Pricing Derivatives on Two Lévy-driven Stocks

José Fajardo* and Ernesto Mordecki†

April 15, 2002

Abstract

The aim of this work is to study the pricing problem for derivatives depending on two stocks driven by a bidimensional Lévy process. The main idea is to apply Girsanov’s Theorem for Lévy processes, in order to reduce the posed problem to the pricing of a one Lévy driven stock in an auxiliary market, baptized as “dual market”. In this way, we extend the results obtained by Gerber and Shiu (1996) for two dimensional Brownian motion.

Key Words: Lévy processes, Optimal stopping, Girsanov’s Theorem, Dual Market Method, Derivative pricing

JEL Classification: G12, G13

1 Introduction

Since Margrabe’s (1978) paper, many important extensions have been carrying on to study derivatives written on two stocks. Margrabe studied the pricing of European options for the case of two non-dividend-paying stocks driven by geometric Brownian motions, to be more exactly, the pricing of the right to change one asset for another at the end of some fixed period of time obtaining closed form formulas for this problem, extending in this way

*Departmento de Economia, Universidade Católica de Brasília, Brasília, Brazil, e-mail: pepe@pos.ucb.br
†Centro de Matemática, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay, e-mail: mordecki@mat.edu.uy
the Black and Scholes pricing model.

The American option pricing problem leads to the solution of an optimal stopping problem, that in general does not admit closed form solutions (see Jacka (1991)). In the perpetual case, i.e. the option has no expiration date, Gerber and Shiu (1996) obtain a closed form formula using the optional sampling theorem, assuming that stock prices are driven by geometric Brownian motions and stocks pay constant rate continuous dividends. They also study the pricing of the Perpetual Maximum Option, it is an option whose payoff is the maximum between two or more stocks and has no expiration date, and finally they study American perpetual options with more general payoffs which are homogeneous of degree one.

In the present paper we consider the problem of pricing European and American type derivatives written on a two dimensional stock driven by a two dimensional Lévy processes (it can be said that the stock follows a two dimensional geometric Lévy process), with a payoff function homogeneous of an arbitrary degree.

The paper is organized as follows: in section 2 we describe the market model and introduce the pricing problem, illustrating with several important examples of traded derivatives. In section 3 we describe the Dual Market Method, a method which allows to reduce the two stock problem into a one stock problem. In section 4 we derive some closed form formulas based on the proposed method and known results for one-dimensional problems, and finally we have the conclusions and an appendix.

2 Market Model

2.1 Multidimensional Lévy processes

\(\mathbf{X} = (X^1, \ldots, X^d) \) be a \(d \)-dimensional Lévy process defined on a stochastic basis \(\mathcal{B} = (\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, P) \). This means that \(\mathbf{X} \) is a stochastically continuous stochastic process with independent increments, such that the distribution of \(\mathbf{X}_{t+s} - \mathbf{X}_s \) does not depend on \(s \), with \(P(\mathbf{X}_0 = 0) = 1 \) and trajectories continuous from the left with limits from the right. The basis \(\mathcal{B} \) is supposed to satisfy the usual assumptions, i.e. continuity from the right and \(\mathcal{F}_0 \) is \(P \)-null.
complete. For \(z = (z_1, \ldots, z_d) \) in \(C^d \), when the integral is convergent (and this is always the case if \(z = i\lambda \) with \(\lambda \) in \(R^d \)), Lévy-Khinchine formula states, that \(\mathbb{E}e^{zX_t} = \exp(t\Psi(z)) \) where the function \(\Psi \) is the characteristic exponent of the process, and is given by

\[
\Psi(z) = (a, z) + \frac{1}{2}(z, \Sigma z) + \int_{\mathbb{R}^d} \left(e^{(z,y)} - 1 - (z, y)1_{\{|y| \leq 1\}} \right) \Pi(dy), \tag{1}
\]

where \(a = (a_1, \ldots, a_d) \) is a vector in \(\mathbb{R}^d \), \(\Pi \) is a positive measure defined on \(\mathbb{R}^d \setminus \{0\} \) such that \(\int_{\mathbb{R}^d} (|y|^2 \wedge 1) \Pi(dy) \) is finite, and \(\Sigma = ((s_{ij})) \) is a symmetric nonnegative definite matrix, that can always be written as \(\Sigma = A'A \) (where ' denotes transposition) for some matrix \(A \).

