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• If for some permutation 𝜎:  1, … ,𝑛 → 1, … ,𝑛  one has 
𝑙′ = 𝑙𝜎(1), … , 𝑙𝜎(𝑛)   

then 𝑀𝑙 ≅ 𝑀𝑙′ and 𝑁𝑙 ≅ 𝑁𝑙′  (are diffeomorphic).  
• 𝑀𝜆𝑙=𝑀𝑙  
for 𝜆 > 0  (normalization). Thus we may always assume that  

�𝑙𝑖 = 1. 
𝑛

𝑖=1

 

Further facts about 𝑀𝑙 and 𝑁𝑙: 
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Plan: 
 
Part I:  
Configuration spaces of linkages; 
The Walker conjecture (classification of configuration spaces of linkages); 
Random manifolds arising as configuration spaces of linkages; 
 
Part II 
Large random simplicial complexes and their fundamental groups;   
Eilenberg – Ganea conjecture for random groups;  
Whitehead conjecture for random aspherical 2-complexes. 
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Models: 
 
a. Configuration spaces of linkages. 
b. Erdös – Rényi random graphs. 
c. Linial – Meshulam model of random simplicial complexes. 
d.       Random clique (flag) complexes. 
e.       Random triangulated surfaces of N. Pippenger and K. Schleich.  
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Shapes of planar n-gons with given sides 

𝑙1 

𝑙2 

𝑙𝑛 

𝑙1 

𝑙2 𝑙𝑛 

Part I 
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𝑀𝑙 = 𝑢1, … ,𝑢𝑛 ∈ 𝑆1 × ⋯× 𝑆1;  ∑ 𝑙𝑖𝑢𝑖 = 0𝑛
𝑖=1 /𝑆𝑆(2). 

𝑙 = 𝑙1, 𝑙2, … , 𝑙𝑛   is called the length vector.  
The space of shapes of n-gons with length vector 𝑙  
is defined as 
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Case n=3,           𝑙 = (𝑙1, 𝑙2, 𝑙3) 

𝑀𝑙 =
∅
∗
∗∗

 𝑙2 
𝑙2 

𝑙1 𝑙1 

𝑙3 

𝑙3 
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Shapes of spatial n-gons 

𝑁𝑙 = 𝑢1, … ,𝑢𝑛 ∈ 𝑆2 × ⋯× 𝑆2;  ∑ 𝑙𝑖𝑢𝑖 = 0𝑛
𝑖=1 /𝑆𝑆(3). 
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General facts about 𝑀𝑙 and 𝑁𝑙 

• For 𝑙 generic, 𝑀𝑙 is a closed smooth manifold of 
dimension n-3.  

• For 𝑙 generic, 𝑁𝑙 is a closed smooth manifold of 
dimension 2(n-3).  

• If 𝑙 is not generic then 𝑀𝑙 and 𝑁𝑙  have finitely many 
singular points which correspond to collinear 
configurations.  
 

 
 𝑙1+𝑙2 = 𝑙3+𝑙4 
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The manifolds 𝑁𝑙  and 𝑀𝑙 are relevant to applications in  
 
• Topological robotics 
• Molecular biology 
• Statistical shape theory  
 
(see the book: D. G. Kendall, D. Barden, T. K. Carne and H. 
Le, Shape and Shape Theory, John Wiley & Sons, 1999). 
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Chambers 

Δ𝑛−1 ⊂ ℝ𝑛 - unit simplex, 𝑙 = 𝑙1, … , 𝑙𝑛 , 𝑙𝑖 > 0,∑ 𝑙𝑖 = 1.𝑛
𝑖=1  

 
𝑙 ∈ Δ𝑛−1,𝑀𝑙 - field of manifolds.  
 
𝐽 ⊂ 1, … ,𝑛  - subset,  
 
Hyperplane 𝐻𝐽 ⊂ ℝ𝑛 given by the equation  ∑ 𝑙𝑖 =  ∑ 𝑙𝑖𝑖∉𝐽 .𝑖∈𝐽  
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Definition: Connected components of the complement  
Δ𝑛−1 − ⋃𝐽𝐻𝐽 

are called chambers.  

