Big polygon spaces

Matthias Franz
University of Western Ontario
Cortona, September 2014

Cohomology \& Poincaré pairing

X compact oriented manifold, $H^{*}(X)=$ de Rham cohomology Poincaré pairing:

$$
\begin{aligned}
P P: H^{*}(X) \times H^{*}(X) & \rightarrow \mathbb{R} \\
([\alpha],[\beta]) & \mapsto \int_{X} \alpha \wedge \beta
\end{aligned}
$$

Classical fact
The Poincaré pairing PP is perfect (\Leftrightarrow non-degenerate).

Equivariant cohomology

G compact connected Lie group of rank r, acting on X
Equivariant cohomology: $H_{G}^{*}(X)=H^{*}\left(\Omega_{G}^{*}(X)\right)$
Cartan model: $\Omega_{G}^{*}(X)=\left(\Omega^{*}(X) \otimes \mathbb{R}\left[\mathfrak{g}^{*}\right]\right)^{G}$ with differential

$$
d_{G}(\alpha \otimes f)=d \alpha \otimes f+\sum_{k=1}^{r} \iota_{\xi_{k}} \alpha \otimes x_{k} f
$$

$\left(\xi_{1}, \ldots, \xi_{r}\right.$ generating v.f. of basis of $\mathfrak{g} ; x_{1}, \ldots, x_{r}$ dual basis of $\left.\mathfrak{g}^{*}\right)$
Definition can be extended to G-stable closed subsets of X.
$A=\mathbb{R}\left[\mathfrak{g}^{*}\right]^{G}$ polynomial ring in r indeterminates of even degrees $H_{G}^{*}(X)$ is an A-algebra, f. g. as A-module trivial action $\Rightarrow H_{G}^{*}(X) \cong H^{*}(X) \otimes A$ free A-module (locally) free action $\Rightarrow H_{G}^{*}(X) \cong H^{*}(X / G)$ torsion module

Equivariant Poincaré pairing

The A-bilinear equivariant Poincaré pairing

$$
P P_{G}: H_{G}^{*}(X) \times H_{G}^{*}(X) \rightarrow A
$$

is induced by the pairing

$$
\begin{aligned}
\Omega_{G}^{*}(X) \times \Omega_{G}^{*}(X) & \rightarrow A \\
(\alpha \otimes f, \beta \otimes g) & \mapsto\left(\int_{X} \alpha \wedge \beta\right) f g
\end{aligned}
$$

Proposition (Ginzburg, Brion)

$H_{G}^{*}(X)$ free $/ A \Rightarrow P P_{G}$ perfect

Equivariant Poincaré pairing II

Proposition

$P P_{G}$ non-degenerate $\Leftrightarrow H_{G}^{*}(X)$ torsion-free $/ A$
(Special cases: Chang-Skjelbred, Bredon, Guillemin-Ginzburg-Karshon)

Theorem

$P P_{G}$ perfect
$\Leftrightarrow H_{G}^{*}(X)$ reflexive A-module
\Leftrightarrow The following sequence is exact:

$$
0 \rightarrow H_{G}^{*}(X) \rightarrow H_{G}^{*}\left(X_{0}\right) \xrightarrow{\delta} H_{G}^{*+1}\left(X_{1}, X_{0}\right)
$$

(Special cases: Brion, Goertsches-Rollenske, Allday-F-Puppe) $X_{0}=\left\{x \in X \mid \operatorname{rank} G_{x}=r\right\}, X_{1}=\left\{x \in X \mid \operatorname{rank} G_{x} \geq r-1\right\}$ $X_{0}=X^{T}$ if $G=T$. Both X_{0} and X_{1} may be singular.

Syzygies

$A \cong \mathbb{R}\left[t_{1}, \ldots, t_{r}\right], M$ f.g. A-module
M k-th syzygy: \exists exact sequence

$$
0 \rightarrow M \rightarrow F_{1} \rightarrow \cdots \rightarrow F_{k-1} \rightarrow F_{k}
$$

with F_{1}, \ldots, F_{k} f.g. free $/ A$

Syzygies interpolate between torsion-freeness and freeness:

$$
\begin{aligned}
\text { zeroeth syzygy } & =\text { any } M \\
\text { first syzygy } & =\text { torsion-free } \\
\text { second syzygy } & =\text { reflexive } \\
& \vdots \\
r \text {-th syzygy } & =\text { free }
\end{aligned}
$$

Syzygies in equivariant cohomology I

Let T be a maximal torus of G.
Restriction: $X G$-manifold $\Rightarrow X T$-manifold Induction: $Y T$-manifold $\Rightarrow \hat{Y}=G \times{ }_{T} Y G$-manifold

Proposition

i) $H_{G}^{*}(X) k$-th syzygy $/ A_{G} \Longleftrightarrow H_{T}^{*}(X) k$-th syzygy $/ A_{T}$
ii) $H_{T}^{*}(Y) k$-th syzygy $/ A_{T} \Longleftrightarrow H_{G}^{*}(\hat{Y}) k$-th syzygy $/ A_{G}$

