REcent developments in

 ToricARRANGEMENTS

Emanuele Delucchi
(SNSF / Université de Fribourg)
Configuration spaces, Cortona, Italy
September 2., 2014

Toric
ARRANGEMENTS

- Connection with partition functions and splines [De Concini-Procesi-Vergne]
- New challenges for combinatorial topology.

Toric
 ARRANGEMENTS

- Connection with partition functions and splines [De Concini-Procesi-Vergne]
- New challenges for combinatorial topology.
TORIC
ARRANGEMENTS

- Combinatorics (enumerative) [Lawrence, Ehrenborg-Readdy-Slone, Moci, d'Adderio, Brändén,...]
- Topology [Lehrer, Looijenga, De Concini-Procesi,...]
- Connection with partition functions and splines [De Concini-Procesi-Vergne]
- New challenges for combinatorial topology.

Hyperplane

 ARRANGEMENTS

Toric
 ARRANGEMENTS

- Combinatorics (enumerative) [Lawrence, Ehrenborg-Readdy-Slone, Moci, d'Adderio, Brändén,...]
- Topology [Lehrer, Looijenga, De Concini-Procesi,...]

Greater
 GENERALITY

??

Hyperplane arrangements

A (central) hyperplane arrangement in a \mathbb{K}-vectorspace V is a set

$$
\mathscr{A}:=\left\{H_{1}, \ldots, H_{n}\right\}
$$

of hyperplanes $H_{i}=\operatorname{ker} \alpha_{i}$, with $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subseteq V^{*}$

Hyperplane arrangements

A (central) hyperplane arrangement in a \mathbb{K}-vectorspace V is a set

$$
\mathscr{A}:=\left\{H_{1}, \ldots, H_{n}\right\}
$$

of hyperplanes $H_{i}=\operatorname{ker} \alpha_{i}$, with $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subseteq V^{*}$

Topology
$M(\mathscr{A}):=V \backslash \cup \mathscr{A}$ is the
arrangement's complement.

Hyperplane arrangements

A (central) hyperplane arrangement in a \mathbb{K}-vectorspace V is a set

$$
\mathscr{A}:=\left\{H_{1}, \ldots, H_{n}\right\}
$$

of hyperplanes $H_{i}=\operatorname{ker} \alpha_{i}$, with $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subseteq V^{*}$

Topology
$M(\mathscr{A}):=V \backslash \cup \mathscr{A}$ is the arrangement's complement.

Combinatorics
$\mathcal{L}(\mathscr{A})$: poset of intersections (order: reverse inclusion)
$\mathcal{D}(\mathscr{A})$: linearly dependent subsets of $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$

Both encode the associated (simple) MATROID.

Hyperplane arrangements

THE POWER OF MATROIDS (E.G., WHEN $V=\mathbb{C}^{d}$)
[Arnol'd, Brieskorn ~'71, Zaslavsky '79, Orlik-Solomon '80]

$$
P(M(\mathscr{A}), t)=\sum_{X \in \mathcal{L}(\mathscr{A})} \underbrace{\mu_{\mathcal{L}(\mathscr{A})}(\hat{0}, X)}_{\begin{array}{c}
\text { Möbius } \\
\text { function } \\
\text { of } \mathcal{L}(\mathscr{A})
\end{array}}(-t)^{\mathrm{rk} X}
$$

Hyperplane arrangements

THE POWER OF MATROIDS (E.g., when $V=\mathbb{C}^{d}$)

[Arnol'd, Brieskorn ~'71, Zaslavsky '79, Orlik-Solomon '80]

$$
P(M(\mathscr{A}), t)=\sum_{X \in \mathcal{L}(\mathscr{A})} \underbrace{\mu_{\mathcal{L}(\mathscr{A})}(\hat{0}, X)}_{\begin{array}{c}
\text { Möbius } \\
\text { function } \\
\text { of } \mathcal{L}(\mathscr{A})
\end{array}}(-t)^{\mathrm{rk} X}
$$

$$
H^{i}(M(\mathscr{A}), \mathbb{Z})=\bigoplus_{\substack{X \in \mathcal{L}(\mathscr{A}) \\ \operatorname{rk}(X)=i}} H^{i}\left(M\left(\mathscr{A}_{X}\right), \mathbb{Z}\right) \text { is torsion-free }
$$

Hyperplane arrangements

THE POWER OF MATROIDS (E.g., when $V=\mathbb{C}^{d}$)

