Cohomology of abelian arrangements

Definitions/Preliminaries

- Let X be a complex abelian variety. An abelian arrangement in X is a set $\mathcal{A}=\left\{Y_{1}, \ldots, Y_{\ell}\right\}$ of codimension-one abelian subvarieties. Denote the complement of an abelian arrangement by

$$
M(\mathcal{A}):=X \backslash \bigcup_{Y \in \mathcal{A}} Y
$$

A component of the arrangement is a connected component of an intersection $\cap_{Y \in S} Y$ for some $S \subseteq \mathcal{A}$.

- An arrangement is unimodular if all intersections $\cap_{Y \in S} Y$ are connected.
(0) The rank of a component F is its complex codimension in X, $\mathrm{rk}(F):=\operatorname{codim}(F)$.
(0) Let $S \subseteq \mathcal{A}$, and F a connected component of $\cap_{Y \in S} Y$. If $\operatorname{rk}(F)=|S|$, we say that S is independent. Otherwise, $\mathrm{rk}(F)<|S|$ and S is dependent.
(1) Let F be a component of \mathcal{A} and $x \in F$. Define a central hyperplane arrangement in $T_{X} X$ by

$$
\mathcal{A}_{F}^{(x)}=\left\{T_{X} Y: Y \in \mathcal{A}, Y \supseteq F\right\}
$$

called the localization of \mathcal{A} at F. Denote its complement by

$$
M\left(\mathcal{A}_{F}^{(x)}\right):=T_{x} X \backslash \bigcup_{T_{x} Y \in \mathcal{A}_{F}^{(x)}} T_{x} Y
$$

- If x is not contained in a smaller component, then there is a neighborhood $U \ni x$ such that $U \cap M(\mathcal{A}) \cong M\left(\mathcal{A}_{F}^{(x)}\right)$.
- The combinatorics of $\mathcal{A}_{F}^{(x)}$ does not depend on the choice of $x \in F$, and hence $H^{*}\left(M\left(\mathcal{A}_{F}^{(x)}\right) ; \mathbb{Q}\right)$ does not depend on the choice of $x \in F$.
- (Deligne) For a smooth complex variety, there is a canonical increasing filtration on $H^{*}(X ; \mathbb{Q})$, called the weight filtration,

$$
0 \subseteq W_{k} \subseteq \cdots \subseteq W_{2 k} \subseteq H^{k}(X ; \mathbb{Q})
$$

If X is projective, then $H^{k}(X ; \mathbb{Q})$ is pure of weight If X is the complement of a complex hyperplane arrangement, then $H^{k}(X ; \mathbb{Q})$ is pure of weight $2 k$.

Let E be a complex elliptic curve, define $\alpha_{i j}: E^{n} \rightarrow E$ by
$\alpha_{i j}\left(e_{1}, \ldots, e_{n}\right)=e_{i}-e_{j}$ for $1 \leq i<j \leq n$, and take the arrangement $\mathcal{A}=\left\{Y_{i j}=\operatorname{ker}\left(\alpha_{i j}\right)\right\}$.
This is an analogue of the braid arrangement, and its complement $M(\mathcal{A})$ is a configuration space of ordered n-tuples of points in E.

Main Theorem

Let X be a complex abelian variety, $\mathcal{A}=\left\{Y_{1}, \ldots, Y_{\ell}\right\}$ a unimodular arrangement of codimension-one abelian
subvarieties, and $M(\mathcal{A})=X \backslash \cup_{i=1}^{\ell} Y_{i}$. Then

$$
H^{*}(M(\mathcal{A}) ; \mathbb{Q}) \cong H^{*}\left(A^{\bullet}, d\right)
$$

where A^{\bullet} is the quotient of the graded-commutative algebra $H^{*}(X ; \mathbb{Q})\left[g_{1}, \ldots, g_{\ell}\right]$ by the ideal generated by:
(1) $\sum_{j=1}^{k}(-1)^{j-1} g_{i_{1}} \cdots \hat{g}_{i_{j}} \cdots g_{i_{k}}$ whenever $\left\{Y_{i_{1}}, \ldots, Y_{i_{k}}\right\}$ is dependent.
$\alpha_{i}^{*}(x) g_{i}$, where Y_{i} is the kernel of the map $\alpha_{i}: X \rightarrow E_{i}$ for an elliptic curve E_{i}, and $x \in H^{1}\left(E_{i} ; \mathbb{Q}\right)$.
with differential d defined by $d g_{i}=\left[Y_{i}\right] \in H^{2}(X ; \mathbb{Q})$ and $d x=0$ for $x \in H^{*}(X ; \mathbb{Q})$
Moreover, this algebra comes with a bi-grading which describes the weight filtration on $H^{*}(M(\mathcal{A}) ; \mathbb{Q})$.

