

RECENT DEVELOPMENTS IN TORIC ARRANGEMENTS

Emanuele Delucchi (SNSF / Université de Fribourg)

Configuration spaces, Cortona, Italy September 2., 2014

Toric Arrangements

- Connection with partition functions and splines [De Concini–Procesi–Vergne]
- New challenges for combinatorial topology.

- Connection with partition functions and splines [De Concini–Procesi–Vergne]
- New challenges for combinatorial topology.

Toric Arrangements

- Combinatorics (enumerative) [Lawrence, Ehrenborg-Readdy-Slone, Moci, d'Adderio, Brändén,...]
- Topology [Lehrer, Looijenga, De Concini–Procesi,...]

- Connection with partition functions and splines [De Concini–Procesi–Vergne]
- New challenges for combinatorial topology.

- Combinatorics (enumerative) [Lawrence, Ehrenborg– Readdy–Slone, Moci, d'Adderio, Brändén,...]
- Topology [Lehrer, Looijenga, De Concini-Procesi,...]

Toric Arrangements

- Combinatorics (enumerative) [Lawrence, Ehrenborg-Readdy-Slone, Moci, d'Adderio, Brändén,...]
- Topology [Lehrer, Looijenga, De Concini–Procesi,...]

A (central) hyperplane arrangement in a $\mathbbm{K}\mbox{-vector$ $space }V$ is a set

 $\mathscr{A} := \{H_1, \ldots, H_n\}$

of hyperplanes $H_i = \ker \alpha_i$, with $\{\alpha_1, \ldots, \alpha_n\} \subseteq V^*$

A (central) hyperplane arrangement in a $\mathbbm{K}\mbox{-vector$ $space }V$ is a set

 $\mathscr{A} := \{H_1, \ldots, H_n\}$

of hyperplanes $H_i = \ker \alpha_i$, with $\{\alpha_1, \ldots, \alpha_n\} \subseteq V^*$

TOPOLOGY

 $M(\mathscr{A}) := V \setminus \cup \mathscr{A}$ is the arrangement's COMPLEMENT.

A (central) hyperplane arrangement in a $\mathbbm{K}\mbox{-vector$ $space }V$ is a set

 $\mathscr{A} := \{H_1, \ldots, H_n\}$

of hyperplanes $H_i = \ker \alpha_i$, with $\{\alpha_1, \ldots, \alpha_n\} \subseteq V^*$

TOPOLOGY

 $M(\mathscr{A}) := V \setminus \cup \mathscr{A}$ is the arrangement's COMPLEMENT.

COMBINATORICS

 $\mathcal{L}(\mathscr{A})$: poset of intersections (order: reverse inclusion)

 $\mathcal{D}(\mathscr{A})$: linearly dependent subsets of $\{\alpha_1, \ldots, \alpha_n\}$

Both encode the associated (simple) MATROID.

THE POWER OF MATROIDS (E.G., WHEN $V = \mathbb{C}^d$) [Arnol'd, Brieskorn ~'71, Zaslavsky '79, Orlik-Solomon '80]

•
$$P(M(\mathscr{A}),t) = \sum_{X \in \mathcal{L}(\mathscr{A})} \underbrace{\mu_{\mathcal{L}(\mathscr{A})}(\hat{0},X)}_{\substack{\text{Möbius} \\ \text{function} \\ \text{of } \mathcal{L}(\mathscr{A})}} (-t)^{\operatorname{rk} X}$$

Hyperplane arrangements

THE POWER OF MATROIDS (E.G., WHEN $V = \mathbb{C}^d$) [Arnol'd, Brieskorn ~'71, Zaslavsky '79, Orlik-Solomon '80]

•
$$P(M(\mathscr{A}), t) = \sum_{X \in \mathcal{L}(\mathscr{A})} \underbrace{\mu_{\mathcal{L}(\mathscr{A})}(\hat{0}, X)}_{\text{Möbius function}} (-t)^{\operatorname{rk} X}$$
•
$$H^{i}(M(\mathscr{A}), \mathbb{Z}) = \bigoplus_{X \in \mathcal{L}(\mathscr{A})} H^{i}(M(\mathscr{A}_{X}), \mathbb{Z}) \text{ is torsion-free}$$

rk(X) = i

Hyperplane arrangements

THE POWER OF MATROIDS (E.G., WHEN $V = \mathbb{C}^d$) [Arnol'd, Brieskorn ~'71, Zaslavsky '79, Orlik-Solomon '80]