[Arnol'd, Brieskorn ~'71, Zaslavsky '79, Orlik-Solomon '80]

$$
P(M(\mathscr{A}), t)=\sum_{X \in \mathcal{L}(\mathscr{A})} \underbrace{\mu_{\mathcal{L}(\mathscr{A})}(\hat{0}, X)}_{\begin{array}{c}
\text { Möbius } \\
\text { function } \\
\text { of } \mathcal{L}(\mathscr{A})
\end{array}}(-t)^{\mathrm{rk} X}
$$

$$
H^{i}(M(\mathscr{A}), \mathbb{Z})=\bigoplus_{\substack{X \in \mathcal{L}(\mathscr{A}) \\ \operatorname{rk}(X)=i}} H^{i}\left(M\left(\mathscr{A}_{X}\right), \mathbb{Z}\right) \text { is torsion-free }
$$

Hyperplane arrangements

The power of matroids (e.g., when $V=\mathbb{C}^{d}$)

[Arnol'd, Brieskorn ~'71, Zaslavsky '79, Orlik-Solomon '80]

$$
P(M(\mathscr{A}), t)=\sum_{X \in \mathcal{L}(\mathscr{A})} \underbrace{\mu_{\mathcal{L}(\mathscr{A})}(\hat{0}, X)}_{\begin{array}{c}
\text { Möbius } \\
\text { function } \\
\text { of } \mathcal{L}(\mathscr{A})
\end{array}}(-t)^{\mathrm{rk} X}
$$

$$
\begin{aligned}
H^{i}(M(\mathscr{A}), \mathbb{Z})=\bigoplus_{\substack{X \in \mathcal{L}(\mathscr{A}) \\
\operatorname{rk}(X)=i}} H^{i}\left(M\left(\mathscr{A}_{X}\right), \mathbb{Z}\right) \text { is torsion-free } \\
\{H \in \mathscr{A} \mid X \subseteq H\}
\end{aligned}
$$

The Power of MATROIDS (e.g., when $V=\mathbb{C}^{d}$)

[Arnol'd, Brieskorn ~'71, Zaslavsky '79, Orlik-Solomon '80]

- $P(M(\mathscr{A}), t)=\sum_{X \in \mathcal{L}(\mathscr{A})} \underbrace{\mu_{\mathcal{L}(\mathscr{A})}(\hat{0}, X)}_{\begin{array}{c}\text { Möbius } \\ \text { function } \\ \text { of } \mathcal{L}(\mathscr{A})\end{array}}(-t)^{\mathrm{rk} X}$

$$
\begin{aligned}
H^{i}(M(\mathscr{A}), \mathbb{Z})=\bigoplus_{\substack{X \in \mathcal{L}(\mathscr{A}) \\
\operatorname{rk}(X)=i}} H^{i}\left(M\left(\mathscr{A}_{X}\right), \mathbb{Z}\right) \text { is torsion-free } \\
\{H \in \mathscr{A} \mid X \subseteq H\}
\end{aligned}
$$

- "Orlik-Solomon algebra":

$$
H^{*}(M(\mathscr{A}), \mathbb{Z}) \simeq E / \mathcal{J}(\mathscr{A}), \text { where }
$$

$E:$ exterior \mathbb{Z}-algebra with degree-1 generators e_{1}, \ldots, e_{n} (one for each H_{i}); $\mathcal{J}(\mathscr{A})$: the ideal $\left\langle\sum_{l=1}^{k}(-1)^{l} e_{j_{1}} \cdots \widehat{e_{j_{l}}} \cdots e_{j_{k}} \mid\left\{j_{1}, \ldots, j_{k}\right\} \in \min \mathcal{D}(\mathscr{A})\right\rangle$

THE LIMITS OF MATROIDS (AGAIN, when $V=\mathbb{C}^{d}$)
[Rybnikov 1995 / 2011]

There are two arrangements $\mathscr{A}_{1}, \mathscr{A}_{2}$ with

$$
\mathcal{L}\left(\mathscr{A}_{1}\right) \simeq \mathcal{L}\left(\mathscr{A}_{2}\right)
$$

(i.e., with isomorphic associated matroids), but

$$
\pi_{1}\left(M\left(\mathscr{A}_{1}\right)\right) \not 千 \pi_{1}\left(M\left(\mathscr{A}_{2}\right)\right) .
$$

Thus the homotopy type is not determined by the matroid alone.

