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Schur complements

The notion of Schur complement of a partitioned matrix
with a square nonsingular block was introduced by Issai
Schur (1874–1941) in 1917 ∗

We consider the partitioned matrix

M

(p+r)×(q+s)
=











A

p×q

B

p×s

C

r×q

D

r×s











∗ I. Schur, Potenzreihen im Innern des Einheitskreises, J. Reine Angew. Math.,

147 (1917) 205–232.
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Schur complements

M

(p+r)×(q+s)
=











A

p×q

B

p×s

C

r×q

D

r×s











If D is square and nonsingular, the Schur complement of D
in M is denoted by (M/D) and defined by

(M/D) = A − BD−1C

Moreover, if A is square, the Schur determinantal
formula holds

det(M/D) =
detM

detD
.
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Schur complements
The term Schur complement and the notation (M/D)
has been introduced by [Haynsworth, 1968] in two
papers.

Appearences of Schur complement or Schur
determinantal formula has been founded in the 1800s
(J.J. Sylvester (1814-1897) and Laplace (1749-1827)).

They have
useful properties in linear algebra and matrix
techniques
important applications in numerical analysis and
applied mathematics (multigrids, preconditioners,
statistics, probability, . . . ).

Extensive exposition and applications to various branches of mathematics in

F.-Z. Zhang ed., The Schur Complement and Its Applications, Springer, in press.
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Generalizations

Several generalizations of the Schur complement can be
found in the literature.

Here we consider the generalization introduced by [Carlson
- Haynsworth - Markam, 1974] and by [Marsiglia - Styan,
1974], but also implicitly considered by [Rohde, 1965] and
by [Ben-Israel, 1969]

where the block D is rectangular and/or singular, and so we

will replace its inverse by its pseudo–inverse.
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Pseudo-Schur complements

M

(p+r)×(q+s)
=











A

p×q

B

p×s

C

r×q

D

r×s











If D is rectangular or square AND singular, we define the
Pseudo-Schur complement (M/D)P of D in M by

(M/D)P = A − BD†C

where D† is the pseudo-inverse (or Moore-Penrose
inverse) of D.
Remark: We can also define (M/A)P = D − CA†B,

(M/B)P = C − DB†A, and (M/C)P = B − AC†D.
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Pseudo-Schur compl. - Multiple blocks

Pseudo–Schur complements can also be defined for
matrices partitioned into an arbitrary number of blocks.

We consider the n × m block matrix

M =



















A11 · · · A1j · · · A1m

...
...

...
Ai1 · · · Aij · · · Aim

...
...

...
An1 · · · Anj · · · Anm
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Pseudo-Schur compl. - Multiple blocks
We denote by

A(i,j) the (n − 1) × (m − 1) block matrix obtained by
deleting the ith row of blocks and the jth column of
blocks of M

A(i,j) =



















A11 · · · A1j

⊕

· · · A1m

...
...
⊕ ...

Ai1
⊕

· · ·
⊕

Aij

⊕

· · ·
⊕

Aim

⊕

...
...
⊕ ...

An1 · · · Anj

⊕

· · · Anm



















Structured Numerical Linear Algebra Problems: Algorithms and Applications, Cortona, Italy, September 19-24, 2004 – p.9



Pseudo-Schur compl. - Multiple blocks
We denote by

A(i,j) the (n − 1) × (m − 1) block matrix obtained by
deleting the ith row of blocks and the jth column of
blocks of M

B
(i)
j the block matrix obtained by deleting the ith block

of the jth column of M

B
(i)
j =



























A1j

...
Ai−1,j

Ai,j

⊕

Ai+1,j

...
Anj



























Structured Numerical Linear Algebra Problems: Algorithms and Applications, Cortona, Italy, September 19-24, 2004 – p.10



Pseudo-Schur compl. - Multiple blocks
We denote by

A(i,j) the (n − 1) × (m − 1) block matrix obtained by
deleting the ith row of blocks and the jth column of
blocks of M