Fact: If two generic length vectors 𝑙, 𝑙𝑙 lie in the same chamber 
then the manifolds 𝑀𝑙 and 𝑀𝑙′ are diffeomorphic; besides,  the 
manifolds 𝑁𝑙 and 𝑁𝑙′ are diffeomorphic.   
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Example: n=3.  

∅ 

∅ ∅ 

** 
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Walker’s conjecture: Let  𝑙, 𝑙′ ∈ Δ𝑛−1 be two generic length 
vectors. If the corresponding polygon spaces 𝑀𝑙 and 𝑀𝑙′ have 
isomorphic graded integral cohomology rings then for some 
permutation σ : {1, . . . , n} → {1, . . ., n} the length vectors 
𝑙 and 𝜎 𝑙′  lie in the same chamber of Δ𝑛−1. 
 
Kevin Walker, 1985. 
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A length vector 𝑙 = 𝑙1, … , 𝑙𝑛  is ordered if  
𝑙1 ≤ 𝑙2 ≤ ⋯ ≤ 𝑙𝑛.  
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Theorem (J.-C. Hausmann, D. Schuetz, MF): 
 
A. If for two ordered generic length vectors 𝑙, 𝑙′ there exists a 

graded ring isomorphism of the integral cohomology algebras 
𝐻∗ 𝑀𝑙;  ℤ → 𝐻∗ 𝑀𝑙′;  ℤ  then 𝑙 and 𝑙𝑙 lie in the same chamber 
of Δ𝑛−1.  

 
B. For 𝑛 ≠ 4, if for two ordered generic length vectors 𝑙, 𝑙′ there 
exists a graded ring isomorphism of the cohomology algebras 
𝐻∗ 𝑁𝑙;  ℤ2 → 𝐻∗ 𝑁𝑙′;  ℤ2  then the vectors 𝑙 and 𝑙𝑙 lie in the same 
chamber of Δ𝑛−1.  
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A crucial role in the solution of the Walker Conjecture 
plays an important result of J. Gubeladze who solved the 
Isomorphism Problem for commutative monoidal rings 
(1998).  
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Corollary: 
 
• For any given 𝑛, the number of distinct diffeomorphism types 

of manifolds 𝑀𝑙 equals 𝑐𝑛.  
• For any given 𝑛 ≠ 4,  the number of distinct diffeomorphism 

types of manifolds 𝑁𝑙 equals 𝑐𝑛.  
 

 

Let 𝑐𝑛 denote the number of distinct Σ𝑛 - orbits of chambers.  
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J-C. Hausmann, E. Rodriguez: 

n 3 4 5 6 7 8 9 

𝑐𝑛 2 3 7 21 135 2470 175428 
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Corollary:  
 
• Two manifolds 𝑀𝑙 and 𝑀𝑙′ are diffeomorphic iff they are 

homotopy equivalent or have isomorphic integral 
cohomology algebras.  
 

• For 𝑛 ≠ 4, two manifolds 𝑁𝑙 and 𝑁𝑙′ are diffeomorphic iff 
they are homotopy equivalent or have isomorphic 
cohomology algebras with ℤ2 coefficients.  
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Spaces of high dimensional polygons 
 
𝐸𝑑 𝑙 = (𝑢1, … ,𝑢𝑛) ∈ 𝑆𝑑−1 𝑛;  ∑ 𝑙𝑖𝑢𝑖 = 0𝑛

𝑖=1 .  
 
The points of 𝐸𝑑 𝑙  can be understood as closed n-gons in ℝ𝑑 
with sides of length 𝑙1, … , 𝑙𝑛, viewed up to Euclidean 
translations. 
 
For 𝑑 ≥ 4  the quotient 𝐸𝑑 𝑙 ∕ 𝑆𝑆 𝑑  has singularities even 
for generic vector 𝑙.  However, for a generic 𝑙, the space of 
polygons 𝐸𝑑 𝑙  is a closed smooth manifold of dimension 
𝑛 − 1 𝑑 − 1 − 1.  