Complexified arrangements

Let $\mathscr{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an arrangement in \mathbb{C}^{d}.
\mathscr{A} is called complexified if $\alpha_{i} \in\left(\mathbb{R}^{d}\right)^{*}$ for all $i=1, \ldots, n$.

Consider the arrangement $\mathscr{A}^{\mathbb{R}}:=\mathscr{A} \cap \mathbb{R}^{d}=\left\{H_{1}^{\mathbb{R}}, \ldots, H_{n}^{\mathbb{R}}\right\}$ in \mathbb{R}^{d}.

- $\mathscr{A}^{\mathbb{R}}$ has the same defining forms, hence same matroid, as \mathscr{A}.

Complexified arrangements

Let $\mathscr{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an arrangement in \mathbb{C}^{d}.
\mathscr{A} is called complexified if $\alpha_{i} \in\left(\mathbb{R}^{d}\right)^{*}$ for all $i=1, \ldots, n$.

Consider the arrangement $\mathscr{A}^{\mathbb{R}}:=\mathscr{A} \cap \mathbb{R}^{d}=\left\{H_{1}^{\mathbb{R}}, \ldots, H_{n}^{\mathbb{R}}\right\}$ in \mathbb{R}^{d}.

- $\mathscr{A}^{\mathbb{R}}$ has the same defining forms, hence same matroid, as \mathscr{A}.
- The hyperplanes of $\mathscr{A}^{\mathbb{R}}$ define a polyhedral fan in \mathbb{R}^{d}.

The arrangement

The fan, with...

...its poset of faces.

Beyond matroids

$\mathscr{A}:$ complexified arrangement with defining forms $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset\left(\mathbb{R}^{d}\right)^{*}$. $\mathcal{F}(\mathscr{A})$: the face poset of the associated polyhedral fan

BEYOND MATROIDS

$\mathscr{A}:$ complexified arrangement with defining forms $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset\left(\mathbb{R}^{d}\right)^{*}$. $\mathcal{F}(\mathscr{A})$: the face poset of the associated polyhedral fan $\mathcal{V}(\mathscr{A}) \subseteq\{+,-, 0\}^{n}$: the set of "signed linear dependencies". ($X \in \mathcal{V}(\mathscr{A})$ if and only if $X(i)=\operatorname{sign}\left(\lambda_{i}\right)$ for some real numbers $\lambda_{1}, \ldots, \lambda_{n}$ such that $\lambda_{1} \alpha_{1}+\ldots+\lambda_{n} \alpha_{n}=0$) (...)

BEYOND MATROIDS

$\mathscr{A}:$ complexified arrangement with defining forms $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset\left(\mathbb{R}^{d}\right)^{*}$.
$\mathcal{F}(\mathscr{A})$: the face poset of the associated polyhedral fan
$\mathcal{V}(\mathscr{A}) \subseteq\{+,-, 0\}^{n}$: the set of "signed linear dependencies". $\left(X \in \mathcal{V}(\mathscr{A})\right.$ if and only if $X(i)=\operatorname{sign}\left(\lambda_{i}\right)$ for some real numbers $\lambda_{1}, \ldots, \lambda_{n}$ such that $\lambda_{1} \alpha_{1}+\ldots+\lambda_{n} \alpha_{n}=0$) (...)

These encode equivalent data and define ("up to reorientation") the ORIENTED MATROID associated to $\mathscr{A}^{\mathbb{R}}$.

SALVETTI'S COMPLEX

[Salvetti '87]

Let \mathscr{A} be a complexified arrangement.

The oriented matroid data of \mathscr{A} (e.g., $\mathcal{F}(\mathscr{A}))$ determines a poset $\operatorname{Sal}(\mathscr{A})$ such that

$$
\Delta(\operatorname{Sal}(\mathscr{A})) \simeq M(\mathscr{A}) .
$$

SALVETTI'S COMPLEX

[Salvetti '87]

Let \mathscr{A} be a complexified arrangement.

The oriented matroid data of \mathscr{A} (e.g., $\mathcal{F}(\mathscr{A}))$ determines a poset $\operatorname{Sal}(\mathscr{A})$ such that

$$
\Delta(S \operatorname{Sal}(\mathscr{A})) \simeq M(\mathscr{A}) .
$$

Order complex - the simplicial complex of all chains.

BEyOND ORIENTED MATROIDS?

Two approaches towards developing a framework corresponding to oriented matroids for complex vectorspaces.

- Complex matroids [Björner - Ziegler '92, Ziegler '93] (Discrete models, topological representation theorem; no cryptomorphisms, no characterization of the complex structure)

BEyOnd oriented matroids?