B
(i)
j the block matrix obtained by deleting the ith block

of the jth column of M

C
(j)
i the block matrix obtained by deleting the jth block

of the ith row of M

C
(j)
i = (Ai1, . . . , Ai,j−1, Ai,j

⊕

, Ai,j+1, . . . , Aim)
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Pseudo-Schur compl. - Multiple blocks
We denote by

A(i,j) the (n − 1) × (m − 1) block matrix obtained by
deleting the ith row of blocks and the jth column of
blocks of M

B
(i)
j the block matrix obtained by deleting the ith block

of the jth column of M

C
(j)
i the block matrix obtained by deleting the jth block

of the ith row of M

The pseudo–Schur complement of Aij in M is defined as

(M/Aij)P = A(i,j) − B
(i)
j A†

ijC
(j)
i .
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Pseudo-inverses

Definition: The Pseudo-inverse A† of a rectangular or
square singular matrix A is the unique matrix satisfying the
four Penrose conditions

A†AA† = A†

AA†A = A

(A†A)T = A†A

(AA†)T = AA†

Remark : If only some of the Penrose conditions are sat-

isfied, the matrix (denoted by A−) is called a generalized

inverse.
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Pseudo-inverses and linear systems

The Pseudo-inverse notion is related to the least squares
solution of systems of linear equations in partitioned form.
In fact, it is well known that, if we consider the rectangular
system

Ax = b, A ∈ R
p×q, rank (A) = k ≤ min(p, q),x ∈ R

q, b ∈ R
p

the least square solution of the problem of finding

min
x∈V

‖x‖2, V = {x ∈ R
q | ‖Ax− b‖2 = min}

is given by

x = A†b
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Pseudo-inverses

General expression: If rank (A) = k ≤ min(p, q), and if we
consider the SVD decomposition

A = U ΣV T

where U ∈ R
p×p and V ∈ R

q×q are orthogonal and

Σ =

(

Σk 0

0 0

)

∈ R
p×q

with Σk = diag (σ1, . . . , σk), σ1 ≥ σ2 ≥ · · · σk > 0, then we
have

A† = V

(

Σ−1
k

0

0 0

)

UT .
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Pseudo-inverses

General properties:

(A†)† = A

(A†)T = (AT )†

(ATA)† = A†(A†)T
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Pseudo-inverses - Particular cases

If we consider particular cases, expression of A† simplify
and additional properties hold.

Case 1 If p ≥ q and rank (A) = q, then

A† = (ATA)−1AT

and we have
A†A = Iq

Case 2 If p ≤ q and rank (A) = p, then

A† = AT (AAT )−1

and it holds
AA† = Ip
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Pseudo-inverse of a product

In general,
(AB)† 6= B†A†

From the two particular cases it follows that, if

A ∈ R
p×q and B ∈ R

q×m

with p ≥ q and q ≤ m, and rank (A) = rank (B) = q then (Å.
Björck, 1996)

(AB)† = B†A† = BT (BBT )−1(ATA)−1AT

Remark : Other necessary and sufficient conditions for hav-

ing (AB)† = B†A† are given by [Greville, 1966].
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Pseudo-inverses - Properties

Properties:

Case 1 If p ≥ q and rank (A) = q, then

(AA†)† = AA†

Case 2 If p ≤ q and rank (A) = p, then

(A†A)† = A†A
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Schur complements - Gauss

Schur complements are related to Gaussian factorization
and to the solution of systems of linear equations.
Let M a square partitioned matrix

M =

(

A B

C D

)

If A is square and nonsingular, we have the factorization

M =

(

I 0

CA−1 I

)(

A B

0 D − CA−1B

)

from which the Schur determinantal formula immediately

holds.
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Schur complements - linear systems

If both A and D are square and nonsingular, and if we
consider the system

(

A B

C D

)(

x

y

)

=

(

u

v

)

the solution is

x = (M/D)−1(u − BD−1v)

y = (M/A)−1 (v − CA−1u)
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Pseudo-Schur complements - Gauss

Similarly [MRZ, 2004], let M a partitioned matrix

M =

(

A B

C D

)

Case 1

If D ∈ R
r×s with r ≥ s and rank(D) = s, then D†D = Is

and it follows

M =

(

A B

C D

)

