Computing the Matrix Square Root in a Matrix Group

Nick Higham
Department of Mathematics
The Victoria University of Manchester

higham@ma.man.ac.uk
http://www.ma.man.ac.uk/~higham/

Joint work with Niloufer Mackey, D. Steven Mackey, and Françoise Tisseur.

THE UNIVERSITY
of MANCHESTER

Matrix Square Root

- X is a square root of $A \in \mathbb{C}^{n \times n} \Longleftrightarrow X^{2}=A$.
- Number of square roots may be zero, finite or infinite.

Principal Square Root

- For A with no eigenvalues on $\mathbb{R}^{-}=\{x \in \mathbb{R}: x \leq 0\}$ is the unique square root with spectrum in the open right half-plane.
- Denoted by $A^{1 / 2}$.

Newton's Method

$A=(X+E)^{2}:$ drop second order term and solve for E.

$$
\left.\begin{array}{rl}
X_{0} \text { given, } & \\
\text { Solve } X_{k} E_{k}+E_{k} X_{k} & =A-X_{k}^{2} \\
X_{k+1} & =X_{k}+E_{k}
\end{array}\right\} k=0,1,2, \ldots
$$

Prohibitively expensive.

Newton's Method

$A=(X+E)^{2}$: drop second order term and solve for E.

$$
\begin{aligned}
& X_{0} \text { given, } \\
&\text { Solve } \left.\begin{array}{rl}
X_{k} E_{k}+E_{k} X_{k} & =A-X_{k}^{2} \\
X_{k+1} & =X_{k}+E_{k}
\end{array}\right\} k=0,1,2, \ldots
\end{aligned}
$$

Prohibitively expensive.

But observe that

$$
X_{0} A=A X_{0} \quad \Rightarrow \quad X_{k} A=A X_{k} \text { for all } k
$$

Newton Iteration

$$
X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-1} A\right), \quad X_{0}=A
$$

If $A \in \mathbb{C}^{n \times n}$ has no eigenvalues on \mathbb{R}^{-}then

- Iterates X_{k} nonsingular, converge quadratically to $A^{1 / 2}$.
- Related to Newton sign function iterates

$$
S_{k+1}=\frac{1}{2}\left(S_{k}+S_{k}^{-1}\right), \quad S_{0}=A^{1 / 2}
$$

$$
\text { by } X_{k} \equiv A^{1 / 2} S_{k} \text {. }
$$

Newton Iteration

$$
X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-1} A\right), \quad X_{0}=A
$$

If $A \in \mathbb{C}^{n \times n}$ has no eigenvalues on \mathbb{R}^{-}then

- Iterates X_{k} nonsingular, converge quadratically to $A^{1 / 2}$.
- Related to Newton sign function iterates

$$
S_{k+1}=\frac{1}{2}\left(S_{k}+S_{k}^{-1}\right), \quad S_{0}=A^{1 / 2}
$$

$$
\text { by } X_{k} \equiv A^{1 / 2} S_{k} \text {. }
$$

Problem: numerical instability (Laasonen, 1958; H, 1996).

Newton Variants

DB iteration:
[Denman-Beavers, 1976]

$$
\begin{aligned}
X_{k+1}=\frac{1}{2}\left(X_{k}+Y_{k}^{-1}\right), & X_{0}=A \\
Y_{k+1}=\frac{1}{2}\left(Y_{k}+X_{k}^{-1}\right), & Y_{0}=I
\end{aligned}
$$

Product form DB:

$$
\begin{aligned}
M_{k+1} & =\frac{1}{2}\left(I+\frac{M_{k}+M_{k}^{-1}}{2}\right), & & M_{0}=A \\
X_{k+1} & =\frac{1}{2} X_{k}\left(I+M_{k}^{-1}\right), & & X_{0}=A \\
Y_{k+1} & =\frac{1}{2} Y_{k}\left(I+M_{k}^{-1}\right), & & Y_{0}=I
\end{aligned}
$$

CR iteration: $\quad Y_{k+1}=-Y_{k} Z_{k}^{-1} Y_{k}, \quad Y_{0}=I-A$,
[Meini, 2004]
$Z_{k+1}=Z_{k}+2 Y_{k+1}$,
$Z_{0}=2(I+A)$.