Two approaches towards developing a framework corresponding to oriented matroids for complex vectorspaces.

- Complex matroids [Björner - Ziegler '92, Ziegler '93]
(Discrete models, topological representation theorem; no cryptomorphisms, no characterization of the complex structure)
- Phased matroids [Anderson - D. '10] (\rightarrow Elia's poster) (Cryptomorphisms, duality, natural S^{1}-action; not discrete, no topological representation theorem - as yet)

Toric arrangements

A toric arrangement in the complex torus $T:=\left(\mathbb{C}^{*}\right)^{d}$ is a set

$$
\mathscr{A}:=\left\{K_{1}, \ldots, K_{n}\right\}
$$

of 'hypertori' $K_{i}=\chi_{i}^{-1}\left(b_{i}\right)$ with $\chi_{i} \in \operatorname{Hom}\left(T, \mathbb{C}^{*}\right)$ and $b_{i} \in \mathbb{C}^{*} /=1 / \in S^{1}$

Toric arrangements

A toric arrangement in the complex torus $T:=\left(\mathbb{C}^{*}\right)^{d}$ is a set

$$
\mathscr{A}:=\left\{K_{1}, \ldots, K_{n}\right\}
$$

of 'hypertori' $K_{i}=\left\{z \in T \mid z^{a_{i}}=b_{i}\right\}$ with $a_{i} \in \mathbb{Z}^{d}$ and $b_{i} \in \mathbb{C}^{*}$
For simplicity assume that the matrix $\left[a_{1}, \ldots, a_{n}\right]$ has rank d.

Toric arrangements

A toric arrangement in the complex torus $T:=\left(\mathbb{C}^{*}\right)^{d}$ is a set

$$
\mathscr{A}:=\left\{K_{1}, \ldots, K_{n}\right\}
$$

of 'hypertori' $K_{i}=\left\{z \in T \mid z^{a_{i}}=b_{i}\right\}$ with $a_{i} \in \mathbb{Z}^{d}$ and $b_{i} \in \mathbb{C}^{*}$

Topology
$M(\mathscr{A}):=T \backslash \cup \mathscr{A}$, the complement of \mathscr{A}.

Combinatorics
$\mathcal{C}(\mathscr{A})$: poset of layers (connected components of intersections)

The arithmetic matroid of the a_{i}
The matroid over \mathbb{Z} of the a_{i}

As yet no overarching theory

Toric arrangements

A toric arrangement in the complex torus $T:=\left(\mathbb{C}^{*}\right)^{d}$ is a set

$$
\mathscr{A}:=\left\{K_{1}, \ldots, K_{n}\right\}
$$

of 'hypertori' $K_{i}=\left\{z \in T \mid z^{a_{i}}=b_{i}\right\}$ with $a_{i} \in \mathbb{Z}^{d}$ and $b_{i} \in \mathbb{C}^{*}$

Topology

$$
\begin{aligned}
& M(\mathscr{A}):=T \backslash \cup \mathscr{A}, \mathcal{C}(\mathscr{A}): \\
& \text { the complement of } \mathscr{A} . \\
& \text { components of intersections) }
\end{aligned}
$$

Combinatorics

The arithmetic matroid of the a_{i}
The matroid over \mathbb{Z} of the a_{i}

As yet no overarching theory

Toric arrangements
Poset of Layers

\mathscr{A}

$\mathcal{C}(\mathscr{A})$

Toric arrangements

Poset of Layers

\mathscr{A}

$C(\mathscr{A})$
[Looijenga '93, De Concini - Procesi '05]

$$
P(M(\mathscr{A}), t)=\sum_{Y \in \mathcal{C}(\mathscr{A})} \underbrace{\mu_{\mathcal{C}(\mathscr{A})}(\hat{0}, Y)}_{\begin{array}{c}
\text { Mübius } \\
\text { function } \\
\text { of } \mathcal{C}(\mathscr{A})
\end{array}}(-t)^{\text {rk } Y}(1+t)^{d-\text { rk } Y}
$$

