A PURELY ALGEBRAIC CHARACTERIZATION OF THE HYPERREAL NUMBERS

VIERI BENCI AND MAURO DI NASSO

ABSTRACT. The hyper-real numbers of nonstandard analysis are characterized in purely algebraic terms as homomorphic images of a suitable class of rings of functions.

1. Introduction

Since the seminal classical work by E. Hewitt [7] appeared over sixty years ago, the algebraic/topological study of rings of functions has been constantly alive in the literature (see e.g. [6], [1], [10], [4] and [9]). Recently, in their book [5], G. Dales and H. Woodin gave new insights to the subject by deeply investigating a class of totally ordered real fields, namely the *superreal fields*. Among them, the so-called *hyperreal fields* and the *ultrapowers*. Now, all *ultrapowers* are hyperreals ${}^*\mathbb{R}$ of nonstandard analysis (nonstandard reals), but the two notions of hyperreal fields are different.

The very definition of nonstandard reals $*\mathbb{R}$ as usually given in the literature, requires notions from mathematical logic. Precisely, such definition is formulated by means of the *Leibniz transfer principle*, an elementary embedding property for bounded quantifier formulas in the language of set theory.

The goal of this paper is to provide an alternative equivalent definition of ${}^*\mathbb{R}$ in purely algebraic (and elementary) terms. Precisely, we shall characterize the hyperreal fields of nonstandard analysis as homomorphic images of *composable rings* \mathcal{F} of real-valued functions ("composable" means closed under compositions with any function $f: \mathbb{R} \to \mathbb{R}$.)

From a philosophical point of view, our proposed definition of ${}^*\mathbb{R}$ could be justified by the following facts.

- The operations on \mathcal{F} are defined point-wise, hence the operations on \mathbb{R} are directly inherited from the usual field operations on \mathbb{R} .
- A crucial feature of the nonstandard real numbers ${}^*\mathbb{R}$ is that every function $f: \mathbb{R} \to \mathbb{R}$ has a nonstandard extension ${}^*f: {}^*\mathbb{R} \to {}^*\mathbb{R}$ that satisfies the same "elementary" properties. Thanks to composability, the nonstandard extension *f can be defined in a natural way, by means of its natural "lifting" $\widehat{f}: \mathcal{F} \to \mathcal{F}$ given by $\widehat{f}(\varphi) = f \circ \varphi$.
- There is no need to postulate the *Leibniz transfer principle*, because that logical principle follows from our definition.

As a side result, this definition makes it possible to naturally accommodate the nonstandard reals in the Dales-Woodin's algebraic hierarchy of *superreal fields* [5].

1

 $^{2000\} Mathematics\ Subject\ Classification.\ 16S60\ Rings\ of functions; 54C40\ Algebraic\ properties$ of functions spaces; 26E35\ Nonstandard\ analysis.

2. The Hyperreal Numbers of Nonstandard Analysis

For a detailed presentation of the *superstructure approach* to nonstandard analysis, and for the unexplained notions and notation, we refer to [3] §4.4. For completeness, we briefly recall here the crucial definitions.

Definition 2.1. For any set X of atoms, the *superstructure over* X is the set $V(X) = \bigcup_{n \in \mathbb{N}} V_n(X)$, where $V_0(X) = X$ and $V_{n+1}(X) = \mathcal{P}(V_n(X))$ is the power-set of $V_n(X)$. A *nonstandard embedding* is a mapping $*: V(\mathbb{R}) \to V(*\mathbb{R})$ that satisfies the *Leibniz transfer principle*, i.e. for every bounded quantifier formula $\sigma(x_1, \ldots, x_n)$ and elements $a_1, \ldots, a_n \in V(\mathbb{R})$, $\sigma(a_1, \ldots, a_n) \Leftrightarrow \sigma(*a_1, \ldots, *a_n)$. It is assumed that *r = r for every $r \in \mathbb{R}$ and that $*\mathbb{R}$ is a set of atoms.