Content

\star Characterizations of functions f that preserve automorphism group structure.
\star New, numerically stable square root iterations.
\star Unified stability analysis of square root iterations based on Fréchet derivatives.

Group Background

Given nonsingular M and $\mathbb{K}=\mathbb{R}$ or \mathbb{C},

$$
\langle x, y\rangle_{M}= \begin{cases}x^{T} M y, & \text { real or complex bilinear forms }, \\ x^{*} M y, & \text { sesquilinear forms }\end{cases}
$$

Define automorphism group

$$
\mathbb{G}=\left\{A \in \mathbb{K}^{n \times n}:\langle A x, A y\rangle_{\mathrm{M}}=\langle x, y\rangle_{\mathrm{M}}, \forall x, y \in \mathbb{K}^{n}\right\} .
$$

Adjoint A^{\star} of $A \in \mathbb{K}^{n \times n}$ wrt $\langle\cdot, \cdot\rangle_{\mathrm{M}}$ defined by

$$
\langle A x, y\rangle_{\mathrm{M}}=\left\langle x, A^{\star} y\right\rangle_{\mathrm{M}} \quad \forall x, y \in \mathbb{K}^{n} .
$$

Can show: $\quad A^{\star}= \begin{cases}M^{-1} A^{T} M, & \text { for bilinear forms, } \\ M^{-1} A^{*} M, & \text { for sesquilinear forms. }\end{cases}$

$$
\mathbb{G}=\left\{A \in \mathbb{K}^{n \times n}: A^{\star}=A^{-1}\right\} .
$$

Some Automorphism Groups

Space	M	A^{\star}	Automorphism group, \mathbb{G}

Groups corresponding to a bilinear form

\mathbb{R}^{n}	I	A^{T}	Real orthogonals
\mathbb{C}^{n}	I	A^{T}	Complex orthogonals
\mathbb{R}^{n}	$\Sigma_{p, q}$	$\Sigma_{p, q} A^{T} \Sigma_{p, q}$	Pseudo-orthogonals
\mathbb{R}^{n}	R	$R A^{T} R$	Real perplectics
$\mathbb{R}^{2 n}$	J	$-J A^{T} J$	Real symplectics
$\mathbb{C}^{2 n}$	J	$-J A^{T} J$	Complex symplectics

Groups corresponding to a sesquilinear form			
\mathbb{C}^{n}	I	A^{*}	Unitaries
\mathbb{C}^{n}	$\Sigma_{p, q}$	$\Sigma_{p, q} A^{*} \Sigma_{p, q}$	Pseudo-unitaries
$\mathbb{C}^{2 n}$	J	$-J A^{*} J$	Conjugate symplectics

$$
R=\left[\begin{array}{lll}
& . & 1 \\
1 & .
\end{array}\right], \quad J=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right], \quad \Sigma_{p, q}=\left[\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{q}
\end{array}\right]
$$

Bilinear Forms

Theorem 1

(a) For any f and $A \in \mathbb{K}^{n \times n}, f\left(A^{\star}\right)=f(A)^{\star}$.
(b) For $A \in \mathbb{G}, f(A) \in \mathbb{G}$ iff $f\left(A^{-1}\right)=f(A)^{-1}$.

Proof. (a) We have

$$
f\left(A^{\star}\right)=f\left(M^{-1} A^{T} M\right)=M^{-1} f\left(A^{T}\right) M=M^{-1} f(A)^{T} M=f(A)^{\star} .
$$

(b) For $A \in \mathbb{G}$, consider

$$
\begin{aligned}
& f(A)^{\star}=f\left(A^{\star}\right) \\
& \text { || } \\
& f\left(A^{-1}\right)
\end{aligned}
$$

Bilinear Forms

Theorem 1

(a) For any f and $A \in \mathbb{K}^{n \times n}, f\left(A^{\star}\right)=f(A)^{\star}$.
(b) For $A \in \mathbb{G}, f(A) \in \mathbb{G}$ iff $f\left(A^{-1}\right)=f(A)^{-1}$.

Proof. (a) We have
$f\left(A^{\star}\right)=f\left(M^{-1} A^{T} M\right)=M^{-1} f\left(A^{T}\right) M=M^{-1} f(A)^{T} M=f(A)^{\star}$.
(b) For $A \in \mathbb{G}$, consider

$$
\begin{aligned}
f(A)^{\star} & =f\left(A^{\star}\right) \\
\| & \| \\
f(A)^{-1} & =f\left(A^{-1}\right)
\end{aligned}
$$

Implications

For bilinear forms, f preserves group structure of A when $f\left(A^{-1}\right)=f(A)^{-1}$.