Toric arrangements

Poset of Layers

\mathscr{A}

$C(\mathscr{A})$
[Looijenga '93, De Concini - Procesi '05]

$$
P(M(\mathscr{A}), t)=\sum_{Y \in \mathcal{C}(\mathscr{A})} \underbrace{\mu_{\mathcal{C}(\mathscr{A})}(\hat{0}, Y)}_{\begin{array}{c}
\text { Möbius } \\
\text { function } \\
\text { of } \mathcal{C}(\mathscr{A})
\end{array}}(-t)^{\mathrm{rk} Y}(1+t)^{d-\mathrm{rk} Y}=t^{d} \underbrace{T(2+1 / t, 0)}_{\begin{array}{c}
\text { Arithmetic } \\
\text { Tutte polynomial } \\
\text { [Moci'11] }
\end{array}}
$$

Toric arrangements
Homotopy type

Homotopy type

[d'Antonio - D. '12]
Let \mathscr{A} be a complexified toric arrangement (i.e., $K_{i}=\chi_{i}^{-1}\left(b_{i}\right)$ for $b_{i} \in S^{1}$). \mathscr{A} defines an arrangement \mathscr{A}^{c} on the 'compact torus' $T^{c}=\left(S^{1}\right)^{d}$. $\mathcal{F}(\mathscr{A})$ the face category of the polyhedral complex induced on T^{c}.

Homotopy type

[d'Antonio - D. '12]
Let \mathscr{A} be a complexified toric arrangement (i.e., $K_{i}=\chi_{i}^{-1}\left(b_{i}\right)$ for $b_{i} \in S^{1}$). \mathscr{A} defines an arrangement \mathscr{A}^{c} on the 'compact torus' $T^{c}=\left(S^{1}\right)^{d}$. $\mathcal{F}(\mathscr{A})$ the face category of the polyhedral complex induced on T^{c}.

The data of $\mathcal{F}(\mathscr{A})$ determines an acyclic category $\operatorname{Sal}(\mathscr{A})$ such that

$$
\Delta(\operatorname{Sal}(\mathscr{A})) \simeq M(\mathscr{A})
$$

\mathscr{A}^{1}

Any complexified toric arrangement \mathscr{A} lifts to a complexified arrangement of affine hyperplanes \mathscr{A}^{1} under the universal cover

$$
\mathbb{C}^{d} \rightarrow T, \quad \mathscr{A}^{\upharpoonright}:
$$

\mathscr{A}^{\dagger} AND THE FUNDAMENTAL GROUP

[d'Antonio - D. '12]
Any complexified toric arrangement \mathscr{A} lifts to a complexified arrangement of affine hyperplanes \mathscr{A}^{1} under the universal cover

There is a split exact sequence

$$
0 \longrightarrow \pi_{1}\left(M\left(\mathscr{A}^{\dagger}\right)\right) \longrightarrow \pi_{1}(M(\mathscr{A})) \leftrightarrows \mathbb{Z}^{d} \simeq \pi_{1}\left(T^{c}\right) \longrightarrow 0
$$

Moreover, via $\operatorname{Sal}(\mathscr{A})$ we obtain a finite presentation for $\pi_{1}(M(\mathscr{A}))$.

Complexified toric arrangements
Cohomology

Cohomology I

[De Concini - Procesi '05] compute the cup product in $H^{*}(M(\mathscr{A}), \mathbb{C})$ when the matrix $\left[a_{1}, \ldots, a_{n}\right]$ is totally unimodular.
[Bibby '14] Studies the rational cohomology algebra of unimodular abelian arrangements and, e.g., describes the deletion-contraction behaviour.

We strive for a description of the integer cohomology algebra. For starters:
[d'Antonio - D. '13] For any complexified toric arrangement \mathscr{A}, the space $M(\mathscr{A})$ is minimal, thus $H^{j}(M(\mathscr{A}), \mathbb{Z})$ is torsion-free for all j. Proof. Discrete Morse Theory on $\operatorname{Sal}(\mathscr{A})$.

Сономоlogy II. 0

Let \mathscr{A} be a complexified toric arrangement.
For $Y \in \mathcal{C}(\mathscr{A})$ define $\mathscr{A}^{Y}=\mathscr{A} \cap Y$, the arrangement induced on Y.

\mathscr{A}

\mathscr{A}^{Y}

Cohomology II. 0

Let \mathscr{A} be a complexified toric arrangement.
For $Y \in \mathcal{C}(\mathscr{A})$ define $\mathscr{A}^{Y}=\mathscr{A} \cap Y$, the arrangement induced on Y.
For $F \in \mathcal{F}(\mathscr{A})$ choose a lift $F^{\uparrow} \in \mathcal{F}\left(\mathscr{A}^{\dagger}\right)$ and let

$$
\mathscr{A}[F]=\left\{H \in \mathscr{A}^{\uparrow} \mid F^{\uparrow} \subseteq H\right\}
$$

be the 'local' hyperplane arrangement at the face F.

