Corso di Algebra, Informatica

Compito - Appello di Giugno 12 giugno 2006

Cognome	Nome
Corso	
Valutazione	
Esercizio 1	
	Voto
Esercizio 2	
	Voto
Esercizio 3	
	Voto
Esercizio 4	
	Voto

Esercizio 1 (8 punti)

- 1. Fattorizzare il polinomio $x^4 4x^3 + x^2 + 8x 6$ come prodotto di irriducibili in $\mathbb{R}[x]$, $\mathbb{Q}[x]$, $\mathbb{Z}_7[x]$, $\mathbb{Z}_{11}[x]$.
- 2. Costruito un campo \mathbb{K} con 49 elementi come quoziente di $\mathbb{Z}_7[x]$ per un polinomio f(x) irriducibile di grado opportuno, trovare in \mathbb{K} l'opposto e l'inverso dell'elemento 3x-2.

Soluzione

1. Noi non abbiamo studiato formule risolutive per le equazioni di quarto grado, però abbiamo un algoritmo per fattorizzare un polinomio a coefficienti interi di quarto grado in $\mathbb{Q}[x]$. Infatti o il polinomio ha fattori di grado 1 (ovvero radici che sappiamo tra quali razionali andare a cercare) oppure è il prodotto di due polinomi di grado 2 (tramite forza bruta si ottiene un sistema in 4 incognite intere) oppure è irriducibile. Partiamo quindi dalla fattorizzazione in $\mathbb{Q}[x]$ che può dare indicazioni anche per quella in $\mathbb{R}[x]$.

Le possibili radici razionali vanno cercate nell'insieme:

$$R = \{\pm 1, \pm 2, \pm 3, \pm 6\}$$

Provando si nota che 1 e 3 sono le radici intere di questo polinomio, quindi $(x-1)\cdot(x-3)$ divide il polinomio che stiamo cercando di fattorizzare.

$$x^4 - 4x^3 + x^2 + 8x - 6 = (x - 1) \cdot (x - 3) \cdot (x^2 - 2)$$

Osserviamo che $\sqrt{2} \notin \mathbb{Q}$ e quindi $x^2 - 2$ è irriducibile in $\mathbb{Q}[x]$ e quindi la precedente è la fattorizzazione in irriducibili per $\mathbb{Q}[x]$.

Per quanto riguarda $\mathbb{R}[x]$ la fattorizzazione è praticamente fatta:

$$x^4 - 4x^3 + x^2 + 8x - 6 = (x - 1) \cdot (x - 3) \cdot (x - \sqrt{2}) \cdot (x + \sqrt{2})$$

Anche per \mathbb{Z}_7 e \mathbb{Z}_{11} basta vedere se 2 è un quadrato oppure no: nel caso di \mathbb{Z}_{11} 2 non è quadrato e quindi la fattorizzazione in irriducibili del polinomio è:

$$x^4 - 4x^3 + x^2 + 8x - 6 = (x - 1) \cdot (x - 3) \cdot (x^2 - 2)$$

mentre in \mathbb{Z}_7 2 è il quadrato di 3 e 4, quindi la fattorizzazione del polinomio è:

$$x^4 - 4x^3 + x^2 + 8x - 6 = (x - 1) \cdot (x - 3) \cdot (x - 3) \cdot (x - 4)$$

2. Un campo di 49 elementi si ottiene da $\mathbb{Z}_7[x]$ modulo un polinomio di secondo grado irriducibile, per esempio x^2-3 . Consideriamo quindi $\mathbb{K}=\mathbb{Z}_7[x]/(x^2-3)$ per quanto riguarda l'opposto di 3x-2 bisogna trovare un elemento di \mathbb{K} , ovvero del tipo ax+b tale che 3x-2+ax+b=0 ovvero 3+a=0 e b-2=0 da cui $a=4,\ b=2$. Per l'inverso di 3x-2 bisogna trovare un elemento di \mathbb{K} ax+b tale che $(ax+b)\cdot(3x-2)=1$ cioè facendo il prodotto $(3ax^2+x(3b-2a)-2b)$ e riducendolo modulo x^2-3 bisogna ottenere 1...

Corso

Esercizio 2 Consideriamo i seguenti sottoinsiemi V e W dello spazio vettoriale $\mathbb{R}_3[x]$ (spazio dei polinomi a coefficienti reali di grado minore o uguale a 3):

$$V = \{ p(x) \in \mathbb{R}_3[x] | p(-1) = 0 \}$$

e

$$W = \{p(x) \in \mathbb{R}_3[x] | p'(1) = 0\}$$

(Con p'(x) indichiamo la derivata del polinomio p(x))

- 1. Dimostrare che V e W sono sottospazi vettoriali di $\mathbb{R}_3[x]$.
- 2. Determinare una base di V, W, W + V e $W \cap V$.

