# Pseudo-Schur complements and their properties 

M. Redivo-Zaglia<br>Dipartimento di Matematica Pura ed Applicata<br>Università degli Studi di Padova, Italy

## Overview

- Schur complement
- Pseudo-Schur complement
- Generalization of Pseudo-Schur complement for multiple blocks
- Pseudo-inverses: properties and particular cases
- Schur complement and Gauss
- Pseudo-Schur complement and Gauss
- Bordered matrices
- Quotient property


## Schur complements

The notion of Schur complement of a partitioned matrix with a square nonsingular block was introduced by Issai Schur (1874-1941) in 1917 *।

We consider the partitioned matrix

$$
\underset{(p+r) \times(q+s)}{M}=\left(\begin{array}{cc}
A & B \\
p \times q & p \times s \\
C & D \\
r \times q & r \times s
\end{array}\right)
$$

[^0]
## Schur complements

$$
\underset{(p+r) \times(q+s)}{M}=\left(\begin{array}{cc}
A & B \\
p \times q & p \times s \\
C & \underset{r \times s}{D} \\
r \times q & r \times s
\end{array}\right)
$$

If $D$ is square and nonsingular, the Schur complement of $D$ in $M$ is denoted by $(M / D)$ and defined by

$$
(M / D)=A-B D^{-1} C
$$

Moreover, if $A$ is square, the Schur determinantal formula holds

$$
\operatorname{det}(M / D)=\frac{\operatorname{det} M}{\operatorname{det} D} .
$$

## Schur complements

- The term Schur complement and the notation ( $M / D$ ) has been introduced by [Haynsworth, 1968] in two papers.
- Appearences of Schur complement or Schur determinantal formula has been founded in the 1800s (J.J. Sylvester (1814-1897) and Laplace (1749-1827)).
- They have
- useful properties in linear algebra and matrix techniques
- important applications in numerical analysis and applied mathematics (multigrids, preconditioners, statistics, probability, ...).

Extensive exposition and applications to various branches of mathematics in F.-Z. Zhang ed., The Schur Complement and Its Applications, Springer, in press.

## Generalizations

Several generalizations of the Schur complement can be found in the literature.

Here we consider the generalization introduced by [Carlson - Haynsworth - Markam, 1974] and by [Marsiglia - Styan, 1974], but also implicitly considered by [Rohde, 1965] and by [Ben-Israel, 1969]
where the block $D$ is rectangular and/or singular, and so we will replace its inverse by its pseudo-inverse.

## Pseudo-Schur complements

$$
\underset{(p+r) \times(q+s)}{M}=\left(\begin{array}{cc}
A & B \\
p \times q & p \times s \\
C & \underset{r \times s}{D} \\
r \times q & r \times s
\end{array}\right)
$$

If $D$ is rectangular or square AND singular, we define the Pseudo-Schur complement $(M / D)_{\mathcal{P}}$ of $D$ in $M$ by

$$
(M / D)_{\mathcal{P}}=A-B D^{\dagger} C
$$

where $D^{\dagger}$ is the pseudo-inverse (or Moore-Penrose inverse) of $D$.
Remark: We can also define $(M / A)_{\mathcal{P}}=D-C A^{\dagger} B$,
$(M / B)_{\mathcal{P}}=C-D B^{\dagger} A$, and $(M / C)_{\mathcal{P}}=B-A C^{\dagger} D$.

## Pseudo-Schur compl. - Multiple blocks

Pseudo-Schur complements can also be defined for matrices partitioned into an arbitrary number of blocks.

We consider the $n \times m$ block matrix

$$
M=\left(\begin{array}{ccccc}
A_{11} & \cdots & A_{1 j} & \cdots & A_{1 m} \\
\vdots & & \vdots & & \vdots \\
A_{i 1} & \cdots & A_{i j} & \cdots & A_{i m} \\
\vdots & & \vdots & & \vdots \\
A_{n 1} & \cdots & A_{n j} & \cdots & A_{n m}
\end{array}\right)
$$