Syzygies in equivariant cohomology II

For non-compact X, syzygies of any order can appear as $H_{G}^{*}(X)$. However, in the presence of Poincaré duality:

Theorem

If $H_{G}^{*}(X)$ is a syzygy of order $\geq r / 2$, then it is free over A.
(Torus case: Allday ($r=2$), Allday-F-Puppe)
For instance: $r \leq 2: H_{G}^{*}(X)$ torsion-free \Rightarrow free

$$
r \leq 4: H_{G}^{*}(X) \text { reflexive } \Rightarrow \text { free }
$$

Proof of the theorem

Set $X_{i}=\left\{x \in X \mid\right.$ rank $\left.G_{x} \geq r-i\right\}, k \geq 1$

1) $H_{G}^{*}(X)$ is k-th syzygy \Longleftrightarrow the first line of the sequence

$$
\begin{aligned}
0 \rightarrow H_{G}^{*}(X) \rightarrow H_{G}^{*}\left(X_{0}\right) \rightarrow H_{G}^{*+1}\left(X_{1}, X_{0}\right) \rightarrow \cdots \rightarrow H_{G}^{*+k-1}\left(X_{k-1}, X_{k-2}\right) \\
\rightarrow H_{G}^{*+k}\left(X_{k}, X_{k-1}\right) \rightarrow \cdots \rightarrow H_{G}^{*+r}\left(X_{r}, X_{r-1}\right) \rightarrow 0
\end{aligned}
$$

is exact
2) For $j \geq 1$, the j-th cohomology of this complex is

$$
\operatorname{Ext}_{A}^{j}\left(H_{G}^{*}(X), A\right)
$$

(For general X this would involve equivariant homology.)
3) M is k-th syzygy $\Longrightarrow \operatorname{Ext}_{A}^{j}(M, A)=0$ for $j>r-k$

Syzygies in equivariant cohomology II

For non-compact X, syzygies of any order can appear as $H_{G}^{*}(X)$. However, in the presence of Poincaré duality:

Theorem

If $H_{G}^{*}(X)$ is a syzygy of order $\geq r / 2$, then it is free over A.
(Torus case: Allday $(r=2)$, Allday-F-Puppe)
For instance: $r \leq 2: H_{G}^{*}(X)$ torsion-free \Rightarrow free

$$
r \leq 4: H_{G}^{*}(X) \text { reflexive } \Rightarrow \text { free }
$$

Question

Is the bound " $r / 2$ " sharp?
Enough to look at torus actions, so $G=T$ for the rest of the talk.

Syzygies in equivariant cohomology III

Example (F-Puppe)

There is a 7 -dimensional compact orientable mutant Z with an action of $T=\left(S^{1}\right)^{3}$ s.t.

$$
H_{T}^{*}(Z) \cong A \oplus \mathfrak{m}[1] \oplus A[6] \oplus A[7]
$$

is torsion-free, but not reflexive. ($\mathfrak{m} \triangleleft A$ maximal ideal)
Construction uses Hopf fibration $S^{3} \rightarrow S^{2}$ (also possible: $r=5,9$).
Non-equivariantly, Z is a connected sum of products of spheres:

$$
Z \approx \underset{3}{\#} S^{3} \times S^{4}
$$

Similar connected sums appear in the work of López de Medrano and Bosio-Meersseman on intersections of real quadrics.

Looking for a generalization

First observation (Gómez-López de Medrano)
The mutant "looks like" the real algebraic variety Y defined by

$$
\begin{aligned}
\sum_{j=1}^{3} \lambda_{j}\left|z_{j}\right|^{2}+u v & =0 \\
\sum_{j=1}^{3}\left|z_{j}\right|^{2}+|u|^{2}+|v|^{2} & =1
\end{aligned}
$$

where $\lambda_{j}=e^{2 \pi i j / 3}$ and $z_{1}, z_{2}, z_{3}, u, v \in \mathbb{C}$. T rotates the z_{j}.

Second observation

There is a change of variables such that Y is given by

$$
\left|z_{j}\right|^{2}+\left|u_{j}\right|^{2}=1 \quad(j=1,2,3), \quad u_{1}+u_{2}+u_{3}=0
$$

where $z_{1}, z_{2}, z_{3}, u_{1}, u_{2}, u_{3} \in \mathbb{C}$.