Soluzione

1. Dimostriamo che presi due polinomi f(x), g(x) in V(W) la loro somma è ancora in V(W) e che per ogni scalare $\lambda \in \mathbb{R}$ il polinomio $\lambda \cdot f(x)$ è ancora in V(W):

$$(f+g)(-1) \underbrace{=}_{\substack{def.somma\ polinomi}} f(-1) + g(-1) \underbrace{=}_{f(x),g(x) \in V} 0 + 0 = 0$$
$$(\lambda \cdot f)(-1) = \lambda \cdot f(-1) \underbrace{=}_{f(x) \in V} \lambda \cdot 0 = 0$$

$$(f+g)'(1) = f'(1) + g(1) = 0 + 0 = 0$$

$$(\lambda \cdot f)'(1) = \lambda \cdot f'(1) = \lambda \cdot 0 = 0$$

$$(\lambda \cdot f)'(1) = \lambda \cdot 0 = 0$$

$$def.derivata\ prodotto\ per\ costante$$

2. Un polinomio di $\mathbb{R}_3[x]$ è del tipo $ax^3 + bx^2 + cx + d$ al variare di a, b, c, d in \mathbb{R} . Quali di questi polinomi stanno in V? Quelli che valutati in 1 si annullano, ovvero quelli per cui vale la seguente relazione tra i coefficienti:

$$-a+b-c+d=0$$

Ovvero possiamo descrivere gli elementi di V anche come segue:

$$V = \{ax^3 + bx^2 + cx + d | a, b, c, d \in \mathbb{R} \text{ e } -a + b - c + d = 0\}$$

Dunque il coefficiente a di x^3 si può ricavare dagli altri coefficienti ed è uguale a b-c+d e quindi nella base canonica $\{x^3, x^2, x, 1\}$ di $\mathbb{R}_3[x]$ le coordinate dei polinomi di V sono del tipo:

$$\begin{pmatrix} b-c+d \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \cdot b + \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \cdot c + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \cdot d$$

Ovvero una base di V è $\{x^3 + x^2, -x^3 + x, x^3 + 1\}$.

Per quanto riguarda W possiamo fare la stessa cosa e abbiamo che i polinomi di W sono quelli per cui 3a + 2b + c = 0:

$$W = \{ax^3 + bx^2 + cx + d | a, b, c, d \in \mathbb{R} \text{ e } 3a + 2b + c = 0\}$$

ovvero il coefficiente a di x^3 è uguale a $-\frac{2}{3}b - \frac{1}{3}c$ e quindi nella base canonica $\{x^3, x^2, x, 1\}$ di $\mathbb{R}_3[x]$ le coordinate dei polinomi di W sono del

$$\begin{pmatrix} -\frac{2}{3}b - \frac{1}{3}c \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ 1 \\ 0 \\ 0 \end{pmatrix} \cdot b + \begin{pmatrix} -\frac{1}{3} \\ 0 \\ 1 \\ 0 \end{pmatrix} \cdot c + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \cdot d$$

Ovvero una base di W è $\{-\frac{2}{3}x^3+x^2,-\frac{1}{3}x^3+x,1\}$. A questo punto per calcolare una base di V+W basta estrarre una base dall'insieme di generatori dato dall'unione della base di V con quella di

$$V+W=Span\{x^3+x^2,-x^3+x,x^3+1-\frac{2}{3}x^3+x^2,-\frac{1}{3}x^3+x,1\ \}$$

È facile vedere che V+W è tutto $\mathbb{R}_3[x]$ (si può osservare che dai generatori di V+W si ricavano x^3, x^2, x e 1, oppure notare che V e W sono spazi diversi e non sono uno contenuto nell'altro).

