Structured Condition Numbers and Backward Errors in Scalar Product Spaces

Françoise Tisseur
Department of Mathematics
University of Manchester
ftisseur@ma.man.ac.uk
http://www.ma.man.ac.uk/~ftisseur/
Joint work with Stef Graillat (Univ. of Perpignan).

THE UNIVERSITY
of MANCHESTER

Motivations

- Condition numbers and backward errors play an important role in numerical linear algebra.
forward error \leq condition number \times backward error.
- Growing interest in structured perturbation analysis.
- Substantial development of algorithms for structured problems.
- Backward error analysis of structure preserving algorithms may be difficult.

Motivations Cont.

- For symmetric linear systems and for distances measured in the 2- or Frobenius norm: It makes no difference whether perturbations are restricted to be symmetric or not.
- Same holds for skew-symmetric and persymmetric structures. [S. Rump, 03].

Our contribution:

Extend and unify these results to

- Structured matrices in Lie and Jordan algebras,
- Several structured matrix problems.

Structured Problems

- Normwise structured condition numbers for
- Matrix inversion,
- Nearness to singularity,
- Linear systems,
- Eigenvalue problems.
- Normwise structured backward errors for
- Linear systems,
- Eigenvalue problems.

Scalar Products

A scalar product $\langle\cdot, \cdot\rangle_{M}$ is a nondegenerate (M nonsingular) bilinear or sesquilinear form on $\mathbb{K}^{n}(\mathbb{K}=\mathbb{R}$ or \mathbb{C}).

$$
\langle x, y\rangle_{\mathrm{M}}= \begin{cases}x^{T} M y, & \text { real or complex bilinear forms } \\ x^{*} M y, & \text { sesquilinear forms }\end{cases}
$$

Adjoint A^{\star} of $A \in \mathbb{K}^{n \times n}$ wrt $\langle\cdot, \cdot\rangle_{\mathrm{M}}$:

$$
A^{\star}= \begin{cases}M^{-1} A^{T} M, & \text { for bilinear forms }, \\ M^{-1} A^{*} M, & \text { for sesquilinear forms } .\end{cases}
$$

$\langle\cdot \cdot \cdot\rangle_{\mathrm{M}}$ orthosymmetric if $\begin{cases}M^{T}= \pm M, & \text { (bilinear), } \\ M^{*}=\alpha M,|\alpha|=1, & \text { (sesquilinear). }\end{cases}$
$\langle\cdot, \cdot\rangle_{\mathrm{M}}$ is unitary if $M=\beta U$ for some unitary U and $\beta>0$.

Matrix Groups, Jordan and Lie Algebras

Three important classes of matrices associated with $\langle\cdot, \cdot\rangle_{M}$:
Automorphism group: $\mathbb{G}=\left\{A \in \mathbb{K}^{n \times n}: A^{\star}=A^{-1}\right\}$
Lie algebra:

$$
\mathbb{L}=\left\{A \in \mathbb{K}^{n \times n}: A^{\star}=-A\right\} .
$$

Jordan algebra:

$$
\mathbb{J}=\left\{A \in \mathbb{K}^{n \times n}: A^{\star}=A\right\} .
$$

Recall that

$$
A^{\star}= \begin{cases}M^{-1} A^{T} M, & \text { for bilinear forms }, \\ M^{-1} A^{*} M, & \text { for sesquilinear forms } .\end{cases}
$$

Concentrate on Jordan and Lie algebras of orthosymmetric and unitary scalar products $\langle\cdot, \cdot\rangle_{M}$.

