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Hyperplane arrangements

A (central) hyperplane arrangement in a K-vectorspace V is a set

A := {H1, . . . , Hn}

of hyperplanes Hi = kerαi, with {α1, . . . , αn} ⊆ V
∗

Topology

M(A ) := V \ ∪A is the
arrangement’s complement.

Combinatorics

L(A ): poset of intersections
(order: reverse inclusion)

D(A ): linearly dependent subsets
of {α1, . . . , αn}

Both encode the associated (simple)

matroid.



Hyperplane arrangements

A (central) hyperplane arrangement in a K-vectorspace V is a set

A := {H1, . . . , Hn}

of hyperplanes Hi = kerαi, with {α1, . . . , αn} ⊆ V
∗

Topology

M(A ) := V \ ∪A is the
arrangement’s complement.

Combinatorics

L(A ): poset of intersections
(order: reverse inclusion)

D(A ): linearly dependent subsets
of {α1, . . . , αn}

Both encode the associated (simple)

matroid.



Hyperplane arrangements

A (central) hyperplane arrangement in a K-vectorspace V is a set

A := {H1, . . . , Hn}

of hyperplanes Hi = kerαi, with {α1, . . . , αn} ⊆ V
∗

Topology

M(A ) := V \ ∪A is the
arrangement’s complement.

Combinatorics

L(A ): poset of intersections
(order: reverse inclusion)

D(A ): linearly dependent subsets
of {α1, . . . , αn}

Both encode the associated (simple)

matroid.



Hyperplane arrangements

The power of matroids (e.g., when V = Cd)

[Arnol’d, Brieskorn ∼’71, Zaslavsky ’79, Orlik-Solomon ’80]

• P (M(A ), t) =
�

X∈L(A )

µL(A )(0̂, X)
� �� �

Möbius
function

of L(A )

(−t)rkX

• H
i(M(A ),Z) =

�

X∈L(A )

rk(X)=i

H
i(M(AX),Z) is torsion-free

• “Orlik-Solomon algebra”:

H
∗(M(A ),Z) � E/J (A ), where

E: exterior Z-algebra with degree-1 generators e1, . . . , en (one for each Hi);

J (A ): the ideal �
�k

l=1
(−1)lej1 · · ·�ejl · · · ejk | {j1, . . . , jk} ∈ minD(A ) �

{H ∈ A | X ⊆ H}
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Hyperplane arrangements

The limits of matroids (again, when V = Cd)

[Rybnikov 1995 / 2011]

There are two arrangements A1, A2 with

L(A1) � L(A2)

(i.e., with isomorphic associated matroids), but

π1(M(A1)) �� π1(M(A2)).

Thus the homotopy type is not determined by the matroid alone.



Hyperplane arrangements

Complexified arrangements

Let A = {H1, . . . , Hn} be an arrangement in Cd.

A is called complexified if αi ∈ (Rd)∗ for all i = 1, . . . , n.

Consider the arrangement A R := A ∩ Rd = {HR
1
, . . . , H

R
n} in Rd.

• A R has the same defining forms, hence same matroid, as A .

• The hyperplanes of A R define a polyhedral fan in Rd.

The arrangement The fan, with... ...its poset of faces.
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Complexified hyperplane arrangements

Beyond matroids

A : complexified arrangement with defining forms {α1, . . . , αn} ⊂ (Rd)∗.

F(A ): the face poset of the associated polyhedral fan

V(A ) ⊆ {+,−, 0}n: the set of “signed linear dependencies”.

(X ∈ V(A ) if and only if X(i) = sign(λi) for some

real numbers λ1, . . . , λn such that λ1α1 + . . .+ λnαn = 0)

(...)

These encode equivalent data and define (“up to reorientation”) the

oriented matroid

associated to A R.
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Complexified hyperplane arrangements

Salvetti’s complex
[Salvetti ’87]

Let A be a complexified arrangement.

The oriented matroid data of A (e.g., F(A )) determines a poset Sal(A )

such that

∆(Sal(A )) � M(A ).



Complexified hyperplane arrangements

Salvetti’s complex
[Salvetti ’87]

Let A be a complexified arrangement.

The oriented matroid data of A (e.g., F(A )) determines a poset Sal(A )

such that

∆(Sal(A )) � M(A ).

Order complex - the simplicial complex of all chains.



Hyperplane arrangements

Beyond oriented matroids?

Two approaches towards developing a framework corresponding to oriented

matroids for complex vectorspaces.