## Pseudo-Schur compl. - Multiple blocks

We denote by

- $A^{(i, j)}$ the $(n-1) \times(m-1)$ block matrix obtained by deleting the $i$ th row of blocks and the $j$ th column of blocks of $M$

$$
A^{(i, j)}=\left(\begin{array}{cccc}
A_{11} & \cdots & \bigoplus_{1 j} \cdots & A_{1 m} \\
\vdots & \bigoplus_{1} & \vdots \\
\bigoplus_{1} & \oplus & \bigoplus_{i j} \oplus & \bigoplus_{m} \\
\vdots & \bigoplus_{1} & \vdots \\
A_{n 1} & \cdots & \bigoplus_{n j} \cdots & A_{n m}
\end{array}\right)
$$

## Pseudo-Schur compl. - Multiple blocks

We denote by

- $A^{(i, j)}$ the $(n-1) \times(m-1)$ block matrix obtained by deleting the $i$ th row of blocks and the $j$ th column of blocks of $M$
- $B_{j}^{(i)}$ the block matrix obtained by deleting the $i$ th block of the $j$ th column of $M$

$$
B_{j}^{(i)}=\left(\begin{array}{c}
A_{1 j} \\
\vdots \\
A_{i-1, j} \\
\oplus_{i, j} \\
A_{i+1, j} \\
\vdots \\
A_{n j}
\end{array}\right)
$$

## Pseudo-Schur compl. - Multiple blocks

We denote by

- $A^{(i, j)}$ the $(n-1) \times(m-1)$ block matrix obtained by deleting the $i$ th row of blocks and the $j$ th column of blocks of $M$
- $B_{j}^{(i)}$ the block matrix obtained by deleting the $i$ th block of the $j$ th column of $M$
- $C_{i}^{(j)}$ the block matrix obtained by deleting the $j$ th block of the $i$ th row of $M$

$$
C_{i}^{(j)}=\left(A_{i 1}, \ldots, A_{i, j-1}, A_{i, j+1}, \ldots, A_{i m}\right)
$$

## Pseudo-Schur compl. - Multiple blocks

We denote by

- $A^{(i, j)}$ the $(n-1) \times(m-1)$ block matrix obtained by deleting the $i$ th row of blocks and the $j$ th column of blocks of $M$
- $B_{j}^{(i)}$ the block matrix obtained by deleting the $i$ th block of the $j$ th column of $M$
- $C_{i}^{(j)}$ the block matrix obtained by deleting the $j$ th block of the $i$ th row of $M$

The pseudo-Schur complement of $A_{i j}$ in $M$ is defined as

$$
\left(M / A_{i j}\right)_{\mathcal{P}}=A^{(i, j)}-B_{j}^{(i)} A_{i j}^{\dagger} C_{i}^{(j)} .
$$

## Pseudo-inverses

Definition: The Pseudo-inverse $A^{\dagger}$ of a rectangular or square singular matrix $A$ is the unique matrix satisfying the four Penrose conditions

$$
\begin{aligned}
A^{\dagger} A A^{\dagger} & =A^{\dagger} \\
A A^{\dagger} A & =A \\
\left(A^{\dagger} A\right)^{T} & =A^{\dagger} A \\
\left(A A^{\dagger}\right)^{T} & =A A^{\dagger}
\end{aligned}
$$

Remark: If only some of the Penrose conditions are satisfied, the matrix (denoted by $A^{-}$) is called a generalized inverse.

## Pseudo-inverses and linear systems

The Pseudo-inverse notion is related to the least squares solution of systems of linear equations in partitioned form. In fact, it is well known that, if we consider the rectangular system

$$
A \mathbf{x}=\mathbf{b}, \quad A \in \mathbb{R}^{p \times q}, \operatorname{rank}(A)=k \leq \min (p, q), \mathbf{x} \in \mathbb{R}^{q}, \mathbf{b} \in \mathbb{R}^{p}
$$

the least square solution of the problem of finding

$$
\min _{\mathbf{x} \in V}\|\mathbf{x}\|_{2}, \quad V=\left\{\mathbf{x} \in \mathbb{R}^{q} \mid\|A \mathbf{x}-\mathbf{b}\|_{2}=\min \right\}
$$

is given by

$$
\mathbf{x}=A^{\dagger} \mathbf{b}
$$

## Pseudo-inverses

General expression: If $\operatorname{rank}(A)=k \leq \min (p, q)$, and if we consider the SVD decomposition

$$
A=U \Sigma V^{T}
$$

where $U \in \mathbb{R}^{p \times p}$ and $V \in \mathbb{R}^{q \times q}$ are orthogonal and

$$
\Sigma=\left(\begin{array}{cc}
\Sigma_{k} & 0 \\
0 & 0
\end{array}\right) \in \mathbb{R}^{p \times q}
$$

with $\Sigma_{k}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right), \sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{k}>0$, then we have

$$
A^{\dagger}=V\left(\begin{array}{cc}
\Sigma_{k}^{-1} & 0 \\
0 & 0
\end{array}\right) U^{T}
$$