By bounded quantifier formula we mean a first-order formula in the language $\mathcal{L} = \{\in\}$ of set theory, where all quantifiers occur in the bounded forms $\forall x \in y \dots$ (i.e. $\forall x \ x \in y \to \dots$) or $\exists x \in y \dots$ (i.e. $\exists x \ x \in y \land \dots$). In the literature, nonstandard embeddings also satisfy the condition $\mathbb{N} \neq {}^*\mathbb{N}$, but for simplicity we do not assume it here. In particular, also the identity map on $V(\mathbb{R})$ is allowed as (the trivial) nonstandard embedding.

Definition 2.2. A field \mathbb{F} is a set of nonstandard reals (or hyperreal numbers of nonstandard analysis) if there exists a nonstandard embedding $*: V(\mathbb{R}) \to V(^*\mathbb{R})$ where $^*\mathbb{R} = \mathbb{F}$.

In [8], H.J. Keisler showed that, up to isomorphisms, the nonstandard reals are precisely the *limit ultrapowers* of \mathbb{R} .¹ The characterization theorem we present in the next section could be proved by taking that result as a starting point. However, we prefer to give a direct proof, in order to make this paper self-contained and to keep our treatment as close to the basic language of algebra as possible.

3. The Characterization Theorem

Definition 3.1. Let R be a given ring. For any set I, denote by R^I the ring of all functions $\varphi: I \to R$ where operations are defined pointwise. A *ring of (R-valued) functions* \mathcal{F} is a subring of some R^I . It is assumed that a ring of functions contains all constant functions.

The crucial notion we shall use in the sequel is the following.

Definition 3.2. A ring of functions $\mathcal{F} \subseteq R^I$ is *composable* if for every $\varphi \in \mathcal{F}$ and for every $f: R \to R$, the composition $f \circ \varphi : I \to R$ is in \mathcal{F} .

Rings of the form \mathbb{R}^I are trivially composable. Other examples are

$$\mathcal{F} = \{ \varphi : I \to R \mid |\operatorname{ran} \varphi| \le \aleph_0 \},\,$$

the rings of those functions taking at most countably many values. We remark that composability can be seen as a *lifting* property, because it allows extending each function $f: \mathbb{R} \to \mathbb{R}$ to a function $\widehat{f}: \mathcal{F} \to \mathcal{F}$ by putting $\widehat{f}(\varphi) = f \circ \varphi$.

We are now ready to prove the characterization theorem that we propose as an alternative definition of nonstandard reals.

 $^{^1}$ The limit ultrapowers are a generalization of the ultrapowers. Definitions and basic results can be found in [3] $\S6.4$.

Theorem 3.3. A field \mathbb{F} is a set of nonstandard reals if and only if it is a homomorphic image of some composable ring \mathcal{F} of real-valued functions.

Proof. Assume first that there is a surjective ring-homomorphism $J: \mathcal{F} \to \mathbb{F}$ where $\mathcal{F} \subseteq \mathbb{R}^I$ is a composable ring of real-valued functions. Without loss of generality we can assume that $J(c_r) = r$ for all $r \in \mathbb{R}$, where c_r denotes the constant function with value r. We have to show that there is a nonstandard embedding $*: V(\mathbb{R}) \to V(\mathbb{F})$.

For every $\varphi \in \mathcal{F}$, denote by $Z(\varphi) = \{i \in I \mid \varphi(i) = 0\}$ its zero set. Then the family $\{Z(\varphi) \mid J(\varphi) = 0\}$ is a filter base that can be extended to an ultrafilter \mathcal{U} on I. On the set of functions:

$$\mathcal{G} = \{ \varphi : I \to A \mid A \in V(\mathbb{R}) \text{ and } \exists \varphi' \in \mathcal{F} \exists h \text{ with } \varphi = h \circ \varphi' \}$$

consider the equivalence relation: $\varphi \sim \psi \Leftrightarrow \{i \in I \mid \varphi(i) = \psi(i)\} \in \mathcal{U}$ and the pseudo-membership relation: $\psi \lhd \varphi \Leftrightarrow \{i \in I \mid \psi(i) \in \varphi(i)\} \in \mathcal{U}$. Then define the mapping $\Psi : \mathcal{G}/\sim \to V(\mathbb{F})$ by putting

$$\Psi([\varphi]) = J(\vartheta)$$
 if $\varphi \sim \vartheta \in \mathcal{F}$, and $\Psi([\varphi]) = {\Psi([\psi]) \mid \psi \triangleleft \varphi}$ otherwise.