•
$$P(M(\mathscr{A}), t) = \sum_{X \in \mathcal{L}(\mathscr{A})} \underbrace{\mu_{\mathcal{L}(\mathscr{A})}(\hat{0}, X)}_{\text{Möbius function}} (-t)^{\operatorname{rk} X}$$
•
$$H^{i}(M(\mathscr{A}), \mathbb{Z}) = \bigoplus_{X \in \mathcal{L}(\mathscr{A})} H^{i}(M(\mathscr{A}_{X}), \mathbb{Z}) \text{ is torsion-free}$$

rk(X) = i

THE POWER OF MATROIDS (E.G., WHEN $V = \mathbb{C}^d$) [Arnol'd, Brieskorn ~'71, Zaslavsky '79, Orlik-Solomon '80]

•
$$P(M(\mathscr{A}), t) = \sum_{X \in \mathcal{L}(\mathscr{A})} \underbrace{\mu_{\mathcal{L}(\mathscr{A})}(\hat{0}, X)}_{\substack{\text{M\"obius}\\\text{function}\\\text{of }\mathcal{L}(\mathscr{A})}} (-t)^{\operatorname{rk} X}$$
•
$$H^{i}(M(\mathscr{A}), \mathbb{Z}) = \bigoplus_{\substack{X \in \mathcal{L}(\mathscr{A})\\\text{rk}(X) = i}} H^{i}(M(\mathscr{A}_{X}), \mathbb{Z}) \text{ is torsion-free}} \{H \in \mathscr{A} \mid X \subseteq H\}$$

THE POWER OF MATROIDS (E.G., WHEN $V = \mathbb{C}^d$) [Arnol'd, Brieskorn ~'71, Zaslavsky '79, Orlik-Solomon '80]

•
$$P(M(\mathscr{A}), t) = \sum_{X \in \mathcal{L}(\mathscr{A})} \underbrace{\mu_{\mathcal{L}(\mathscr{A})}(\hat{0}, X)}_{\substack{\text{M\"obius}\\\text{function}\\\text{of }\mathcal{L}(\mathscr{A})}} (-t)^{\operatorname{rk} X}$$
•
$$H^{i}(M(\mathscr{A}), \mathbb{Z}) = \bigoplus_{\substack{X \in \mathcal{L}(\mathscr{A})\\\text{rk}(X) = i}} H^{i}(M(\mathscr{A}_{X}), \mathbb{Z}) \text{ is torsion-free}} \{H \in \mathscr{A} \mid X \subseteq H\}$$

• "Orlik-Solomon algebra":

$$H^*(M(\mathscr{A}),\mathbb{Z})\simeq E/\mathcal{J}(\mathscr{A}),$$
 where

E: exterior \mathbb{Z} -algebra with degree-1 generators e_1, \ldots, e_n (one for each H_i); $\mathcal{J}(\mathscr{A})$: the ideal $\langle \sum_{l=1}^k (-1)^l e_{j_1} \cdots \widehat{e_{j_l}} \cdots e_{j_k} \mid \{j_1, \ldots, j_k\} \in \min \mathcal{D}(\mathscr{A}) \rangle$ The limits of matroids (again, when $V = \mathbb{C}^d$) [Rybnikov 1995 / 2011]

There are two arrangements $\mathscr{A}_1, \mathscr{A}_2$ with

 $\mathcal{L}(\mathscr{A}_1) \simeq \mathcal{L}(\mathscr{A}_2)$

(i.e., with isomorphic associated matroids), but

 $\pi_1(M(\mathscr{A}_1)) \not\simeq \pi_1(M(\mathscr{A}_2)).$

Thus the homotopy type is not determined by the matroid alone.