Some Structured Matrices

Bilinear forms

\mathbb{R}^{n}	I	Symm.	Skew-symm.
\mathbb{C}^{n}	I	Complex symm.	Complex skew-symm.
\mathbb{R}^{n}	R	Persymmetric	Perskew-symm.
\mathbb{R}^{n}	$\Sigma_{p, q}$	Pseudo symm.	Pseudo skew-symm.
$\mathbb{R}^{2 n}$	J	Skew-Hamiltonian.	Hamiltonian

Sesquilinear form

\mathbb{C}^{n}	I	Hermitian	Skew-Herm.
\mathbb{C}^{n}	$\Sigma_{p, q}$	Pseudo Hermitian	Pseudo skew-Herm.
$\mathbb{C}^{2 n}$	J	J-skew-Hermitian	J-Hermitian

$$
R=\left[\begin{array}{lll}
& . & . \\
1 & &
\end{array}\right], \quad J=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right], \quad \Sigma_{p, q}=\left[\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{q}
\end{array}\right]
$$

Matrix Inverse

Structured condition number for matrix inverse ($\nu=2, F)$:
$\kappa_{\nu}(A ; \mathbb{S}):=\lim _{\epsilon \rightarrow 0} \sup \left\{\frac{\left\|(A+\Delta A)^{-1}-A^{-1}\right\|_{\nu}}{\epsilon\left\|A^{-1}\right\|_{\nu}}: \frac{\|\Delta A\|_{\nu}}{\|A\|_{\nu}} \leq \epsilon, \Delta A \in \mathbb{S}\right\}$.
\mathbb{S} : Jordan or Lie algebra of orthosymm. and unitary $\langle\cdot, \cdot\rangle_{\mathrm{M}}$.
For nonsingular $A \in \mathbb{S}$,

$$
\begin{aligned}
& \kappa_{2}(A ; \mathbb{S})=\kappa_{2}\left(A ; \mathbb{C}^{n \times n}\right)=\|A\|_{2}\left\|A^{-1}\right\|_{2}, \\
& \kappa_{F}(A ; \mathbb{S})=\kappa_{F}\left(A ; \mathbb{C}^{n \times n}\right)=\frac{\|A\|_{F}\left\|A^{-1}\right\|_{2}^{2}}{\left\|A^{-1}\right\|_{F}} .
\end{aligned}
$$

Nearness to Singularity

Structured distance to singularity $(\nu=2, F)$:

$$
\delta_{\nu}(A ; \mathbb{S})=\min \left\{\epsilon: \frac{\|\Delta A\|_{\nu}}{\|A\|_{\nu}} \leq \epsilon, A+\Delta A \text { singular, } \Delta A \in \mathbb{S}\right\} .
$$

\mathbb{S} : Jordan or Lie algebra of $\langle\cdot, \cdot\rangle_{\mathrm{M}}$ orthosymm. and unitary.
For nonsingular $A \in \mathbb{S}$,

$$
\begin{aligned}
& \delta_{2}(A ; \mathbb{S})=\delta_{2}\left(A ; \mathbb{C}^{n \times n}\right)=\frac{1}{\|A\|_{2}\left\|A^{-1}\right\|_{2}}, \\
& \delta_{F}\left(A ; \mathbb{C}^{n \times n}\right) \leq \delta_{F}(A ; \mathbb{S}) \leq \sqrt{2} \delta_{F}\left(A ; \mathbb{C}^{n \times n}\right) .
\end{aligned}
$$

Linear Systems

Structured condition number for linear system $A x=b, x \neq 0$:

$$
\begin{aligned}
& \operatorname{cond}_{\nu}(A, x ; \mathbb{S})= \lim _{\epsilon \rightarrow 0} \sup \left\{\frac{\|\Delta x\|_{2}}{\epsilon\|x\|_{2}}:(A+\Delta A)(x+\Delta x)=b+\Delta b,\right. \\
&\left.\frac{\|\Delta A\|_{\nu}}{\|A\|_{\nu}} \leq \epsilon, \frac{\|\Delta b\|_{2}}{\|b\|_{2}} \leq \epsilon, \Delta A \in \mathbb{S}\right\}, \nu=2, F .
\end{aligned}
$$

\mathbb{S} : Jordan or Lie algebra of $\langle\cdot, \cdot\rangle_{\mathrm{M}}$ orthosymm. and unitary.
For nonsingular $A \in \mathbb{S}, x \neq 0$ and $\nu=2, F$,

$$
\frac{\operatorname{cond}_{\nu}\left(A, x ; \mathbb{C}^{n \times n}\right)}{\sqrt{2}} \leq \operatorname{cond}_{\nu}(A, x ; \mathbb{S}) \leq \operatorname{cond}_{\nu}\left(A, x ; \mathbb{C}^{n \times n}\right)
$$