Method/Idea of Proof

B. Totaro and I. Kriz independently showed an analogous result for configuration spaces of projective varieties

The method used here is a generalization of that used by Totaro. Our work overlaps in the case of a onfiguration space of ordered n-tuples of points on an elliptic curve

We study the Leray Spectral Sequence for the inclusion $f: M(\mathcal{A}) \hookrightarrow X$, given by

$$
H^{p}\left(X ; R^{q} f_{*} \mathbb{Q}\right) \Rightarrow H^{p+q}(M(\mathcal{A}) ; \mathbb{Q})
$$

where $R^{q} f_{*} \mathbb{Q}$ is the sheaf that takes an open $U \subseteq X$ to $H^{q}(U \cap M(\mathcal{A}) ; \mathbb{Q})$.
(1) $H^{p}\left(X ; R^{q} f_{*} \mathbb{Q}\right) \cong \bigoplus_{\mathrm{rk}(F)=q} H^{p}(F ; \mathbb{Q}) \otimes H^{q}\left(M\left(\mathcal{A}_{F}\right) ; \mathbb{Q}\right)$
(2) $H^{p}(F ; \mathbb{Q})$ is pure of weight p, and $H^{q}\left(M\left(\mathcal{A}_{F}\right) ; \mathbb{Q}\right)$ is pure of weight $2 q$. Hence, $E_{j}^{p, q}$ is pure of weight $p+2 q$

- The differential d_{j} on the E_{j}-term is trivial for $j>2$; that is, the sequence degenerates at the $T h$ differential d_{j} on the E_{j}-term is trivial for $j>2$; that is, the sequence
E_{3}-term. This is because the differential must respect the weight filtration.
- Since the spectral sequence degenerates, $E_{3} \cong \operatorname{gr} H^{*}(M(\mathcal{A}) ; \mathbb{Q})$, the associated graded with respect to the Leray filtration. But in this case, this is the associated graded with respect to the weight filtration, which is isomorphic to $H^{*}(M(\mathcal{A})$; $\mathbb{Q})$,
- The E_{2}-term is a differential graded algebra, isomorphic to the presentation given in the main result. The algebra structure comes from both $H^{*}(X ; \mathbb{Q})$ and $H^{*}\left(M\left(\mathcal{A}_{0}\right) ; \mathbb{Q}\right)$, where \mathcal{A}_{0} denotes the localization at $\cap_{Y \in \mathcal{A}} Y$.

For a more general example, let $M=\left[\alpha_{1}|\cdots| \alpha_{\ell}\right]$ be an $n \times \ell$ integer matrix. Each column represents a map $\alpha_{i}: E^{n} \rightarrow E$, and we can take $Y_{i}=\operatorname{ker}\left(\alpha_{i}\right)$.
(1) For a subset $S \subseteq \mathcal{A}$, the intersection $\cap_{Y \in S} Y$ is the kernel of the corresponding submatrix
(3) The codimension of $n_{Y \in S} Y$ is the rank of the corresponding submatrix. In this way, the dependencies of the subvarieties correspond to dependencies of the α_{i} 's in \mathbb{Z}^{n}.
© If $|S|=n$, and the determinant of the corresponding submatrix is ± 1, then $\cap_{Y \in S} Y$ is connected If the matrix is unimodular, then so is \mathcal{A}.

Let $X=E^{2}$, and $\mathcal{A}=\left\{Y_{1}, Y_{2}, Y_{3}\right\}$ with Y_{i} the kernel of
$\alpha_{i}: E^{2} \rightarrow E$, where

$$
\begin{gathered}
\alpha_{1}\left(e_{1}, e_{2}\right)=e_{1} \\
\alpha_{2}\left(e_{1}, e_{2}\right)=e_{2} \\
\alpha_{3}\left(e_{1}, e_{2}\right)=e_{1}-e_{2}
\end{gathered}
$$

The picture to the right depicts the combinatorics of the arrangement.
(0) The components of the arrangement are - E^{2} is the only rank-0 component.

- Y_{1}, Y_{2}, and Y_{3} are the rank-1 components.
- $Y_{1} \cap Y_{2} \cap Y_{3}$ is the only rank-2 component.
(2) This arrangement is unimodular
- The set $S=\left\{Y_{1}, Y_{2}, Y_{3}\right\}$ is the only dependent subset of \mathcal{A}; all other subsets are independent.
(0) The localization of \mathcal{A} at the component $F=Y_{3}$ looks like a single hyperplane in \mathbb{C}^{2}

- The localization of \mathcal{A} at the component $F=Y_{1} \cap Y_{2} \cap Y_{3}$ looks like a central arrangement of three hyperplanes in \mathbb{C}^{2}

- The DGA from the main result is the quotient of the exterior algebra $\bigwedge\left(x_{1}, y_{1}, x_{2}, y_{2}, g_{1}, g_{2}, g_{3}\right)$ by the ideal generated by $g_{2} g_{3}-g_{1} g_{3}+g_{1} g_{2}$
$y_{2} g_{2},\left(x_{1}-x_{2}\right) g_{3}\left(y_{1}-y_{2}\right) g_{3}$
with differential $d x_{i}=0=d y_{i}, d g_{1}=x_{1} y_{1}, d g_{2}=x_{2} y_{2}$, and $d g_{3}=\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)$.
- Computing cohomology, we get the Poincare polynomia

$$
P(t)=1+4 t+5 t^{2}
$$

Moreover, the weight filtration on $H^{*}(M(\mathcal{A}) ; \mathbb{Q})$ is nontrivial
$\sum \operatorname{dimgr}{ }_{j} H^{i}(M(\mathcal{A}) ; \mathbb{Q}) t^{i} u^{j}=1+4 t u+3 t^{2} u^{2}+2 t^{2} u^{3}$