Hyperplane arrangements

Complexified arrangements

Let $\mathscr{A} = \{H_1, \ldots, H_n\}$ be an arrangement in \mathbb{C}^d . \mathscr{A} is called *complexified* if $\alpha_i \in (\mathbb{R}^d)^*$ for all $i = 1, \ldots, n$.

Consider the arrangement $\mathscr{A}^{\mathbb{R}} := \mathscr{A} \cap \mathbb{R}^d = \{H_1^{\mathbb{R}}, \dots, H_n^{\mathbb{R}}\}$ in \mathbb{R}^d .

• $\mathscr{A}^{\mathbb{R}}$ has the same defining forms, hence same matroid, as \mathscr{A} .

Complexified arrangements

Let $\mathscr{A} = \{H_1, \ldots, H_n\}$ be an arrangement in \mathbb{C}^d . \mathscr{A} is called *complexified* if $\alpha_i \in (\mathbb{R}^d)^*$ for all $i = 1, \ldots, n$.

Consider the arrangement $\mathscr{A}^{\mathbb{R}} := \mathscr{A} \cap \mathbb{R}^d = \{H_1^{\mathbb{R}}, \dots, H_n^{\mathbb{R}}\}$ in \mathbb{R}^d .

- $\mathscr{A}^{\mathbb{R}}$ has the same defining forms, hence same matroid, as \mathscr{A} .
- The hyperplanes of $\mathscr{A}^{\mathbb{R}}$ define a polyhedral fan in \mathbb{R}^d .

The arrangement

The fan, with...

... its poset of faces.

BEYOND MATROIDS

 \mathscr{A} : complexified arrangement with defining forms $\{\alpha_1, \ldots, \alpha_n\} \subset (\mathbb{R}^d)^*$.

 $\mathcal{F}(\mathscr{A}):$ the face poset of the associated polyhedral fan

BEYOND MATROIDS

 \mathscr{A} : complexified arrangement with defining forms $\{\alpha_1, \ldots, \alpha_n\} \subset (\mathbb{R}^d)^*$.

 $\mathcal{F}(\mathscr{A}):$ the face poset of the associated polyhedral fan

 $\mathcal{V}(\mathscr{A}) \subseteq \{+, -, 0\}^n$: the set of "signed linear dependencies". $(X \in \mathcal{V}(\mathscr{A}) \text{ if and only if } X(i) = \operatorname{sign}(\lambda_i) \text{ for some}$ real numbers $\lambda_1, \ldots, \lambda_n$ such that $\lambda_1 \alpha_1 + \ldots + \lambda_n \alpha_n = 0$) (...)

BEYOND MATROIDS

 \mathscr{A} : complexified arrangement with defining forms $\{\alpha_1, \ldots, \alpha_n\} \subset (\mathbb{R}^d)^*$.

 $\mathcal{F}(\mathscr{A}):$ the face poset of the associated polyhedral fan

$$\mathcal{V}(\mathscr{A}) \subseteq \{+, -, 0\}^n$$
: the set of "signed linear dependencies".
 $(X \in \mathcal{V}(\mathscr{A}) \text{ if and only if } X(i) = \operatorname{sign}(\lambda_i) \text{ for some}$
real numbers $\lambda_1, \ldots, \lambda_n$ such that $\lambda_1 \alpha_1 + \ldots + \lambda_n \alpha_n = 0$)
(...)

These encode equivalent data and define ("up to reorientation") the ORIENTED MATROID

associated to $\mathscr{A}^{\mathbb{R}}$.

SALVETTI'S COMPLEX [Salvetti '87]

Let ${\mathscr A}$ be a complexified arrangement.

The oriented matroid data of \mathscr{A} (e.g., $\mathcal{F}(\mathscr{A})$) determines a poset Sal(\mathscr{A}) such that

 $\Delta(\operatorname{Sal}(\mathscr{A})) \simeq M(\mathscr{A}).$

SALVETTI'S COMPLEX [Salvetti '87]

Let ${\mathscr A}$ be a complexified arrangement.

