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Notation

A = {H}, a hyperplane arrangement in Cn.
L(A) = the intersection poset, partially ordered by reverse
inclusion. (So, the minimum element is Cn.)

Σ(A) =
⋃

H∈A
H, M(A) = Cn − Σ(A).

∀G ∈ L(A), put

AG := {H ∈ A | G ⊆ H}
AG := {H ∩G | H ∩G 6= ∅,G * H}
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Goal
GiveM(A) the structure of a poset of spaces, where the
indexing poset is L(A) and

MG :=M(A)G ∼M(AG)
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Motivation
In 3 papers, with 1) Januszkiewicz-Leary,
2) Januszkiewicz - Leary - Okun, and 3) Settepanella, we
computed H∗(M(A); A) with local coefficients in A, where
A = Nq(π1), Zπ1 or a generic flat line bundle.
(Here π1 = π1(M(A).)
Key fact: if A is a central arrangement H∗(M(A); A) is
nonzero in at most one degree.
Original method: a Mayer-Vietoris spectral sequence.
U = {U} a cover of Cn by convex neighborhoods of central
arrangements. Û = {U − Σ} is a cover ofM(A).
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Method
∃ spectral sequence =⇒ H∗(M(A); A) with

E i,j
2 =

⊕
G∈L(A)

H i(N(U|G),N(U|Σ(AG)); H j(M(AG))

with locally constant coefficients in each summand and with
H j(N(U|G),N(U|Σ(AG)) = H j(G,Σ(AG))

We claimed the coefficients in each summand were constant;
however, Graham Denham pointed out to us that in some
related situations this wasn’t true.

Goal: fix this.
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P: a poset |P|: its order complex
A poset of spaces is a functor Y : P → Top, ie,
p → Yp, and if p < q a map fpq : Yp → Yq.
Its homotopy pushout (or “homotopy colimit”) is
generalization of mapping cylinder:

∆Y =

 ∐
σ∈|P≥p|

σ × Yp

 / ∼

∃ projection π : ∆Y → |P|
Put ∆Y≤p = π−1(|P≤p|).
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Alternate Definition (D - Okun)

A poset of spaces in Y over P is a cover V = {Yp}p∈P of Y by
open subsets (or by subcomplexes) so that the elements of the
cover are indexed by P and so that

p < q =⇒ Yp ⊂ Yq, and
the vertex set Vert(σ) of any simplex σ ∈ N(V) has a
greatest lower bound ∧σ in P, and
V is closed under taking finite nonempty intersections, ie,
for any simplex σ of N(V),⋂

p∈σ
Yp = Y∧σ.
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Condition (Z′)
Let A be a system of local coeffiicients on Y . In D - Okun we
have condition:

(Z′) if p < q, then ∀j (including j = 0), then

H j(Yq; A)→ HJ(Yp; A)

is the 0-map.
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Theorem (D - O)

Suppose (Z ′) holds. Then ∃ a spectral sequence =⇒
H∗(Y ; A) which decomposes as a direct sum:

E i,j
2 =

⊕
p∈P

H i(P≥p,P>p; H j(Yp; A)).

Moreover, in each summand the coefficients are constant.

Sketch of proof.

We have a poset of coefficients p → Hj(Yp; A). In general:

E i,j
1 =

⊕
p∈P

C i(P≥p,P>p; H j(Yp; A))
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Usually horizontal differentials don’t respect the direct sum
decomposition; however, (Z′) =⇒ they do.
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b ∈M(A) is a “generic” base point.
Rb(H) is the real (2n − 1)-dim affine space spanned by b
and H.
Eb(H) is the half-space in Rb(H) bounded by H on
opposite side from b. Eb(H) is called a slit.

MCn,b =M(A)−
⋃

H∈A
Eb(H)

For G ∈ L(A),

MG,b =M(A)−
⋃

H∈A−AG

Eb(H)
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Lemma
{MG,b}G∈L(A) is a poset of spaces inM(A), ie,⋂

G∈Vert(σ)

MG = M∧σ.

Suppose, b is a generic base point, a ∈ G, and D is a small
convex neigborhood (say an ellipsoid) of [a,b]. Let ρb : Cn → D
be radial deformation retraction in direction towards b onto D.

Lemma
ρb|MG is a deformation retraction onto D − Σ(AG) (∼M(AG)).
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Suppose P = L(A). Then
|P|≥G = |Pop|≤G.
Folkman’s Theorem:
|Pop|<Cn ∼ Σ(A) and |Pop|<G ∼ Σ(AG). So,

H i((Pop)≤G, (Pop)<G) = H i(G,Σ(AG)) = H
i−1

(Σ(AG)).

Moreover, Σ(AG) is homotopy equivalent to a wedge of
spheres.
Let π1 = π1(M(A))
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Theorem (DJLO)
Suppose A is an affine arrangement of rank n. Then
H∗(M(A); Zπ1) is free abelian and concentrated in degree n.

Sketch of Proof.
Any central arrangement is C∗-bundle over an affine
arrangement, so by induction on rank we can assume result is
true for each central arrangement of formM(AG). We have
spectral sequence:

E i,j
2 =

⊕
G∈P

H i(P≥G,P>G; H j(MG; Zπ1))

Also,
H i(P≥G,P>G) = H i((Pop)≤G, (Pop)<G) = H

i−1
(Σ(AG)).
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So, H∗(P≥G,P>G) is free abelian and concentrated in degree
i = dim G (actually = rk(AG)) and H∗(MG; Zπ1) is concentrated
in degree j = codim G (= rk(AG)). Therefore, E i,j

2 6= 0 only for
i + j = n.
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Notation
T is the torus (C∗)n . Universal cover: π : Cn → T . The
group of deck transformations is Γ = 2πiZn ⊂ Cn.
T an arrangement of codim 1 subtori in T (a toric
hyperplane arrangement in T ).

Σ(T ) =
⋃

H∈T
H and R(T ) = T − Σ(T ).

The inverse images of the toric hyperplanes gives an
arrangement A of affine hyperplanes in Cn.
L(A) and L(T ) are the respective intersection posets.
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General Set-up

Suppose {Yp}p∈P is a poset of spaces over P in a space
Y . Let π : Ỹ → Y be a regular covering space with group
of covering transformations Γ. Then {π0(π−1(Yp)}p∈P
gives a poset P̃ with Γ-action, with P̃/Γ = P. The quotient
projection P̃ → P is denoted by the same letter π.
We also get a poset of spaces in Ỹ over P̃: if p̃ ∈ P̃, then
Ỹp̃ is the corresponding component of π−1(Yπ(p̃)).

The structure of a poset of spaces for Ỹ gives an
equivariant map Ỹ → |P̃| and hence, a map
EΓ×Γ Ỹ → EΓ×Γ |P̃|). We consider the Leray-Serre
spectral sequence of this map.
If H∗(Ỹ ; A) is a local coefficient system, then there is a
version of (Z′).
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Theorem
Suppose (Z ′) holds. There is a spectral sequence converging
to H∗(EΓ×Γ Ỹ ; A) whose E2-term decomposes as a direct sum:

E i,j
2 =

⊕
p∈P

H i(EΓp̃ ×Γp̃ (|P̃≥p̃|, |P̃>p̃|); H j(Yp; A))

The coefficients in each summand are locally constant.
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For toric arrangements this gives:

Theorem

E i,j
2 =

⊕
G∈L(T )

H i(G,Σ(T G); H j(M(TG); A)

If we knew the coefficients were untwisted we would recover
the vanishing results in D - Settepanella on cohomology with
coefficients in a generic local system, von Neumann algebra or
Zπ1.
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