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HYPERPLANE ARRANGEMENTS

A (central) hyperplane arrangement in a K-vectorspace V is a set
o = {Hl,...,Hn}

of hyperplanes H; = ker o;, with {ay,...,ap} CV*

TOPOLOGY COMBINATORICS
M(o/) =V \ U is the L(<): poset of intersections
arrangement’s COMPLEMENT. (order: reverse inclusion)

D(«7): linearly dependent subsets
of {aq,...,an}

Both encode the associated (simple)

MATROID.
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HYPERPLANE ARRANGEMENTS

THE POWER OF MATROIDS (E.G., WHEN V = C%)
[Arnol’d, Brieskorn ~’71, Zaslavsky 79, Orlik-Solomon ’80]

. P(M(/),t) = > pe(er(0,X) (—t)™X
XeL(d) T~
Mobius
function
of L(¥)
° H{(M(),Z) = @ HY(M(g/x),7) is torsion-free
XeL(s)
rk(X)=i {Heo|XCH}

e “Orlik-Solomon algebra”:
H*(M(«),Z) ~ E/J (&), where

E: exterior Z-algebra with degree-1 generators e1, ..., e, (one for each H;);

J(<): the ideal ( S35 (=1)'ej, & €5 | {jis- -k} € minD() )



HYPERPLANE ARRANGEMENTS

THE LIMITS OF MATROIDS (AGAIN, WHEN V = C%)

[Rybnikov 1995 / 2011]

There are two arrangements 7], % with
L(h) = L(h)

(i.e., with isomorphic associated matroids), but
m (M (1)) # 71 (M(%)).

Thus the homotopy type is not determined by the matroid alone.
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COMPLEXIFIED ARRANGEMENTS

Let o = {Hy,...,H,} be an arrangement in C.
o is called complerified if o; € (RY)* for all i =1,...,n.

Consider the arrangement &% := &/ "R = {HY, ..., HE} in R%
o o/® has the same defining forms, hence same matroid, as 7.

o The hyperplanes of 2#® define a polyhedral fan in R¢.

A
AR

The arrangement The fan, with... ...its poset of faces.
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COMPLEXIFIED HYPERPLANE ARRANGEMENTS

BEYOND MATROIDS

o/ complexified arrangement with defining forms {ay, ..., a,} C (R9)*.

F(o): the face poset of the associated polyhedral fan

V(o) C {4, —,0}": the set of “signed linear dependencies”.
(X e V(&) if and only if X (i) = sign();) for some
real numbers A1,..., A\, such that Moy + ...+ Ao, = 0)

()

These encode equivalent data and define (“up to reorientation”) the
ORIENTED MATROID

associated to «/R.
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SALVETTI’S COMPLEX
[Salvetti "87]

Let o7 be a complexified arrangement.

The oriented matroid data of & (e.g., F(&/)) determines a poset Sal(<?)
such that
A(Sal(#)) ~ M ().

- the simplicial complex of all chains.
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BEYOND ORIENTED MATROIDS?

Two approaches towards developing a framework corresponding to oriented

matroids for complex vectorspaces.

e COMPLEX MATROIDS [Bjorner — Ziegler '92, Ziegler 93]
(Discrete models, topological representation theorem;

no cryptomorphisms, no characterization of the complex structure)

e PHASED MATROIDS [Anderson — D. "10] (— Elia’s poster)
(Cryptomorphisms, duality, natural S!-action;

not discrete, no topological representation theorem - as yet)
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o = {K17~-~7Kn}

of ‘hypertori’ K; = {z € T'| 2% = b;} with a; € Z% and b; € C*

For simplicity assume that the matrix [a, ..., a,] has rank d.
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POSET OF LAYERS

PR
O O O
N/

(b

)
[Looijenga "93, De Concini — Procesi "05]

P(M()t)= 3 pewn)©,Y) (=)™ Y (1 +6)4Y = T(2+1/1,0)
———

Yece(s) Mobius Arithmetic
function Tutte polynomial

of C(s7) [Moci ‘11]



TORIC ARRANGEMENTS

HoMOTOPY TYPE



COMPLEXIFIED TORIC ARRANGEMENTS

HOMOTOPY TYPE

[d’Antonio — D. "12]

Let </ be a complexified toric arrangement (i.e., K; = x; *(b;) for b; € S*).
o/ defines an arrangement &/ on the ‘compact torus’ 7¢ = (S1)<.

F(4) the face category of the polyhedral complex induced on T°.

= <> <
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COMPLEXIFIED TORIC ARRANGEMENTS
HoMOTOPY TYPE

[d’Antonio — D. "12]

Let </ be a complexified toric arrangement (i.e., K; = x; *(b;) for b; € S*).
o/ defines an arrangement &/ on the ‘compact torus’ 7¢ = (S1)<.

