Non-crossing partitions and monodromy of Milnor fibres.

Tom Brady Mike Falk Colum Watt

Cortona, 2014

Plan

For each finite real reflection group W,
describe a finite simplicial complex F with the homotopy type of the Milnor fibre of the corresponding complexified arrangement, exhibit a simplicial automorphism ϕ of F which gives the monodromy action on the fibre,
show that the mapping torus of ϕ is a $K(\pi, 1)$ for the corresponding pure braid group.

Non-crossing partitions

W finite real reflection group of rank n
$|w|=$ total reflection length of w
partial order: $w_{1} \leq w_{2} \Leftrightarrow\left|w_{2}\right|=\left|w_{1}\right|+\left|w_{1}^{-1} w_{2}\right|$.

$$
\left(w_{1} \leq w_{2} \Rightarrow w_{1}^{-1} w_{2} \leq w_{2}\right)
$$

γ is a fixed Coxeter element.
$\mathrm{NCP}=$ elements in $[e, \gamma]$ (lattice under \leq)

Proper part of Σ_{4} NCP lattice

$K(\pi, 1)$ for pure braid group of W

$P K(W)$ is a trisp with vertex set W
k-cell on $\left(w, w w_{1}, w w_{2}, \ldots, w w_{k}\right)$ for each
$w \in W$ and $e<w_{1}<w_{2}<\cdots<w_{k}$ in NCP
Proposition: $\operatorname{PK}(W)$ is a $K(\pi, 1)$ for $P B(W)$.
Proof: $\quad W \backslash P K(W)$ is a $K(\pi, 1)$ for $B(W)$.
$P K(W)$ for $W=\Sigma_{3}$, Figure 1
(13)
(132)
(123)
(12)
(23)
$P K(W)$ for $W=\Sigma_{3}$, Figure 2

$\operatorname{PK}(W)$ for $W=\Sigma_{3}$, Figure 3

(13)

$\operatorname{PK}(W)$ for $W=\Sigma_{3}$, Figure 4

\mathbb{Z} cover of $\operatorname{PK}(W)$

Identify S^{1} with this cell complex $\left(P K\left(\mathbb{Z}_{2}\right)\right)$ in \mathbb{C}^{*}.

Construct a map $f: P K(W) \rightarrow S^{1}$ taking W_{+}to $+1, W_{-}$to -1 , and an edge $\left(w, w w_{i}\right)$ to a counterclockwise path of length $\left|w_{i}\right|$ from $f(w)$ to $f\left(w w_{i}\right)$. Extend across higher-dimensional cells.

Define $Y(W)$ to be the cover of $\operatorname{PK}(W)$ corresponding to the kernel of

$$
f_{*}: \pi_{1}(P K(W), e) \rightarrow \mathbb{Z}=\pi_{1}\left(S^{1},+1\right)
$$

Structure of $Y(W)$

$Y(W)$ is a simplicial complex with vertex set

$$
\{(m, w) \mid m \in \mathbb{Z}, w \in W \text { and } \operatorname{parity}(w)=\operatorname{parity}(m)\}
$$

k-cell on
$\left((m, w),\left(m+\left|w_{1}\right|, w w_{1}\right),\left(m+\left|w_{2}\right|, w w_{2}\right), \ldots,\left(m+\left|w_{k}\right|, w w_{k}\right)\right)$ for each
$w \in W$ and $e<w_{1}<w_{2}<\cdots<w_{k}$ in NCP.
Covering map is projection onto second factor.

Diagram of groups

The finite subcomplex F

Define F to be the finite subcomplex of Y consisting of those simplices whose vertices (m, w) satisfy $0 \leq m \leq n-1$.

Explicitly, F consists of the faces of the $(n-1)$-simplices

$$
\left((0, w),\left(1, w w_{1}\right),\left(2, w w_{2}\right), \ldots,\left(n-1, w w_{n-1}\right)\right)
$$

for $w \in W_{+}$and $e \lessdot w_{1} \lessdot w_{2} \lessdot \cdots \lessdot w_{n-1} \lessdot \gamma$ in NCP.

F for $W=\mathbb{Z}_{2}^{3}$

Generators a, b, c. Set $x=a b, y=a c, z=b c, \gamma=a b c$.