• Complex matroids [Björner – Ziegler ’92, Ziegler ’93]

(Discrete models, topological representation theorem;

no cryptomorphisms, no characterization of the complex structure)

• Phased matroids [Anderson – D. ’10] (→ Elia’s poster)

(Cryptomorphisms, duality, natural S1-action;

not discrete, no topological representation theorem - as yet)
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A toric arrangement in the complex torus T := (C∗)d is a set

A := {K1, . . . ,Kn}

of ‘hypertori’ Ki = χ
−1

i (bi) with χi ∈ Hom(T,C∗) and bi ∈ C∗
/ = 1/ ∈ S

1
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For simplicity assume that the matrix [a1, . . . , an] has rank d.
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Poset of layers

A C(A )

[Looijenga ’93, De Concini – Procesi ’05]
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Toric arrangements

Poset of layers

A C(A )

[Looijenga ’93, De Concini – Procesi ’05]

P (M(A ), t) =
�

Y ∈C(A )

µC(A )(0̂, Y )
� �� �

Möbius
function

of C(A )

(−t)rkY (1 + t)d−rkY = t
d
T (2 + 1/t, 0)� �� �

Arithmetic
Tutte polynomial

[Moci ‘11]
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Complexified toric arrangements

Homotopy type
[d’Antonio – D. ’12]

Let A be a complexified toric arrangement (i.e., Ki = χ
−1

i (bi) for bi ∈ S
1).

A defines an arrangement A c on the ‘compact torus’ T c = (S1)d.

F(A ) the face category of the polyhedral complex induced on T
c.

A F(A )

The data of F(A ) determines an acyclic category Sal(A ) such that

∆(Sal(A )) � M(A )
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Complexified toric arrangements

A �

and the fundamental group
[d’Antonio – D. ’12]

Any complexified toric arrangement A lifts to a complexified arrangement

of affine hyperplanes A � under the universal cover

Cd → T, A �: −→ A :

There is a split exact sequence

0 −→ π1(M(A �)) −→ π1(M(A ))
←−−→ Zd � π1(T

c) −→ 0.

Moreover, via Sal(A ) we obtain a finite presentation for π1(M(A )).
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Complexified toric arrangements

Cohomology I

[De Concini – Procesi ’05] compute the cup product in H
∗(M(A ),C) when

the matrix [a1, . . . , an] is totally unimodular.

[Bibby ’14] Studies the rational cohomology algebra of unimodular abelian

arrangements and, e.g., describes the deletion-contraction behaviour.

We strive for a description of the integer cohomology algebra. For starters:

[d’Antonio – D. ’13] For any complexified toric arrangement A , the space

M(A ) is minimal, thus Hj(M(A ),Z) is torsion-free for all j.

Proof. Discrete Morse Theory on Sal(A ).



Complexified toric arrangements

Cohomology II.0

Let A be a complexified toric arrangement.

For Y ∈ C(A ) define A Y = A ∩ Y , the arrangement induced on Y .

For F ∈ F(A ) choose a lift F � ∈ F(A �) and let

A [F ] = {H ∈ A � | F � ⊆ H}

be the ‘local’ hyperplane arrangement at the face F .

A A Y

A [F ]

Y
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Complexified toric arrangements

Cohomology II.1
[Callegaro – D. ’14]

(1) ∆(Sal(A )) � hocolimD , where

D : F(A ) → Top

F �→ ∆(Sal(A [F ]))

Call DE
p,q
∗ the associated cohomology spectral sequence [Segal ‘68].

(2) Given Y ∈ C(A ) choose a maximal F ⊆ Y and write A [Y ] := A [F ].

Then in ∆(Sal(A )) there is a subcomplex

SY � ∆(F(A Y ))×∆(Sal(A [Y ])) � Y ×M(A [Y ])
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Complexified toric arrangements

Cohomology II.2.1

For every Y ∈ C(A ), the following commutative square

M(A ) � ∆(Sal(A )) SY

∆(F(A )) ∆(F(A Y ))

⊇

π πY

⊇

induces a morphism of spectral sequences DE
p,q
∗ → Y E

p,q
∗ .

Next, we examine the morphism of spectral sequences associated to the

corresponding map from �Y ∈C(A )SY to ∆(Sal(A )).



Complexified toric arrangements

Cohomology II.2.2
[Callegaro – D., ’14 - ongoing] (all cohomologies with Z-coefficients)

H
∗(M(A ))

�
Y ∈C(A )

H
∗(Y )⊗H

∗(M(A [Y ]))

DE
p,q
2

=

�

Y ∈C(A )

rkY=q

H
p(Y )⊗H

q(M(A [Y ]))

�

Y ∈C(A )

Y E
p,q
2

=

�

Y ∈C(A )

H
p(Y )⊗H

q(M(A [Y ]))

On Y0-summand: ω ⊗ λ



 i
∗(ω)⊗ b(λ) if Y0 ≤ Y

0 else.