22 

Theorem (V. Fromm, MF, 2013): 
 
Let 𝑙, 𝑙𝑙 ∈ ℝ𝑛 be two generic length vectors and let d ≥ 3. The 
following conditions are equivalent: 
a) The manifolds 𝐸𝑑 𝑙  and 𝐸𝑑 𝑙𝑙  are 𝑆𝑆 𝑑 -equivariantly 

diffeomorphic. 
b) The cohomology rings 𝐻∗ 𝐸𝑑 𝑙 ;  ℤ2  and 𝐻∗ 𝐸𝑑 𝑙𝑙 ;  ℤ2  are 

isomorphic as graded rings. 
c) The rings 𝐻∗(𝑑−1) 𝐸𝑑 𝑙 ;  ℤ2  and 𝐻∗(𝑑−1) 𝐸𝑑 𝑙𝑙 ;  ℤ2  are 

isomorphic. 
d)  For some permutation σ : {1, . . . , n} → {1, . . . , n}, the 

length vectors 𝑙 and 𝜎(𝑙′) lie in the same chamber. 
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1. What happens when 𝑛 is large? 
 
The simplex Δ𝑛−1 is subdivided on a large number of tiny 
chambers, and each orbit of chambers represents a different 
𝑛 − 3 - dimensional closed smooth manifold.   

 
2. Suppose that the length vector 𝑙 ∈ Δ𝑛−1 is chosen 
randomly. What are the expected topological properties of 𝑀𝑙? 
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C. Dombri, C. Mazza, T. Kappeler and MF: 
 
Theorem: For a large class of probability measures 𝜇𝑛 on 
Δ𝑛−1, the expectation of the random variable 𝑏𝑝 𝑀𝑙  
satisfies 

𝔼 𝑏𝑝 𝑀𝑙 ~ 𝑛 − 1
𝑝 ,  

 
and besides,  

𝔼 𝑏2𝑝 𝑁𝑙 ~∑ 𝑛 − 1
𝑖

𝑛
𝑖=0 . 

In both cases, the error is exponentially small in 𝑛.  
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Erdös – Rényi random graphs 

{ }
( )

 
n vertices 

each edge  is included with probability  

independently of the other edges.

( , )
, ..., ,

G n p
n n

ij p

Γ ∈

→∞1

Part II 
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A random graph with n=8 and p=1/2.  
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( )

( ) ( ) ( )

Formally one considers the probability space
 consisting of all graphs on  vertices

 ,
where  is the simplex on  vertices, 
with the probability function  

( )

( , )

: ( , )

n n

n

n
E

G n p n

n
P G n p

p pΓ

∆ Γ ∆
∆

Ρ Γ
 
 
 

⊂ ⊂

→

= ⋅ −

0 1

21


( ) .E Γ−
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We are interested in properties of , 
i.e. in properties which hold with probability tending to 1 as 
 
We say that a graph property  holds a.a.s. (

large random graphs

asymptotically almost surel )
i

y  

.n

Q

→∞

( )
f the probability of the set 

 as ( , ); .P G n p Q nΓ Γ∈ ∈ → →∞1
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( )

( )

Let . If 

p

then a random graph  is , a.a.s.

If 

connected

p

then a random graph  is disconnect , a. s.e ad .

log

,

log

,

n
n

G n p

n
n

G n p

ω
ω

Γ

ω

Γ

→∞
+

≥

∈

−
≤

∈

Theorem (Erdos -  Renyi, 1959) : 
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In 2006 N. Linial and R. Meshulam initiated the topological study 
of random simplical complexes. 
One starts with a complete graph on  vertices n 1

Linial  -  Meshulam model  for  random simplicial  complexes

{ }
( ) ( )

 and adds 

each triangle  with probability  independently of each other. 

, ...,

,

n

ijk p∈ 0 1
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( )
( ) ( )

( )

( ) ( ) ( ) ( ) ( )
( )

Formally, one denotes by  the set of subcomplexes

and defines the probability function 

by the formula

where  denotes the number of faces in 

,

: ,

, , ,

.

n n

n
f Yf Y

Y n p

Y

P Y n p

P Y p p Y Y n p

f Y Y

∆ ∆

 
− 

 

⊂ ⊂

→

= ⋅ − ∈22

1 2

3

2

1
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( ) ( )

( ) ( )

Let . If 

p

then a random 2-complex Y Y  satisfies , a.a.s.

If 

p

then a random 2-complex Y  satisfies , a.a.s. 

log

, ;

log

, ;

n
n

n p H Y

n
n

Y n p H Y

ω
ω

ω

→∞
+

≥

∈ =

−
≤

∈ ≠

1 2

1 2

2

0

2

0





Theorem (Linial  and  Meshulam, 2006) : 
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In deterministic topology one studies the topological  
properties of specific spaces and manifolds.  
 