\mathscr{A}

\mathscr{A}^{Y}

$\mathscr{A}[F]$

Cohomology II. 1

[Callegaro - D. '14]
(1) $\Delta(\operatorname{Sal}(\mathscr{A})) \simeq \operatorname{hocolim} \mathscr{D}$, where

$$
\begin{aligned}
\mathscr{D}: \mathcal{F}(\mathscr{A}) & \rightarrow \\
& \operatorname{Top} \\
F & \mapsto
\end{aligned}
$$

Call $\mathscr{D} E_{*}^{p, q}$ the associated cohomology spectral sequence [Segal '68].

Cohomology II. 1

[Callegaro - D. '14]
(1) $\Delta(\operatorname{Sal}(\mathscr{A})) \simeq$ hocolim \mathscr{D}, where

$$
\begin{aligned}
\mathscr{D}: \mathcal{F}(\mathscr{A}) & \rightarrow \text { Top } \\
F & \mapsto
\end{aligned}
$$

Call $\mathscr{D} E_{*}^{p, q}$ the associated cohomology spectral sequence [Segal '68].
(2) Given $Y \in \mathcal{C}(\mathscr{A})$ choose a maximal $F \subseteq Y$ and write $\mathscr{A}[Y]:=\mathscr{A}[F]$.

Then in $\Delta(\operatorname{Sal}(\mathscr{A}))$ there is a subcomplex

$$
\mathcal{S}_{Y} \simeq \Delta\left(\mathcal{F}\left(\mathscr{A}^{Y}\right)\right) \times \Delta(\operatorname{Sal}(\mathscr{A}[Y])) \simeq Y \times M(\mathscr{A}[Y])
$$

Сономology II.2.1

For every $Y \in \mathcal{C}(\mathscr{A})$, the following commutative square

$$
\begin{aligned}
& M(\mathscr{A}) \simeq \Delta(\operatorname{Sal}(\mathscr{A})) \longleftarrow \supseteq \mathcal{S}_{Y} \\
& \downarrow \pi \quad \downarrow \pi_{Y} \\
& \left.\Delta(\mathcal{F}(\mathscr{A})) \longleftarrow \supseteq \supseteq \quad \text { 〇 } \Delta\left(\mathcal{F}_{\mathscr{A}^{Y}}\right)\right)
\end{aligned}
$$

induces a morphism of spectral sequences $\mathscr{D} E_{*}^{p, q} \rightarrow_{Y} E_{*}^{p, q}$.

Next, we examine the morphism of spectral sequences associated to the corresponding map from $\uplus_{Y \in \mathcal{C}(\mathscr{A})} \mathcal{S}_{Y}$ to $\Delta(\operatorname{Sal}(\mathscr{A}))$.

Сономology II.2.2

[Callegaro - D., '14 - ongoing] (all cohomologies with \mathbb{Z}-coefficients)

$$
\begin{array}{cc}
H^{*}(M(\mathscr{A})) & \longrightarrow \bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^{*}(Y) \otimes H^{*}(M(\mathscr{A}[Y])) \\
\mathscr{D} E_{2}^{p, q}= \\
\bigoplus_{\substack{Y \in \mathcal{C}(\mathscr{A}) \\
\operatorname{rk} Y=q}} H^{p}(Y) \otimes H^{q}(M(\mathscr{A}[Y])) \longrightarrow & \bigoplus_{Y \in \mathcal{C}(\mathscr{A})}{ }_{Y} E_{2}^{p, q}= \\
\bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^{p}(Y) \otimes H^{q}(M(\mathscr{A}[Y]))
\end{array}
$$

Сономology II.2.2

[Callegaro - D., '14 - ongoing] (all cohomologies with \mathbb{Z}-coefficients)

$$
\begin{aligned}
& H^{*}(M(\mathscr{A})) \longrightarrow \bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^{*}(Y) \otimes H^{*}(M(\mathscr{A}[Y])) \\
& \downarrow \downarrow \\
& { }_{\mathscr{D}} E_{2}^{p, q}= \\
& \bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^{p}(Y) \otimes H^{q}(M(\mathscr{A}[Y])) \longrightarrow \bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^{p}(Y) \otimes H^{q}(M(\mathscr{A}[Y])) \\
& \text { rk } Y=q \\
& \text { On } Y_{0} \text {-summand: } \quad \omega \otimes \lambda \longmapsto\left(\begin{array}{ll}
i^{*}(\omega) \otimes b(\lambda) & \text { if } Y_{0} \leq Y \\
0 & \text { else. }
\end{array}\right)_{Y}
\end{aligned}
$$

