Cohomology of abelian arrangements Christin Bibby, University of Oregon

Definitions/Preliminaries

• Let X be a complex abelian variety. An **abelian arrangement** in Xis a set $\mathcal{A} = \{Y_1, \ldots, Y_\ell\}$ of codimension-one abelian subvarieties. Denote the complement of an abelian arrangement by

$$M(\mathcal{A}) := X \smallsetminus \bigcup_{Y \in \mathcal{A}} Y.$$

- 2 A **component** of the arrangement is a connected component of an intersection $\cap_{Y \in S} Y$ for some $S \subseteq A$.
- **(3)** An arrangement is **unimodular** if all intersections $\bigcap_{Y \in S} Y$ are connected
- The **rank** of a component F is its complex codimension in X, $\operatorname{rk}(F) := \operatorname{codim}(F).$
- **5** Let $S \subseteq A$, and F a connected component of $\bigcap_{Y \in S} Y$. If rk(F) = |S|, we say that S is **independent**. Otherwise, rk(F) < |S|and S is dependent.
- **(6)** Let *F* be a component of \mathcal{A} and $x \in F$. Define a central hyperplane arrangement in $T_X X$ by

$$\mathcal{A}_F^{(x)} = \{T_x Y : Y \in \mathcal{A}, Y \supseteq F\}$$

called the **localization** of A at F. Denote its complement by

 $M\left(\mathcal{A}_{F}^{(x)}\right) := T_{X}X \setminus \bigcup T_{X}Y$ $T_X Y \in \mathcal{A}_F^{(x)}$

- If x is not contained in a smaller component, then there is a neighborhood U
 i x such that $U \cap M(\mathcal{A}) \cong M\left(\mathcal{A}_F^{(x)}\right)$.
- The combinatorics of $\mathcal{A}_F^{(x)}$ does not depend on the choice of $x \in F$, and hence $H^*\left(M\left(\mathcal{A}_F^{(x)}
 ight);\mathbb{Q}
 ight)$ does not depend on the choice of $x\in F.$
- (Deligne) For a smooth complex variety, there is a canonical increasing filtration on $H^*(X; \mathbb{Q})$, called the weight filtration,

$$0 \subseteq W_k \subseteq \cdots \subseteq W_{2k} \subseteq H^{\kappa}(X;\mathbb{Q})$$

• If X is projective, then $H^k(X; \mathbb{Q})$ is pure of weight k.

• If X is the complement of a complex hyperplane arrangement, then $H^k(X; \mathbb{Q})$ is pure of weight 2k.

Example

Let *E* be a complex elliptic curve, define $\alpha_{ij} : E^n \to E$ by $\alpha_{ij}(e_1, \ldots, e_n) = e_i - e_j$ for $1 \le i < j \le n$, and take the arrangement $\mathcal{A} = \{ Y_{ij} = \ker(\alpha_{ij}) \}.$

This is an analogue of the braid arrangement, and its complement $M(\mathcal{A})$ is a configuration space of ordered *n*-tuples of points in *E*.

Main Theorem

Let X be a complex abelian variety, $\mathcal{A} = \{Y_1, \ldots, Y_\ell\}$ a unimodular arrangement of codimension-one abelian subvarieties, and $M(\mathcal{A}) = X \setminus \bigcup_{i=1}^{\ell} Y_i$. Then

$$H^*(M(\mathcal{A});\mathbb{Q})\cong H^*(A^{ullet},d)$$

where A^{\bullet} is the quotient of the graded-commutative algebra $H^*(X; \mathbb{Q})[g_1, \ldots, g_{\ell}]$ by the ideal generated by:

- $x \in H^1(E_i; \mathbb{Q}).$

with differential d defined by $dg_i = [Y_i] \in H^2(X; \mathbb{Q})$ and dx = 0 for $x \in H^*(X; \mathbb{Q})$.

Moreover, this algebra comes with a bi-grading which describes the weight filtration on $H^*(M(\mathcal{A});\mathbb{Q})$.

thod/Idea of Proof

Totaro and I. Kriz independently showed an analogous result for configuration spaces of projective varieties. he method used here is a generalization of that used by Totaro. Our work overlaps in the case of a configuration space of ordered *n*-tuples of points on an elliptic curve.

