Structured Condition Numbers and Backward Errors in Scalar Product Spaces

> Françoise Tisseur Department of Mathematics University of Manchester

ftisseur@ma.man.ac.uk
http://www.ma.man.ac.uk/~ftisseur/

Joint work with Stef Graillat (Univ. of Perpignan).

Motivations

Condition numbers and backward errors play an important role in numerical linear algebra.

forward error \leq condition number \times backward error.

Growing interest in structured perturbation analysis.

- Substantial development of algorithms for structured problems.
- Backward error analysis of structure preserving algorithms may be difficult.

Motivations Cont.

For symmetric linear systems and for distances measured in the 2– or Frobenius norm: *It makes no difference whether perturbations are restricted to be symmetric or not.*

Same holds for skew-symmetric and persymmetric structures. [S. Rump, 03].

Our contribution:

Extend and unify these results to

Structured matrices in Lie and Jordan algebras,

Several structured matrix problems.

Structured Problems

Normwise structured condition numbers for

- Matrix inversion,
- Nearness to singularity,
- Linear systems,
- Eigenvalue problems.
- Normwise structured backward errors for
 - Linear systems,
 - Eigenvalue problems.

Scalar Products

A scalar product $\langle \cdot, \cdot \rangle_{M}$ is a nondegenerate (*M* nonsingular) bilinear or sesquilinear form on \mathbb{K}^{n} ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}).

 $\langle x, y \rangle_{\mathsf{M}} = \begin{cases} x^T M y, & \text{real or complex bilinear forms,} \\ x^* M y, & \text{sesquilinear forms.} \end{cases}$

Adjoint A^* of $A \in \mathbb{K}^{n \times n}$ wrt $\langle \cdot, \cdot \rangle_{\mathsf{M}}$:

 $A^{\star} = \begin{cases} M^{-1}A^{T}M, & \text{for bilinear forms,} \\ M^{-1}A^{*}M, & \text{for sesquilinear forms.} \end{cases}$

 $\langle \cdot, \cdot \rangle_{M}$ orthosymmetric if $\begin{cases} M^{T} = \pm M, & \text{(bilinear),} \\ M^{*} = \alpha M, |\alpha| = 1, & \text{(sesquilinear).} \end{cases}$

 $\langle \cdot, \cdot \rangle_{M}$ is unitary if $M = \beta U$ for some unitary U and $\beta > 0$.

Matrix Groups, Jordan and Lie Algebras

Three important classes of matrices associated with $\langle \cdot, \cdot \rangle_{M}$: Automorphism group: $\mathbb{G} = \{A \in \mathbb{K}^{n \times n} : A^{\star} = A^{-1}\}$

- Lie algebra: $\mathbb{L} = \{A \in \mathbb{K}^{n \times n} : A^* = -A\}.$
- Jordan algebra: $\mathbb{J} = \{A \in \mathbb{K}^{n \times n} : A^{\star} = A\}.$

Recall that

$$A^{\star} = \begin{cases} M^{-1}A^{T}M, & \text{for bilinear forms,} \\ M^{-1}A^{*}M, & \text{for sesquilinear forms.} \end{cases}$$

Concentrate on Jordan and Lie algebras of orthosymmetric and unitary scalar products $\langle \cdot, \cdot \rangle_{M}$.

Some Structured Matrices

Space	\mathbf{M}	Jordan Algebra	Lie Algebra	
Bilinear forms				
\mathbb{R}^{n}	Ι	Symm.	Skew-symm.	
\mathbb{C}^n	Ι	Complex symm.	Complex skew-symm.	
\mathbb{R}^{n}	R	Persymmetric	Perskew-symm.	
\mathbb{R}^{n}	$\Sigma_{p,q}$	Pseudo symm.	Pseudo skew-symm.	
\mathbb{R}^{2n}		Skew-Hamiltonian.	Hamiltonian	
Sesquilinear form				
\mathbb{C}^{n}	Ι	Hermitian	Skew-Herm.	
\mathbb{C}^n	$\Sigma_{p,q}$	Pseudo Hermitian	Pseudo skew-Herm.	
\mathbb{C}^{2n}	J	J-skew-Hermitian	J-Hermitian	
$R = \begin{bmatrix} & & 1 \\ & & & \\ 1 & & \end{bmatrix}, \qquad J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}, \qquad \Sigma_{p,q} = \begin{bmatrix} I_p & 0 \\ 0 & -I_q \end{bmatrix}$				

Matrix Inverse

Structured condition number for matrix inverse ($\nu = 2, F$):

$$\kappa_{\nu}(A; \mathbb{S}) := \lim_{\epsilon \to 0} \sup \left\{ \frac{\|(A + \Delta A)^{-1} - A^{-1}\|_{\nu}}{\epsilon \|A^{-1}\|_{\nu}} : \frac{\|\Delta A\|_{\nu}}{\|A\|_{\nu}} \le \epsilon, \Delta A \in \mathbb{S} \right\}$$

S: Jordan or Lie algebra of orthosymm. and unitary $\langle \cdot, \cdot \rangle_{M}$.