=

(

Ip BD†

0r×p Ir

)(

(M/D)P 0p×s

C D

)
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Pseudo-Schur compl. - linear systems

So, the system
(

A B

C D

)(

x

y

)

=

(

u

v

)

becomes a block triangular system and,

if p ≥ q and rank((M/D)P) = q,

we have

x = (M/D)†P (u − BD†v)

y = D†(v − Cx)
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Pseudo-Schur complements - Gauss

Case 2

If D ∈ R
r×s with r ≤ s and rank(D) = r, then DD† = Ir

and it follows

M =

(

A B

C D

)

=

(

(M/D)P B

0r×q D

)(

Iq 0q×s

D†C Is

)
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Pseudo-Schur compl. - linear systems

So, the system

MT

(

x′

y′

)

=

(

u′

v′

)

becomes a block triangular system and,

if p ≤ q and rank((M/D)TP) = p,

since (DT )†DT = Ir, we have

x′ = ((M/D)TP)†(u′ − (D†C)Tv′)

y′ = (DT )†(v′ − BTx′)
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Schur and Pseudo-Schur complements

Particular cases [MRZ, 2004]:

Case 1 If r ≥ s and rank (D) = s, then

(M/D)P = A − B(DTD)−1DTC

So,
(M/D)P = (M ′/DTD)

where

M ′ =

(

A B

DTC DTD

)

∈ R
(p+s)×(q+s)
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Schur and Pseudo-Schur complements

Case 2 If r ≤ s and rank (D) = r, then

(M/D)P = A − BDT (DDT )−1C

So,
(M/D)P = (M ′′/DDT )

where

M ′′ =

(

A BDT

C DDT

)

∈ R
(p+r)×(q+r)
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Bordered matrices
Let M † be the pseudo-inverse of the bordered matrix M .
We set

M ‡ =

(

A† + A†BS†CA† −A†BS†

−S†CA† S†

)

where S = D − CA†B ∈ R
r×s that is S = (M/A)P .

Formula given by [Ben-Israel, 1969]. Generalization of the
block bordering method [Brezinski-MRZ, 1991].

In general M ‡ 6= M †

For necessary and sufficient conditions see
[Bhimasankaram, 1971], [Burns - Carlson - Haynsworth -
Markham, 1974].
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Bordered matrices - Properties

Anyway [MRZ, 2004], it holds

(M ‡/S†)P = A†

This formula generalizes Duncan inversion formula (1944).

Moreover we have the decomposition

M ‡ =

(

Iq −A†BS†S

0s×q Is

)(

A† 0q×r

−S†CA† S†

)

Structured Numerical Linear Algebra Problems: Algorithms and Applications, Cortona, Italy, September 19-24, 2004 – p.29



Bordered matrices - Properties

Particular cases [Brezinski - MRZ, 2004]:

Case 1 If p ≥ q and rank (A) = q, if r ≥ s and rank (S) = s,
then A†A = Iq, S†S = Is and it holds

M ‡M = Iq+s

Case 2 If p ≤ q and rank (A) = p, if r ≤ s and rank (S) = r,
then AA† = Ip, SS† = Ir and it holds

MM ‡ = Ip+r

These properties were used in the construction of new
acceleration schemes for vector sequences [Brezinski -
MRZ, 2004].
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Bordered matrices - Properties

If D is square and non singular (so (M/D)P = (M/D)), and
if we set

(M/D)‡ = A† + A†BS†CA†

(expression that generalizes the Sherman-Morrison (1949)
and Woodbury (1950) formula) we have [MRZ, 2004]

Case 1 If p ≥ q and rank (A) = q, if S is square and non
singular, then

(M/D)‡(M/D) = Iq

Case 2 If p ≤ q and rank (A) = p, if S is square and non
singular, then

(M/D)(M/D)‡ = Ip
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Schur complement - Quotient property

Let us consider the matrix

M =







A B E

C D F

G H L







and its submatrices

A′ =

(

A B

C D

)

B′ =

(

B E

D F

)

C ′ =

(

C D

G H

)

D′ =

(

D F

H L

)
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Quotient property

If (D′/D) is square and non singular then [Crabtree -
Haynsworth, 1969]