## Pseudo-inverses

## General properties:

$$
\begin{aligned}
\left(A^{\dagger}\right)^{\dagger} & =A \\
\left(A^{\dagger}\right)^{T} & =\left(A^{T}\right)^{\dagger} \\
\left(A^{T} A\right)^{\dagger} & =A^{\dagger}\left(A^{\dagger}\right)^{T}
\end{aligned}
$$

## Pseudo-inverses - Particular cases

If we consider particular cases, expression of $A^{\dagger}$ simplify and additional properties hold.

Case 1 If $p \geq q$ and $\operatorname{rank}(A)=q$, then

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}
$$

and we have

$$
A^{\dagger} A=I_{q}
$$

Case 2 If $p \leq q$ and $\operatorname{rank}(A)=p$, then

$$
A^{\dagger}=A^{T}\left(A A^{T}\right)^{-1}
$$

and it holds

$$
A A^{\dagger}=I_{p}
$$

## Pseudo-inverse of a product

In general,

$$
(A B)^{\dagger} \neq B^{\dagger} A^{\dagger}
$$

From the two particular cases it follows that, if

$$
A \in \mathbb{R}^{p \times q} \text { and } B \in \mathbb{R}^{q \times m}
$$

with $p \geq q$ and $q \leq m$, and $\operatorname{rank}(A)=\operatorname{rank}(B)=q$ then ( $\AA$.
Björck, 1996)

$$
(A B)^{\dagger}=B^{\dagger} A^{\dagger}=B^{T}\left(B B^{T}\right)^{-1}\left(A^{T} A\right)^{-1} A^{T}
$$

Remark: Other necessary and sufficient conditions for having $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$ are given by [Greville, 1966].

## Pseudo-inverses - Properties

## Properties:

Case 1 If $p \geq q$ and $\operatorname{rank}(A)=q$, then

$$
\left(A A^{\dagger}\right)^{\dagger}=A A^{\dagger}
$$

Case 2 If $p \leq q$ and $\operatorname{rank}(A)=p$, then

$$
\left(A^{\dagger} A\right)^{\dagger}=A^{\dagger} A
$$

## Schur complements - Gauss

Schur complements are related to Gaussian factorization and to the solution of systems of linear equations.
Let $M$ a square partitioned matrix

$$
M=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)
$$

If $A$ is square and nonsingular, we have the factorization

$$
M=\left(\begin{array}{cc}
I & 0 \\
C A^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
A & B \\
0 & D-C A^{-1} B
\end{array}\right)
$$

from which the Schur determinantal formula immediately holds.

## Schur complements - linear systems

If both $A$ and $D$ are square and nonsingular, and if we consider the system

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{\mathbf{x}}{\mathbf{y}}=\binom{\mathbf{u}}{\mathbf{v}}
$$

the solution is

$$
\begin{aligned}
& \mathbf{x}=(M / D)^{-1}\left(\mathbf{u}-B D^{-1} \mathbf{v}\right) \\
& \mathbf{y}=(M / A)^{-1}\left(\mathbf{v}-C A^{-1} \mathbf{u}\right)
\end{aligned}
$$

## Pseudo-Schur complements - Gauss

Similarly [MRZ, 2004], let $M$ a partitioned matrix

$$
M=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)
$$

## Case 1

If $D \in \mathbb{R}^{r \times s}$ with $r \geq s$ and $\operatorname{rank}(D)=s$, then $D^{\dagger} D=I_{s}$ and it follows

$$
M=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
I_{p} & B D^{\dagger} \\
0_{r \times p} & I_{r}
\end{array}\right)\left(\begin{array}{cc}
(M / D)_{\mathcal{P}} & 0_{p \times s} \\
C & D
\end{array}\right)
$$

