Computing the Matrix Square Root in a Matrix Group

Nick Higham Department of Mathematics The Victoria University of Manchester

higham@ma.man.ac.uk
http://www.ma.man.ac.uk/~higham/

Joint work with Niloufer Mackey, D. Steven Mackey, and Françoise Tisseur.

Matrix Square Root

- X is a square root of $A \in \mathbb{C}^{n \times n} \iff X^2 = A$.
- Number of square roots may be zero, finite or infinite.

Principal Square Root

- For A with no eigenvalues on $\mathbb{R}^- = \{x \in \mathbb{R} : x \leq 0\}$ is the unique square root with spectrum in the open right half-plane.
- Denoted by $A^{1/2}$.

Newton's Method

 $A = (X + E)^2$: drop second order term and solve for E.

$$Solve X_{k}E_{k} + E_{k}X_{k} = A - X_{k}^{2}$$
$$X_{k+1} = X_{k} + E_{k} \} k = 0, 1, 2, \dots$$

Prohibitively expensive.

Newton's Method

 $A = (X + E)^2$: drop second order term and solve for E.

$$Solve X_{k}E_{k} + E_{k}X_{k} = A - X_{k}^{2}$$
$$X_{k+1} = X_{k} + E_{k} \} k = 0, 1, 2, \dots$$

Prohibitively expensive.

But observe that

$$X_0A = AX_0 \implies X_kA = AX_k$$
 for all k.

Newton Iteration

$$X_{k+1} = \frac{1}{2}(X_k + X_k^{-1}A), \qquad X_0 = A.$$

If $A \in \mathbb{C}^{n \times n}$ has no eigenvalues on \mathbb{R}^- then

- Iterates X_k nonsingular, converge quadratically to $A^{1/2}$.
- Related to Newton sign function iterates

$$S_{k+1} = \frac{1}{2}(S_k + S_k^{-1}), \qquad S_0 = A^{1/2}$$

by $X_k \equiv A^{1/2}S_k$.

Newton Iteration

$$X_{k+1} = \frac{1}{2}(X_k + X_k^{-1}A), \qquad X_0 = A.$$

If $A \in \mathbb{C}^{n \times n}$ has no eigenvalues on \mathbb{R}^- then

- Iterates X_k nonsingular, converge quadratically to $A^{1/2}$.
- Related to Newton sign function iterates

$$S_{k+1} = \frac{1}{2}(S_k + S_k^{-1}), \qquad S_0 = A^{1/2}$$

by $X_k \equiv A^{1/2}S_k$.

Problem: numerical instability (Laasonen, 1958; H, 1996).

Newton Variants

DB iteration:

[Denman–Beavers, 1976]

$$X_{k+1} = \frac{1}{2} \left(X_k + Y_k^{-1} \right), \qquad X_0 = A,$$
$$Y_{k+1} = \frac{1}{2} \left(Y_k + X_k^{-1} \right), \qquad Y_0 = I.$$

Product form DB:

[Cheng-Higham-Kenney-Laub, 2001]

$$M_{k+1} = \frac{1}{2} \left(I + \frac{M_k + M_k^{-1}}{2} \right), \quad M_0 = A,$$

$$X_{k+1} = \frac{1}{2} X_k (I + M_k^{-1}), \qquad X_0 = A,$$

$$Y_{k+1} = \frac{1}{2} Y_k (I + M_k^{-1}), \qquad Y_0 = I.$$

CR iteration: [Meini, 2004]

$$Y_{k+1} = -Y_k Z_k^{-1} Y_k, \qquad Y_0 = I - A,$$

$$Z_{k+1} = Z_k + 2Y_{k+1}, \qquad Z_0 = 2(I + A).$$

Content

- ★ Characterizations of functions *f* that preserve automorphism group structure.
- ★ New, numerically stable square root iterations.
- ★ Unified stability analysis of square root iterations based on Fréchet derivatives.

Group Background

Given nonsingular M and $\mathbb{K} = \mathbb{R}$ or \mathbb{C} ,

 $\langle x, y \rangle_{\mathbf{M}} = \begin{cases} x^T M y, & \text{real or complex bilinear forms,} \\ x^* M y, & \text{sesquilinear forms.} \end{cases}$

Define automorphism group

$$\mathbb{G} = \{ A \in \mathbb{K}^{n \times n} : \langle Ax, Ay \rangle_{\mathbf{M}} = \langle x, y \rangle_{\mathbf{M}}, \ \forall x, y \in \mathbb{K}^n \}.$$