Key Tools

Define $\operatorname{Sym}(\mathbb{K})=\left\{A \in \mathbb{K}^{n \times n}: A^{T}=A\right\}, \mathbb{K}=\mathbb{R}$ or \mathbb{C},

$$
\operatorname{Skew}(\mathbb{K})=\left\{A \in \mathbb{K}^{n \times n}: A^{T}=-A\right\} .
$$

\mathbb{S} : Lie algebra \mathbb{L} or Jordan algebra \mathbb{J} of orthosymm. $\langle\cdot, \cdot\rangle_{\mathrm{M}}$. Orthosymmetry $\Rightarrow \mathbb{K}^{n \times n}=\mathbb{J} \oplus \mathbb{L}$ and,

$$
M \cdot \mathbb{S}=\left\{\begin{array} { l }
{ \operatorname { S y m } (\mathbb { K }) } \\
{ \operatorname { S k e w } (\mathbb { K }) }
\end{array} \text { if } \left\{\begin{array}{l}
M=M^{T} \text { and } \mathbb{S}=\mathbb{J}, \\
M=-M^{T} \text { and } \mathbb{S}=\mathbb{L}, \\
M=M^{T} \text { and } \mathbb{S}=\mathbb{L}, \\
M=-M^{T} \text { and } \mathbb{S}=\mathbb{J} .
\end{array}\right.\right.
$$

(bilinear forms)

Left multiplication of \mathbb{S} by M is a bijection from $\mathbb{K}^{n \times n}$ to $\mathbb{K}^{n \times n}$ taking \mathbb{J} and \mathbb{L} to $\operatorname{Sym}(\mathbb{K})$ and $\operatorname{Skew}(\mathbb{K})$.

Key Tools Cont.

Define $\operatorname{Sym}(\mathbb{K})=\left\{A \in \mathbb{K}^{n \times n}: A^{T}=A\right\}, \mathbb{K}=\mathbb{R}$ or \mathbb{C},

$$
\begin{aligned}
& \operatorname{Skew}(\mathbb{K})=\left\{A \in \mathbb{K}^{n \times n}: A^{T}=-A\right\}, \\
& \operatorname{Herm}(\mathbb{C})=\left\{A \in \mathbb{C}^{n \times n}: A^{*}=A\right\} .
\end{aligned}
$$

\mathbb{S} : Lie algebra \mathbb{L} or Jordan algebra \mathbb{J} of orthosymm. $\langle\cdot, \cdot\rangle_{M}$.

(bilinear forms)
$M \cdot \mathbb{S}=\left\{\begin{array}{lll}\operatorname{Herm}(\mathbb{C}) & \text { if } \mathbb{S}=\mathbb{J}, \\ i \operatorname{Herm}(\mathbb{C}) & \text { if } \mathbb{S}=\mathbb{L} .\end{array}\right.$
(sesquilinear forms)

Distance to Singularity

Recall $\delta_{2}(A ; \mathbb{S})=\min \left\{\epsilon: \frac{\|\Delta A\|_{2}}{\|A\|_{2}} \leq \epsilon, A+\Delta A\right.$ singular, $\left.\Delta A \in \mathbb{S}\right\}$.

Want to show that $\delta_{2}(A ; \mathbb{S})=\delta_{2}\left(A ; \mathbb{C}^{n \times n}\right)$
$\langle\cdot, \cdot\rangle_{M}$ unitary $\Rightarrow\left\{\begin{array}{l}\delta_{2}(A ; \mathbb{S})=\delta_{2}(M A ; M \cdot \mathbb{S}), \\ \delta_{2}\left(M A ; \mathbb{C}^{n \times n}\right)=\delta_{2}\left(A ; \mathbb{C}^{n \times n}\right) .\end{array}\right.$
\Rightarrow Just need to prove (\star) for $\mathbb{S}=\operatorname{Sym}(\mathbb{K}), \operatorname{Skew}(\mathbb{K}), \operatorname{Herm}(\mathbb{C})$, $\mathbb{K}=\mathbb{R}$ or \mathbb{C}.