(M/D′) = ((M/D)/(D′/D)) (1)

= (A′/D) − (B′/D)(D′/D)−1(C ′/D) (2)

Different proofs in [Ostrowski, 1971] and in [Brezinski -
MRZ, 2003]

(1) was extended to Pseudo-Schur complement in
[Carlson - Haynsworth - Markham, 1974]

(M/D′)P = ((M/D)P/(D′/D)P)P
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Quotient property

In [MRZ, 2004], following the idea given in [Brezinski -
MRZ, 2003], we proposed a different proof of (1) and we
proved also (2), and the following property holds

Property: If (D′)‡ = (D′)†, then

(M/D′)P = ((M/D)P/(D′/D)P)P

= (A′/D)P − (B′/D)P(D′/D)†P(C ′/D)P
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Quotient property

Proof: From the definition of pseudo-Schur complement of
D′ in M we have

(M/D′)P = A − (B E)

(

D F

H L

)†(

C

G

)

Setting S = (D′/D)P , since (D′)‡ = (D′)†, then

(D′)‡ =

(

D F

H L

)‡

=

(

D† + D†FS†HD† −D†FS†

−S†HD† S†

)

= (D′)†

By substituting in the previous formula, we easily obtain (2)

(M/D′)P = (A′/D)P − (B′/D)P(D′/D)†P(C ′/D)P
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Quotient property
We consider the matrix

M ′ =

(

(A′/D)P (B′/D)P
(C ′/D)P (D′/D)P

)

and its pseudo-Schur complement

(M ′/(D′/D)P)P = (A′/D)P − (B′/D)P(D′/D)†P(C ′/D)P

= (M/D′)P

From the definition of pseudo-Schur complement for
matrices partitioned into an arbitrary number of blocks we
have

(M/D)P =

(

A E

G L

)

−

(

B

H

)

D†(C F )
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Quotient property

(M/D)P =

(

A − BD†C E − BD†F

G − HD†C L − HD†F

)

= M ′

which proves (1)

(M/D′)P = ((M/D)P/(D′/D)P)P
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Quotient property - Linear systems

We apply the block Gaussian elimination to the system






A B E

C D F

G H L













x

y

z






=







u

v

w







If D is square and non singular we obtain






(A′/D) 0 (B′/D)

C D F

(C ′/D) 0 (D′/D)













x

y

z






=







u − BD−1v

v

w − HD−1v
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Quotient property - Linear systems

In the second step of Gaussian elimination, we suppose
that (D′/D) is square and non singular, and we obtain






(M/D′) 0 0

C D F

(C ′/D) 0 (D′/D)













x

y

z






=







(u − BD−1v) − (B′/D)(D′/D)−1(w − HD−1v)

v

w − HD−1v






,

so

x =(M/D′)−1
[

(u − BD−1v) − (B′/D)(D′/D)−1(w − HD−1v)
]
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Quotient property - Linear systems
If D is rectangular or square and singular we can obtain a
similar result.
By using D as pivot and if D†D = I we obtain






(A′/D)P 0 (B′/D)P
C D F

(C ′/D)P 0 (D′/D)P













x

y

z






=







u − BD†v

v

w − HD†v







If, in the second step of Gaussian elimination, we suppose
that (D′/D)†P(D′/D)P = I, it is easy to see that

((A′/D)P − (B′/D)P(D′/D)†P(C ′/D)P)x =

(u − BD†v) − (B′/D)P(D′/D)†P(w − HD†v)
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Quotient property - Linear systems

So, if the Pseudo-Schur quotient property holds, we have

(M/D′)Px =(u − BD†v) − (B′/D)P(D′/D)†P(w − HD†v)
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Reference: M. Redivo Zaglia, Pseudo-Schur complements
and their properties, Appl. Numer. Math 50 (2004) 511-519.

Future work: Application of the Pseudo-Schur quotient
property to the construction of recursive algoritms for vector
sequence transformations proposed in
C. Brezinski, M. Redivo Zaglia, New vector sequence
transformations, Linear Algebra Appl. 389 (2004) 189-213.
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