We study the Leray Spectral Sequence for the inclusion $f : M(\mathcal{A}) \hookrightarrow X$, given by

$$H^{p}(X; R^{q}f_{*}\mathbb{Q}) \Rightarrow H^{p+q}(M(\mathcal{A}); \mathbb{Q})$$

where $R^q f_*\mathbb{Q}$ is the sheaf that takes an open $U \subseteq X$ to $H^q(U \cap M(\mathcal{A}); \mathbb{Q})$.

- $\bigcirc H^p(F;\mathbb{Q})$ is pure of weight p, and $H^q(M(\mathcal{A}_F);\mathbb{Q})$ is pure of weight 2q. Hence, $E_i^{p,q}$ is pure of weight p + 2q
- **③** The differential d_i on the E_i -term is trivial for j > 2; that is, the sequence degenerates at the E_3 -term. This is because the differential must respect the weight filtration.
- Since the spectral sequence degenerates, $E_3 \cong \operatorname{gr} H^*(M(\mathcal{A}); \mathbb{Q})$, the associated graded with respect to the Leray filtration. But in this case, this is the associated graded with respect to the weight filtration, which is isomorphic to $H^*(M(\mathcal{A}); \mathbb{Q})$.
- The E_2 -term is a differential graded algebra, isomorphic to the presentation given in the main result. The algebra structure comes from both $H^*(X; \mathbb{Q})$ and $H^*(M(\mathcal{A}_0); \mathbb{Q})$, where \mathcal{A}_0 denotes the localization at $\cap_{Y \in \mathcal{A}} Y$.

Example

For a more general example, let $M = [\alpha_1 | \cdots | \alpha_\ell]$ be an $n \times \ell$ integer matrix. Each column represents a map $\alpha_i: E^n \to E$, and we can take $Y_i = \ker(\alpha_i)$.

- **①** For a subset $S \subseteq A$, the intersection $\bigcap_{Y \in S} Y$ is the kernel of the corresponding submatrix. **2** The codimension of $\bigcap_{Y \in S} Y$ is the rank of the corresponding submatrix. In this way, the dependencies of the subvarieties correspond to dependencies of the α_i 's in \mathbb{Z}^n .
- ③ If |S| = n, and the determinant of the corresponding submatrix is ±1, then $\bigcap_{Y \in S} Y$ is connected. If the matrix is unimodular, then so is \mathcal{A} .

Example

Let $X = E^2$, and $\mathcal{A} = \{Y_1, Y_2, Y_3\}$ with Y_i the kernel of $\alpha_i: E^2 \to E$, where

$$lpha_1(e_1, e_2) = e_1$$

 $lpha_2(e_1, e_2) = e_2$
 $lpha_3(e_1, e_2) = e_1 - e_2$

The picture to the right depicts the combinatorics of the arrangement.

- **1** The components of the arrangement are:
 - E^2 is the only rank-0 component.
 - Y_1 , Y_2 , and Y_3 are the rank-1 components.
 - $Y_1 \cap Y_2 \cap Y_3$ is the only rank-2 component.
- ² This arrangement is unimodular.
- **③** The set $S = \{Y_1, Y_2, Y_3\}$ is the only dependent subset of \mathcal{A} ; all other subsets are independent.
- **(4)** The localization of \mathcal{A} at the component $F = Y_3$ looks like a single hyperplane in \mathbb{C}^2

(5) The localization of \mathcal{A} at the component $F = Y_1 \cap Y_2 \cap Y_3$ looks like a central arrangement of three hyperplanes in \mathbb{C}^2 .

1 The DGA from the main result is the quotient of the exterior algebra $\bigwedge(x_1, y_1, x_2, y_2, g_1, g_2, g_3)$ by the ideal generated by

2 x_1g_1 , y_1g_1 , x_2g_2 , y_2g_2 , $(x_1 - x_2)g_3$, $(y_1 - y_2)g_3$

with differential $dx_i = 0 = dy_i$, $dg_1 = x_1y_1$, $dg_2 = x_2y_2$, and $dg_3 = (x_1 - x_2)(y_1 - y_2).$

O Computing cohomology, we get the Poincare polynomial

$$P(t) = 1 + 4t + 5t^2$$
.

Moreover, the weight filtration on $H^*(M(\mathcal{A}); \mathbb{Q})$ is nontrivial:

 $\sum \dim \operatorname{gr}_{j} H^{i}(M(\mathcal{A});\mathbb{Q})t^{i}u^{j} = 1 + 4tu + 3t^{2}u^{2} + 2t^{2}u^{3}$