Y

“Brieskorn” inclusion
i : Y �→ Y0
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Complexified toric arrangements

Cohomology III
[Callegaro – D., ’14]

C(A ) determines the cohomology ring if A has a unimodular basis.

“Proof”: A realizable arithmetic matroid with an unimodular basis has a

unique realization.

In general, we do not know whether C(A ) determines the ring structure.

(...is it even the ‘right’ combinatorial invariant to look at?)
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Complexified toric arrangements

Other related combinatorial structures

Let A be a toric arrangement, recall the vectors a1, . . . , an ∈ Zd.

For every I ⊂ {1, . . . , n} define MA (I) := Zd
/�ai | i ∈ I�.

Let m(I) denote the cardinality of the torsion part of MA (I).

A matroid over a ring R [Fink – Moci, ‘13] is a family of R-modules

satisfying two abstract axioms (→ Luca’s talk).

Example: the Z-modules MA (·).

An arithmetic matroid [d’Adderio, Brändén, Moci, ’10 – ’12] is a matroid

with a multiplicity function defined on its ground set, satisfying (→ Luca).

Example: our m : 2[n] → N on the matroid of Q-dependencies of the ai.

Every arithmetic matroid has an arithmetic Tutte polynomial.



Complexified toric arrangements

Other related combinatorial structures

Let A be a toric arrangement, recall the vectors a1, . . . , an ∈ Zd.

For every I ⊂ {1, . . . , n} define MA (I) := Zd
/�ai | i ∈ I�.

Let m(I) denote the cardinality of the torsion part of MA (I).

A matroid over a ring R [Fink – Moci, ‘13] is a family of R-modules

satisfying two abstract axioms (→ Luca’s talk).

Example: the Z-modules MA (·).

An arithmetic matroid [d’Adderio, Brändén, Moci, ’10 – ’12] is a matroid

with a multiplicity function defined on its ground set, satisfying (→ Luca).

Example: our m : 2[n] → N on the matroid of Q-dependencies of the ai.

Every arithmetic matroid has an arithmetic Tutte polynomial.



Toric arrangements

Combinatorial framework

Ansatz [D. – Riedel, current]:

L(A �)

A �

F(A �)

C(A )

A

F(A )

Infinite (finitary)

Geometric semilattice

Infinite (finitary)

affine oriented matroid

(→ Sonja’s poster)

/Zd
(as posets)

/Zd

/Zd
(as acyclic

categories)

Characterize axiomatically the involved posets and the group actions.



Greater generality

Finitary semimatroids

[Riedel ‘13] The following notions are equivalent.

A finitary semimatroid [cp. Ardila ’06] is a triple (S,K, rk), where

• K is a finite-dimensional simplicial complex on a (possibly infinite) set S

• rk : K → N satisfies some axioms (generalizing matroid-rank axioms)

Example/Intuition: S = A �, K = {‘central sets’ }, rk(K) = codim∩K.

A finitary geometric semilattice [cp. Walker – Wachs ’86] is a ranked meet-

semilattice L such that

• L has finite rank and every interval is a geometric lattice

• L satisfies a global condition about existence of joins

Example: L(A �).



Greater generality

Group actions on finitary semimatroids?

Let a f. g. abelian group G act on a finitary geometric semilattice L.

(Equivalently, let G act on a finitary semimatroid (S,K, rk)).

For every X ⊆ S define:

X := {Gx | x ∈ X}, the set of orbits meeting X

Assume that

• there is X ∈ K with X = S, and

• for all g ∈ G, x ∈ S, if {x, g.x} ∈ K then x = g.x.

Sample fact 1: Under this assumptions, the rank function rk induces a

matroid rank function rk on S.



Greater generality

Group actions on finitary semimatroids?

Moreover, for every X ⊆ S define

Γ(X) := G/ stab(X)

and suppose that

for every X ∈ K, Γ(X) is free of rank rk(X).

For A ⊆ S, define

m(A) := |{X ∈ K | X = A}/G| = |{ min. u. b. of A in L/G }|

Sample fact 2: Under this additional hypothesis

• (S, rk,m) is a – often nonrealizable – quasiarithmetic matroid

• whose arithmetic Tutte polynomial satisfies Crapo’s formula and

• evaluates as the rank-generating function of L/G.



Summary