Adjoint A^* of $A \in \mathbb{K}^{n \times n}$ wrt $\langle \cdot, \cdot \rangle_{\mathbb{M}}$ defined by

$$\langle Ax, y \rangle_{\mathbf{M}} = \langle x, A^{\star}y \rangle_{\mathbf{M}} \quad \forall x, y \in \mathbb{K}^n.$$

Can show: $A^{\star} = \begin{cases} M^{-1}A^T M, & \text{for bilinear forms,} \\ M^{-1}A^* M, & \text{for sesquilinear forms.} \end{cases}$

$$\mathbb{G} = \{ A \in \mathbb{K}^{n \times n} : A^{\star} = A^{-1} \}$$

Some Automorphism Groups

Space	M	A^{\star}	Automorphism group, G				
Groups corresponding to a bilinear form							
\mathbb{R}^{n}	Ι	A^T	Real orthogonals				
\mathbb{C}^n	Ι	A^T	Complex orthogonals				
\mathbb{R}^{n}	$\Sigma_{p,q}$	$\Sigma_{p,q} A^T \Sigma_{p,q}$	Pseudo-orthogonals				
\mathbb{R}^{n}	R	RA^TR	Real perplectics				
\mathbb{R}^{2n}	J	$-JA^TJ$	Real symplectics				
\mathbb{C}^{2n}	J	$-JA^TJ$	Complex symplectics				

Groups corresponding to a sesquilinear form						
\mathbb{C}^n	Ι	A^*	Unitaries			
\mathbb{C}^n	$\Sigma_{p,q}$	$\Sigma_{p,q}A^*\Sigma_{p,q}$	Pseudo-unitaries			
\mathbb{C}^{2n}	J	$-JA^*J$	Conjugate symplectics			
Г	1	[

$$\mathbf{R} = \begin{bmatrix} & & 1 \\ & & & \\ 1 & & \end{bmatrix}, \qquad \mathbf{J} = \begin{bmatrix} 0 & I_n \\ & I_n \\ -I_n & 0 \end{bmatrix}, \qquad \mathbf{\Sigma}_{\mathbf{p},\mathbf{q}} = \begin{bmatrix} I_p & 0 \\ 0 & -I_q \end{bmatrix}$$

Bilinear Forms

Theorem 1

(a) For any f and $A \in \mathbb{K}^{n \times n}$, $f(A^{\star}) = f(A)^{\star}$. (b) For $A \in \mathbb{G}$, $f(A) \in \mathbb{G}$ iff $f(A^{-1}) = f(A)^{-1}$.

Proof. (a) We have

$$f(A^{\star}) = f(M^{-1}A^T M) = M^{-1}f(A^T)M = M^{-1}f(A)^T M = f(A)^{\star}.$$

(b) For $A \in \mathbb{G}$, consider

$$f(A)^{\star} = f(A^{\star})$$
$$\parallel$$
$$f(A^{-1})$$

Bilinear Forms

Theorem 1

(a) For any f and $A \in \mathbb{K}^{n \times n}$, $f(A^{\star}) = f(A)^{\star}$. (b) For $A \in \mathbb{G}$, $f(A) \in \mathbb{G}$ iff $f(A^{-1}) = f(A)^{-1}$.

Proof. (a) We have

$$f(A^{\star}) = f(M^{-1}A^T M) = M^{-1}f(A^T)M = M^{-1}f(A)^T M = f(A)^{\star}.$$

(b) For $A \in \mathbb{G}$, consider

$$f(A)^{\star} = f(A^{\star})$$
$$\parallel$$
$$f(A)^{-1} = f(A^{-1})$$

Implications

For bilinear forms, f preserves group structure of A when $f(A^{-1}) = f(A)^{-1}$.

This condition holds *for all* A for

- Matrix sign function, $sign(A) = A(A^2)^{-1/2}$.
- Any matrix power A^{α} , subject to suitable choice of branches. In particular, the
 - principal matrix *p*th root A^{1/p} (*p* ∈ Z⁺, Λ(A) ∩ ℝ⁻ = Ø): unique X such that
 1. X^p = A.
 2. −π/p < arg(λ(X)) < π/p.

Group Newton Iteration

Theorem 2 Let $A \in \mathbb{G}$ (any group), $\Lambda(A) \cap \mathbb{R}^- = \emptyset$, and

$$Y_{k+1} = \frac{1}{2}(Y_k + Y_k^{-\star})$$

= $\frac{1}{2}(Y_k + M^{-1}Y_k^{-T}M), \qquad Y_1 = \frac{1}{2}(I+A).$

Then $Y_k \to A^{1/2}$ quadratically and $Y_k \equiv X_k$ ($k \ge 1$), where X_k are the Newton iterates: $X_{k+1} = \frac{1}{2}(X_k + X_k^{-1}A)$, $X_0 = A$.