## Pseudo-Schur compl. - linear systems

So, the system

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{\mathrm{x}}{\mathbf{y}}=\binom{\mathbf{u}}{\mathbf{v}}
$$

becomes a block triangular system and,

$$
\text { if } p \geq q \text { and } \operatorname{rank}\left((M / D)_{\mathcal{P}}\right)=q,
$$

we have

$$
\begin{aligned}
& \mathbf{x}=(M / D)_{\mathcal{P}}^{\dagger}\left(\mathbf{u}-B D^{\dagger} \mathbf{v}\right) \\
& \mathbf{y}=D^{\dagger}(\mathbf{v}-C \mathbf{x})
\end{aligned}
$$

## Pseudo-Schur complements - Gauss

Case 2
If $D \in \mathbb{R}^{r \times s}$ with $r \leq s$ and $\operatorname{rank}(D)=r$, then $D D^{\dagger}=I_{r}$ and it follows

$$
M=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
(M / D)_{\mathcal{P}} & B \\
0_{r \times q} & D
\end{array}\right)\left(\begin{array}{cc}
I_{q} & 0_{q \times s} \\
D^{\dagger} C & I_{s}
\end{array}\right)
$$

## Pseudo-Schur compl. - linear systems

So, the system

$$
M^{T}\binom{\mathbf{x}^{\prime}}{\mathbf{y}^{\prime}}=\binom{\mathbf{u}^{\prime}}{\mathbf{v}^{\prime}}
$$

becomes a block triangular system and,

$$
\text { if } p \leq q \text { and } \operatorname{rank}\left((M / D)_{\mathcal{P}}^{T}\right)=p,
$$

since $\left(D^{T}\right)^{\dagger} D^{T}=I_{r}$, we have

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\left((M / D)_{\mathcal{P}}^{T}\right)^{\dagger}\left(\mathbf{u}^{\prime}-\left(D^{\dagger} C\right)^{T} \mathbf{v}^{\prime}\right) \\
& \mathbf{y}^{\prime}=\left(D^{T}\right)^{\dagger}\left(\mathbf{v}^{\prime}-B^{T} \mathbf{x}^{\prime}\right)
\end{aligned}
$$

## Schur and Pseudo-Schur complements

Particular cases [MRZ, 2004]:
Case 1 If $r \geq s$ and rank $(D)=s$, then

$$
(M / D)_{\mathcal{P}}=A-B\left(D^{T} D\right)^{-1} D^{T} C
$$

So,

$$
(M / D)_{\mathcal{P}}=\left(M^{\prime} / D^{T} D\right)
$$

where

$$
M^{\prime}=\left(\begin{array}{cc}
A & B \\
D^{T} C & D^{T} D
\end{array}\right) \in \mathbb{R}^{(p+s) \times(q+s)}
$$

## Schur and Pseudo-Schur complements

Case 2 If $r \leq s$ and rank $(D)=r$, then

$$
(M / D)_{\mathcal{P}}=A-B D^{T}\left(D D^{T}\right)^{-1} C
$$

So,

$$
(M / D)_{\mathcal{P}}=\left(M^{\prime \prime} / D D^{T}\right)
$$

where

$$
M^{\prime \prime}=\left(\begin{array}{cc}
A & B D^{T} \\
C & D D^{T}
\end{array}\right) \in \mathbb{R}^{(p+r) \times(q+r)}
$$

## Bordered matrices

Let $M^{\dagger}$ be the pseudo-inverse of the bordered matrix $M$. We set

$$
M^{\ddagger}=\left(\begin{array}{cc}
A^{\dagger}+A^{\dagger} B S^{\dagger} C A^{\dagger} & -A^{\dagger} B S^{\dagger} \\
-S^{\dagger} C A^{\dagger} & S^{\dagger}
\end{array}\right)
$$

where $S=D-C A^{\dagger} B \in \mathbb{R}^{r \times s}$ that is $S=(M / A)_{\mathcal{P}}$.
Formula given by [Ben-Israel, 1969]. Generalization of the block bordering method [Brezinski-MRZ, 1991].

## In general $M^{\ddagger} \neq M^{\dagger}$

For necessary and sufficient conditions see
[Bhimasankaram, 1971], [Burns - Carlson - Haynsworth Markham, 1974].