The triplet \((a, \Sigma, \Pi) \) completely determines the law of the process \(X \). Particular interest has the case when \(\alpha = \int_{\mathbb{R}^d} \Pi(dy) \) is finite, i.e. \(X \) is a diffusion with jumps. Introducing \(F \) by \(\Pi(dy) = \alpha F(dy) \), Lévy-Khinchine formula is (changing the value of \(a \) if necessary)

\[
\Psi(z) = (a, z) + \frac{1}{2}(z, \Sigma z) + \int_{\mathbb{R}^d} \left(e^{(z,y)} - 1 \right) \Pi(dy), \tag{2}
\]

and the process \(X = \{X_t\}_{t \geq 0} \) can be represented by

\[
X_t = at + AW_t + \sum_{k=1}^{N_t} Y_k,
\]

where \(W \) is a standard \(d \)-dimensional Brownian motion, \(N = \{N_t\}_{t \geq 0} \) is a Poisson process with parameter \(\alpha \), and \(\{Y_k\}_{k \geq 1} \) is a sequence of independent \(d \)-dimensional random vectors with identical distribution \(F(dy) \).

Another important case is when the coordinates of \(X \) are independent processes. This happens if and only if \(\Sigma \) is a diagonal matrix (and \(A \) can be chosen to be diagonal also) and the measure \(\Pi \) has support on the set \(\{x \in \mathbb{R}^d : \prod_{k=1}^{d} x_k = 0\} \), (i.e. it is concentrated on the union of the coordinate axes, see E 12.10 in Sato (1999)). In this case \(\Psi(z) = \sum_{k=1}^{d} \Psi_k(z_k) \), where \(\Psi_k \) is the characteristic exponent of the \(k \)-coordinate of \(X \), given by

\[
\Psi_k(z_k) = a_k z_k + \frac{1}{2}s_{kk} z_k^2 + \int_{\mathbb{R}} \left(e^{z_k y} - 1 - z_k y 1_{\{|y| \leq 1\}} \right) \Pi_k(dy),
\]

where \(\Pi_k(A) = \int_{\{x \in \mathbb{R}^d : x_k \in A\}} \Pi(dx) \).
2.2 Market and Problem

Consider a market model with three assets \((S^1, S^2, S^3)\) given by

\[
S^1_t = e^{X^1_t}, \quad S^2_t = S^2_0 e^{X^2_t}, \quad S^3_t = S^3_0 e^{X^3_t}
\]

where \((X^1, X^2, X^3)\) is a three dimensional Lévy process, and for simplicity, and without loss of generality we take \(S^1_0 = 1\). The first asset is the bond and is usually deterministic. Randomness in the bond \(\{S^1_t\}_{t\geq 0}\) allows to consider more general situations, as for example the pricing problem of a derivative written in a foreign currency, referred as Quanto option.

Consider a function:

\[
f : (0, \infty) \times (0, \infty) \to IR
\]

homogeneous of an arbitrary degree \(\alpha\); i.e. for any \(\lambda > 0\) and for all positive \(x, y\)

\[
f(\lambda x, \lambda y) = \lambda^\alpha f(x, y).
\]

In the above market a derivative contract with payoff given by

\[
\Phi_t = f(S^2_t, S^3_t)
\]

is introduced.

Assuming that we are under a risk neutral martingale measure, that is to say, \(S^k_t\) \((k = 2, 3)\) are \(P\)-martingales, i.e. \(P\) is an equivalent martingale measure (EMM)\(^1\), we want to price the derivative contract just introduced. In the European case, the problem reduces to the computation of

\[
E_T = E(S^2_0, S^3_0, T) = E\left[e^{-X^1_T} f(S^2_0 e^{X^2_T}, S^3_0 e^{X^3_T}) \right]
\]

