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Motivations

I Condition numbers and backward errors play an
important role in numerical linear algebra.

forward error ≤ condition number × backward error.

I Growing interest in structured perturbation analysis.

I Substantial development of algorithms for structured
problems.

I Backward error analysis of structure preserving
algorithms may be difficult.
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Motivations Cont.

I For symmetric linear systems and for distances
measured in the 2– or Frobenius norm:
It makes no difference whether perturbations are
restricted to be symmetric or not.

I Same holds for skew-symmetric and persymmetric
structures. [S. Rump, 03].

Our contribution:

Extend and unify these results to

Structured matrices in Lie and Jordan algebras,

Several structured matrix problems.
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Structured Problems

I Normwise structured condition numbers for

Matrix inversion,

Nearness to singularity,

Linear systems,

Eigenvalue problems.

I Normwise structured backward errors for

Linear systems,

Eigenvalue problems.
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Scalar Products

A scalar product 〈·, ·〉
M

is a nondegenerate (M nonsingular)

bilinear or sesquilinear form on Kn (K = R or C).

〈x, y〉
M

=

{

xT My, real or complex bilinear forms,
x∗My, sesquilinear forms.

Adjoint A? of A ∈ Kn×n wrt 〈·, ·〉
M

:

A? =

{

M−1AT M, for bilinear forms,

M−1A∗M, for sesquilinear forms.

〈·, ·〉
M

orthosymmetric if

{

MT = ±M, (bilinear),
M∗ = αM, |α| = 1, (sesquilinear).

〈·, ·〉
M

is unitary if M = βU for some unitary U and β > 0.
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Matrix Groups, Jordan and Lie Algebras

Three important classes of matrices associated with 〈·, ·〉
M

:

Automorphism group: G = {A ∈ Kn×n : A? = A−1}

Lie algebra: L = {A ∈ Kn×n : A? = −A}.

Jordan algebra: J = {A ∈ Kn×n : A? = A}.

Recall that

A? =

{

M−1AT M, for bilinear forms,

M−1A∗M, for sesquilinear forms.

Concentrate on Jordan and Lie algebras of orthosymmetric

and unitary scalar products 〈·, ·〉
M

.
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Some Structured Matrices

Space M Jordan Algebra Lie Algebra

Bilinear forms

Rn
I Symm. Skew-symm.

Cn
I Complex symm. Complex skew-symm.

Rn
R Persymmetric Perskew-symm.

Rn
Σp,q Pseudo symm. Pseudo skew-symm.

R2n
J Skew-Hamiltonian. Hamiltonian

Sesquilinear form

Cn
I Hermitian Skew-Herm.

Cn
Σp,q Pseudo Hermitian Pseudo skew-Herm.

C2n
J J-skew-Hermitian J-Hermitian

R=

[

1...

1

]

, J=





0 In

−In 0



 , Σp,q=





Ip 0

0 −Iq
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Matrix Inverse

Structured condition number for matrix inverse (ν = 2, F ):

κν(A; S) := lim
ε→0

sup

{‖(A + ∆A)−1 − A−1‖ν

ε‖A−1‖ν

:
‖∆A‖ν

‖A‖ν

≤ ε,∆A ∈ S

}

.

S: Jordan or Lie algebra of orthosymm. and unitary 〈·, ·〉
M

.

For nonsingular A ∈ S,

κ2(A; S) = κ2(A; Cn×n) = ‖A‖2‖A−1‖2,

κF (A; S) = κF (A; Cn×n) =
‖A‖F‖A−1‖2

2

‖A−1‖F

.
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Nearness to Singularity

Structured distance to singularity (ν = 2, F ):

δν(A; S) = min
{

ε :
‖∆A‖ν

‖A‖ν

≤ ε, A + ∆A singular, ∆A ∈ S

}

.

S: Jordan or Lie algebra of 〈·, ·〉
M

orthosymm. and unitary.

For nonsingular A ∈ S,

δ2(A; S) = δ2(A; Cn×n) =
1

‖A‖2‖A−1‖2

,

δF (A; Cn×n) ≤ δF (A; S) ≤
√

2 δF (A; Cn×n).
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Linear Systems

Structured condition number for linear system Ax = b, x 6= 0:

condν(A, x; S) = lim
ε→0

sup

{‖∆x‖2

ε‖x‖2

: (A + ∆A)(x + ∆x) = b + ∆b,

‖∆A‖ν

‖A‖ν

≤ ε,
‖∆b‖2

‖b‖2

≤ ε,∆A ∈ S

}

, ν = 2, F.

S: Jordan or Lie algebra of 〈·, ·〉
M

orthosymm. and unitary.

For nonsingular A ∈ S, x 6= 0 and ν = 2, F ,

condν(A, x; Cn×n)√
2

≤ condν(A, x; S) ≤ condν(A, x; Cn×n).
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Key Tools

Define Sym(K) = {A ∈ K
n×n : AT = A}, K = R or C,

Skew(K) = {A ∈ K
n×n : AT = −A}.

S: Lie algebra L or Jordan algebra J of orthosymm. 〈·, ·〉M.

Orthosymmetry ⇒ Kn×n = J ⊕ L and,

M·S =























Sym(K) if

{

M = MT and S = J,

M = −MT and S = L,

Skew(K) if

{

M = MT and S = L,

M = −MT and S = J.

(bilinear forms)

Left multiplication of S by M is a bijection from Kn×n to Kn×n

taking J and L to Sym(K) and Skew(K).
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Key Tools Cont.

Define Sym(K) = {A ∈ K
n×n : AT = A}, K = R or C,

Skew(K) = {A ∈ K
n×n : AT = −A},

Herm(C) = {A ∈ C
n×n : A∗ = A}.