Without loss of generality, we are assuming that \mathbb{F} is a set of atoms. It can be directly verified that the above definition is well-posed. The mapping Ψ satisfies the following version of *Los theorem*. For every $\varphi_1, \ldots, \varphi_n \in \mathcal{G}$ and for every bounded quantifier formula $\sigma(x_1, \ldots, x_n)$:

$$\sigma(\Psi([\varphi_1]), \dots, \Psi([\varphi_n])) \Leftrightarrow \{i \in I \mid \sigma(\varphi_1(i), \dots, \varphi_n(i))\} \in \mathcal{U}.$$

The proof is by induction on the complexity of formulas. Everything is straightforward, except one implication at the quantifier step, where the *composability* property of \mathcal{F} is used in an essential way. Precisely, let $\varphi_s' \in \mathcal{F}$ and let $\varphi_s = h_s \circ \varphi_s' \in \mathcal{G}$ for $s = 0, \ldots, n$. Assume that

$$\Lambda = \{ i \in I \mid \exists x \in \varphi_0(i) \ \sigma(x, \varphi_1(i), \dots, \varphi_n(i)) \} \in \mathcal{U}.$$

Let \mathcal{B} be a base of \mathbb{R} as a vector space on \mathbb{Q} . Since \mathcal{B} has the power of the continuum, we can find 1-1 maps $f_s: \mathbb{R} \to \mathcal{B}$ with pairwise disjoint ranges. By the composability of \mathcal{F} , the function $\psi = (\sum_{i=0}^s f_s \circ \varphi_s') \in \mathcal{F}$. Notice that, by linear independency, $\psi(i) = \psi(j) \Rightarrow (f_s \circ \varphi_s')(i) = (f_s \circ \varphi_s')(j)$ for all $s \Rightarrow \varphi_s'(i) = \varphi_s'(j)$ for all s, hence $\varphi_s(i) = \varphi_s(j)$ for all s. In particular, there exists a function ζ such that:

- For every $i \in \Lambda$, $\zeta(i) \in \varphi_0(i)$ witnesses $\sigma(\zeta(i), \varphi_1(i), \dots, \varphi_n(i))$,
- $\zeta(i) = \zeta(j)$ whenever $\psi(i) = \psi(j)$.

As a straight consequence of the latter property, there is a function h with $\zeta = h \circ \psi$, hence $\zeta \in \mathcal{G}$. We can now apply the inductive hypothesis and obtain

$$\Psi([\zeta]) \in \Psi([\varphi_0]) \wedge \sigma(\Psi([\zeta]), \Psi([\varphi_1]), \dots, \Psi([\varphi_n])).$$

Now define $*: V(\mathbb{R}) \to V(\mathbb{F})$ as the mapping where $^*r = r$ if $r \in \mathbb{R}$, and $^*A = \{\Psi([\varphi]) \mid \varphi : I \to A\}$ otherwise. The definition is well-posed and $^*\mathbb{R} = \mathbb{F}$. Since Ψ satisfies Los theorem, it is easily seen that the *Leibniz transfer principle* holds and so * is the desired nonstandard embedding.²

² The particular case $\mathcal{F} = \mathbb{R}^I$ of this implication was treated in [2].

Vice versa, assume that $*: V(\mathbb{R}) \to V(^*\mathbb{R})$ is a nonstandard embedding. Let I be the set of all finite collections of hyperreal numbers and real functions $f: \mathbb{R}^k \to \mathbb{R}$ (of several variables).

Our next goal is to find a function $\Phi : {}^*\mathbb{R} \to \mathbb{R}^I$ and a maximal ideal M in such a way that the composition $K = \pi \circ \Phi : {}^*\mathbb{R} \to \mathbb{R}^I/M$ is a 1-1 ring-homomorphism $(\pi : \mathbb{R}^I \to \mathbb{R}^I/M)$ is the canonical projection).

We claim that for every $i \in I$, one can find a mapping $\chi_i : {}^*\mathbb{R} \to \mathbb{R}$ such that:

- (1) $\chi_i(x) = x$ for all real numbers $x \in i$;
- (2) $\chi_i(^*f(a_1,\ldots,a_k)) = f(\chi_i(a_1),\ldots,\chi_i(a_k))$ for all k-variable functions $f \in i$, and for all hyperreals $a_1,\ldots,a_k \in i$.

