Non-crossing partitions and monodromy of Milnor fibres.

Tom Brady Mike Falk Colum Watt

Cortona, 2014

For each finite real reflection group W,

describe a finite simplicial complex F with the homotopy type of the Milnor fibre of the corresponding complexified arrangement,

exhibit a simplicial automorphism ϕ of F which gives the monodromy action on the fibre,

show that the mapping torus of ϕ is a $K(\pi, 1)$ for the corresponding pure braid group.

Non-crossing partitions

W finite real reflection group of rank n |w| = total reflection length of wpartial order: $w_1 \le w_2 \Leftrightarrow |w_2| = |w_1| + |w_1^{-1}w_2|$. $(w_1 \le w_2 \Rightarrow w_1^{-1}w_2 \le w_2)$ γ is a fixed Coxeter element. NCP= elements in $[e, \gamma]$ (lattice under \le)

Proper part of Σ_4 NCP lattice

$K(\pi, 1)$ for pure braid group of W

PK(W) is a trisp with vertex set W

k-cell on $(w, ww_1, ww_2, \ldots, ww_k)$ for each

 $w \in W$ and $e < w_1 < w_2 < \cdots < w_k$ in NCP

Proposition: PK(W) is a $K(\pi, 1)$ for PB(W).

Proof: $W \setminus PK(W)$ is a $K(\pi, 1)$ for B(W).

PK(W) for $W = \Sigma_3$, Figure 2

PK(W) for $W = \Sigma_3$, Figure 3

(13)

PK(W) for $W = \Sigma_3$, Figure 4

 \mathbb{Z} cover of PK(W)

Identify S^1 with this cell complex $(PK(\mathbb{Z}_2))$ in \mathbb{C}^* .

Construct a map $f : PK(W) \to S^1$ taking W_+ to +1, W_- to -1, and an edge (w, ww_i) to a counterclockwise path of length $|w_i|$ from f(w) to $f(ww_i)$. Extend across higher-dimensional cells.

Define Y(W) to be the cover of PK(W) corresponding to the kernel of

$$f_*: \pi_1(\mathsf{PK}(\mathsf{W}), e) \to \mathbb{Z} = \pi_1(\mathsf{S}^1, +1)$$

Structure of Y(W)

Y(W) is a simplicial complex with vertex set

$$\{(m,w) \mid m \in \mathbb{Z}, w \in W \text{ and } parity(w) = parity(m)\}$$

k-cell on
(
$$(m, w), (m + |w_1|, ww_1), (m + |w_2|, ww_2), \dots, (m + |w_k|, ww_k)$$
)
for each

 $w \in W$ and $e < w_1 < w_2 < \cdots < w_k$ in NCP.

Covering map is projection onto second factor.

Diagram of groups

Define F to be the finite subcomplex of Y consisting of those simplices whose vertices (m, w) satisfy $0 \le m \le n - 1$.

Explicitly, F consists of the faces of the (n-1)-simplices

$$((0, w), (1, ww_1), (2, ww_2), \dots, (n - 1, ww_{n-1}))$$

for $w \in W_+$ and $e \lessdot w_1 \lessdot w_2 \lessdot \cdots \lessdot w_{n-1} \lessdot \gamma$ in NCP.

F for $W = \mathbb{Z}_2^3$

Generators a, b, c. Set x = ab, y = ac, z = bc, $\gamma = abc$.

The basic Lemma

Lemma: If $w_k < \gamma$ then the k-simplex in Y ($(m, w), (m + |w_1|, ww_1), \dots, (m + |w_k|, ww_k)$) is incident on precisely two (k + 1)-simplices in Y of the form ($(\ell, u), (\ell + |u_1|, uu_1), \dots, (\ell + |u_k|, uu_k), (\ell + n, u\gamma)$).

Proof: Can only decrease the height difference between the first and last entries of 'u' cell by deleting either the first entry or the last entry.

Theorem: *F* is a strong deformation retract of *Y*.

Proof of Theorem: Use lemma to collapse cells above F down to F and cells below F up to F. Match each 'w' cell from the Lemma with the 'u' cell above or below according as the 'w' cell is below or above F.

The monodromy action on vertices.

 \mathbb{Z} acts on Y by $(m, w) \rightarrow (m - 2, w)$, so shift cells of F down by 2 and, when they go below level 0, 'tuck' them back into F using the retraction.

Explicitly, we define ϕ on vertices by

The order of ϕ is nh/2, where h is the order of γ .

The monodromy action on simplices.

Consider a top-dimensional simplex

$$((0, w), (1, ww_1), (2, ww_2), \dots, (n-1, ww_{n-1}))$$

Under ϕ its vertices transform to

$$((n-2, w\gamma), (n-1, ww_1\gamma), (0, ww_2), \dots, (n-3, ww_{n-1}))$$

We know
$$e < w_1 < w_2 < \cdots < w_{n-1} < \gamma$$
 and hence
 $e < w_1^{-1}w_2 < w_1^{-1}w_3 < \cdots < w_1^{-1}w_{n-1} < w_1^{-1}\gamma < \gamma$ and
 $e < w_2^{-1}w_3 < w_2^{-1}w_4 < \cdots < w_2^{-1}w_{n-1} < w_2^{-1}\gamma < w_2^{-1}w_1\gamma < \gamma$.

Use this last chain to construct a top-dimensional simplex starting at $(0, ww_2)$. This simplex will have the same set of vertices as the ϕ translates above.

The mapping torus of ϕ

Define $MT(\phi) = (F \times I) / \sim$, where $(f, 0) \sim (\phi(f), 1)$. **Proposition:** $MT(\phi)$ has the homotopy type of PK(W). **Proof:** For each facet σ of F given by

$$((0, w), (1, ww_1), (2, ww_2), \dots, (n-1, ww_{n-1}))$$

the $MT(\phi)$ cell $\sigma \times I$ has top identified with

$$((n-2, w\gamma), (n-1, ww_1\gamma), (0, ww_2), \dots, (n-3, ww_{n-1})).$$

The mapping torus of $\phi~{\rm II}$

The mapping torus of $\phi~{\rm II}$

Triangulate $\sigma \times I$ cell in the usual way.

Identify vertices with the same second component.

The mapping torus of $\phi~{\rm II}$

Triangulate $\sigma \times I$ cell in the usual way.

Identify vertices with the same second component. Result is a union of two PK(W) facets:

 $(w, ww_1, ww_2, \ldots, ww_{n-1}, w\gamma)$ and $(ww_1, ww_2, \ldots, ww_{n-1}, w\gamma, ww_1\gamma)$