In stochastic topology (dealing with large random  
spaces) one may predict (with high probability)  
the topological properties of a space knowing how  
many simplexes of various dimensions it has.  
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Simplifying assumption: 
Then the above Theorem of Linial and Meshulam 
can be expressed as follows: 

, .p nα α= < 0

-1 0 
α

H ≠1 0 H =1 0
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( )
( )

A recent Theorem of Hoffman, Kahle and Paquette (2013) 
states that the same phase transition happens with 
the  at :

If  then 

If  t

integral homol g

h n

o

e  

y

; , . . .

; , . . .

H Y a a s

H Y a a s

α

α

α

= −

> − =

< − ≠
1

1

1

1 0

1 0
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( )  - the number of 2-simplexes in 

Intuitively, when  increases a random 2-complex 
has more faces. 

.

( ) .

f Y Y

n
E f p n

Y

α

α

+ 
=  

 

2

3
2 3
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( )

( )

( )

If  then  a.a.s.

If  then  a.a.s. 

Moreover, for  the fundamental group  

is  in the sense of Gromov. 
E. Babson, C. Hoffman, M. Kahle

hyperbolic
 (20

,

,

Y

Y

Y

Y

α π

α π

α π

> − =

< − ≠

< −

1

1

1

1 1
2
1 1
2

1
2

The fundamental  group of  

11). 
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0 -1 -1/2 

H ≠1 0

H
π

=

≠
1

1

0
1 π =1 1

Random perfect groups 

α
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α 
0 -1 π1 is free π1  has property T 

CCFK M. Kahle 

( ) coIn ll fac apset, for s 

si

<-1 the com

mplicially

plex  

 to a graph, a.a.s.

,Y Y n p nαα ∈ =
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Cohomological and Geometric dimension 

cd=gd=1 cd=gd=2 

cd=gd= ∞

The group is trivial 

-1                                                  -3/5      -1/2                                                                0 

α
A. Costa, MF 

We see that probabilistically the Eilenberg-Ganea conjecture is 
satisfied, for any given 𝛼 ≠ −1,−3

5
,−1

2
, i.e. probability that it holds 

tends to 1 as 𝑛 → ∞.  
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Torsion in the fundamental group of random 2-compelxes 

   -1                                                -3/5        -1/2                                                               0 

α

has no torsion π1

has 2-torsion π1

is trivial π1

A. Costa and MF 
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Triangulation S of the real projective plane with 6 vertices and 10 faces  
 3/5 = 6/10=v/f 
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( )

( ) ( )

( )( )

If >-3/5 then a random 2-complex  contains

S as an essential subcomplex, i.e. 

is injective. 

Hence cd = . 

,Y Y n n

S Y

Y

αα

π π

π

∈

= →

∞

1 2 1

1
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( )
( )

Let  be an odd prime. 
Then for any -1/2 the fundamental group 

where  has no torsion, a.a.s.

,

, ,

m
Y

Y Y n n mα

α π
>

≠

∈ −

1

2

A.Costa and MF 



Let  be a 2-dimensional finite simplicial complex.
 is called  if ( ) = 0.

Equivalently,  is  if the universal cover  is contractible.
Examples of aspherical 2-complex

aspheric
es:  wi

al
2



g

aspheric
X

X X

X

al

X

π

Σ th  > 0; 

N  with  > 1.

Non-aspherical are  and  (the real projective plane).2 2

g

g

g

S P

The Whitehead Conjecture 

45 



Is every subcomplex of an aspherical 2-complex also asph
In 1941, J.H.C. Whitehead suggested the following question:

?
This question is known as the Whitehead conjec

e
t

rical
ure.

46 
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( )
 If  where  then a random 2-complex

 with probability tending to one as  has 

the following property: any aspherical subcomplex  satisfies the 
Whitehead Conjecture, i.e.

: , / ,
,

'

Theorem p n
Y Y n p n

Y Y

α α= < −

∈ →∞

⊂

1 2

 all subcomplexes  are also 
aspherical. 

'' 'Y Y⊂

A. Costa, MF 
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