Per calcolare una base di $V \cap W$, basta notare che:

$$V \cap W = \left\{ ax^3 + bx^2 + cx + d | a, b, c, d \in \mathbb{R} \in \left\{ \begin{array}{l} -a + b - c + d = 0 \\ 3a + 2b + c = 0 \end{array} \right\} \right.$$

E risolvere il sistema (nelle incognite a, b, c, d) per trovare come sono legati tra loro i coefficienti dei polinomi appartenenti a $V \cap W$. Scriviamo la matrice associata al sistema e portiamola a scala:

$$\left(\begin{array}{cccc} -1 & 1 & -1 & 1 \\ 3 & 2 & 1 & 0 \end{array}\right) \stackrel{(2)=(2)+3\cdot(1)}{\longrightarrow} A_1 = \left(\begin{array}{cccc} -1 & 1 & -1 & 1 \\ 0 & 5 & -2 & 3 \end{array}\right)$$

Perció bisogna risolvere il sistema trovando a e b (i coefficienti di x^3 e x^2) in funzione delle variabili libere $c \in d$ (i coefficienti di $x \in 1$):

$$\left\{ \begin{array}{ll} -a+b-c+d=0 \\ b=\frac{2}{5}c-\frac{3}{5}d \end{array} \right. \longrightarrow \left\{ \begin{array}{ll} a=-\frac{3}{5}c+\frac{2}{5}d \\ b=\frac{2}{5}c-\frac{3}{5}d \end{array} \right.$$

Perciò una generica soluzione del sistema è data da:

$$\begin{pmatrix} -\frac{3}{5}c + \frac{2}{5}d \\ \frac{2}{5}c - \frac{3}{5}d \\ c \\ d \end{pmatrix} = \begin{pmatrix} -\frac{3}{5} \\ \frac{2}{5} \\ 1 \\ 0 \end{pmatrix} \cdot c + \begin{pmatrix} \frac{2}{5} \\ -\frac{3}{5} \\ 0 \\ 1 \end{pmatrix} \cdot d$$

Ovvero una base di $V\cap W$ è data da:

$$\left\{-\frac{3}{5}x^3 + \frac{2}{5}x^2 + x, \frac{2}{5}x^3 - \frac{3}{5}x^2 + 1\right\}$$

Se vogliamo dei polinomi a coefficienti interi si può per esempio prendere come base:

$$\{-3x^3 + 2x^2 + 5x, 2x^3 - 3x^2 + 5\}$$

ne

Corso

Esercizio 3 (8 punti) Sia A una matrice 2×2 a valori in \mathbb{R} .

- 1. Dimostrare che esiste una matrice B 2 × 2 a valori in $\mathbb R$ diversa dalla matrice 0 tale che A × B = 0 se e solo se il determinante di A è uguale a 0
- 2. Il risultato precedente è vero anche per le matrici $n \times n$?

Soluzione

Facciamo direttamente il caso generale. Ricordiamo che ad una matrice A $n \times n$ si può associare l'applicazione lineare $L_A : \mathbb{R}^n \to \mathbb{R}^n$ che associa ad ogni vettore v di \mathbb{R}^n il vettore Av di \mathbb{R}^n ottenuto moltiplicando la matrice A per v e che la matrice associata a L_A nella base canonica è proprio A.

 $A \times B$ può essere visto come la composizione di due applicazioni lineari di \mathbb{R}^n : per ogni v di \mathbb{R}^n si applica prima L_B (ovvero si calcola Bv) e poi a Bv si applica L_A ovvero si calcola A(Bv).

Riformulando la tesi in termini di applicazioni lineari si chiede di dimostrare che la composizione di L_A con L_B (con L_B diversa dalla matrice nulla) è uguale all'applicazione lineare nulla se e solo se L_A non ha rango massimo (det(A) = 0 infatti significa che nella riduzione a scala di A almeno un pivot è nullo e quindi L_A non sarà surgettiva).

Supponiamo dunque che la composizione delle due applicazioni sia nulla. Sappiamo che L_B non è l'applicazione nulla, quindi esiste $v \neq 0$ in \mathbb{R}^n tale che $Bv = v_1 \neq 0$. Completiamo v_1 ad una base di \mathbb{R}^n : $\{v_1, \ldots, v_n\}$. A questo punto se applichiamo A a questa base non sappiamo come si comporta A su v_2, \ldots, v_n ma sappiamo per ipotesi che $Av_1 = A(Bv) = 0$. Perciò L_A non ha rango massimo, ovvero det(A) = 0.

Viceversa se L_A non ha rango massimo, allora $dim(Ker(L_A)) > 0$ (L_A non è né iniettiva né surgettiva) quindi esiste un vettore $v_1 \neq 0$ di \mathbb{R}^n tale che $Av_1 = 0$. Consideriamo la base canonica $\{e_1, \ldots, e_n\}$ di \mathbb{R}^n e l'applicazione lineare che manda e_1 in v_1 e tutti gli altri e_i in 0. Tale applicazione non è l'applicazione nulla e corrisponde all'applicazione L_B di matrice B con prima colonna uguale a v_1 e tutte le altre nulle. È facile verificare (l'abbiamo costruita così appositamente) che $A \times B = 0$ (in quanto $L_A \circ L_B$ manda tutto in 0).