The oriented matroid data of \mathscr{A} (e.g., $\mathcal{F}(\mathscr{A})$) determines a poset Sal(\mathscr{A}) such that

$$\label{eq:alpha} \boxed{\Delta(\mathrm{Sal}(\mathscr{A})) \simeq M(\mathscr{A})}.$$

Order complex - the simplicial complex of all chains.

BEYOND ORIENTED MATROIDS?

Two approaches towards developing a framework corresponding to oriented matroids for complex vectorspaces.

• COMPLEX MATROIDS [Björner – Ziegler '92, Ziegler '93] (Discrete models, topological representation theorem; no cryptomorphisms, no characterization of the complex structure)

BEYOND ORIENTED MATROIDS?

Two approaches towards developing a framework corresponding to oriented matroids for complex vectorspaces.

- COMPLEX MATROIDS [Björner Ziegler '92, Ziegler '93]
 (Discrete models, topological representation theorem; no cryptomorphisms, no characterization of the complex structure)
- PHASED MATROIDS [Anderson D. '10] (→ Elia's poster)
 (Cryptomorphisms, duality, natural S¹-action; not discrete, no topological representation theorem - as yet)

A toric arrangement in the complex torus $T := (\mathbb{C}^*)^d$ is a set

$$\mathscr{A} := \{K_1, \ldots, K_n\}$$

of 'hypertori' $K_i = \chi_i^{-1}(b_i)$ with $\chi_i \in \text{Hom}(T, \mathbb{C}^*)$ and $b_i \in \mathbb{C}^* / = 1 / \in S^1$

A toric arrangement in the complex torus $T := (\mathbb{C}^*)^d$ is a set

$$\mathscr{A} := \{K_1, \dots, K_n\}$$

of 'hypertori' $K_i = \{z \in T \mid z^{a_i} = b_i\}$ with $a_i \in \mathbb{Z}^d$ and $b_i \in \mathbb{C}^*$

For simplicity assume that the matrix $[a_1, \ldots, a_n]$ has rank d.

A toric arrangement in the complex torus $T := (\mathbb{C}^*)^d$ is a set

 $\mathscr{A} := \{K_1, \ldots, K_n\}$

of 'hypertori' $K_i = \{z \in T \mid z^{a_i} = b_i\}$ with $a_i \in \mathbb{Z}^d$ and $b_i \in \mathbb{C}^*$

TOPOLOGY

Combinatorics

$$\begin{split} M(\mathscr{A}) &:= T \setminus \cup \mathscr{A}, \\ & \text{the complement of } \mathscr{A}. \end{split}$$

 $\mathcal{C}(\mathscr{A})$: poset of *layers* (connected components of intersections)

The arithmetic matroid of the a_i

The matroid over \mathbb{Z} of the a_i

As yet no overarching theory

A toric arrangement in the complex torus $T := (\mathbb{C}^*)^d$ is a set

 $\mathscr{A} := \{K_1, \ldots, K_n\}$

of 'hypertori' $K_i = \{z \in T \mid z^{a_i} = b_i\}$ with $a_i \in \mathbb{Z}^d$ and $b_i \in \mathbb{C}^*$

TOPOLOGY

COMBINATORICS

 $M(\mathscr{A}) := T \setminus \cup \mathscr{A},$ the *complement* of \mathscr{A} . $\mathcal{C}(\mathscr{A})$: poset of *layers* (connected components of intersections)

The arithmetic matroid of the a_i The matroid over \mathbb{Z} of the a_i

As yet no overarching theory

POSET OF LAYERS

A

POSET OF LAYERS

[Looijenga '93, De Concini – Procesi '05]

$$P(M(\mathscr{A}),t) = \sum_{Y \in \mathcal{C}(\mathscr{A})} \underbrace{\mu_{\mathcal{C}(\mathscr{A})}(\hat{0},Y)}_{\substack{\mathsf{M\"obius}\\ \mathsf{function}\\ \mathsf{of}\ \mathcal{C}(\mathscr{A})}} (-t)^{\mathrm{rk}\ Y} (1+t)^{d-\mathrm{rk}\ Y}$$

