(x)) = \begin{pmatrix} 2 & 1 & & \\ 1 & 2 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & 2 \end{pmatrix}_{N_i \times N_i}$$

	circulant	Toeplitz&DST-I	DCT - III
$\mathbf{K_{N_i}} \in \mathbb{R}^{N_{i-1} imes N_i}$	$\begin{bmatrix} 1 & 0 & & & \\ & 1 & 0 & & \\ & & & \ddots & \ddots & \\ & & & & & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 & & & \\ & 0 & 1 & 0 & & \\ & & \ddots & \ddots & \ddots & \\ & & & & 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 & & & \\ & 1 & 1 & 0 & & \\ & & \ddots & \ddots & \ddots & \\ & & & & 0 & 1 & 1 \end{bmatrix}$

- Two-Level (TL) regularization (specialization of the TGM):
 - 1. No smoothing at step (1): $\mathbf{\tilde{x}} = \mathbf{x}^{(j)}$
 - 2. Step (4): $\mathbf{e}_1 = A_1^{-1}\mathbf{r}_1 \to Smooth(A_1, \mathbf{e}_1, \mathbf{r}_1, \nu)$

As smoother a generic regularizing method can be used.

- Since in the finer grid we do not apply the smoother we can project the system $A\mathbf{x} = \mathbf{b}$ instead of the error equation $A\mathbf{e} = \mathbf{r}$.
- The $\mathbf{P} = \text{full weighting applied to the observed image b leads to a reblurring effect followed by a down-sampling (noise damping like a low-pass filter).$
- The \mathbf{P}^T = linear interpolation reconstruct exactly the piecewise linear function damping the high oscillation deriving by the noise.

- Applying recursively the Two-Level algorithm, we obtain a Multigrid method.
- V-cycle

• Using a greater number of recursive calls (e.g. *W*-cycle), the algorithm "works" more in the well-conditioned subspace but it is more difficult to define an early stopping criterium.

- Let $n_0 \times n_0 = n \times n$ be the problem size at the finer level, where $n_0 = n = 2^{\alpha}$, $\alpha \in \mathbb{N}$, thus at the level j the problem size is $n_j \times n_j$ where $n_j = 2^{\alpha-j}$.
- Projection $j \to j + 1$: $\frac{7}{4}n_j^2$ flops. Interpolation $j + 1 \to j$: $\frac{7}{8}n_j^2$ flops.
- Let W(n) be the computational cost of one smoother iteration for a problem of size $n \times n$ with $W(n) = cn^2 + O(n)$, $c \gg 1$. The computational cost at the *j*-th level is about

$$c_j = W(n_j) + \frac{21}{8}n_j^2 \text{ flops}.$$

• The total cost of one MGM iteration is:

$$\frac{21}{8}n^2 + \sum_{j=1}^{\log_2(n)-1} c_j < 4n^2 + \frac{4}{3}W\left(\frac{n}{2}\right) \approx \frac{1}{3}W(n).$$

Example 1 (airplane)

- Periodic BCs
- Gaussian PSF (A spd)
- \bullet SNR = 100

Inner part 128×128

 $\mathsf{Blurred} + \mathsf{SNR} = 100$

Restored with MGM

Graph of the relative restoration error $e_j = \|\overline{\mathbf{f}} - \mathbf{f}^{(j)}\|_2 / \|\overline{\mathbf{f}}\|_2$ increasing the number of iterations when solving $A\mathbf{f} = \mathbf{g} + \mathbf{n}$ (RichN = Landweber, CGN = CG for normal equations).

Relative	error	VS.	number	of	iterations

Method	$\min_{j=1,\dots}(e_j)$	$\arg\min_{j=1,\dots}(e_j)$
CG	0.1215	4
Richardson	0.1218	8
TL(CG)	0.1132	8
TL(Rich)	0.1134	16
MGM(Rich, 1)	0.1127	12
MGM(Rich, 2)	0.1129	5
CGN	0.1135	178
RichN	0.1135	352

Minimum restoration error

- Same image and PSF but much more noise: SNR = 10.
- For CG and Richardson, it is necessary to resort to normal equations.

Relative error vs. number of iterations

Method	$\min_{j=1,\dots}(e_j)$	$\arg\min_{j=1,\dots}(e_j)$
CGN	0.1625	30
RichN	0.1630	59
TL(CGN)	0.1611	48
TL(RichN)	0.1613	97
MGM(RichN,1)	0.1618	69
MGM(RichN,2)	0.1621	26
MGM(Rich,1)	0.1648	3
MGM(Rich,2)	0.1630	1

Minimum relative error

Example 3 (Saturn)

- Periodic BCs (exacts)
- Gaussian PSF ($\lambda(A) \approx -10^{-4}$)
- \bullet SNR = 50

Original image

Inner part 128×128

PSF

 $\mathsf{Blurred} + \mathsf{SNR} = 50$

Graph of the relative restoration error $e_j = \|\overline{\mathbf{f}} - \mathbf{f}^{(j)}\|_2 / \|\overline{\mathbf{f}}\|_2$ increasing the number of iterations when solving the linear system $A\mathbf{f} = \mathbf{g} + \mathbf{n}$.

Relative error vs. number of iterations

Method	$\min_{j=1,\dots}(e_j)$	$\arg\min_{j=1,\dots}(e_j)$
CG	0.2033	6
Richardson	0.2035	12
TL(CG)	0.1539	18
TL(Rich)	0.1547	30
MGM(Rich,1)	0.1421	22
MGM(Rich,2)	0.1374	8
CGN	0.1302	2500
MGM(CGN,1)	0.1297	250
MGM(RichN,2)	0.1305	1700

Minimum relative error

Restored images

	CG	MGM(Rich,2)	CGN (normal equation)
Minimum error	0.2033	0.1374	0.1302
Number of iterations	6	8	2500

- Trend of the error after only one iteration of MGM(Rich, γ) varying γ .
- It is a direct regularization method with regularization parameter γ .

Relative error vs. number of iterations

• The computational cost increase with γ but not so much (e.g. $\gamma = 8 \Rightarrow O(N^{1.5})$).

- The Multigrid (with a regularizing method as smoother) is a good regularizer ⇒ we can improve the power of an iterative regularizing method using it as smoother inside a MGM scheme.
- The MGM regularization is robust for small negative eigenvalues as well.
- Usually it is not necessary to resort to normal equations.
- It can lead to several generalizations.