Complements of hyperplane arrangements as posets of spaces

Mike Davis

Cortona

September 2, 2014 https://people.math.osu.edu/davis.12/slides.html

Notation

- $\mathcal{A} = \{H\}$, a hyperplane arrangement in \mathbf{C}^n .
- L(A) = the intersection poset, partially ordered by reverse inclusion. (So, the minimum element is Cⁿ.)
- $\Sigma(\mathcal{A}) = \bigcup_{H \in \mathcal{A}} H, \qquad \mathcal{M}(\mathcal{A}) = \mathbf{C}^n \Sigma(\mathcal{A}).$
- $\forall G \in L(A)$, put

$$\mathcal{A}_{G} := \{ H \in \mathcal{A} \mid G \subseteq H \}$$
$$\mathcal{A}^{G} := \{ H \cap G \mid H \cap G \neq \emptyset, G \nsubseteq H \}$$

Goal

Give $\mathcal{M}(\mathcal{A})$ the structure of a poset of spaces, where the indexing poset is $L(\mathcal{A})$ and

$$M_G := \mathcal{M}(\mathcal{A})_G \sim \mathcal{M}(\mathcal{A}_G)$$

Motivation

- In 3 papers, with 1) Januszkiewicz-Leary,
 2) Januszkiewicz Leary Okun, and 3) Settepanella, we computed H*(M(A); A) with local coefficients in A, where A = N_q(π₁), Zπ₁ or a generic flat line bundle. (Here π₁ = π₁(M(A).)
- Key fact: if A is a central arrangement H^{*}(M(A); A) is nonzero in at most one degree.
- Original method: a Mayer-Vietoris spectral sequence.

 U = {*U*} a cover of Cⁿ by convex neighborhoods of central arrangements. *Û* = {*U* Σ} is a cover of *M*(*A*).

Method

 \exists spectral sequence \implies $H^*(\mathcal{M}(\mathcal{A}); A)$ with

$$E_{2}^{i,j} = \bigoplus_{G \in L(\mathcal{A})} H^{i}(N(\mathcal{U}|_{G}), N(\mathcal{U}|_{\Sigma(\mathcal{A}^{G})}); H^{j}(\mathcal{M}(\mathcal{A}_{G}))$$

with locally constant coefficients in each summand and with $H^{j}(N(\mathcal{U}|_{G}), N(\mathcal{U}|_{\Sigma(\mathcal{A}^{G})}) = H^{j}(G, \Sigma(\mathcal{A}^{G}))$

We claimed the coefficients in each summand were constant; however, Graham Denham pointed out to us that in some related situations this wasn't true.

Goal: fix this.

- Posets of spaces
 - A spectral sequence
 - Subspaces of *M*(*A*)

A spectral sequence Subspaces of $\mathcal{M}(\mathcal{A})$

- \mathcal{P} : a poset $|\mathcal{P}|$: its order complex
- A *poset of spaces* is a functor $Y : \mathcal{P} \to \mathbf{Top}$, ie, $p \to Y_p$, and if p < q a map $f_{pq} : Y_p \to Y_q$.
- Its homotopy pushout (or "homotopy colimit") is generalization of mapping cylinder:

$$\Delta Y = \left(\prod_{\sigma \in |\mathcal{P}_{\geq p}|} \sigma \times Y_{p} \right) / \sim$$

- \exists projection $\pi : \Delta Y \rightarrow |\mathcal{P}|$
- Put $\Delta Y_{\leq p} = \pi^{-1}(|\mathcal{P}_{\leq p}|).$

A spectral sequence Subspaces of $\mathcal{M}(\mathcal{A})$

Alternate Definition (D - Okun)

A poset of spaces in Y over \mathcal{P} is a cover $\mathcal{V} = \{Y_p\}_{p \in \mathcal{P}}$ of Y by open subsets (or by subcomplexes) so that the elements of the cover are indexed by \mathcal{P} and so that

•
$$p < q \implies Y_p \subset Y_q$$
, and

- the vertex set Vert(σ) of any simplex σ ∈ N(V) has a greatest lower bound ∧σ in P, and
- V is closed under taking finite nonempty intersections, ie, for any simplex σ of N(V),

$$\bigcap_{\boldsymbol{p}\in\sigma} Y_{\boldsymbol{p}} = Y_{\wedge\sigma}.$$

A spectral sequence Subspaces of $\mathcal{M}(\mathcal{A})$

Condition (Z')

Let *A* be a system of local coefficients on *Y*. In D - Okun we have condition:

(Z') if
$$p < q$$
, then $\forall j$ (including $j = 0$), then

$$H^{j}(Y_{q}; A)
ightarrow H^{J}(Y_{p}; A)$$

is the 0-map.