The basic Lemma

Lemma: If $w_{k}<\gamma$ then the k-simplex in Y
$\left((m, w),\left(m+\left|w_{1}\right|, w w_{1}\right), \ldots,\left(m+\left|w_{k}\right|, w w_{k}\right)\right)$
is incident on precisely two $(k+1)$-simplices in Y of the form
$\left((\ell, u),\left(\ell+\left|u_{1}\right|, u u_{1}\right), \ldots,\left(\ell+\left|u_{k}\right|, u u_{k}\right),(\ell+n, u \gamma)\right)$.
Proof: Can only decrease the height difference between the first and last entries of ' u ' cell by deleting either the first entry or the last entry.

Theorem: F is a strong deformation retract of Y.
Proof of Theorem: Use lemma to collapse cells above F down to F and cells below F up to F. Match each ' w ' cell from the Lemma with the ' u ' cell above or below according as the ' w ' cell is below or above F.

The monodromy action on vertices.

\mathbb{Z} acts on Y by $(m, w) \rightarrow(m-2, w)$, so shift cells of F down by 2 and, when they go below level 0 , 'tuck' them back into F using the retraction.

Explicitly, we define ϕ on vertices by

$$
\begin{gathered}
\phi(m, w)=\left\{\begin{array}{cc}
(m-2, w) & 2 \leq m \leq n-1 \\
(n-1, w \gamma) & m=1 \\
(n-2, w \gamma) & m=0 .
\end{array}\right. \\
(n-2, w \gamma) \\
(0, w) \rightarrow(-2, w)
\end{gathered}
$$

The order of ϕ is $n h / 2$, where h is the order of γ.

The monodromy action on simplices.

Consider a top-dimensional simplex

$$
\left((0, w),\left(1, w w_{1}\right),\left(2, w w_{2}\right), \ldots,\left(n-1, w w_{n-1}\right)\right)
$$

Under ϕ its vertices transform to

$$
\left((n-2, w \gamma),\left(n-1, w w_{1} \gamma\right),\left(0, w w_{2}\right), \ldots,\left(n-3, w w_{n-1}\right)\right)
$$

We know $e \lessdot w_{1} \lessdot w_{2} \lessdot \cdots \lessdot w_{n-1} \lessdot \gamma$ and hence
$e \lessdot w_{1}^{-1} w_{2} \lessdot w_{1}^{-1} w_{3} \lessdot \cdots \lessdot w_{1}^{-1} w_{n-1} \lessdot w_{1}^{-1} \gamma \lessdot \gamma$ and $e \lessdot w_{2}^{-1} w_{3} \lessdot w_{2}^{-1} w_{4} \lessdot \cdots \lessdot w_{2}^{-1} w_{n-1} \lessdot w_{2}^{-1} \gamma \lessdot w_{2}^{-1} w_{1} \gamma \lessdot \gamma$.
Use this last chain to construct a top-dimensional simplex starting at $\left(0, w w_{2}\right)$. This simplex will have the same set of vertices as the ϕ translates above.

The mapping torus of ϕ

Define $M T(\phi)=(F \times I) / \sim$, where $(f, 0) \sim(\phi(f), 1)$.
Proposition: $M T(\phi)$ has the homotopy type of $\operatorname{PK}(W)$.
Proof: For each facet σ of F given by

$$
\left((0, w),\left(1, w w_{1}\right),\left(2, w w_{2}\right), \ldots,\left(n-1, w w_{n-1}\right)\right)
$$

the $M T(\phi)$ cell $\sigma \times I$ has top identified with

$$
\left((n-2, w \gamma),\left(n-1, w w_{1} \gamma\right),\left(0, w w_{2}\right), \ldots,\left(n-3, w w_{n-1}\right)\right) .
$$

The mapping torus of ϕ II

The mapping torus of ϕ II

Triangulate $\sigma \times I$ cell in the usual way.

Identify vertices with the same second component.

The mapping torus of ϕ II

Triangulate $\sigma \times I$ cell in the usual way.

Identify vertices with the same second component. Result is a union of two $P K(W)$ facets:
$\left(w, w w_{1}, w w_{2}, \ldots, w w_{n-1}, w \gamma\right)$ and $\left(w w_{1}, w w_{2}, \ldots, w w_{n-1}, w \gamma, w w_{1} \gamma\right)$