## Bordered matrices - Properties

Anyway [MRZ, 2004], it holds

$$
\left(M^{\ddagger} / S^{\dagger}\right)_{\mathcal{P}}=A^{\dagger}
$$

This formula generalizes Duncan inversion formula (1944).
Moreover we have the decomposition

$$
M^{\ddagger}=\left(\begin{array}{cc}
I_{q} & -A^{\dagger} B S^{\dagger} S \\
0_{s \times q} & I_{s}
\end{array}\right)\left(\begin{array}{cc}
A^{\dagger} & 0_{q \times r} \\
-S^{\dagger} C A^{\dagger} & S^{\dagger}
\end{array}\right)
$$

## Bordered matrices - Properties

Particular cases [Brezinski - MRZ, 2004]:
Case 1 If $p \geq q$ and rank $(A)=q$, if $r \geq s$ and $\operatorname{rank}(S)=s$, then $A^{\dagger} A=I_{q}, S^{\dagger} S=I_{s}$ and it holds

$$
M^{\ddagger} M=I_{q+s}
$$

Case 2 If $p \leq q$ and $\operatorname{rank}(A)=p$, if $r \leq s$ and $\operatorname{rank}(S)=r$, then $A A^{\dagger}=I_{p}, S S^{\dagger}=I_{r}$ and it holds

$$
M M^{\ddagger}=I_{p+r}
$$

These properties were used in the construction of new acceleration schemes for vector sequences [Brezinski MRZ, 2004].

## Bordered matrices - Properties

If $D$ is square and non singular (so $(M / D)_{\mathcal{P}}=(M / D)$ ), and if we set

$$
(M / D)^{\ddagger}=A^{\dagger}+A^{\dagger} B S^{\dagger} C A^{\dagger}
$$

(expression that generalizes the Sherman-Morrison (1949) and Woodbury (1950) formula) we have [MRZ, 2004]
Case 1 If $p \geq q$ and rank $(A)=q$, if $S$ is square and non singular, then

$$
(M / D)^{\ddagger}(M / D)=I_{q}
$$

Case 2 If $p \leq q$ and rank $(A)=p$, if $S$ is square and non singular, then

$$
(M / D)(M / D)^{\ddagger}=I_{p}
$$

## Schur complement - Quotient property

## Let us consider the matrix

$$
M=\left(\begin{array}{lll}
A & B & E \\
C & D & F \\
G & H & L
\end{array}\right)
$$

and its submatrices

$$
\begin{array}{ll}
A^{\prime}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) & B^{\prime}=\left(\begin{array}{cc}
B & E \\
D & F
\end{array}\right) \\
C^{\prime}=\left(\begin{array}{ll}
C & D \\
G & H
\end{array}\right) & D^{\prime}=\left(\begin{array}{cc}
D & F \\
H & L
\end{array}\right)
\end{array}
$$

## Quotient property

If $\left(D^{\prime} / D\right)$ is square and non singular then [Crabtree Haynsworth, 1969]

$$
\begin{align*}
\left(M / D^{\prime}\right) & =\left((M / D) /\left(D^{\prime} / D\right)\right)  \tag{1}\\
& =\left(A^{\prime} / D\right)-\left(B^{\prime} / D\right)\left(D^{\prime} / D\right)^{-1}\left(C^{\prime} / D\right) \tag{2}
\end{align*}
$$

Different proofs in [Ostrowski, 1971] and in [Brezinski MRZ, 2003]
(1) was extended to Pseudo-Schur complement in [Carlson - Haynsworth - Markham, 1974]

$$
\left(M / D^{\prime}\right)_{\mathcal{P}}=\left((M / D)_{\mathcal{P}} /\left(D^{\prime} / D\right)_{\mathcal{P}}\right)_{\mathcal{P}}
$$

## Quotient property

In [MRZ, 2004], following the idea given in [Brezinski MRZ, 2003], we proposed a different proof of (1) and we proved also (2), and the following property holds

Property: If $\left(D^{\prime}\right)^{\ddagger}=\left(D^{\prime}\right)^{\dagger}$, then

$$
\begin{aligned}
\left(M / D^{\prime}\right)_{\mathcal{P}} & =\left((M / D)_{\mathcal{P}} /\left(D^{\prime} / D\right)_{\mathcal{P}}\right)_{\mathcal{P}} \\
& =\left(A^{\prime} / D\right)_{\mathcal{P}}-\left(B^{\prime} / D\right)_{\mathcal{P}}\left(D^{\prime} / D\right)_{\mathcal{P}}^{\dagger}\left(C^{\prime} / D\right)_{\mathcal{P}}
\end{aligned}
$$