Proof of $\delta_{2}(A ; \mathbb{S})=\delta_{2}\left(A ; \mathbb{C}^{n \times n}\right)$

Suppose $\mathbb{S}=\operatorname{Skew}(\mathbb{K})=\left\{A \in \mathbb{K}^{n \times n}: A^{T}=-A\right\}$. Clearly,

$$
\delta_{2}(A ; \operatorname{Skew}(\mathbb{K})) \geq \delta_{2}\left(A ; \mathbb{C}^{n \times n}\right)=1 /\left(\|A\|_{2}\left\|A^{-1}\right\|_{2}\right) .
$$

Assume $\|A\|_{2}=1$. Need to find $\Delta A \in \operatorname{Skew}(\mathbb{K})$ s.t.

- $\|\Delta A\|_{2}=\sigma_{\min }(A)=1 /\left\|A^{-1}\right\|_{2}$
- and $A+\Delta A$ singular.

Let u, v s.t. $A v=\sigma_{\min }(A) u . \quad A \in \operatorname{Skew}(\mathbb{K}) \Rightarrow \bar{u}^{*} v=0$.
Let Q unitary s.t. $Q\left[e_{1},-e_{2}\right]=[v, \bar{u}]$. Then,

- $\Delta A=-\sigma_{\min }(A) Q\left(e_{1} e_{2}^{T}-e_{2} e_{1}^{T}\right) Q^{T} \in \operatorname{Skew}(\mathbb{K})$,
- $\|\Delta A\|_{2}=\sigma_{\min }(A)$,

■ $(A+\Delta A) v=0$.

Eigenvalue Condition Number

λ : simple eigenvalue of A.

$$
\begin{gathered}
\kappa(A, \lambda ; \mathbb{S})=\lim _{\epsilon \rightarrow 0} \sup \left\{\frac{|\Delta \lambda|}{\epsilon}: \lambda+\Delta \lambda \in S p(A+\Delta A)\right. \\
\|\Delta A\| \leq \epsilon, \Delta A \in \mathbb{S}\}
\end{gathered}
$$

\mathbb{S} : Jordan or Lie algebra of orthosymm. and unitary $\langle\cdot, \cdot\rangle_{\mathrm{M}}$.

- For sesquilinear forms: $\kappa(A, \lambda ; \mathbb{S})=\kappa\left(A, \lambda, \mathbb{C}^{n \times n}\right)$.
- For bilinear forms:
- if $M \cdot \mathbb{S}=\operatorname{Sym}(\mathbb{C})$,

$$
\kappa(A, \lambda ; \mathbb{S})=\kappa\left(A, \lambda, \mathbb{C}^{n \times n}\right)
$$

$$
\text { if } M \cdot \mathbb{L}=\operatorname{Skew}(\mathbb{C}), \quad 1 \leq \kappa(A, \lambda ; \mathbb{S}) \leq \kappa\left(A, \lambda ; \mathbb{C}^{n \times n}\right)
$$

Still incomplete.

Structured Backward Errors

$$
\mu_{\nu}(y, r, \mathbb{S})=\min \left\{\|\Delta A\|_{\nu}: \Delta A y=r, \Delta A \in \mathbb{S}\right\}, \quad \nu=2, F .
$$

- For linear systems: $y \neq 0$ is the approx. sol. to $A x=b$ and $r=b-A y$.
- For eigenproblems: (y, λ) approx. eigenpair of A,

$$
r=(\lambda I-A) y .
$$

\mathbb{S} : Jordan or Lie algebra of $\langle\cdot, \cdot\rangle_{\mathrm{M}}$ orthosymm. and unitary. $\mu_{\nu}(y, r, \mathbb{S}) \neq \infty$ iff y, r satisfies the conditions:

$M \cdot \mathbb{S}$	Condition
$\operatorname{Sym}(\mathbb{K})$	none
$\operatorname{Skew}(\mathbb{K})$	$r^{T} y=0$
$\operatorname{Herm}(\mathbb{C})$	$r^{*} y \in \mathbb{R}$.