In the American case, if \(\mathcal{M}_T\) denotes the class of stopping times up to time \(T\), i.e:

\[
\mathcal{M}_T = \{\tau : 0 \leq \tau \leq T, \tau \text{ stopping time}\}
\]

for the finite horizon case, putting \(T = \infty\) for the perpetual case, the problem of pricing the American type derivative introduced consists in solving an optimal stopping problem, more precisely, in finding the value function \(A_T\)

\(^1\)See appendix
and an optimal stopping time τ^* in \mathcal{M}_T such that
\[
A_T = A(S^2_0, S^3_0, T) = \sup_{\tau \in \mathcal{M}_T} \mathbb{E} \left[e^{-X^1_1} f(S^2_0 e^{X^2_1}, S^3_0 e^{X^3_1}) \right] \\
= \mathbb{E} \left[e^{-X^1_{\tau^*}} f(S^2_0 e^{X^2_{\tau^*}}, S^3_0 e^{X^3_{\tau^*}}) \right].
\]

2.3 Examples of Derivatives

In what follows we introduce some relevant derivatives as particular cases of the problem described.

2.3.1 Option to Default. Consider the derivative which has the payoff
\[
f(x, y) = \min\{x, y\}
\]
if $X^1 = rt$, then the value of the Option to Default a promise S^1_T backed by a collateral guarantee S^2_T, at the time T would be:
\[
D = \mathbb{E} \left[e^{-rT} \min\{S^1_T, S^2_T\} \right]
\]

2.3.2 Margrabe’s Options. Consider the following cases:

a) $f(x, y) = \max\{x, y\}$, called the Maximum Option,

b) $f(x, y) = |x - y|$, the Symmetric Option,

c) $f(x, y) = \min\{(x - y)^+, ky\}$, the Option with Proportional Cap.

2.3.3 Swap Options. Consider
\[
f(x, y) = (x - y)^+,
\]
obtaining the option to exchange one risky asset for another.

2.3.1 Quanto Options. Consider
\[
f(x, y) = (x - ky)^+,
\]
and take $S^2_T = 1$, then
\[
E_T = \mathbb{E}^Q e^{X^0_t} (S^1_T - k)^+
\]
where $e^{X_1^T}$ is the spot exchange rate (foreign units/domestic units) and S_T^1 is the foreign stock in foreign currency. Then we have the price of an option to exchange one foreign currency for another.

2.3.4 Equity-Linked Foreign Exchange Option (ELF-X Option). Take

$$S = S^1: \text{ foreign stock in foreign currency}$$

and Q is the spot exchange rate. We use foreign market risk measure, then an ELF-X is an investment that combines a currency option with an equity forward. The owner has the option to buy S_t with domestic currency which can be converted from foreign currency using a previously stipulated strike exchange rate R (domestic currency/foreign currency). The payoff is:

$$\Phi_t = e^{-f_t t} S_t (1 - R Q T)^+$$

Then take $S^2 = 0$ and $f(x, y) = (y - R x)^+$.

2.3.5 Vanilla Options. Take

$$X^1 = r t, \quad X^1 = x$$

then in the call case we have

$$f(x, y) = (x - k y)^+$$

and

$$f(x, y) = (k y - x)^+$$

in the put case with $S^1 = S^1_0 e^{X_t}$ and $S^2 = 1$.

3 Dual Market method

The main idea to solve the posed problems is the following: make a change of measure through Girsanov’s Theorem for Lévy processes, in order to reduce the original problems to a pricing problems for an auxiliary derivative written on one Lévy driven stock in an auxiliary market with deterministic interest rate. This method was introduced in Shepp and Shiryaev (1994) and Kramkov and Mordecki (1994) with the purpose of pricing American perpetual options with path dependent payoffs. It was employed by Aloisio and De Deus (1997) to consider the pricing of swaps, and is strongly related.
with the election of the \textit{numéraire} (see Geman et al. (1995)). This auxiliary market will be called the \textit{Dual Market}.