## Quotient property

Proof: From the definition of pseudo-Schur complement of $D^{\prime}$ in $M$ we have

$$
\left(M / D^{\prime}\right)_{\mathcal{P}}=A-(B E)\left(\begin{array}{ll}
D & F \\
H & L
\end{array}\right)^{\dagger}\binom{C}{G}
$$

Setting $S=\left(D^{\prime} / D\right)_{\mathcal{P}}$, since $\left(D^{\prime}\right)^{\ddagger}=\left(D^{\prime}\right)^{\dagger}$, then

$$
\left(D^{\prime}\right)^{\ddagger}=\left(\begin{array}{cc}
D & F \\
H & L
\end{array}\right)^{\ddagger}=\left(\begin{array}{cc}
D^{\dagger}+D^{\dagger} F S^{\dagger} H D^{\dagger} & -D^{\dagger} F S^{\dagger} \\
-S^{\dagger} H D^{\dagger} & S^{\dagger}
\end{array}\right)=\left(D^{\prime}\right)^{\dagger}
$$

By substituting in the previous formula, we easily obtain (2)

$$
\left(M / D^{\prime}\right)_{\mathcal{P}}=\left(A^{\prime} / D\right)_{\mathcal{P}}-\left(B^{\prime} / D\right)_{\mathcal{P}}\left(D^{\prime} / D\right)_{\mathcal{P}}^{\dagger}\left(C^{\prime} / D\right)_{\mathcal{P}}
$$

## Quotient property

We consider the matrix

$$
M^{\prime}=\left(\begin{array}{ll}
\left(A^{\prime} / D\right)_{\mathcal{P}} & \left(B^{\prime} / D\right)_{\mathcal{P}} \\
\left(C^{\prime} / D\right)_{\mathcal{P}} & \left(D^{\prime} / D\right)_{\mathcal{P}}
\end{array}\right)
$$

and its pseudo-Schur complement

$$
\begin{aligned}
\left(M^{\prime} /\left(D^{\prime} / D\right)_{\mathcal{P}}\right)_{\mathcal{P}} & =\left(A^{\prime} / D\right)_{\mathcal{P}}-\left(B^{\prime} / D\right)_{\mathcal{P}}\left(D^{\prime} / D\right)_{\mathcal{P}}^{\dagger}\left(C^{\prime} / D\right)_{\mathcal{P}} \\
& =\left(M / D^{\prime}\right)_{\mathcal{P}}
\end{aligned}
$$

From the definition of pseudo-Schur complement for matrices partitioned into an arbitrary number of blocks we have

$$
(M / D)_{\mathcal{P}}=\left(\begin{array}{ll}
A & E \\
G & L
\end{array}\right)-\binom{B}{H} D^{\dagger}(C F)
$$

## Quotient property

$$
\begin{aligned}
(M / D)_{\mathcal{P}} & =\left(\begin{array}{ll}
A-B D^{\dagger} C & E-B D^{\dagger} F \\
G-H D^{\dagger} C & L-H D^{\dagger} F
\end{array}\right) \\
& =M^{\prime}
\end{aligned}
$$

which proves (1)

$$
\left(M / D^{\prime}\right)_{\mathcal{P}}=\left((M / D)_{\mathcal{P}} /\left(D^{\prime} / D\right)_{\mathcal{P}}\right)_{\mathcal{P}}
$$

## Quotient property - Linear systems

We apply the block Gaussian elimination to the system

$$
\left(\begin{array}{ccc}
A & B & E \\
C & D & F \\
G & H & L
\end{array}\right)\left(\begin{array}{c}
\mathbf{x} \\
\mathbf{y} \\
\mathbf{z}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{u} \\
\mathbf{v} \\
\mathbf{w}
\end{array}\right)
$$

If $D$ is square and non singular we obtain

$$
\left(\begin{array}{ccc}
\left(A^{\prime} / D\right) & 0 & \left(B^{\prime} / D\right) \\
C & D & F \\
\left(C^{\prime} / D\right) & 0 & \left(D^{\prime} / D\right)
\end{array}\right)\left(\begin{array}{l}
\mathbf{x} \\
\mathbf{y} \\
\mathbf{z}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{u}-B D^{-1} \mathbf{v} \\
\mathbf{v} \\
\mathbf{w}-H D^{-1} \mathbf{v}
\end{array}\right)
$$