F(4) the face category of the polyhedral complex induced on T°.

The data of F(&/) determines an acyclic category Sal(</) such that

A(Sal(#)) ~ M ()
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of!

Any complexified toric arrangement o7 lifts to a complexified arrangement

of affine hyperplanes /! under the universal cover

Ci-T, df;%—mﬂz@



COMPLEXIFIED TORIC ARRANGEMENTS

,Q{{ AND THE FUNDAMENTAL GROUP
[d’Antonio — D. "12]

Any complexified toric arrangement o7 lifts to a complexified arrangement

of affine hyperplanes /! under the universal cover

Ci-T, df;%—nﬂz@

There is a split exact sequence

—

0 — m(M&") — m(M(7)) = 2% ~ 7 (T¢) — 0.

Moreover, via Sal(./) we obtain a finite presentation for 7y (M (7)).
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COMPLEXIFIED TORIC ARRANGEMENTS

COHOMOLOGY 1

[De Concini — Procesi 05] compute the cup product in H*(M (%), C) when

the matrix [aq,...,ay] is totally unimodular.

[Bibby ’14] Studies the rational cohomology algebra of unimodular abelian

arrangements and, e.g., describes the deletion-contraction behaviour.

We strive for a description of the integer cohomology algebra. For starters:

[d’Antonio — D. "13] For any complexified toric arrangement 7, the space
M (&) is minimal, thus H7 (M (<), Z) is torsion-free for all j.
Proof. Discrete Morse Theory on Sal(«).
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For Y € C(«/) define &Y = &/ NY, the arrangement induced on Y.

=



COMPLEXIFIED TORIC ARRANGEMENTS

ConomoLoGy II1.0
Let &7 be a complexified toric arrangement.
For Y € C(«/) define &Y = &/ NY, the arrangement induced on Y.

For F € F(«/) choose a lift F! € F(&/!) and let
dF|={He | F' CH}

be the ‘local’ hyperplane arrangement at the face F'.

S o <

o [F)
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CoHoMoLOGY II.1
[Callegaro — D. "14]

(1) A(Sal(«#/)) ~ hocolim 2, where

9. F(&) — Top
F = A(Sal(«[F)))

Call 4 EY'? the associated cohomology spectral sequence [Segal ‘68].
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CoHoMoLOGY II.1
[Callegaro — D. "14]

(1) A(Sal(27)) ~ hocolim 2, where

9. F(&) — Top
F = A(Sal(«[F)))

Call 4 EY'? the associated cohomology spectral sequence [Segal ‘68].

(2) Given Y € C(«7) choose a maximal F C Y and write &/[Y] := &/[F].
Then in A(Sal(/)) there is a subcomplex

Sy ~ A(F(#Y)) x A(Sal([Y])) ~ Y x M(</[Y])
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CoHoMmoLoOGY 11.2.1

For every Y € C(&), the following commutative square
M() = A(Sal()) e—— Sy
l 5 J

A(F(H)) e———— A(F(Y))

induces a morphism of spectral sequences ¢ EL'? — y ED9,

Next, we examine the morphism of spectral sequences associated to the

corresponding map from Wy cc () Sy to A(Sal(e)).
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CoHomMoLoGY 11.2.2

[Callegaro — D., ’14 - ongoing| (all cohomologies with Z-coefficients)

H*(M (7)) Dy e H*(Y) @ H*(M([Y]))
@Eg’q — @ YEp -
V)
P B (V)@ HI(M(7[Y])) P Hr (V)2 HI(M(F[Y]))
Yec(s) Yec()

rkY=q
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CoHomMoLoGY 11.2.2

[Callegaro — D., ’14 - ongoing| (all cohomologies with Z-coefficients)

H*(M (7)) Dy e H*(Y) @ H*(M([Y]))
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(W) ®b(\) Yy <Y

On Yp-summand: w ® A
0 else.
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CoHomMoLoGY 11.2.2

[Callegaro — D., ’14 - ongoing| (all cohomologies with Z-coefficients)

H*(M (7)) Dy e H*(Y) @ H*(M([Y]))
@Eg’q — @ YEp -
V)
P B (V)@ HI(M(7[Y])) P Hr (V)2 HI(M(F[Y]))
Yec(s) Yec()

rkY=q

( W) @b\ Y <Y
\ 0 else.

On Yp-summand: w ® A
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CoHomMoLoGY 11.2.2

[Callegaro — D., ’14 - ongoing| (all cohomologies with Z-coefficients)

Hom. of rings

H*(M (<)) By eccH (V) @ H (M([Y]))
Jbij. lbij.
@Eg’q — @ YEp -
Hom. of rings YeC(o)
D Hr(Y)o HI(M(A]Y)) P Hr(Y)e HIM(7]Y])
YeC(o) YeC()

rkY=q

( W eb(\) Y <Y
\ 0 else.