For nonsingular $A \in S$,

$$\kappa_2(A; \mathbb{S}) = \kappa_2(A; \mathbb{C}^{n \times n}) = ||A||_2 ||A^{-1}||_2,$$

$$\kappa_F(A; \mathbb{S}) = \kappa_F(A; \mathbb{C}^{n \times n}) = \frac{||A||_F ||A^{-1}||_2^2}{||A^{-1}||_F}.$$

Nearness to Singularity

Structured distance to singularity ($\nu = 2, F$):

$$\delta_{\nu}(A; \mathbb{S}) = \min \Big\{ \epsilon : \frac{\|\Delta A\|_{\nu}}{\|A\|_{\nu}} \le \epsilon, A + \Delta A \text{ singular}, \Delta A \in \mathbb{S} \Big\}.$$

S: Jordan or Lie algebra of $\langle \cdot, \cdot \rangle_{M}$ orthosymm. and unitary. For nonsingular $A \in S$,

$$\delta_2(A; \mathbb{S}) = \delta_2(A; \mathbb{C}^{n \times n}) = \frac{1}{\|A\|_2 \|A^{-1}\|_2},$$

$$\delta_F(A; \mathbb{C}^{n \times n}) \le \delta_F(A; \mathbb{S}) \le \sqrt{2} \, \delta_F(A; \mathbb{C}^{n \times n}).$$

Linear Systems

Structured condition number for linear system Ax = b, $x \neq 0$:

$$\operatorname{cond}_{\nu}(A, x; \mathbb{S}) = \lim_{\epsilon \to 0} \sup \left\{ \frac{\|\Delta x\|_2}{\epsilon \|x\|_2} : (A + \Delta A)(x + \Delta x) = b + \Delta b, \\ \frac{\|\Delta A\|_{\nu}}{\|A\|_{\nu}} \le \epsilon, \frac{\|\Delta b\|_2}{\|b\|_2} \le \epsilon, \Delta A \in \mathbb{S} \right\}, \ \nu = 2, F.$$

S: Jordan or Lie algebra of $\langle \cdot, \cdot \rangle_{M}$ orthosymm. and unitary. For nonsingular $A \in S$, $x \neq 0$ and $\nu = 2, F$,

$$\frac{\operatorname{cond}_{\nu}(A, x; \mathbb{C}^{n \times n})}{\sqrt{2}} \le \operatorname{cond}_{\nu}(A, x; \mathbb{S}) \le \operatorname{cond}_{\nu}(A, x; \mathbb{C}^{n \times n}).$$

Key Tools

Define $\operatorname{Sym}(\mathbb{K}) = \{A \in \mathbb{K}^{n \times n} : A^T = A\}, \mathbb{K} = \mathbb{R} \text{ or } \mathbb{C},$ $\operatorname{Skew}(\mathbb{K}) = \{A \in \mathbb{K}^{n \times n} : A^T = -A\}.$

S: Lie algebra \mathbb{L} or Jordan algebra \mathbb{J} of *orthosymm.* $\langle \cdot, \cdot \rangle_{M}$. *Orthosymmetry* $\Rightarrow \mathbb{K}^{n \times n} = \mathbb{J} \oplus \mathbb{L}$ and,

$$M \cdot \mathbb{S} = \begin{cases} \text{Sym}(\mathbb{K}) & \text{if} \\ M = M^T \text{ and } \mathbb{S} = \mathbb{I}, \\ M = -M^T \text{ and } \mathbb{S} = \mathbb{L}, \\ M = M^T \text{ and } \mathbb{S} = \mathbb{L}, \\ M = -M^T \text{ and } \mathbb{S} = \mathbb{I}. \end{cases} \text{ (bilinear forms)}$$

Left multiplication of \mathbb{S} by M is a bijection from $\mathbb{K}^{n \times n}$ to $\mathbb{K}^{n \times n}$ taking \mathbb{J} and \mathbb{L} to $\operatorname{Sym}(\mathbb{K})$ and $\operatorname{Skew}(\mathbb{K})$.

Key Tools Cont.