Сономology II.2.2

[Callegaro - D., '14 - ongoing] (all cohomologies with \mathbb{Z}-coefficients)

$$
\begin{array}{cc}
H^{*}(M(\mathscr{A})) \longrightarrow \bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^{*}(Y) \otimes H^{*}(M(\mathscr{A}[Y])) \\
\mathscr{D} E_{2}^{p, q}= \\
\bigoplus_{\substack{Y \in \mathcal{C}(\mathscr{A}) \\
\operatorname{rk} Y=q}} H^{p}(Y) \otimes H^{q}(M(\mathscr{A}[Y])) \longrightarrow & \bigoplus_{Y \in \mathcal{C}(\mathscr{A})}{ }_{Y} E_{2}^{p, q}= \\
\bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^{p}(Y) \otimes H^{q}(M(\mathscr{A}[Y]))
\end{array}
$$

On Y_{0}-summand: $\omega \otimes \lambda \longmapsto\left(\begin{array}{ll}i^{*}(\omega) \otimes b(\lambda) & \text { if } Y_{0} \leq Y \\ 0 & \text { else. }\end{array}\right)_{Y}$

Сономology II.2.2

[Callegaro - D., '14 - ongoing] (all cohomologies with \mathbb{Z}-coefficients)

$$
H^{*}(M(\mathscr{A})) \xrightarrow{\text { Hom. of rings }} \bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^{*}(Y) \otimes H^{*}(M(\mathscr{A}[Y]))
$$

$$
\downarrow \text { bij. } \quad \downarrow \text { bij. }
$$

$$
{ }_{\mathscr{D}} E_{2}^{p, q}=
$$

Hom. of rings
$\bigoplus_{Y} E_{2}^{p, q}=$ $Y \in \mathcal{C}(\mathscr{A})$

On Y_{0}-summand: $\omega \otimes \lambda \longmapsto\left(\begin{array}{ll}i^{*}(\omega) \otimes b(\lambda) & \text { if } Y_{0} \leq Y \\ 0 & \text { else. }\end{array}\right)_{Y}$

Сономology II.2.2

[Callegaro - D., '14 - ongoing] (all cohomologies with \mathbb{Z}-coefficients)

$$
H^{*}(M(\mathscr{A})) \xrightarrow[\text { Injective }]{\text { Hom. of rings }} \bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^{*}(Y) \otimes H^{*}(M(\mathscr{A}[Y]))
$$

 \downarrow bij.

$$
{ }_{D} E_{2}^{p, q}=
$$

Hom. of rings
$\bigoplus_{Y} E_{2}^{p, q}=$ $Y \in \mathcal{C}(\mathscr{A})$
$\bigoplus_{\substack{Y \in \mathcal{C}(\mathscr{A})\\}} H^{p}(Y) \otimes H^{q}(M(\mathscr{A}[Y])) \xrightarrow{\bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^{p}(Y) \otimes H^{q}(M(\mathscr{A}[Y])), ~(M)}$ rk $Y=q$

On Y_{0}-summand: $\omega \otimes \lambda \longmapsto\left(\begin{array}{ll}i^{*}(\omega) \otimes b(\lambda) & \text { if } Y_{0} \leq Y \\ i: Y \hookrightarrow Y_{0} \\ 0 & \text { else. }\end{array}\right)_{Y}$

Cohomology III
 [Callegaro - D., '14]

$\mathcal{C}(\mathscr{A})$ determines the cohomology ring if \mathscr{A} has a unimodular basis.
"Proof": A realizable arithmetic matroid with an unimodular basis has a unique realization.

In general, we do not know whether $\mathcal{C}(\mathscr{A})$ determines the ring structure.

Cohomology III
 [Callegaro - D., '14]

$\mathcal{C}(\mathscr{A})$ determines the cohomology ring if \mathscr{A} has a unimodular basis.
"Proof": A realizable arithmetic matroid with an unimodular basis has a unique realization.

In general, we do not know whether $\mathcal{C}(\mathscr{A})$ determines the ring structure. (...is it even the 'right' combinatorial invariant to look at?)