On Yp-summand: w ® A
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CoHomMoLoGY 11.2.2

[Callegaro — D., ’14 - ongoing| (all cohomologies with Z-coefficients)

Hom. of rings

B (M (o)) — 0 @ ooy HY (V) @ HY (M(A[Y))
Jbij. lbij.
@Eg’q = @ YEp i
Hom. of rings YeC(o)
P H(Y)® HI(M(]Y]) P H (V)0 HI(M(]Y])
YeC(o) YeC()

rkY=q

( W eb(\) Y <Y
\ 0 else.

On Yp-summand: w ® A
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CoHoMOLOGY 111
[Callegaro — D., ’14]

C(«/) determines the cohomology ring if &7 has a unimodular basis.
“Proof”: A realizable arithmetic matroid with an unimodular basis has a

unique realization.

In general, we do not know whether C(«7) determines the ring structure.
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CoHoMOLOGY 111
[Callegaro — D., ’14]

C(«/) determines the cohomology ring if &7 has a unimodular basis.
“Proof”: A realizable arithmetic matroid with an unimodular basis has a

unique realization.

In general, we do not know whether C(«7) determines the ring structure.

(...is it even the ‘right’ combinatorial invariant to look at?)
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OTHER RELATED COMBINATORIAL STRUCTURES

Let o be a toric arrangement, recall the vectors ay, ..., a, € Z%.

For every I C {1,...,n} define 4., (I) :=7Z%/{a; | i € I).

A mvaTrROID OVER A RING R [Fink — Moci, ‘13] is a family of R-modules
satisfying two abstract axioms (— Luca’s talk).

Example: the Z-modules .Z(-).
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OTHER RELATED COMBINATORIAL STRUCTURES

Let o be a toric arrangement, recall the vectors ay, ..., a, € Z%.
For every I C {1,...,n} define 4., (I) :=7Z%/{a; | i € I).
Let m(I) denote the cardinality of the torsion part of .Z.(I).

A mvaTrROID OVER A RING R [Fink — Moci, ‘13] is a family of R-modules
satisfying two abstract axioms (— Luca’s talk).

Example: the Z-modules .Z(-).

An aritHMETIC MATROID [d’Adderio, Brandén, Moci, "10 — 12| is a matroid
with a multiplicity function defined on its ground set, satisfying (— Luca).

Example: our m : 2" — N on the matroid of Q-dependencies of the a;.

Every arithmetic matroid has an ARITHMETIC TUTTE POLYNOMIAL.



TORIC ARRANGEMENTS

COMBINATORIAL FRAMEWORK

Ansatz [D. — Riedel, current]:

L) F(ah)
Infinite (finitary) Infinite (finitary)
Geometric semilattice el affine oriented matroid

(— Sonja’s poster)

d /z¢ d .
/7% (as posets) /Z% (as acyclic

categories)

o

Characterize axiomatically the involved posets and the group actions.



GREATER GENERALITY

FINITARY SEMIMATROIDS

[Riedel ‘13] The following notions are equivalent.

A FINITARY SEMIMATROID [cp. Ardila '06] is a triple (S, K, rk), where
e K is a finite-dimensional simplicial complex on a (possibly infinite) set S
e rk : £ — N satisfies some axioms (generalizing matroid-rank axioms)

Example/Intuition: S = &, K = {‘central sets’ }, rk(K) = codim NK.

A FINITARY GEOMETRIC SEMILATTICE [cp. Walker — Wachs '86] is a ranked meet-
semilattice £ such that

e [ has finite rank and every interval is a geometric lattice

e [ satisfies a global condition about existence of joins

Example: £(a/1).



GREATER GENERALITY

GROUP ACTIONS ON FINITARY SEMIMATROIDS?

Let a f. g. abelian group G act on a finitary geometric semilattice L.

(Equivalently, let G act on a finitary semimatroid (S, IC, rk)).

For every X C S define:
X :={Gz | € X}, the set of orbits meeting X

Assume that
e thereis X € K with X = S, and

o forallge G,z € S, if {z,g.x} € K then z = g..

Sample fact 1: Under this assumptions, the rank function rk induces a

matroid rank function rk on S.



GREATER GENERALITY

GROUP ACTIONS ON FINITARY SEMIMATROIDS?

Moreover, for every X C S define
I'(X) := G/stab(X)

and suppose that
for every X € K, T'(X) is free of rank rk(X).
For A C S, define
m(A)={XeK|X=A}/G|=|{ min. u. b. of Ain L/G }|

Sample fact 2: Under this additional hypothesis
e (S,rk,m) is a — often nonrealizable — quasiarithmetic matroid
e whose arithmetic Tutte polynomial satisfies Crapo’s formula and

e evaluates as the rank-generating function of £/G.



SUMMARY