L'applicazione lineare L_B trovata non è l'unica tale che $L_A \circ L_B = 0$: prova a trovarne un'altra.

Corso

Esercizio 4 Consideriamo l'endomorfismo lineare L_a di \mathbb{R}^3 dipendente dal parametro reale a e definito da:

$$L_a(x, y, z) = (ax + y + z, x + ay + z, -x + y + az)$$

- 1. Trovare per quali valori di a l'applicazione L_a non è surgettiva. Fissato uno di tali valori \bar{a} determinare una base di $Ker(L_{\bar{a}})$ e $Imm(L_{\bar{a}})$.
- 2. Discutere la diagonalizzabilità di L_a al variare del parametro reale a
- 3. Determinare una base di \mathbb{R}^3 di autovettori per L_0 (ovvero prendendo a=0).

Soluzione

1. Scriviamo la matrice associata ad L_A nella base canonica di \mathbb{R}^3 e riduciamola a scala:

$$A = \left(\begin{array}{ccc} a & 1 & 1 \\ 1 & a & 1 \\ -1 & 1 & a \end{array}\right) \xrightarrow{(1) \circlearrowleft (2)} A_1 = \left(\begin{array}{ccc} 1 & a & 1 \\ a & 1 & 1 \\ -1 & 1 & a \end{array}\right) \xrightarrow{(2) = (2) - a(1)} A_2 = \left(\begin{array}{ccc} 1 & a & 1 \\ 0 & 1 - a^2 & 1 - a \\ 0 & a + 1 & a + 1 \end{array}\right)$$

Nella seconda riga abbiamo un pivot se a=1 oppure se a=-1. Trattiamo a parte questi due casi:

• a = 1 la matrice è:

$$A_2 = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 2 & 2 \end{array}\right)$$

e quindi L_1 non è surgettiva.

• a = -1 la matrice è:

$$A_2 = \left(\begin{array}{rrr} 1 & -1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array}\right)$$

e quindi anche L_{-1} non è surgettiva.

Occupiamoci dei casi diversi dai due precedenti (stiamo suppondendo dunque che $a \neq \pm 1$):

$$A_2 \xrightarrow[(3)\cdot(1-a)-(2)]{} A_3 = \begin{pmatrix} 1 & a & 1\\ 0 & 1-a^2 & 1-a\\ 0 & 0 & a \end{pmatrix}$$

In questo caso sappiamo già che $1-a^2 \neq 0$ (siamo nei casi in cui $a \neq \pm 1$), dunque se $a \neq 0$ la matrice ha tre pivot diversi da zero e quindi è surgettiva. Concludendo L_a è surgettiva per ogni valore di a diverso da -1, 1, 0. Fissiamo a = 1 per esempio, la riduzione a scala di L_0 è:

$$\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 0
\end{array}\right)$$

Perciò una base di $Imm(L_1)$ è data da:

$$\left\{ \left(\begin{array}{c} 1\\1\\-1 \end{array}\right), \left(\begin{array}{c} 1\\1\\1 \end{array}\right) \right\}$$

Mentre una base di $Ker(L_1)$ si trova risolvendo il sistema omogeneo corrispondente alla matrice ridotta a scala precedente, ovvero y=-z e x=0, cioè gli elementi di $Ker(L_1)$ sono del tipo:

$$\left(\begin{array}{c}0\\-1\\1\end{array}\right)\cdot z$$

2. Troviamo il polinomio caratteristico $p_{L_a}(\lambda)$:

$$p_{L_a}(\lambda) = det(A - \lambda \cdot I_3) = det \begin{pmatrix} a - \lambda & 1 & 1 \\ 1 & a - \lambda & 1 \\ -1 & 1 & a - \lambda \end{pmatrix} = (a - \lambda)[(a - \lambda)^2 - 1]$$

Quindi le radici del polinomio caratteristico sono a, a-1, a+1 e sono tutte distinte qualsiasi sia a. Ovvero L_a è diagonalizzabile per ogni valore di a.

3. Sappiamo che L_0 ha come autovalori -1,0,1. Per trovare una base di autospazi di \mathbb{R}^3 per L_0 è dunque necessario trovare una base degli autospazi (tutti di dimensione 1) E_{-1}, E_0, E_1 che sono rispettivamente il nucleo di $L_0 + I$, L_0 e $L_0 - I$.

Ovvero basta risolvere tre sistemi lineari omogenei.