S: Lie algebra L or Jordan algebra J of orthosymm. 〈·, ·〉M.

M · S =























Sym(K) if

{

M = MT and S = J,

M = −MT and S = L,

Skew(K) if

{

M = MT and S = L,

M = −MT and S = J.

(bilinear forms)

M · S =

{

Herm(C) if S = J,

i Herm(C) if S = L.
(sesquilinear forms)

– p. 12/19



Distance to Singularity

Recall δ2(A; S) = min
{

ε :
‖∆A‖2

‖A‖2

≤ ε, A + ∆A singular, ∆A ∈ S

}

.

Want to show that δ2(A; S) = δ2(A; Cn×n) (?)

〈·, ·〉
M

unitary ⇒
{

δ2(A; S) = δ2(MA; M · S),

δ2(MA; Cn×n) = δ2(A; Cn×n).

⇒ Just need to prove (?) for S = Sym(K), Skew(K), Herm(C),

K = R or C.
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Proof of δ2(A; S) = δ2(A; Cn×n)

Suppose S = Skew(K) = {A ∈ Kn×n : AT = −A}. Clearly,

δ2(A; Skew(K)) ≥ δ2(A; Cn×n) = 1/(‖A‖2‖A−1‖2).

Assume ‖A‖2 = 1. Need to find ∆A ∈ Skew(K) s.t.

I ‖∆A‖2 = σmin(A) = 1/‖A−1‖2

I and A + ∆A singular.

Let u, v s.t. Av = σmin(A)u. A ∈ Skew(K) ⇒ ū∗v = 0.
Let Q unitary s.t. Q[e1,−e2] = [v, ū]. Then,

∆A = −σmin(A)Q(e1e
T
2
− e2e

T
1
)QT ∈ Skew(K),

‖∆A‖2 = σmin(A),

(A + ∆A)v = 0.
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Eigenvalue Condition Number

λ: simple eigenvalue of A.

κ(A, λ; S) = lim
ε→0

sup
{ |∆λ|

ε
: λ + ∆λ ∈ Sp(A + ∆A),

‖∆A‖ ≤ ε, ∆A ∈ S

}

.

S: Jordan or Lie algebra of orthosymm. and unitary 〈·, ·〉
M

.

For sesquilinear forms: κ(A, λ; S) = κ(A, λ, Cn×n).

For bilinear forms:

I if M · S = Sym(C), κ(A, λ; S) = κ(A, λ, Cn×n).

I if M · L = Skew(C), 1 ≤ κ(A, λ; S) ≤ κ(A, λ; Cn×n).

Still incomplete.
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Structured Backward Errors

µν(y, r, S) = min{‖∆A‖ν : ∆Ay = r, ∆A ∈ S}, ν = 2, F.

I For linear systems: y 6= 0 is the approx. sol. to Ax = b

and r = b − Ay.

I For eigenproblems: (y, λ) approx. eigenpair of A,

r = (λI − A)y.

S: Jordan or Lie algebra of 〈·, ·〉
M

orthosymm. and unitary.

µν(y, r, S) 6= ∞ iff y, r satisfies the conditions:

M · S Condition

Sym(K) none

Skew(K) rT y = 0

Herm(C) r∗y ∈ R.
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Structured Backward Errors Cont.

µν(y, r, S) = min{‖∆A‖ν : ∆Ay = r, ∆A ∈ S}, ν = 2, F.

Recall µν(y, r; Cn×n) = ‖r‖2/‖y‖2.

S: Jordan or Lie algebra of 〈·, ·〉
M

orthosymm. and unitary.

If µν(y, r, S) 6= ∞ (ν = 2, F ),

µν(y, r; Cn×n) ≤ µν(y, r; S) ≤
√

2 µν(y, r; Cn×n).

In particular for ν = F ,

µF (y, r; S) =
1

‖y‖2

√

2‖r‖2

2
−

|〈y, r〉
M
|2

β2‖y‖2

2

.
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Example

Take S = Skew(R) = {A ∈ Rn×n : A = −AT}.

Let A =

[

0 α

−α 0

]

∈ Skew(R) and b = α

[

1

−1

]

.

True solution x = [1, 1]T satisfies bT x = 0.

I Let y = [1 + ε, 1 − ε]T be an approximate solution. Then

r := b − Ay = αεx and rT y = 2αε 6= 0 ⇒
µF (y, r; Skew(R)) = ∞ .

I Using a structure preserving algorithm ⇒ backward error

matrix ∆A =

[

0 ε

−ε 0

]

∈ Skew(R) and y = (α/(ε + α))x .

Hence, r = b − Ay = (ε/(ε + α))b satisfies rT y = 0 and

µF (y, r; Skew(R)) =
√

2‖r‖2/‖y‖2 6= ∞ .
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Conclusion

For matrices in Jordan or Lie algebras of orthosymmetric
and unitary scalar products,

[which includes symmetric, complex symmetric,
skew-symmetric, pseudo symmetric, persymmetric,
Hamiltonian, skew-Hamiltonian, Hermitian and J-Hermitian
matrices]
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Conclusion

For matrices in Jordan or Lie algebras of orthosymmetric
and unitary scalar products,

I Usual unstructured perturbation analysis sufficient for

matrix inversion condition number,

distance to singularity,

linear system condition number.
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Conclusion

For matrices in Jordan or Lie algebras of orthosymmetric
and unitary scalar products,

I Usual unstructured perturbation analysis sufficient for

matrix inversion condition number,

distance to singularity,

linear system condition number.

I Partial answer for eigenvalue condition numbers.

I Structured backward error:

may be ∞ when using non structure-preserving
algorithm,

when finite, is within a small factor of the
unstructured one.
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