Polygon spaces

Choose a length vector $\ell \in \mathbb{R}_{\geq 0}^{r}$.
The polygon space $E_{2 a}(\ell)$ is the real algebraic variety defined by

$$
\left\{\begin{aligned}
\left|u_{j}\right|^{2} & =1 \quad(j=1, \ldots, r) \\
\ell_{1} u_{1}+\cdots+\ell_{r} u_{r} & =0
\end{aligned}\right.
$$

where $a \geq 1$ and $u_{1}, \ldots u_{r} \in \mathbb{C}^{a}$.
Polygon space have been studied by Walker (1985), Hausmann, Klyachko, Knutson, Farber, Schütz, Fromm, ...
$E_{2 a}(\ell)$ is a compact orientable manifold if ℓ is generic:

$$
\forall J \subset\{1, \ldots, r\} \quad \sum_{j \in J} \ell_{j} \neq \sum_{j \neq J} \ell_{j}
$$

Depending on which side dominates, J is called ℓ-long or ℓ-short.
Equivalent length vectors (= same long/short sets) give diffeomorphic polygon spaces.

Big polygon spaces

The big polygon space $X_{a, b}(\ell)$ is defined by

$$
\left\{\begin{aligned}
\left|z_{j}\right|^{2}+\left|u_{j}\right|^{2} & =1 \quad(j=1, \ldots, r) \\
\ell_{1} u_{1}+\cdots+\ell_{r} u_{r} & =0
\end{aligned}\right.
$$

where $a, b \geq 1$ and $u_{1}, \ldots u_{r} \in \mathbb{C}^{a}, z_{1}, \ldots z_{r} \in \mathbb{C}^{b}$.
$=$ configuration space of chains of vectors of prescribed lengths, starting at $0 \in \mathbb{C}^{a+b}$ and ending on a fixed subspace $\mathbb{C}^{b} \subset \mathbb{C}^{a+b}$

For generic $\ell, X_{a, b}(\ell)$ is a compact orientable manifold.
$T=\left(S^{1}\right)^{r}$ acts by rotating the z_{j} 's. The fixed point set is $E_{2 a}(\ell)$.
The mutant Z is T-homeomorphic to $X_{1,1}(1,1,1)$.

Observation

Betti sum of $X_{a, b}(\ell)=2^{r}>$ Betti sum of $E_{2 a}(\ell)$
$\Longrightarrow H_{T}^{*}\left(X_{a, b}(\ell)\right)$ not free $/ A \Longrightarrow \operatorname{syzord} H_{T}^{*}\left(X_{a, b}(\ell)\right)<r / 2$

Equivariant cohomology of big polygon spaces

Theorem

- syzord $H_{T}^{*}\left(X_{a, b}(\ell)\right) \leq \mu(\ell)-1$, where

$$
\begin{aligned}
\sigma_{\ell}(J) & =\#\{j \in J \mid J \backslash j \text {-short }\} \\
\mu(\ell) & =\min \left\{\sigma_{\ell}(J) \mid J \ell \text {-long and } \sigma_{\ell}(J)>0\right\}
\end{aligned}
$$

- Assume $0 \leq m<r / 2$. Then

$$
\operatorname{syzord} H_{T}^{*}(X_{a, b}(0, \ldots, 0, \underbrace{1, \ldots, 1}_{2 m+1}))=m
$$

- $r=2 m+1$: syzord $H_{T}^{*}\left(X_{a, b}(\ell)\right)=m \Leftrightarrow \ell \sim(1, \ldots, 1)$
- $r=2 m+2$: syzord $H_{T}^{*}\left(X_{a, b}(\ell)\right)=m \Leftrightarrow \ell \sim(0,1, \ldots, 1)$

Conjecture: One has equality in the first part.

Open questions

Geometric structures? More examples of (maximal) syzygies?
Let $r=2 m+1$. Our smallest examples for maximal syzygies are the equilateral big polygon spaces $Y_{m}=X_{1,1}(1, \ldots, 1)$ with $\operatorname{dim} Y_{m}=6 m+1$. Are there lower-dimensional examples? $m=0: \operatorname{dim} Y_{0}=\operatorname{dim} S^{1}=1$. This is minimal. $m=1: \operatorname{dim} Y_{1}=7$. This is also minimal:

Proposition

If X^{T} is discrete, then $H_{T}^{*}(X)$ torsion-free $\Leftrightarrow H_{T}^{*}(X)$ free $/ A$
$m=2: \operatorname{dim} Y_{2}=13$. The Proposition gives the lower bound 11 .

Question

Assume $\operatorname{dim} X^{T} \leq 2 k-2$. Is the following true?

$$
H_{T}^{*}(X) \text { k-th syzygy } \quad \Leftrightarrow \quad H_{T}^{*}(X) \text { free } / A
$$

References

國 C．Allday，M．Franz，V．Puppe
Equivariant cohomology，syzygies and orbit structure
Trans．AMS（2014），online
（ M．Franz
Maximal syzygies in equivariant cohomology
arXiv：1403．4485
固 M．Franz
Syzygies in equivariant cohomology for non－abelian Lie groups arXiv：1409．0681
求 M．Franz，V．Puppe
Freeness of equivariant cohomology and mutants of compactified representations
pp．87－98 in：M．Harada et al．（eds．），Toric topology（Osaka， 2006），Contemp．Math．460，AMS，Providence，RI， 2008

Thank you．