POSET OF LAYERS

[Looijenga '93, De Concini – Procesi '05]

$$P(M(\mathscr{A}),t) = \sum_{\substack{Y \in \mathcal{C}(\mathscr{A}) \\ \text{M\"obius} \\ \text{function} \\ \text{of } \mathcal{C}(\mathscr{A})}} \underbrace{\mu_{\mathcal{C}(\mathscr{A})}(\hat{0},Y)}_{(-t)^{\operatorname{rk} Y}(1+t)^{d-\operatorname{rk} Y}} = t^d \underbrace{T(2+1/t,0)}_{\substack{\text{Arithmetic} \\ \text{Tutte polynomial} \\ [Moci '11]}}$$

Homotopy type

Complexified toric arrangements

HOMOTOPY TYPE [d'Antonio – D. '12]

Let \mathscr{A} be a complexified toric arrangement (i.e., $K_i = \chi_i^{-1}(b_i)$ for $b_i \in S^1$). \mathscr{A} defines an arrangement \mathscr{A}^c on the 'compact torus' $T^c = (S^1)^d$. $\mathcal{F}(\mathscr{A})$ the face category of the polyhedral complex induced on T^c .

HOMOTOPY TYPE [d'Antonio – D. '12]

Let \mathscr{A} be a complexified toric arrangement (i.e., $K_i = \chi_i^{-1}(b_i)$ for $b_i \in S^1$). \mathscr{A} defines an arrangement \mathscr{A}^c on the 'compact torus' $T^c = (S^1)^d$. $\mathcal{F}(\mathscr{A})$ the face category of the polyhedral complex induced on T^c .

The data of $\mathcal{F}(\mathscr{A})$ determines an acyclic category $\operatorname{Sal}(\mathscr{A})$ such that $\Delta(\operatorname{Sal}(\mathscr{A})) \simeq M(\mathscr{A})$

Complexified toric arrangements

 \mathscr{A}^{\uparrow}

Any complexified toric arrangement \mathscr{A} lifts to a complexified arrangement of affine hyperplanes \mathscr{A}^{\dagger} under the universal cover

 \mathscr{A}^{\dagger} AND THE FUNDAMENTAL GROUP [d'Antonio – D. '12]

Any complexified toric arrangement \mathscr{A} lifts to a complexified arrangement of affine hyperplanes \mathscr{A}^{\uparrow} under the universal cover

There is a split exact sequence

$$0 \longrightarrow \pi_1(M(\mathscr{A}^{\uparrow})) \longrightarrow \pi_1(M(\mathscr{A})) \stackrel{\longleftarrow}{\longrightarrow} \mathbb{Z}^d \simeq \pi_1(T^c) \longrightarrow 0.$$

Moreover, via $\operatorname{Sal}(\mathscr{A})$ we obtain a finite presentation for $\pi_1(M(\mathscr{A}))$.

Cohomology

COHOMOLOGY I

[De Concini – Procesi '05] compute the cup product in $H^*(M(\mathscr{A}), \mathbb{C})$ when the matrix $[a_1, \ldots, a_n]$ is totally unimodular.

[Bibby '14] Studies the rational cohomology algebra of unimodular abelian arrangements and, e.g., describes the deletion-contraction behaviour.

We strive for a description of the integer cohomology algebra. For starters:

[d'Antonio – D. '13] For any complexified toric arrangement \mathscr{A} , the space $M(\mathscr{A})$ is minimal, thus $H^j(M(\mathscr{A}), \mathbb{Z})$ is torsion-free for all j. **Proof.** Discrete Morse Theory on Sal(\mathscr{A}).

Let ${\mathscr A}$ be a complexified toric arrangement.

For $Y \in \mathcal{C}(\mathscr{A})$ define $\mathscr{A}^Y = \mathscr{A} \cap Y$, the arrangement induced on Y.

Cohomology II.0

Let ${\mathscr A}$ be a complexified toric arrangement.

For $Y \in \mathcal{C}(\mathscr{A})$ define $\mathscr{A}^Y = \mathscr{A} \cap Y$, the arrangement induced on Y.