Enumerate all the equalities ${}^*f_j(a_{j1},\ldots,a_{jk_j})={}^*g_j(b_{j1},\ldots,b_{jh_j})$ for $j=1,\ldots,n$, where the functions $f_j:\mathbb{R}^{k_j}\to\mathbb{R}$ and $g_j:\mathbb{R}^{h_j}\to\mathbb{R}$ are in i, and the hyperreal numbers $a_{jl},b_{jl}\in i$. Then the following bounded formula is true:

$$\exists x_{11}, \dots, x_{nk_n}, y_{11}, \dots, y_{nh_n} \in {}^*\mathbb{R} \left(\bigwedge_{j=1}^n {}^*f_j(x_{j1}, \dots, x_{jk_j}) = {}^*g_j(y_{j1}, \dots, y_{jh_j}) \right).$$

By the Leibniz transfer principle, there are $r_{jl}, s_{jl} \in \mathbb{R}$ that satisfy all the corresponding standard equalities $f_j(r_{j1}, \ldots, r_{jk_j}) = g_j(s_{j1}, \ldots, s_{jh_j})$ for $j = 1, \ldots, n$. Notice that, by simple modifications of the above formula (if needed), we can assume the following:

- (a) $r_{jl} = a_{jl}$ (and $s_{jl} = b_{jl}$) whenever $a_{jl} \in \mathbb{R}$ (or $b_{jl} \in \mathbb{R}$, respectively).
- (b) $r_{jl} = r_{j'l'}$ (and $s_{jl} = s_{j'l'}$) whenever $a_{jl} = a_{j'l'}$ (or $b_{jl} = b_{j'l'}$, respectively).
- (c) $r_{jl} = s_{j'l'}$ whenever $a_{jl} = b_{j'l'}$.

Namely, property (a) can be obtained by omitting those existential quantifiers that correspond to *real* numbers (and by directly considering them as parameters). As for (b) and (c), one adds to the formula the corresponding equalities $x_{jl} = x_{j'l'}$, $y_{jl} = y_{j'l'}$, and $x_{jl} = y_{j'l'}$.

As a consequence of (a), (b) and (c), a mapping $\chi : {}^*\mathbb{R} \to \mathbb{R}$ can be defined in such a way that $\chi_i(a_{jl}) = r_{jl}$ and $\chi_i(b_{jl}) = s_{jl}$. In particular, the required properties (1) and (2) are fulfilled.

Now define $\Phi : {}^*\mathbb{R} \to \mathbb{R}^I$ by putting $\Phi(a) = \Phi_a$, where $\Phi_a(i) = \chi_i(a)$ for all $i \in I$. By condition (1), $\Phi(r) = c_r$ for every $r \in \mathbb{R}$.

For any given $a, b \in {}^*\mathbb{R}$, let $j(a, b) \in I$ be the finite collection which consists of a, b and of the sum and product functions $+, \cdot : \mathbb{R}^2 \to \mathbb{R}$.

By condition (2), for all $i \supseteq j(a, b)$:

- $\Phi_a(i) + \Phi_b(i) = \chi_i(a) + \chi_i(b) = \chi_i(a+b) = \Phi_{a+b}(i);$
- $\Phi_a(i) \cdot \Phi_b(i) = \chi_i(a) \cdot \chi_i(b) = \chi_i(a \cdot b) = \Phi_{a \cdot b}(i)$.

In particular, for all $a, b \in {}^*\mathbb{R}$, both $\Phi_a + \Phi_b - \Phi_{a+b}$ and $\Phi_a \cdot \Phi_b - \Phi_{a \cdot b}$ belongs to the following ideal:

$$P = \left\{ \varphi \in \mathbb{R}^I \mid \exists j \in I \text{ such that } \varphi(i) = 0 \text{ for all } i \supseteq j \right\}.$$