More precisely, observe that

\[e^{-X_1 t} f(S_0^2 e^{X_2 t}, S_0^3 e^{X_3 t}) = e^{-X_1 t + \alpha X_3 t} f(S_0^2 e^{X_2 t - X_3 t}, S_0^3), \]

let \(\rho = -\log \mathbb{E} e^{-X_1 t + \alpha X_3 t} \), that we assume finite. The process

\[Z_t = e^{-X_1 t + \alpha X_3 t + \rho t} \]

is a density process (i.e. a positive martingale starting at \(Z_0 = 1 \)) that allow us to introduce a new measure \(\tilde{P} \) by its restrictions to each \(F_t \) by the formula

\[\frac{d\tilde{P}_t}{dP_t} = Z_t. \]

Denote now by \(X_t = X_2 t - X_3 t \), and \(S_t = S_0^2 e^{X_t} \). Finally, let

\[F(x) = f(x, S_0^3). \]

With the introduced notations, under the change of measure we obtain

\[E_T = \tilde{E} [e^{-\rho T} F(S_T)] \]

\[A_T = \sup_{\tau \in M_T} \tilde{E} [e^{-\rho \tau} F(S_\tau)] \]

The following step is to determine the law of the process \(X \) under the auxiliary probability measure \(\tilde{P} \).

\textbf{Lemma 3.1} Let \(X \) be a Lévy process on \(\mathbb{R}^d \) with characteristic exponent given in (1). Let \(u \) and \(v \) be vectors in \(\mathbb{R}^d \). Assume that \(\mathbb{E} e^{(u, X_1)} \) is finite, and denote \(\rho = -\log \mathbb{E} e^{(u, X_1)} = \Psi(u) \). In this conditions, introduce the probability measure \(\tilde{P} \) by its restrictions \(\tilde{P}_t \) to each \(F_t \) by

\[\frac{d\tilde{P}_t}{dP_t} = \exp[(u, X_t) + \rho t]. \]

Then
(a) the law of the unidimensional Lévy process \(\{(v, X_t)\}_{t \geq 0} \) under \(\tilde{P} \) is given by the triplet

\[
\begin{align*}
\tilde{a} &= (a, v) + \frac{1}{2}[(v, \Sigma u) + (u, \Sigma v)] + \int_{\mathbb{R}^d} e^{(u,y)}(v, y)1_{\{|(v,y)| \leq 1, |x| > 1\}} \Pi(dx) \\
\tilde{\sigma}^2 &= (v, \Sigma v) \\
\tilde{\pi}(A) &= \int_{\mathbb{R}^d} 1_{\{(v,y) \in A\}} e^{(u,y)} \Pi(dy).
\end{align*}
\]

(b) In the particular case when \(X \) is a diffusion with jumps which characteristic exponent given in (2) the law of the unidimensional Lévy process \(\{(v, X_t)\}_{t \geq 0} \) under \(\tilde{P} \) is given by the triplet

\[
\begin{align*}
\tilde{a} &= (a, v) + \frac{1}{2}[(v, \Sigma u) + (u, \Sigma v)] \\
\tilde{\sigma}^2 &= (v, \Sigma v) \\
\tilde{\pi}(A) &= \int_{\mathbb{R}^d} 1_{\{(v,y) \in A\}} e^{(u,y)} \Pi(dy).
\end{align*}
\]

Furthermore, the intensity of the Poisson process under \(\tilde{P} \) is given by

\[
\tilde{\alpha} = \int_{\mathbb{R}^d} e^{(u,y)} \Pi(dy) = \alpha \int_{\mathbb{R}^d} e^{(u,y)} F(dy)
\]

(c) Assume (b), and let \(\Pi(dy) = \alpha F(dy) \) where \(F \) is the common distribution of the random variables \(\{Y_k\}_{k \geq 1} \), and has characteristic function (under \(P \)) given by

\[
\phi(z) = \int_{\mathbb{R}^d} e^{(z,y)} F(dy).
\]

Then, the characteristic function of the same random variables under \(\tilde{P} \) is given by

\[
\tilde{\phi}(\theta) = \frac{\phi(\theta v + u)}{\phi(u)}.
\]