For
$$F \in \mathcal{F}(\mathscr{A})$$
 choose a lift $F^{\uparrow} \in \mathcal{F}(\mathscr{A}^{\uparrow})$ and let
 $\mathscr{A}[F] = \{H \in \mathscr{A}^{\uparrow} \mid F^{\uparrow} \subseteq H\}$

be the 'local' hyperplane arrangement at the face F.

Cohomology II.1

[Callegaro - D. '14]

(1) $\Delta(\operatorname{Sal}(\mathscr{A})) \simeq \operatorname{hocolim} \mathscr{D}$, where

$$\begin{aligned} \mathscr{D}: \quad \mathcal{F}(\mathscr{A}) \quad &\to \quad \mathrm{Top} \\ F \quad &\mapsto \quad \Delta(\mathrm{Sal}(\mathscr{A}[F])) \end{aligned}$$

Call $\mathscr{D}E_*^{p,q}$ the associated cohomology spectral sequence [Segal '68].

Cohomology II.1

[Callegaro - D. '14]

(1) $\Delta(\operatorname{Sal}(\mathscr{A})) \simeq \operatorname{hocolim} \mathscr{D}$, where

$$\mathcal{D}: \quad \mathcal{F}(\mathscr{A}) \quad \to \quad \text{Top} \\ F \quad \mapsto \quad \Delta(\text{Sal}(\mathscr{A}[F]))$$

Call $\mathscr{D}E_*^{p,q}$ the associated cohomology spectral sequence [Segal '68].

(2) Given $Y \in \mathcal{C}(\mathscr{A})$ choose a maximal $F \subseteq Y$ and write $\mathscr{A}[Y] := \mathscr{A}[F]$. Then in $\Delta(\operatorname{Sal}(\mathscr{A}))$ there is a subcomplex

$$\mathcal{S}_Y \simeq \Delta(\mathcal{F}(\mathscr{A}^Y)) \times \Delta(\operatorname{Sal}(\mathscr{A}[Y])) \simeq Y \times M(\mathscr{A}[Y])$$

For every $Y \in \mathcal{C}(\mathscr{A})$, the following commutative square

induces a morphism of spectral sequences ${}_{\mathscr{D}}E^{p,q}_* \to {}_YE^{p,q}_*$.

Next, we examine the morphism of spectral sequences associated to the corresponding map from $\biguplus_{Y \in \mathcal{C}(\mathscr{A})} \mathcal{S}_Y$ to $\Delta(\operatorname{Sal}(\mathscr{A}))$.

COHOMOLOGY III [Callegaro – D., '14]

 $\mathcal{C}(\mathscr{A})$ determines the cohomology ring if \mathscr{A} has a unimodular basis. "Proof": A realizable arithmetic matroid with an unimodular basis has a unique realization.

In general, we do not know whether $\mathcal{C}(\mathscr{A})$ determines the ring structure.

COHOMOLOGY III [Callegaro – D., '14]

 $\mathcal{C}(\mathscr{A})$ determines the cohomology ring if \mathscr{A} has a unimodular basis. "Proof": A realizable arithmetic matroid with an unimodular basis has a unique realization.

In general, we do not know whether $\mathcal{C}(\mathscr{A})$ determines the ring structure. (...is it even the 'right' combinatorial invariant to look at?)

OTHER RELATED COMBINATORIAL STRUCTURES

Let \mathscr{A} be a toric arrangement, recall the vectors $a_1, \ldots, a_n \in \mathbb{Z}^d$. For every $I \subset \{1, \ldots, n\}$ define $\mathscr{M}_{\mathscr{A}}(I) := \mathbb{Z}^d / \langle a_i \mid i \in I \rangle$.

A MATROID OVER A RING R [Fink – Moci, '13] is a family of R-modules satisfying two abstract axioms (\rightarrow Luca's talk). Example: the \mathbb{Z} -modules $\mathcal{M}_{\mathscr{A}}(\cdot)$.