Theorem (D - O)

Suppose (Z') holds. Then \exists a spectral sequence \implies $H^*(Y; A)$ which decomposes as a direct sum:

$$E_2^{i,j} = \bigoplus_{p \in \mathcal{P}} H^i(\mathcal{P}_{\geq p}, \mathcal{P}_{>p}; H^j(Y_p; A)).$$

A spectral sequence

Subspaces of $\mathcal{M}(\mathcal{A})$

Moreover, in each summand the coefficients are constant.

Sketch of proof.

We have a poset of coefficients $p \to \mathcal{H}^{j}(Y_{p}; A)$. In general:

$$E_{1}^{i,j} = \bigoplus_{p \in \mathcal{P}} C^{i}(\mathcal{P}_{\geq p}, \mathcal{P}_{>p}; H^{j}(Y_{p}; A))$$

A spectral sequence Subspaces of $\mathcal{M}(\mathcal{A})$

Usually horizontal differentials don't respect the direct sum decomposition; however, (Z') \implies they do.

A spectral sequence Subspaces of $\mathcal{M}(\mathcal{A})$

- $b \in \mathcal{M}(\mathcal{A})$ is a "generic" base point.
- *R_b(H)* is the real (2*n* 1)-dim affine space spanned by *b* and *H*.
 F_b(H) is the helf energy in *P_b(H)* have ded by *H* and

 $E_b(H)$ is the half-space in $R_b(H)$ bounded by H on opposite side from b. $E_b(H)$ is called a *slit*.

۲

$$M_{\mathbf{C}^n,b} = \mathcal{M}(\mathcal{A}) - \bigcup_{H \in \mathcal{A}} E_b(H)$$

• For $G \in L(\mathcal{A})$,

$$M_{G,b} = \mathcal{M}(\mathcal{A}) - \bigcup_{H \in \mathcal{A} - \mathcal{A}_G} E_b(H)$$

A spectral sequence Subspaces of $\mathcal{M}(\mathcal{A})$

Lemma

 $\{M_{G,b}\}_{G \in L(\mathcal{A})}$ is a poset of spaces in $\mathcal{M}(\mathcal{A})$, ie,

G

$$\bigcap_{e \in \operatorname{Vert}(\sigma)} M_G = M_{\wedge \sigma}.$$

Suppose, *b* is a generic base point, $a \in G$, and *D* is a small convex neigborhood (say an ellipsoid) of [a, b]. Let $\rho_b : \mathbf{C}^n \to D$ be radial deformation retraction in direction towards *b* onto *D*.

Lemma

 $\rho_b|_{M_G}$ is a deformation retraction onto $D - \Sigma(\mathcal{A}_G)$ (~ $\mathcal{M}(\mathcal{A}_G)$).

Suppose $\mathcal{P} = L(\mathcal{A})$. Then

- $|\mathcal{P}|_{\geq G} = |\mathcal{P}^{op}|_{\leq G}$.
- Folkman's Theorem: $|\mathcal{P}^{op}|_{<\mathbf{C}^n} \sim \Sigma(\mathcal{A}) \text{ and } |\mathcal{P}^{op}|_{<G} \sim \Sigma(\mathcal{A}^G). \text{ So,}$

$$H^{i}((\mathcal{P}^{op})_{\leq G},(\mathcal{P}^{op})_{< G}) = H^{i}(G,\Sigma(\mathcal{A}^{G})) = \overline{H}^{i-1}(\Sigma(\mathcal{A}^{G})).$$

Moreover, $\Sigma(\mathcal{A}^G)$ is homotopy equivalent to a wedge of spheres.