Remark: Consider a diffusion with gaussian jumps, in what can be considered as a multidimensional extensions of the jump-diffusion model proposed by Merton (1976). then, that the characteristic function corresponding to the distribution of the jumps is given by

\[
\phi(z) = \exp[(z, \nu) + \frac{1}{2}(z, \Delta z)],
\]

where the \(d \)-dimensional vector \(\nu \) is the drift of the jumps, and the nonnegative definite matrix \(\Delta \) is the covariance. According to (7), the characteristic
exponent of the jumps of the process $\{(v, X_t)\}_{t \geq 0}$ under the probability measure \tilde{P} in the Lemma 3.1 is given by

$$\tilde{\phi}(\theta) = \frac{\phi(\theta v + u)}{\phi(u)} = \exp \left\{ \theta ((v, \nu) + \frac{1}{2} [(v, \Delta u) + (u, \Delta v)] + \frac{1}{2} \theta^2 (v, \Delta v) \right\}. \tag{8}$$

In conclusion, jumps under \tilde{P} are also gaussian, with mean and variance obtained in (8)

Proof of the Lemma. First compute the expectation under \tilde{P} as an expectation under P.

$$\tilde{E}e^{\theta(v, X_t)} = Ee^{(u + \theta v, X_t) + pt} = \exp \{ t[\Psi(u + \theta v, X_t) - \Psi(u)] \}.$$

Now, compute the characteristic exponent of (v, X),

$$\Psi(u + \theta v) - \Psi(u) = (a, u + \theta v) - (a, u) + \frac{1}{2} [(u + \theta v, \Sigma u + \theta v)$$

$$- (u, \Sigma u) + \int_{R^d} \left(e^{(u + \theta v, y)} - 1 - (u + \theta v, y)\mathbf{1}_{\{|y| \leq 1\}} \right) \Pi(dy)$$

$$- \int_{R^d} \left(e^{(u, y)} - 1 - (u, y)\mathbf{1}_{\{|y| \leq 1\}} \right) \Pi(dy)$$

$$= \theta \{ (a, v) + \frac{1}{2} [(v, \Sigma u) + (u, \Sigma v)] \} + \frac{1}{2} (v, \Sigma v)$$

$$+ \int_{R^d} \left(e^{(u + \theta v, y)} - e^{(u, y)} - (\theta v, y)\mathbf{1}_{\{|y| \leq 1\}} \right) \Pi(dy)$$

$$= \theta \{ (a, v) + \frac{1}{2} [(v, \Sigma u) + (u, \Sigma v)] + \int_{R^d} e^{(u, y)}(v, y)\mathbf{1}_{\{|y| \leq 1, |x| > 1\}} \Pi(dx) \}$$

$$+ \frac{1}{2} (v, \Sigma v) + \int_{R^d} \left(e^{(\theta v, y)} - 1 - (\theta v, y)\mathbf{1}_{\{|y| \leq 1\}} \right) e^{(u, y)} \Pi(dy)$$

giving (5).

In what concerns (6), similar calculations give the result.

Let us see (c). As the distribution of the jumps under \tilde{P} is given by $\frac{1}{\tilde{\alpha}} \tilde{\pi}(dy)$,

$$\tilde{\phi}(\theta) = \frac{1}{\tilde{\alpha}} \int_{R} e^{\theta x} \tilde{\pi}(dx)$$

$$= \frac{\alpha}{\tilde{\alpha}} \int_{R^d} e^{(\theta v + u, y)} F(dy) = \frac{\phi(\theta v + u)}{\phi(u)}.$$

4 Examples

4.1 European Options

Let $X_t^1 = rt$ and (X_t^2, X_t^3) be a bidimensional Lévy Process. We can choose an EMM $(Q^\theta, \theta = (\theta_2, \theta_3))$ using the Gerber and Shiu (1994) approach, i.e. the density of the EMM is given by the Esscher transform:

$$dQ^\theta = \frac{e^{\theta_2 X_T^2 + \theta_3 X_T^3}}{E e^{\theta_2 X_T^2 + \theta_3 X_T^3}} dP$$

where θ is such that Q^θ is an EMM, for more details see the appendix.