Define $\operatorname{Sym}(\mathbb{K}) = \{A \in \mathbb{K}^{n \times n} : A^T = A\}, \mathbb{K} = \mathbb{R} \text{ or } \mathbb{C},$ $\operatorname{Skew}(\mathbb{K}) = \{A \in \mathbb{K}^{n \times n} : A^T = -A\},$ $\operatorname{Herm}(\mathbb{C}) = \{A \in \mathbb{C}^{n \times n} : A^* = A\}.$

S: Lie algebra \mathbb{L} or Jordan algebra \mathbb{J} of *orthosymm.* $\langle \cdot, \cdot \rangle_{M}$.

$$M \cdot \mathbb{S} = \begin{cases} \text{Sym}(\mathbb{K}) & \text{if} \\ M = -M^T \text{ and } \mathbb{S} = \mathbb{I}, \\ M = -M^T \text{ and } \mathbb{S} = \mathbb{L}, \\ M = M^T \text{ and } \mathbb{S} = \mathbb{L}, \\ M = -M^T \text{ and } \mathbb{S} = \mathbb{I}, \\ M = -M^T \text{ and } \mathbb{S} = \mathbb{J}. \end{cases}$$

$$M \cdot \mathbb{S} = \begin{cases} \text{Herm}(\mathbb{C}) & \text{if} \quad \mathbb{S} = \mathbb{J}, \\ i \text{ Herm}(\mathbb{C}) & \text{if} \quad \mathbb{S} = \mathbb{L}. \end{cases} \text{ (sesquilinear forms)} \end{cases}$$

Distance to Singularity

Recall
$$\delta_2(A; \mathbb{S}) = \min\left\{\epsilon : \frac{\|\Delta A\|_2}{\|A\|_2} \le \epsilon, A + \Delta A \text{ singular}, \Delta A \in \mathbb{S}\right\}.$$

Want to show that $\delta_2(A; \mathbb{S}) = \delta_2(A; \mathbb{C}^{n \times n})$ (*)

$$\langle \cdot, \cdot \rangle_{\mathsf{M}} \text{ unitary} \Rightarrow \begin{cases} \delta_2(A; \mathbb{S}) = \delta_2(MA; M \cdot \mathbb{S}), \\ \delta_2(MA; \mathbb{C}^{n \times n}) = \delta_2(A; \mathbb{C}^{n \times n}). \end{cases}$$

⇒ Just need to prove (*) for $S = Sym(\mathbb{K})$, $Skew(\mathbb{K})$, $Herm(\mathbb{C})$, $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

Proof of $\delta_2(A; \mathbb{S}) = \delta_2(A; \mathbb{C}^{n \times n})$

Suppose $S = Skew(\mathbb{K}) = \{A \in \mathbb{K}^{n \times n} : A^T = -A\}$. Clearly,

 $\delta_2(A; \operatorname{Skew}(\mathbb{K})) \ge \delta_2(A; \mathbb{C}^{n \times n}) = 1/(||A||_2 ||A^{-1}||_2).$

Assume $||A||_2 = 1$. Need to find $\Delta A \in \text{Skew}(\mathbb{K})$ s.t.

$$||\Delta A||_2 = \sigma_{\min}(A) = 1/||A^{-1}||_2$$

▶ and $A + \Delta A$ singular.

Let u, v s.t. $Av = \sigma_{\min}(A)u$. $A \in \text{Skew}(\mathbb{K}) \Rightarrow \overline{u}^*v = 0$. Let Q unitary s.t. $Q[e_1, -e_2] = [v, \overline{u}]$. Then,

•
$$\Delta A = -\sigma_{\min}(A)Q(e_1e_2^T - e_2e_1^T)Q^T \in \text{Skew}(\mathbb{K}),$$

$$\blacksquare \|\Delta A\|_2 = \sigma_{\min}(A),$$

$$(A + \Delta A)v = 0.$$

Eigenvalue Condition Number

 λ : simple eigenvalue of A.

$$\kappa(A,\lambda;\mathbb{S}) = \lim_{\epsilon \to 0} \sup \left\{ \frac{|\Delta\lambda|}{\epsilon} : \lambda + \Delta\lambda \in Sp(A + \Delta A), \\ \|\Delta A\| \le \epsilon, \ \Delta A \in \mathbb{S} \right\}.$$

S: Jordan or Lie algebra of orthosymm. and unitary $\langle \cdot, \cdot \rangle_{M}$.

For sesquilinear forms: $\kappa(A, \lambda; \mathbb{S}) = \kappa(A, \lambda, \mathbb{C}^{n \times n})$. ٩

For bilinear forms:

▶ if $M \cdot \mathbb{S} = \operatorname{Sym}(\mathbb{C})$,

▶ if $M \cdot \mathbb{L} = \text{Skew}(\mathbb{C})$,

$$\kappa(A,\lambda;\mathbb{S}) = \kappa(A,\lambda,\mathbb{C}^{n \times n}).$$

$$1 \le \kappa(A, \lambda; \mathbb{S}) \le \kappa(A, \lambda; \mathbb{C}^{n \times n}).$$

Still incomplete.