• Let $\pi_1 = \pi_1(\mathcal{M}(\mathcal{A}))$

Theorem (DJLO)

Suppose A is an affine arrangement of rank n. Then $H^*(\mathcal{M}(A); \mathbf{Z}_{\pi_1})$ is free abelian and concentrated in degree n.

Sketch of Proof.

Any central arrangement is \mathbf{C}^* -bundle over an affine arrangement, so by induction on rank we can assume result is true for each central arrangement of form $\mathcal{M}(\mathcal{A}_G)$. We have spectral sequence:

$$E_2^{i,j} = \bigoplus_{G \in \mathcal{P}} H^i(\mathcal{P}_{\geq G}, \mathcal{P}_{>G}; H^j(M_G; \mathbf{Z}_{\pi_1}))$$

Also,

$$H^{i}(\mathcal{P}_{\geq G}, \mathcal{P}_{>G}) = H^{i}((\mathcal{P}^{op})_{\leq G}, (\mathcal{P}^{op})_{$$

So,
$$H^*(\mathcal{P}_{\geq G}, \mathcal{P}_{>G})$$
 is free abelian and concentrated in degree $i = \dim G$ (actually $= \operatorname{rk}(\mathcal{A}^G)$) and $H^*(M_G; \mathbb{Z}_{\pi_1})$ is concentrated in degree $j = \operatorname{codim} G$ ($= \operatorname{rk}(\mathcal{A}_G)$). Therefore, $E_2^{i,j} \neq 0$ only for $i + j = n$.

Notation

- *T* is the torus (C^{*})ⁿ. Universal cover: π : Cⁿ → *T*. The group of deck transformations is Γ = 2πiZⁿ ⊂ Cⁿ.
- T an arrangement of codim 1 subtori in T (a toric hyperplane arrangement in T).

$$\Sigma(\mathcal{T}) = \bigcup_{H \in \mathcal{T}} H$$
 and $\mathcal{R}(\mathcal{T}) = T - \Sigma(\mathcal{T}).$

The inverse images of the toric hyperplanes gives an arrangement A of affine hyperplanes in Cⁿ.
 L(A) and L(T) are the respective intersection posets.

General Set-up

- Suppose {Y_p}_{p∈P} is a poset of spaces over P in a space Y. Let π : Ỹ → Y be a regular covering space with group of covering transformations Γ. Then {π₀(π⁻¹(Y_p)}_{p∈P} gives a poset P̃ with Γ-action, with P̃/Γ = P. The quotient projection P̃ → P is denoted by the same letter π.
- We also get a poset of spaces in \tilde{Y} over $\tilde{\mathcal{P}}$: if $\tilde{p} \in \tilde{\mathcal{P}}$, then $\tilde{Y}_{\tilde{p}}$ is the corresponding component of $\pi^{-1}(Y_{\pi(\tilde{p})})$.
- The structure of a poset of spaces for *Y* gives an equivariant map *Y* → |*P*| and hence, a map EΓ ×_Γ *Y* → EΓ ×_Γ |*P*|). We consider the Leray-Serre spectral sequence of this map.
- If H*(Ỹ; A) is a local coefficient system, then there is a version of (Z').

Theorem

Suppose (*Z'*) holds. There is a spectral sequence converging to $H^*(E\Gamma \times_{\Gamma} \tilde{Y}; A)$ whose *E*₂-term decomposes as a direct sum:

$$E_{2}^{i,j} = \bigoplus_{\rho \in \mathcal{P}} H^{i}(E\Gamma_{\tilde{\rho}} \times_{\Gamma_{\tilde{\rho}}} (|\tilde{\mathcal{P}}_{\geq \tilde{\rho}}|, |\tilde{\mathcal{P}}_{> \tilde{\rho}}|); H^{j}(Y_{\rho}; A))$$

The coefficients in each summand are locally constant.

For toric arrangements this gives:

Theorem

$$E_{2}^{i,j} = \bigoplus_{G \in L(\mathcal{T})} H^{i}(G, \Sigma(\mathcal{T}^{G}); H^{j}(\mathcal{M}(\mathcal{T}_{G}); A)$$

If we knew the coefficients were untwisted we would recover the vanishing results in D - Settepanella on cohomology with coefficients in a generic local system, von Neumann algebra or \mathbf{Z}_{π_1} .