This condition holds for all A for

- Matrix sign function, $\operatorname{sign}(A)=A\left(A^{2}\right)^{-1 / 2}$.
- Any matrix power A^{α}, subject to suitable choice of branches. In particular, the
- principal matrix p th root $A^{1 / p}$
($p \in \mathbb{Z}^{+}, \Lambda(A) \cap \mathbb{R}^{-}=\emptyset$): unique X such that

1. $X^{p}=A$.
2. $-\pi / p<\arg (\lambda(X))<\pi / p$.

Group Newton Iteration

Theorem 2 Let $A \in \mathbb{G}$ (any group), $\Lambda(A) \cap \mathbb{R}^{-}=\emptyset$, and

$$
\begin{aligned}
Y_{k+1} & =\frac{1}{2}\left(Y_{k}+Y_{k}^{-\star}\right) \\
& =\frac{1}{2}\left(Y_{k}+M^{-1} Y_{k}^{-T} M\right), \quad Y_{1}=\frac{1}{2}(I+A) .
\end{aligned}
$$

Then $Y_{k} \rightarrow A^{1 / 2}$ quadratically and $Y_{k} \equiv X_{k}(k \geq 1)$, where X_{k} are the Newton iterates: $X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-1} A\right), X_{0}=A$.

Group Newton Iteration

Theorem 2 Let $A \in \mathbb{G}$ (any group), $\Lambda(A) \cap \mathbb{R}^{-}=\emptyset$, and

$$
\begin{aligned}
Y_{k+1} & =\frac{1}{2}\left(Y_{k}+Y_{k}^{-\star}\right) \\
& =\frac{1}{2}\left(Y_{k}+M^{-1} Y_{k}^{-T} M\right), \quad Y_{1}=\frac{1}{2}(I+A) .
\end{aligned}
$$

Then $Y_{k} \rightarrow A^{1 / 2}$ quadratically and $Y_{k} \equiv X_{k}(k \geq 1)$, where X_{k} are the Newton iterates: $X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-1} A\right), X_{0}=A$.
Cf.

- Cardoso, Kenney \& Silva Leite (2003, App. Num. Math.): bilinear forms with $M^{T}= \pm M, M^{T} M=I$.
- $\mathrm{H}(2003, \mathrm{SIREV}): M=\Sigma_{p, q}$.

Generalized Polar Decomposition

Theorem 2 For any group $\mathbb{G}, A \in \mathbb{K}^{n \times n}$ has a unique generalized polar decomposition $A=W S$ where

$$
W \in \mathbb{G} \quad\left(\text { i.e. }, W^{\star}=W^{-1}\right), \quad S^{\star}=S,
$$

and $\Lambda(S) \in$ open right half-plane (i.e., $\operatorname{sign}(S)=I$) iff $\left(A^{\star}\right)^{\star}=A$ and $\Lambda\left(A^{\star} A\right) \cap \mathbb{R}^{-}=\emptyset$.

Note

- $\left(A^{\star}\right)^{\star}=A$ holds for all \mathbb{G} in the earlier table.
- Other gpd's exist with different conditions on $\Lambda(S)$ (Rodman \& co-authors).

GPD Iteration \& Square Root

Theorem 3 Suppose the iteration $X_{k+1}=X_{k} h\left(X_{k}^{2}\right), X_{0}=A$ converges to $\operatorname{sign}(A)$ with order m. If A has the generalized polar decomposition $A=W S$ w.r.t. a scalar product then

$$
Y_{k+1}=Y_{k} h\left(Y_{k}^{\star} Y_{k}\right), \quad Y_{0}=A
$$

converges to W with order of convergence m.

