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Plan

For each finite real reflection group W ,

describe a finite simplicial complex F with the homotopy type of
the Milnor fibre of the corresponding complexified arrangement,

exhibit a simplicial automorphism φ of F which gives the
monodromy action on the fibre,

show that the mapping torus of φ is a K (π, 1) for the
corresponding pure braid group.



Non-crossing partitions

W finite real reflection group of rank n

|w | = total reflection length of w

partial order: w1 ≤ w2 ⇔ |w2| = |w1|+ |w−1
1 w2|.

(w1 ≤ w2 ⇒ w−1
1 w2 ≤ w2)

γ is a fixed Coxeter element.

NCP= elements in [e, γ] (lattice under ≤)



Proper part of Σ4 NCP lattice



K (π, 1) for pure braid group of W

PK (W ) is a trisp with vertex set W

k-cell on (w ,ww1,ww2, . . . ,wwk) for each

w ∈W and e < w1 < w2 < · · · < wk in NCP

Proposition: PK (W ) is a K (π, 1) for PB(W ).

Proof: W \PK (W ) is a K (π, 1) for B(W ).



PK (W ) for W = Σ3, Figure 1



PK (W ) for W = Σ3, Figure 2



PK (W ) for W = Σ3, Figure 3



PK (W ) for W = Σ3, Figure 4
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Z cover of PK (W )
Identify S1 with this cell complex (PK (Z2)) in C∗.

+1−1

Construct a map f : PK (W )→ S1 taking W+ to +1, W− to −1,
and an edge (w ,wwi ) to a counterclockwise path of length |wi |
from f (w) to f (wwi ). Extend across higher-dimensional cells.

Define Y (W ) to be the cover of PK (W ) corresponding to the
kernel of

f∗ : π1(PK (W ), e)→ Z = π1(S1,+1)



Structure of Y (W )

Y (W ) is a simplicial complex with vertex set

{(m,w) | m ∈ Z,w ∈W and parity(w) = parity(m)}

k-cell on
((m,w), (m + |w1|,ww1), (m + |w2|,ww2), . . . , (m + |wk |,wwk))
for each

w ∈W and e < w1 < w2 < · · · < wk in NCP.

Covering map is projection onto second factor.



Diagram of groups



The finite subcomplex F

Define F to be the finite subcomplex of Y consisting of those
simplices whose vertices (m,w) satisfy 0 ≤ m ≤ n − 1.

Explicitly, F consists of the faces of the (n − 1)-simplices

((0,w), (1,ww1), (2,ww2), . . . , (n − 1,wwn−1))

for w ∈W+ and e l w1 l w2 l · · ·l wn−1 l γ in NCP.



F for W = Z3
2

Generators a, b, c . Set x = ab, y = ac, z = bc, γ = abc.
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The basic Lemma

Lemma: If wk < γ then the k-simplex in Y
((m,w), (m + |w1|,ww1), . . . , (m + |wk |,wwk))
is incident on precisely two (k + 1)-simplices in Y of the form
((`, u), (`+ |u1|, uu1), . . . , (`+ |uk |, uuk), (`+ n, uγ)).

Proof: Can only decrease the height difference between the first
and last entries of ‘u’ cell by deleting either the first entry or the
last entry.

Theorem: F is a strong deformation retract of Y .

Proof of Theorem: Use lemma to collapse cells above F down
to F and cells below F up to F . Match each ‘w ’ cell from the
Lemma with the ‘u’ cell above or below according as the ‘w ’ cell is
below or above F .



The monodromy action on vertices.
Z acts on Y by (m,w)→ (m− 2,w), so shift cells of F down by 2
and, when they go below level 0, ‘tuck’ them back into F using the
retraction.

Explicitly, we define φ on vertices by

φ(m,w) =


(m − 2,w) 2 ≤ m ≤ n − 1
(n − 1,wγ) m = 1
(n − 2,wγ) m = 0.

The order of φ is nh/2, where h is the order of γ.



The monodromy action on simplices.

Consider a top-dimensional simplex

((0,w), (1,ww1), (2,ww2), . . . , (n − 1,wwn−1))

Under φ its vertices transform to

((n − 2,wγ), (n − 1,ww1γ), (0,ww2), . . . , (n − 3,wwn−1))

We know e l w1 l w2 l · · ·l wn−1 l γ and hence
e l w−1

1 w2 l w−1
1 w3 l · · ·l w−1

1 wn−1 l w−1
1 γ l γ and

e l w−1
2 w3 l w−1

2 w4 l · · ·l w−1
2 wn−1 l w−1

2 γ l w−1
2 w1γ l γ.

Use this last chain to construct a top-dimensional simplex starting
at (0,ww2). This simplex will have the same set of vertices as the
φ translates above.



The mapping torus of φ

Define MT (φ) = (F × I )/ ∼, where (f , 0) ∼ (φ(f ), 1).

Proposition: MT (φ) has the homotopy type of PK (W ).

Proof: For each facet σ of F given by

((0,w), (1,ww1), (2,ww2), . . . , (n − 1,wwn−1))

the MT (φ) cell σ × I has top identified with

((n − 2,wγ), (n − 1,ww1γ), (0,ww2), . . . , (n − 3,wwn−1)).



The mapping torus of φ II

Triangulate σ × I cell in the usual way.

Identify vertices with the same second component. Result is a
union of two PK (W ) facets:

(w ,ww1,ww2, . . . ,wwn−1,wγ) and (ww1,ww2, . . . ,wwn−1,wγ,ww1γ)
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