Group Newton Iteration

Theorem 2 Let $A \in \mathbb{G}$ (any group), $\Lambda(A) \cap \mathbb{R}^- = \emptyset$, and

$$Y_{k+1} = \frac{1}{2}(Y_k + Y_k^{-\star})$$

= $\frac{1}{2}(Y_k + M^{-1}Y_k^{-T}M), \qquad Y_1 = \frac{1}{2}(I+A).$

Then $Y_k \to A^{1/2}$ quadratically and $Y_k \equiv X_k$ ($k \ge 1$), where X_k are the Newton iterates: $X_{k+1} = \frac{1}{2}(X_k + X_k^{-1}A)$, $X_0 = A$. Cf.

• Cardoso, Kenney & Silva Leite (2003, App. Num. Math.): bilinear forms with $M^T = \pm M$, $M^T M = I$.

• H (2003, SIREV):
$$M = \Sigma_{p,q}$$
.

Generalized Polar Decomposition

Theorem 2 For any group \mathbb{G} , $A \in \mathbb{K}^{n \times n}$ has a unique generalized polar decomposition A = WS where

$$W \in \mathbb{G}$$
 (*i.e.*, $W^{\star} = W^{-1}$), $S^{\star} = S$,

and $\Lambda(S) \in \text{open right half-plane} (i.e., \operatorname{sign}(S) = I)$ iff $(A^{\star})^{\star} = A$ and $\Lambda(A^{\star}A) \cap \mathbb{R}^{-} = \emptyset$.

Note

- $(A^{\star})^{\star} = A$ holds for all \mathbb{G} in the earlier table.
- Other gpd's exist with different conditions on $\Lambda(S)$ (Rodman & co-authors).

GPD Iteration & Square Root

Theorem 3 Suppose the iteration $X_{k+1} = X_k h(X_k^2)$, $X_0 = A$ converges to sign(A) with order m. If A has the generalized polar decomposition A = WS w.r.t. a scalar product then

$$Y_{k+1} = Y_k h(Y_k^{\star} Y_k), \qquad Y_0 = A$$

converges to W with order of convergence m.

GPD Iteration & Square Root

Theorem 3 Suppose the iteration $X_{k+1} = X_k h(X_k^2)$, $X_0 = A$ converges to sign(A) with order m. If A has the generalized polar decomposition A = WS w.r.t. a scalar product then

$$Y_{k+1} = Y_k h(Y_k^{\star} Y_k), \qquad Y_0 = A$$

converges to W with order of convergence m.

Theorem 4 Let \mathbb{G} be any automorphism group and $A \in \mathbb{G}$. If $A(A) \cap \mathbb{R}^- = \emptyset$ then I + A = WS is a generalized polar decomposition with $W = A^{1/2}$ and $S = A^{-1/2} + A^{1/2}$.

Application

Newton

Sign: $X_{k+1} = X_k \cdot \frac{1}{2}(I + (X_k^2)^{-1}) \equiv X_k h(X_k^2), \quad X_0 = A.$ Group sqrt:

$$Y_{k+1} = \frac{1}{2}Y_k(I + (Y_k^{\star}Y_k)^{-1}) = \frac{1}{2}(Y_k + Y_k^{-\star}), \quad Y_0 = I + A.$$

Schulz

Sign: $X_{k+1} = X_k \cdot \frac{1}{2}(3I - X_k^2) \equiv X_k h(X_k^2), \quad X_0 = A.$ Group Schulz:

$$Y_{k+1} = \frac{1}{2} Y_k (3I - Y_k^{\star} Y_k), \quad Y_0 = I + A.$$

Class of Square Root Iterations

Theorem 5 Suppose the iteration $X_{k+1} = X_k h(X_k^2)$, $X_0 = A$ converges to sign(A) with order m. If $\Lambda(A) \cap \mathbb{R}^- = \emptyset$ and

$$Y_{k+1} = Y_k h(Z_k Y_k), \qquad Y_0 = A,$$

 $Z_{k+1} = h(Z_k Y_k) Z_k, \qquad Z_0 = I,$

then $Y_k \to A^{1/2}$ and $Z_k \to A^{-1/2}$ as $k \to \infty$, both with order m, and $Y_k = AZ_k$ for all k. Moreover, if $X \in \mathbb{G}$ implies $Xh(X^2) \in \mathbb{G}$ then $A \in \mathbb{G}$ implies $Y_k \in \mathbb{G}$ and $Z_k \in \mathbb{G}$ for all k.