Structured Backward Errors

$$\mu_{\nu}(y, r, \mathbb{S}) = \min\{\|\Delta A\|_{\nu} : \Delta A y = r, \Delta A \in \mathbb{S}\}, \quad \nu = 2, F.$$

- For linear systems: $y \neq 0$ is the approx. sol. to Ax = band r = b - Ay.
- For eigenproblems: (y, λ) approx. eigenpair of A, $r = (\lambda I A)y$.
- S: Jordan or Lie algebra of $\langle \cdot, \cdot \rangle_{M}$ orthosymm. and unitary. $\mu_{\nu}(y, r, \mathbb{S}) \neq \infty$ iff y, r satisfies the conditions:

$M \cdot \mathbb{S}$	Condition
$\operatorname{Sym}(\mathbb{K})$	none
$\operatorname{Skew}(\mathbb{K})$	$r^T y = 0$
$\operatorname{Herm}(\mathbb{C})$	$r^*y \in \mathbb{R}$.

Structured Backward Errors Cont.

 $\mu_{\nu}(y, r, \mathbb{S}) = \min\{\|\Delta A\|_{\nu} : \Delta Ay = r, \Delta A \in \mathbb{S}\}, \quad \nu = 2, F.$

Recall $\mu_{\nu}(y,r;\mathbb{C}^{n\times n}) = ||r||_2/||y||_2.$

S: Jordan or Lie algebra of $\langle \cdot, \cdot \rangle_{\mathsf{M}}$ orthosymm. and unitary. If $\mu_{\nu}(y, r, \mathbb{S}) \neq \infty$ ($\nu = 2, F$),

$$\mu_{\nu}(y,r;\mathbb{C}^{n\times n}) \leq \mu_{\nu}(y,r;\mathbb{S}) \leq \sqrt{2} \ \mu_{\nu}(y,r;\mathbb{C}^{n\times n}).$$

In particular for $\nu = F$,

$$\mu_F(y,r;\mathbb{S}) = \frac{1}{\|y\|_2} \sqrt{2\|r\|_2^2 - \frac{|\langle y,r \rangle_{\mathsf{M}}|^2}{\beta^2 \|y\|_2^2}}.$$

Example

Take
$$S =$$
Skew $(\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} : A = -A^T\}.$
Let $A = \begin{bmatrix} 0 & \alpha \\ -\alpha & 0 \end{bmatrix} \in$ Skew (\mathbb{R}) and $b = \alpha \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$
True solution $x = [1, 1]^T$ satisfies $b^T x = 0.$

- Let $y = [1 + \epsilon, 1 \epsilon]^T$ be an approximate solution. Then $r := b - Ay = \alpha \epsilon x$ and $r^T y = 2\alpha \epsilon \neq 0 \Rightarrow$ $\mu_F(y, r; \text{Skew}(\mathbb{R})) = \infty$.
- ► Using a structure preserving algorithm \Rightarrow backward error matrix $\Delta A = \begin{bmatrix} 0 & \epsilon \\ -\epsilon & 0 \end{bmatrix} \in \text{Skew}(\mathbb{R}) \text{ and } y = (\alpha/(\epsilon + \alpha))x$. Hence, $r = b - Ay = (\epsilon/(\epsilon + \alpha))b$ satisfies $r^Ty = 0$ and $\mu_F(y, r; \text{Skew}(\mathbb{R})) = \sqrt{2} ||r||_2 / ||y||_2 \neq \infty$.

For matrices in Jordan or Lie algebras of orthosymmetric and unitary scalar products,

[which includes symmetric, complex symmetric, skew-symmetric, pseudo symmetric, persymmetric, Hamiltonian, skew-Hamiltonian, Hermitian and J-Hermitian matrices]

For matrices in Jordan or Lie algebras of orthosymmetric and unitary scalar products,

- ► Usual unstructured perturbation analysis sufficient for
 - matrix inversion condition number,
 - distance to singularity,
 - linear system condition number.

For matrices in Jordan or Lie algebras of orthosymmetric and unitary scalar products,

- ► Usual unstructured perturbation analysis sufficient for
 - matrix inversion condition number,
 - distance to singularity,
 - linear system condition number.
- ► Partial answer for *eigenvalue condition numbers*.

For matrices in Jordan or Lie algebras of orthosymmetric and unitary scalar products,

- ► Usual unstructured perturbation analysis sufficient for
 - matrix inversion condition number,
 - distance to singularity,
 - linear system condition number.
- ► Partial answer for *eigenvalue condition numbers*.
- Structured backward error:
 - \blacksquare may be ∞ when using non structure-preserving algorithm,
 - when finite, is within a small factor of the unstructured one.