Other Related combinatorial structures

Let \mathscr{A} be a toric arrangement, recall the vectors $a_{1}, \ldots, a_{n} \in \mathbb{Z}^{d}$.
For every $I \subset\{1, \ldots, n\}$ define $\mathscr{M}_{\mathscr{A}}(I):=\mathbb{Z}^{d} /\left\langle a_{i} \mid i \in I\right\rangle$.

A matroid over a ring R [Fink - Moci, '13] is a family of R-modules satisfying two abstract axioms (\rightarrow Luca's talk).

Example: the \mathbb{Z}-modules $\mathscr{M}_{\mathscr{A}}(\cdot)$.

Other related combinatorial structures

Let \mathscr{A} be a toric arrangement, recall the vectors $a_{1}, \ldots, a_{n} \in \mathbb{Z}^{d}$.
For every $I \subset\{1, \ldots, n\}$ define $\mathscr{M}_{\mathscr{A}}(I):=\mathbb{Z}^{d} /\left\langle a_{i} \mid i \in I\right\rangle$.
Let $m(I)$ denote the cardinality of the torsion part of $\mathscr{M}_{\mathscr{A}}(I)$.

A matroid over a ring R [Fink - Moci, '13] is a family of R-modules satisfying two abstract axioms $(\rightarrow$ Luca's talk).
Example: the \mathbb{Z}-modules $\mathscr{M}_{\mathscr{A}}(\cdot)$.

An arithmetic matroid [d'Adderio, Brändén, Moci, '10 - '12] is a matroid with a multiplicity function defined on its ground set, satisfying (\rightarrow Luca).
Example: our $m: 2^{[n]} \rightarrow \mathbb{N}$ on the matroid of \mathbb{Q}-dependencies of the a_{i}.

Every arithmetic matroid has an arithmetic Tutte polynomial.

Combinatorial framework

Ansatz [D. - Riedel, current]:

Characterize axiomatically the involved posets and the group actions.

Finitary semimatroids

[Riedel '13] The following notions are equivalent.

A finitary semimatroid [cp. Ardila ' 06] is a triple ($S, \mathcal{K}, \mathrm{rk}$), where

- \mathcal{K} is a finite-dimensional simplicial complex on a (possibly infinite) set S
- rk : $\mathcal{K} \rightarrow \mathbb{N}$ satisfies some axioms (generalizing matroid-rank axioms)

Example/Intuition: $S=\mathscr{A}$, $, \mathcal{K}=\left\{{ }^{‘}\right.$ central sets' $\}, \operatorname{rk}(K)=\operatorname{codim} \cap K$.

A finitary geometric semilattice [cp. Walker - Wachs '86] is a ranked meetsemilattice \mathcal{L} such that

- \mathcal{L} has finite rank and every interval is a geometric lattice
- \mathcal{L} satisfies a global condition about existence of joins

Example: $\mathcal{L}\left(\mathscr{A}^{\dagger}\right)$.

Group actions on finitary Semimatroids?

Let a f. g. abelian group G act on a finitary geometric semilattice \mathcal{L}.
(Equivalently, let G act on a finitary semimatroid $(S, \mathcal{K}, \mathrm{rk})$).
For every $X \subseteq S$ define:

$$
\underline{X}:=\{G x \mid x \in X\}, \text { the set of orbits meeting } X
$$

Assume that

- there is $X \in \mathcal{K}$ with $\underline{X}=\underline{S}$, and
- for all $g \in G, x \in S$, if $\{x, g . x\} \in \mathcal{K}$ then $x=g . x$.

Sample fact 1: Under this assumptions, the rank function rk induces a matroid rank function $\underline{\mathrm{rk}}$ on \underline{S}.

Group actions on finitary semimatroids?

Moreover, for every $X \subseteq S$ define

$$
\Gamma(X):=G / \operatorname{stab}(X)
$$

and suppose that

$$
\text { for every } X \in \mathcal{K}, \Gamma(X) \text { is free of } \operatorname{rank} \operatorname{rk}(X) \text {. }
$$

For $A \subseteq \underline{S}$, define

$$
m(A):=|\{X \in \mathcal{K} \mid \underline{X}=A\} / G|=\mid\{\min . \text { u. b. of } A \text { in } \mathcal{L} / G\} \mid
$$

Sample fact 2: Under this additional hypothesis

- ($\underline{S}, \underline{\mathrm{rk}}, m$) is a - often nonrealizable - quasiarithmetic matroid
- whose arithmetic Tutte polynomial satisfies Crapo's formula and
- evaluates as the rank-generating function of \mathcal{L} / G.

Summary