Structured Backward Errors Cont.

$$
\mu_{\nu}(y, r, \mathbb{S})=\min \left\{\|\Delta A\|_{\nu}: \Delta A y=r, \Delta A \in \mathbb{S}\right\}, \quad \nu=2, F .
$$

Recall $\mu_{\nu}\left(y, r ; \mathbb{C}^{n \times n}\right)=\|r\|_{2} /\|y\|_{2}$.
\mathbb{S} : Jordan or Lie algebra of $\langle\cdot, \cdot\rangle_{\mathrm{M}}$ orthosymm. and unitary. If $\mu_{\nu}(y, r, \mathbb{S}) \neq \infty(\nu=2, F)$,

$$
\mu_{\nu}\left(y, r ; \mathbb{C}^{n \times n}\right) \leq \mu_{\nu}(y, r ; \mathbb{S}) \leq \sqrt{2} \mu_{\nu}\left(y, r ; \mathbb{C}^{n \times n}\right) .
$$

In particular for $\nu=F$,

$$
\mu_{F}(y, r ; \mathbb{S})=\frac{1}{\|y\|_{2}} \sqrt{2\|r\|_{2}^{2}-\frac{\left|\langle y, r\rangle_{M}\right|^{2}}{\beta^{2}\|y\|_{2}^{2}}} .
$$

Example

Take $\mathbb{S}=\operatorname{Skew}(\mathbb{R})=\left\{A \in \mathbb{R}^{n \times n}: A=-A^{T}\right\}$.
Let $A=\left[\begin{array}{cc}0 & \alpha \\ -\alpha & 0\end{array}\right] \in \operatorname{Skew}(\mathbb{R})$ and $b=\alpha\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
True solution $x=[1,1]^{T}$ satisfies $b^{T} x=0$.

- Let $y=[1+\epsilon, 1-\epsilon]^{T}$ be an approximate solution. Then

$$
\begin{aligned}
& r:=b-A y=\alpha \epsilon x \text { and } r^{T} y=2 \alpha \epsilon \neq 0 \Rightarrow \\
& \mu_{F}(y, r ; \operatorname{Skew}(\mathbb{R}))=\infty
\end{aligned}
$$

- Using a structure preserving algorithm \Rightarrow backward error matrix $\Delta A=\left[\begin{array}{cc}0 & \epsilon \\ -\epsilon & 0\end{array}\right] \in \operatorname{Skew}(\mathbb{R})$ and $y=(\alpha /(\epsilon+\alpha)) x$. Hence, $r=b-A y=(\epsilon /(\epsilon+\alpha)) b$ satisfies $r^{T} y=0$ and

$$
\mu_{F}(y, r ; \operatorname{Skew}(\mathbb{R}))=\sqrt{2}\|r\|_{2} /\|y\|_{2} \neq \infty
$$

Conclusion

For matrices in Jordan or Lie algebras of orthosymmetric and unitary scalar products,
[which includes symmetric, complex symmetric, skew-symmetric, pseudo symmetric, persymmetric, Hamiltonian, skew-Hamiltonian, Hermitian and J-Hermitian matrices]

Conclusion

For matrices in Jordan or Lie algebras of orthosymmetric and unitary scalar products,

- Usual unstructured perturbation analysis sufficient for

■ matrix inversion condition number,

- distance to singularity,
- linear system condition number.

Conclusion

For matrices in Jordan or Lie algebras of orthosymmetric and unitary scalar products,

- Usual unstructured perturbation analysis sufficient for
- matrix inversion condition number,
- distance to singularity,
- linear system condition number.
- Partial answer for eigenvalue condition numbers.

Conclusion

For matrices in Jordan or Lie algebras of orthosymmetric and unitary scalar products,

- Usual unstructured perturbation analysis sufficient for
- matrix inversion condition number,
- distance to singularity,
- linear system condition number.
- Partial answer for eigenvalue condition numbers.
- Structured backward error:
- may be ∞ when using non structure-preserving algorithm,
- when finite, is within a small factor of the unstructured one.