COMPLEXIFIED TORIC ARRANGEMENTS

OTHER RELATED COMBINATORIAL STRUCTURES

Let \mathscr{A} be a toric arrangement, recall the vectors $a_1, \ldots, a_n \in \mathbb{Z}^d$. For every $I \subset \{1, \ldots, n\}$ define $\mathscr{M}_{\mathscr{A}}(I) := \mathbb{Z}^d / \langle a_i \mid i \in I \rangle$. Let m(I) denote the cardinality of the torsion part of $\mathscr{M}_{\mathscr{A}}(I)$.

A MATROID OVER A RING R [Fink – Moci, '13] is a family of R-modules satisfying two abstract axioms (\rightarrow Luca's talk). Example: the \mathbb{Z} -modules $\mathscr{M}_{\mathscr{A}}(\cdot)$.

An ARITHMETIC MATROID [d'Adderio, Brändén, Moci, '10 – '12] is a matroid with a multiplicity function defined on its ground set, satisfying (\rightarrow Luca). Example: our $m: 2^{[n]} \rightarrow \mathbb{N}$ on the matroid of \mathbb{Q} -dependencies of the a_i .

Every arithmetic matroid has an ARITHMETIC TUTTE POLYNOMIAL.

TORIC ARRANGEMENTS

COMBINATORIAL FRAMEWORK

Ansatz [D. – Riedel, current]:

Characterize axiomatically the involved posets and the group actions.

GREATER GENERALITY

FINITARY SEMIMATROIDS

[Riedel '13] The following notions are equivalent.

- A FINITARY SEMIMATROID [cp. Ardila '06] is a triple $(S, \mathcal{K}, \mathrm{rk})$, where
- \mathcal{K} is a finite-dimensional simplicial complex on a (possibly infinite) set S
- $\mathrm{rk} : \mathcal{K} \to \mathbb{N}$ satisfies some axioms (generalizing matroid-rank axioms) Example/Intuition: $S = \mathscr{A}^{\uparrow}, \mathcal{K} = \{\text{`central sets'}\}, \mathrm{rk}(K) = \mathrm{codim} \cap K.$

A FINITARY GEOMETRIC SEMILATTICE [cp. Walker – Wachs '86] is a ranked meet-semilattice \mathcal{L} such that

- $\bullet \ \mathcal{L}$ has finite rank and every interval is a geometric lattice
- \mathcal{L} satisfies a global condition about existence of joins Example: $\mathcal{L}(\mathscr{A}^{\dagger})$.

GREATER GENERALITY

GROUP ACTIONS ON FINITARY SEMIMATROIDS?

Let a f. g. abelian group G act on a finitary geometric semilattice \mathcal{L} . (Equivalently, let G act on a finitary semimatroid $(S, \mathcal{K}, \mathrm{rk})$).

For every $X \subseteq S$ define:

 $\underline{X} := \{Gx \mid x \in X\}$, the set of orbits meeting X

Assume that

- there is $X \in \mathcal{K}$ with $\underline{X} = \underline{S}$, and
- for all $g \in G$, $x \in S$, if $\{x, g.x\} \in \mathcal{K}$ then x = g.x.

Sample fact 1: Under this assumptions, the rank function rk induces a matroid rank function \underline{rk} on \underline{S} .

GREATER GENERALITY

GROUP ACTIONS ON FINITARY SEMIMATROIDS?

Moreover, for every $X \subseteq S$ define

 $\Gamma(X) := G/\operatorname{stab}(X)$

and suppose that

for every $X \in \mathcal{K}$, $\Gamma(X)$ is free of rank $\operatorname{rk}(X)$.

For $A \subseteq \underline{S}$, define

 $m(A):=|\{X\in \mathcal{K}\mid \underline{X}=A\}/G|=|\{\text{ min. u. b. of }A\text{ in }\mathcal{L}/G\;\}|$

Sample fact 2: Under this additional hypothesis

- $(\underline{S}, \underline{\mathrm{rk}}, m)$ is a often nonrealizable quasiarithmetic matroid
- whose arithmetic Tutte polynomial satisfies Crapo's formula and
- evaluates as the rank-generating function of \mathcal{L}/G .

SUMMARY

