Geometria Riemanniana. Quarto foglio di esercizi.

Roberto Frigerio

20 maggio 2013

- 1. Dati $t, s \in [0, \varepsilon)$ e $\alpha \in [0, \pi]$, si costruiscano il triangolo Euclideo Δ ed il triangolo $\Delta^{(k)} \subseteq M_k^2$ aventi dua lati lunghi t e s, e l'angolo compreso uguale ad α . Si denotino rispettivamente con $d_E(t, s, \alpha)$ e $d_k(t, s, \alpha)$ le lunghezze del terzo lato di Δ e di $\Delta^{(k)}$.
 - (a) Si mostri che

$$d_k(t, s, \alpha)^2 = d_E(t, s, \alpha)^2 + o(t, s, \alpha) ,$$

dove

$$\lim_{t,s\to 0}\frac{\sup_{\alpha}\{o(t,s,\alpha)\}}{ts}=0\ .$$

(b) Si mostri che, se γ, γ' sono geodetiche uscenti dal punto $p \in X$, dove X è metrico geodetico, allora l'angolo di Alexandrov tra γ e γ' può essere calcolato usando M_k^2 al posto di \mathbb{R}^2 , ovvero

$$\angle_p(\gamma, \gamma') = \limsup_{t,s \to 0} \angle_{\overline{p}}(\overline{\gamma(t)}, \overline{\gamma'(s)}) ,$$

dove $\angle_{\overline{p}}(\overline{\gamma(t)}, \overline{\gamma'(s)})$ è l'angolo in \overline{p} del triangolo di confronto per $p, \gamma(t), \gamma'(s)$ in M_k^2 .

2. Sia (X, d) uno spazio metrico geodetico. La metrica d si dice convessa se per ogni coppia di geodetiche $\gamma_1, \gamma_2 \colon [0, 1] \to X$ uscenti da un punto $p = \gamma_1(0) = \gamma_2(0)$ si ha

$$d(\gamma_1(t), \gamma_2(t)) \le t \cdot d(\gamma_1(1), \gamma_2(1)) .$$

(a) Si mostri che se (X, d) è CAT(0), allora d è convessa, e che, se d è convessa, allora (X, d) è unicamente geodetico.

Sia $X=\mathbb{R}^2$, e per ogni $p\in [1,\infty]$ si consideri la norma L^p su X data da

$$||(x_1, x_2)||_p = \begin{cases} |x_1| + |x_2| & \text{se } p = 1\\ \sqrt[p]{|x_1|^p + |x_2|^p} & \text{se } 1$$

Sia infine d_p la distanza su X data da $d_p(v, w) = ||v - w||_p$.

(b) Si mostri che (X, d_p) è geodetico per ogni $p \in [1, \infty]$.

- (c) Si dica per quali p la distanza d_p è convessa.
- (d) Si dica per quali p la distanza d_p è CAT(0).
- 3. Siano M,N varietà topologiche compatte, connesse e di dimensione positiva. Si mostri che $M \times N$ non supporta alcuna metrica Riemanniana di curvatura negativa (attenzione: non si chiede di dimostrare che una metrica prodotto non può avere curvatura negativa, ma che *qualsiasi* metrica riemanniana su $M \times N$ non può avere curvatura negativa).
 - Suggerimento: Si usi il fatto che, se V è una varietà topologica compatta di dimensione d, allora $H_d(V \times X, \mathbb{Z}_2) \neq 0$ per qualsiasi spazio topologico X.
- 4. Sia Muna varietà Riemanniana, e sia $\gamma\colon S^1\to M$ un loop non omotopicamente banale.
 - (a) Si mostri che se M è compatta e la $k(M) \leq 0$, allora esiste un'omotopia $H \times S^1 \times [0,1] \to M$ tale che $H(\cdot,0) = \gamma$ e $H(\cdot,1) = \gamma'$ è una geodetica periodica. In altre parole, se $p \colon \mathbb{R} \to S^1$ è l'usuale rivestimento universale, allora $\gamma' \circ p \colon \mathbb{R} \to M$ è una geodetica.
 - (b) Si mostri che la stessa conclusione del punto precedente vale nel caso in cui M sia completa e localmente isometrica a \mathbb{R}^n .

Suggerimento: Si passi al rivestimento universale, e si traduca il problema nella ricerca di un asse per un'opportuno automorfismo di rivestimento.