## Quotient property - Linear systems

In the second step of Gaussian elimination, we suppose that $\left(D^{\prime} / D\right)$ is square and non singular, and we obtain

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\left(M / D^{\prime}\right) & 0 & 0 \\
C & D & F \\
\left(C^{\prime} / D\right) & 0 & \left(D^{\prime} / D\right)
\end{array}\right)\left(\begin{array}{l}
\mathbf{x} \\
\mathbf{y} \\
\mathbf{z}
\end{array}\right)= \\
& \left(\begin{array}{c}
\left(\mathbf{u}-B D^{-1} \mathbf{v}\right)-\left(B^{\prime} / D\right)\left(D^{\prime} / D\right)^{-1}\left(\mathbf{w}-H D^{-1} \mathbf{v}\right) \\
\\
\\
\\
\mathbf{v}-H D^{-1} \mathbf{v}
\end{array}\right)
\end{aligned}
$$

so

$$
\mathbf{x}=\left(M / D^{\prime}\right)^{-1}\left[\left(\mathbf{u}-B D^{-1} \mathbf{v}\right)-\left(B^{\prime} / D\right)\left(D^{\prime} / D\right)^{-1}\left(\mathbf{w}-H D^{-1} \mathbf{v}\right)\right]
$$

## Quotient property - Linear systems

If $D$ is rectangular or square and singular we can obtain a similar result.
By using $D$ as pivot and if $D^{\dagger} D=I$ we obtain

$$
\left(\begin{array}{ccc}
\left(A^{\prime} / D\right)_{\mathcal{P}} & 0 & \left(B^{\prime} / D\right)_{\mathcal{P}} \\
C & D & F \\
\left(C^{\prime} / D\right)_{\mathcal{P}} & 0 & \left(D^{\prime} / D\right)_{\mathcal{P}}
\end{array}\right)\left(\begin{array}{l}
\mathbf{x} \\
\mathbf{y} \\
\mathbf{z}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{u}-B D^{\dagger} \mathbf{v} \\
\mathbf{v} \\
\mathbf{w}-H D^{\dagger} \mathbf{v}
\end{array}\right)
$$

If, in the second step of Gaussian elimination, we suppose that $\left(D^{\prime} / D\right)_{\mathcal{P}}^{\dagger}\left(D^{\prime} / D\right)_{\mathcal{P}}=I$, it is easy to see that

$$
\begin{aligned}
& \left(\left(A^{\prime} / D\right)_{\mathcal{P}}-\left(B^{\prime} / D\right)_{\mathcal{P}}\left(D^{\prime} / D\right)_{\mathcal{P}}^{\dagger}\left(C^{\prime} / D\right)_{\mathcal{P}}\right) \mathbf{x}= \\
& \quad\left(\mathbf{u}-B D^{\dagger} \mathbf{v}\right)-\left(B^{\prime} / D\right)_{\mathcal{P}}\left(D^{\prime} / D\right)_{\mathcal{P}}^{\dagger}\left(\mathbf{w}-H D^{\dagger} \mathbf{v}\right)
\end{aligned}
$$

## Quotient property - Linear systems

So, if the Pseudo-Schur quotient property holds, we have

$$
\left(M / D^{\prime}\right)_{\mathcal{P}} \mathbf{x}=\left(\mathbf{u}-B D^{\dagger} \mathbf{v}\right)-\left(B^{\prime} / D\right)_{\mathcal{P}}\left(D^{\prime} / D\right)_{\mathcal{P}}^{\dagger}\left(\mathbf{w}-H D^{\dagger} \mathbf{v}\right)
$$

Reference: M. Redivo Zaglia, Pseudo-Schur complements and their properties, Appl. Numer. Math 50 (2004) 511-519.

Future work: Application of the Pseudo-Schur quotient property to the construction of recursive algoritms for vector sequence transformations proposed in
C. Brezinski, M. Redivo Zaglia, New vector sequence transformations, Linear Algebra Appl. 389 (2004) 189-213.


[^0]:    * I. Schur, Potenzreihen im Innern des Einheitskreises, J. Reine Angew. Math., 147 (1917) 205-232.