GPD Iteration \& Square Root

Theorem 3 Suppose the iteration $X_{k+1}=X_{k} h\left(X_{k}^{2}\right), X_{0}=A$ converges to $\operatorname{sign}(A)$ with order m. If A has the generalized polar decomposition $A=W S$ w.r.t. a scalar product then

$$
Y_{k+1}=Y_{k} h\left(Y_{k}^{\star} Y_{k}\right), \quad Y_{0}=A
$$

converges to W with order of convergence m.
Theorem 4 Let \mathbb{G} be any automorphism group and $A \in \mathbb{G}$. If $\Lambda(A) \cap \mathbb{R}^{-}=\emptyset$ then $I+A=W S$ is a generalized polar decomposition with $W=A^{1 / 2}$ and $S=A^{-1 / 2}+A^{1 / 2}$.

Application

Newton

Sign: $X_{k+1}=X_{k} \cdot \frac{1}{2}\left(I+\left(X_{k}^{2}\right)^{-1}\right) \equiv X_{k} h\left(X_{k}^{2}\right), \quad X_{0}=A$.
Group sqrt:

$$
Y_{k+1}=\frac{1}{2} Y_{k}\left(I+\left(Y_{k}^{\star} Y_{k}\right)^{-1}\right)=\frac{1}{2}\left(Y_{k}+Y_{k}^{-\star}\right), \quad Y_{0}=I+A
$$

Schulz

Sign: $X_{k+1}=X_{k} \cdot \frac{1}{2}\left(3 I-X_{k}^{2}\right) \equiv X_{k} h\left(X_{k}^{2}\right), \quad X_{0}=A$.
Group Schulz:

$$
Y_{k+1}=\frac{1}{2} Y_{k}\left(3 I-Y_{k}^{\star} Y_{k}\right), \quad Y_{0}=I+A
$$

Class of Square Root Iterations

Theorem 5 Suppose the iteration $X_{k+1}=X_{k} h\left(X_{k}^{2}\right), X_{0}=A$ converges to $\operatorname{sign}(A)$ with order m. If $\Lambda(A) \cap \mathbb{R}^{-}=\emptyset$ and

$$
\begin{array}{ll}
Y_{k+1}=Y_{k} h\left(Z_{k} Y_{k}\right), & Y_{0}=A, \\
Z_{k+1}=h\left(Z_{k} Y_{k}\right) Z_{k}, & Z_{0}=I,
\end{array}
$$

then $Y_{k} \rightarrow A^{1 / 2}$ and $Z_{k} \rightarrow A^{-1 / 2}$ as $k \rightarrow \infty$, both with order m, and $Y_{k}=A Z_{k}$ for all k. Moreover, if $X \in \mathbb{G}$ implies $X h\left(X^{2}\right) \in \mathbb{G}$ then $A \in \mathbb{G}$ implies $Y_{k} \in \mathbb{G}$ and $Z_{k} \in \mathbb{G}$ for all k.

- Proof makes use of $\operatorname{sign}\left(\left[\begin{array}{cc}0 & A \\ I & 0\end{array}\right]\right)=\left[\begin{array}{cc}0 & A^{1 / 2} \\ A^{-1 / 2} & 0\end{array}\right]$.
- Newton sign leads to DB iteration.

Padé Square Root Iterations

Example: structure-preserving cubic:

$$
\begin{array}{ll}
Y_{k+1}=Y_{k}\left(3 I+Z_{k} Y_{k}\right)\left(I+3 Z_{k} Y_{k}\right)^{-1}, & Y_{0}=A \\
Z_{k+1}=\left(3 I+Z_{k} Y_{k}\right)\left(I+3 Z_{k} Y_{k}\right)^{-1} Z_{k}, & Z_{0}=I
\end{array}
$$

If $\Lambda(A) \cap \mathbb{R}^{-}=\emptyset$ then

- $Y_{k} \rightarrow A^{1 / 2}$ and $Z_{k} \rightarrow A^{-1 / 2}$ cubically,
- $A \in \mathbb{G} \Rightarrow X_{k} \in \mathbb{G}, Y_{k} \in \mathbb{G}$ for all k.