Now consider a defaultable contingent promise S_T^2 backed by a collateral guarantee S_T^3, then it’s price D would be:

$$D = E^\theta \left[e^{-rT} \min\{S_T^2, S_T^3\} \right] = E^\theta \left[e^{-rT} S_T^2 \right] - E^\theta \left[e^{-rT} (S_T^2 - S_T^3)^+ \right].$$

$$= S_0^2 e^{-rT} \int_{-\infty}^{\infty} e^{X_T^2} dQ^\theta - \int_A e^{-rT} (S_0^2 e^{X_T^2} - S_0^3 e^{X_T^3}) dQ^\theta$$

where $A = \{\omega \in \Omega : S_0^2 X_T^2(\omega) > S_0^3 X_T^3(\omega)\}$. We proceed to compute I_1 and I_2:

$$I_1 = \int_{-\infty}^{\infty} e^{X_T^2} \frac{e^{\theta_2 X_T^2 + \theta_3 X_T^3}}{Ee^{\theta_2 X_T^2 + \theta_3 X_T^3}} dP(x)$$

$$= \frac{E e^{(\theta_2+1)X_T^2 + \theta_3 X_T^3}}{E e^{\theta_2 X_T^2 + \theta_3 X_T^3}}$$
and assuming for simplicity $S^2_0 = S^3_0 = 1$ we have

$$I_2 = \int_A e^{-rT}(e^{X^2_T} - e^{X^3_T})d\mathcal{Q}^\theta$$

$$= \int_{\{S_T > 1\}} e^{-rT}e^{X^3_T}(S_T - 1)d\mathcal{Q}^\theta$$

$$= \int_{\{S_T > 1\}} e^{-rT}e^{X^3_T}(S_T - 1)d\mathcal{Q}^\theta$$

$$= e^{-\rho T} \int_{\{S_T > 1\}} (S_T - 1)d\tilde{\mathcal{Q}}$$

where $\rho = -\log E e^{-r+X^3_1} = r - \log E e^{X^3_1}$ and

$$d\tilde{\mathcal{Q}} = \frac{e^{X^3_T}}{E e^{X^3_T}}d\mathcal{Q}^\theta$$

since $S_T = e^X$ and $X = X^2 - X^3$, then I_2 can be computed as

$$I_2 = e^{-\rho T} \int_{\{S_T > 1\}} S_Td\tilde{\mathcal{Q}} - e^{-\rho T} \int_{\{S_T > 1\}} d\tilde{\mathcal{Q}}$$

$$= e^{-\rho T} \int_{\{S_T > 1\}} e^{X^2_T} - e^{X^3_T} \frac{e^{X^3_T}}{E e^{X^3_T}}d\mathcal{Q}^\theta - e^{-\rho T} \tilde{\mathcal{Q}}(S_T > 1)$$

$$= e^{-\rho T} \frac{E e^{X^2_T}}{E e^{X^3_T}} \tilde{\mathcal{Q}}(S_T > 1) - e^{-\rho T} \tilde{\mathcal{Q}}(S_T > 1)$$

where $d\tilde{\mathcal{Q}} = \frac{e^{X^3_T}}{E e^{X^2_T}}d\mathcal{Q}$.

4.2 American Options

Now consider an American perpetual swap, it is a derivative with the payoff function at any time t given by

$$f(S^2_t, S^3_t) = (S^2_t - S^3_t)^+$$

then using the Dual market method, the pricing problem of this derivative would be:

$$A_T = \sup_{\tau \in \mathcal{M}_T} \tilde{\mathbb{E}}[e^{-\rho \tau}(S_\tau - S^3_0)^+] = \tilde{\mathbb{E}}[e^{-\rho \tau^*}(S_{\tau^*} - S^3_0)^+]$$
and this problem can be solved using the following proposition

Proposition 4.1 Let \(M = \sup_{o \leq t \leq \tau} X_t \) with \(\tau \) an independent exponential random variable with parameter \(\rho \), then \(\tilde{E}e^M < \infty \) and

\[
A(S^2_0, S^3_0) = \frac{\tilde{E} \left[S^2_0 e^M - S^3_0 \tilde{E}(e^M) \right]}{\tilde{E}(e^M)}
\]

the optimal stopping time is

\[
\tau^*_c = \inf \{ t \geq 0, S_t \geq S^3_0 \tilde{E}(e^M) \}
\]