- Proof makes use of sign $\begin{pmatrix} \begin{bmatrix} 0 & A \\ I & 0 \end{bmatrix} = \begin{bmatrix} 0 & A^{1/2} \\ A^{-1/2} & 0 \end{bmatrix}$.
- Newton sign leads to DB iteration.

Padé Square Root Iterations

Example: structure-preserving cubic:

 $Y_{k+1} = Y_k (3I + Z_k Y_k) (I + 3Z_k Y_k)^{-1}, \qquad Y_0 = A,$ $Z_{k+1} = (3I + Z_k Y_k) (I + 3Z_k Y_k)^{-1} Z_k, \qquad Z_0 = I.$

If $\Lambda(A) \cap \mathbb{R}^- = \emptyset$ then

• $Y_k \to A^{1/2}$ and $Z_k \to A^{-1/2}$ cubically,

• $A \in \mathbb{G} \implies X_k \in \mathbb{G}, Y_k \in \mathbb{G}$ for all k.

Stability

Define $X_{k+1} = g(X_k)$ to be **stable** in nbhd of fixed point X = g(X) if for $X_0 := X + H_0$, with arbitrary error H_0 , the $H_k := X_k - X$ satisfy

$$H_{k+1} = L_X(H_k) + O(||H_k||^2),$$

where L_X is a linear operator with **bounded powers**. **Theorem 6** *Consider the mapping*

$$G(Y,Z) = \begin{bmatrix} Yh(ZY) \\ h(ZY)Z \end{bmatrix},$$

where $X_{k+1} = X_k h(X_k^2)$ is any superlinear matrix sign iteration. Any $P = (B, B^{-1})$ is a fixed point for *G*, and

$$dG_P(E,F) = \frac{1}{2} \begin{bmatrix} E - BFB \\ F - B^{-1}EB^{-1} \end{bmatrix}.$$

 dG_P is idempotent, that is, $dG_P \circ dG_P = dG_P$.

Experiment

Random **pseudo-orthogonal** $A \in \mathbb{R}^{10 \times 10}$,

$$M = \operatorname{diag}(I_6, -I_4) \qquad (A^T M A = M),$$
$$\|A\|_2 = 10^5 = \|A^{-1}\|_2,$$

generated using alg of H (2003) and chosen to be symmetric positive definite.

$$\operatorname{err}(X) = \frac{\|X - A^{1/2}\|_2}{\|A^{1/2}\|_2},$$

$$\mu_{\mathbb{G}}(X) = \frac{\|X^{\star}X - I\|_2}{\|X\|_2^2}$$

Results

k	Newton	Group Newton		Cubic, struc. pres.	
	$\operatorname{err}(X_k)$	$\operatorname{err}(Y_k)$	$\mu_{\mathbb{G}}(Y_k)$	$\operatorname{err}(Y_k)$	$\mu_{\mathbb{G}}(Y_k)$
0	3.2e2			3.2e2	1.4e-15
1	1.6e2	1.6e2	1.0e-5	1.0e2	7.2e-15
2	7.8e1	7.8e1	1.0e-5	3.4e1	6.1e-14
3	3.9e1	3.9e1	1.0e-5	1.1e1	5.1e-13
4	1.9e1	1.9e1	1.0e-5	3.0e0	2.9e-12
5	8.9e0	8.9e0	9.9e-6	5.5e-1	4.4e-12
6	4.0e0	4.0e0	9.6e-6	2.0e-2	4.3e-12
7	3.2e1	1.6e0	8.5e-6	2.0e-6	4.5e-12
8	2.3e5	4.9e-1	5.5e-6	2.1e-11	4.8e-12
9	4.6e9	8.2e-2	1.5e-6		
10	2.3e9	3.1e-3	6.1e-8		
11	1.1e9	4.7e-6	9.5e-11		
12	5.6e8	2.1e-11	2.4e-16		

Conclusions

- ★ Characterizations of *f* that preserve group structure (e.g., if $f(A^{-1}) = f(A)^{-1}$ for bilinear forms).
- ★ Using gen polar decomp, derived numerically stable form of Newton for $A^{1/2}$ when $A \in \mathbb{G}$.
- **★** Derived new family of coupled iterations for $A^{1/2}$ that is **structure preserving** for matrix groups.
- **Stability analysis** using Fréchet derivative.
- Functions Preserving Matrix Groups and Iterations for the Matrix Square Root, NA Report 446, March 2004; to appear in SIMAX.
- Functions of a Matrix; book in preparation.