Now pick M any maximal ideal extending P, and let $\pi: \mathbb{R}^I \to \mathbb{R}^I/M$ be the canonical projection onto the corresponding quotient field. Then the composition $K = \pi \circ \Phi: {}^*\mathbb{R} \to \mathbb{R}^I/M$ is a ring-homomorphism because K(a) + K(b) - K(a+b) = 0 and $K(a) \cdot K(b) - K(a \cdot b) = 0$ for all $a, b \in {}^*\mathbb{R}$. Notice that K is necessarily 1-1. In order to get an isomorphism out of K, consider the following family of functions:

$$\mathcal{F} = \begin{cases} \varphi \in \mathbb{R}^I \mid \exists \ a_1, \dots, a_n \in {}^*\mathbb{R} \text{ such that} \\ \text{if } \chi_i(a_s) = \chi_j(a_s) \text{ for all } s = 1, \dots, n \text{ then } \varphi(i) = \varphi(j) \end{cases}$$

A straightforward verification proves that \mathcal{F} is a composable subring of \mathbb{R}^I . Since trivially ran $\Phi \subseteq \mathcal{F}$, it makes sense to consider the composition

$$K' = \pi' \circ \Phi : {}^*\mathbb{R} \to \mathbb{F},$$

where $\pi': \mathcal{F} \to \mathbb{F} = \mathcal{F}/M'$ is the restriction of π that projects \mathcal{F} onto its quotient field modulo $M' = M \cap \mathcal{F}$. K' is a 1-1 ring-homomorphism because K is.

In order to prove that K is an isomorphism, we are left to show that for every $\varphi \in \mathcal{F}$, there exists $b \in {}^*\mathbb{R}$ with $\pi(\varphi) = \pi(\Phi_b)$. By the definition of \mathcal{F} , there are finitely many hyperreals a_1, \ldots, a_n such that $\varphi(i) = \varphi(j)$ whenever $\chi_i(a_s) = \chi_j(a_s)$ for all $s = 1, \ldots, n$. But then we can pick a function $f : \mathbb{R}^n \to \mathbb{R}$ such that $f(\chi_i(a_1), \ldots, \chi_i(a_n)) = \varphi(i)$ for all $i \in I$. If $b = {}^*f(a_1, \ldots, a_n)$, by the condition (2) above, $\Phi_b(i) = \varphi(i)$ for all $i \supseteq \{a_1, \ldots, a_n, f\} \in I$, hence $\pi(\Phi_b) = \pi(\varphi)$ as desired. The composition $J = K'^{-1} \circ \pi' : \mathcal{F} \to {}^*\mathbb{R}$ is the surjective ring-homomorphism we were looking for.

Acknowledgement. The authors thank Marco Forti for many valuable discussions.

References

- M.Y. Antonovskij, D.V. Chudnovsky, G.V. Chudnovsky and E. Hewitt, Rings of real-valued continuous functions. II, Math. Z. 176 (1981), 151–186.
- [2] V. Benci and M. Di Nasso, A ring homomorphism is enough to get nonstandard analysis, Bull. Belg. Math. Soc. – S. Stevin, to appear.
- [3] C.C. Chang and H.J. Keisler, Model Theory (3rd edition), North-Holland, 1990.
- [4] G.L. Cherlin and M.A. Dickmann, Real closed rings I. Residue rings of rings of continuous functions, Fund. Math. 126 (1986), 147–183.
- [5] H.G. Dales and W.H. Woodin, Super-real Fields, Oxford University Press, 1996.
- [6] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrandt, 1960.
- [7] E. Hewitt, Rings of real-valued continuous functions, Trans. Amer. Math. Soc. 64 (1948), 45–99.
- [8] H.J. Keisler, Foundations of Infinitesimal Calculus, Prindle, Weber & Schmidt, 1976.
- [9] J.J. Moloney, Residue class domains of the ring of convergent sequences and of $C^{\infty}([0,1],\mathbb{R})$, Pacific J. Math. **143** (1990), 79–153.
- [10] J. Roitman, Non-isomorphic hyper-real fields from non-isomorphic ultrapowers, Math. Z. 181 (1982), 93–96.

DIPARTIMENTO DI MATEMATICA APPLICATA "ULISSE DINI", UNIVERSITÀ DI PISA, ITALY. $E\text{-}mail\ address:}$ benci@dma.unipi.it

DIPARTIMENTO DI MATEMATICA "LEONIDA TONELLI", UNIVERSITÀ DI PISA, ITALY. $E\text{-}mail\ address:}$ dinasso@dm.unipi.it