Proof:
See Mordecki (2001). \(\square \)

4.3 Put-Call Duality

It is interesting to observe that there is a duality relation between the put and call option prices of the European and American type, to see this remember from the option pricing theory that the call price \(c \) is given by:

\[
c(S, K) = \tilde{E} \left[e^{-rT}(S_T - K)^+ \right] = \tilde{E} \left[e^{-rT}((-K) - (-S_T))^+ \right]
\]

It is easy to see that if \((S_t)_{t \geq 0}\) is a martingale under \(\tilde{P} \), then \((-S_t)_{t \geq 0}\) is also, a martingale under \(P \), from here we have that the put price \(p \) satisfy the following relation:

\[
c(S, K) = p(-S, -K)
\]

The same is valid for American options, denote by \(C \) the call price and \(P \) the put price, then:

\[
C(S, K) = \sup_{\tau \in M_T} \tilde{E} \left[e^{-r\tau}(S_\tau - K)^+ \right] = \sup_{\tau \in M_T} \tilde{E} \left[e^{-r\tau}((-K) - (-S_\tau))^+ \right] = P(-S, -K)
\]
5 Conclusions

In this paper we have extended the results obtained by Gerber and Shiu (1996) for the bidimensional Geometric Brownian Motion to the case of Bidi-
mensional Geometric Lévy motion. We have shown that using the Dual mar-
ket method it is possible to price many derivatives, with payoffs homogenous
of any degree, written in terms of two assets driven by geometric Lévy mo-
tions, in the European case and for the American perpetual case. Another
important fact in this paper is the possibility of having a stochastic discount,
this allow us to consider derivatives as quanto derivatives.

Many extensions can be carry on, a natural one would be the extension to
the multidimensional case, i.e. to study the pricing problem of derivatives
written in terms of many assets, in a forthcoming paper we study that case.
Finally, we derive a put-call relation, that allow us to obtain a call price from
a put price of another asset price diffusion, the same can be done using the
put-call parity, the first to point this out were Peskir and Shirjaev (2001)
for the Brownian motion case, but as we seee it is also true for more general
processes.

6 Appendix

How to obtain an EMM \((Q^{\theta}) \)

The procedure introduced in this section is in spirit of Gerber and Shiu
(1994). Take the original probability measure \(P \) and suppose that relative
prices \(\{ S_t^j \} \) are not martingales under \(P \), then we will show how to find
EMM.

Let

\[
M(z, t; \theta) = \frac{M(z + \theta, t)}{M(\theta, t)}
\]

where \(M(\theta, t) = \mathbb{E}(e^{\theta \cdot X_t^i}) \). Now find a vector \(\theta^* \) such that the probability

\[
dQ_t^{\theta^*} = \frac{e^{\theta^* \cdot X_t^i}}{\mathbb{E}(e^{\theta^* \cdot X_t^i})}
\]

be an EMM. To this end, suppose that \(X_t^1 = rt \), as in Gerber and Shiu
(1994), then it is enough to prove:
\[S_0^j = E^*(e^{-rt} S_j^t) \quad \forall j, \forall t \]

where \(E^* \) is the expectation under \(Q^{\theta^*} \), take \(1_j = (0, \ldots, 1_{j-position}, \ldots, 0) \), then

\[
r = \log[M(1_j, 1; \theta^*)] = \log \left[\frac{M(1_j + \theta^*, 1)}{M(\theta^*, 1)} \right]
\]

The solution of this equation allow us to construct \(Q^{\theta^*} \). Now to extend the above procedure to our model we need that \(\{S^j_t\} \) be a martingale, as \(S^1_0 = 1 \), then is enough to prove that

\[S_0^j = E^*(S_j^t) \quad \forall j, \forall t \]

\[
1 = E^*(e^{X^2_t-X^1_t})
\]

Defining \(\bar{1}_j = (-1, 0, \ldots, 1_{j-position}, \ldots, 0) \), we have

\[
1 = M(\bar{1}_j, 1; \theta^*)
\]

In this way we obtain \(\theta^* \), then \(Q^{\theta^*} \).

References