Stability

Define $X_{k+1}=g\left(X_{k}\right)$ to be stable in nbhd of fixed point $X=g(X)$ if for $X_{0}:=X+H_{0}$, with arbitrary error H_{0}, the $H_{k}:=X_{k}-X$ satisfy

$$
H_{k+1}=L_{X}\left(H_{k}\right)+O\left(\left\|H_{k}\right\|^{2}\right),
$$

where L_{X} is a linear operator with bounded powers.
Theorem 6 Consider the mapping

$$
G(Y, Z)=\left[\begin{array}{l}
Y h(Z Y) \\
h(Z Y) Z
\end{array}\right]
$$

where $X_{k+1}=X_{k} h\left(X_{k}^{2}\right)$ is any superlinear matrix sign iteration. Any $P=\left(B, B^{-1}\right)$ is a fixed point for G, and

$$
d G_{P}(E, F)=\frac{1}{2}\left[\begin{array}{c}
E-B F B \\
F-B^{-1} E B^{-1}
\end{array}\right] .
$$

$d G_{P}$ is idempotent, that is, $d G_{P} \circ d G_{P}=d G_{P}$.

Experiment

Random pseudo-orthogonal $A \in \mathbb{R}^{10 \times 10}$,

$$
\begin{gathered}
M=\operatorname{diag}\left(I_{6},-I_{4}\right) \quad\left(A^{T} M A=M\right), \\
\|A\|_{2}=10^{5}=\left\|A^{-1}\right\|_{2},
\end{gathered}
$$

generated using alg of H (2003) and chosen to be symmetric positive definite.

$$
\begin{aligned}
& \operatorname{err}(X)=\frac{\left\|X-A^{1 / 2}\right\|_{2}}{\left\|A^{1 / 2}\right\|_{2}}, \\
& \mu_{\mathbb{G}}(X)=\frac{\left\|X^{\star} X-I\right\|_{2}}{\|X\|_{2}^{2}} .
\end{aligned}
$$

Results

k	Newton	Group Newton		Cubic, struc. pres.	
	$\operatorname{err}\left(X_{k}\right)$	$\operatorname{err}\left(Y_{k}\right)$	$\mu_{\mathbb{G}}\left(Y_{k}\right)$	$\operatorname{err}\left(Y_{k}\right)$	$\mu_{\mathbb{G}}\left(Y_{k}\right)$
0	3.2 e 2			3.2 e 2	$1.4 \mathrm{e}-15$
1	1.6 e 2	1.6 e 2	$1.0 \mathrm{e}-5$	1.0 e 2	$7.2 \mathrm{e}-15$
2	7.8 e 1	7.8 e 1	$1.0 \mathrm{e}-5$	3.4 e 1	$6.1 \mathrm{e}-14$
3	3.9 e 1	3.9 e 1	$1.0 \mathrm{e}-5$	1.1 e 1	$5.1 \mathrm{e}-13$
4	1.9 e 1	1.9 e 1	$1.0 \mathrm{e}-5$	3.0 e 0	$2.9 \mathrm{e}-12$
5	8.9 e 0	8.9 e 0	$9.9 \mathrm{e}-6$	$5.5 \mathrm{e}-1$	$4.4 \mathrm{e}-12$
6	4.0 e 0	4.0 e 0	$9.6 \mathrm{e}-6$	$2.0 \mathrm{e}-2$	$4.3 \mathrm{e}-12$
7	3.2 e 1	1.6 e 0	$8.5 \mathrm{e}-6$	$2.0 \mathrm{e}-6$	$4.5 \mathrm{e}-12$
8	2.3 e 5	$4.9 \mathrm{e}-1$	$5.5 \mathrm{e}-6$	$2.1 \mathrm{e}-11$	$4.8 \mathrm{e}-12$
9	4.6 e 9	$8.2 \mathrm{e}-2$	$1.5 \mathrm{e}-6$		
10	2.3 e 9	$3.1 \mathrm{e}-3$	$6.1 \mathrm{e}-8$		
11	1.1 e 9	$4.7 \mathrm{e}-6$	$9.5 \mathrm{e}-11$		
12	5.6 e 8	$2.1 \mathrm{e}-11$	$2.4 \mathrm{e}-16$		

Conclusions

* Characterizations of f that preserve group structure (e.g., if $f\left(A^{-1}\right)=f(A)^{-1}$ for bilinear forms).
\star Using gen polar decomp, derived numerically stable form of Newton for $A^{1 / 2}$ when $A \in \mathbb{G}$.
\star Derived new family of coupled iterations for $A^{1 / 2}$ that is structure preserving for matrix groups.
Stability analysis using Fréchet derivative.
- Functions Preserving Matrix Groups and Iterations for the Matrix Square Root, NA Report 446, March 2004; to appear in SIMAX.
- Functions of a Matrix; book in preparation.

