Big polygon spaces

Matthias Franz

University of Western Ontario

Cortona, September 2014

Cohomology & Poincaré pairing

X compact oriented manifold, $H^*(X) = de$ Rham cohomology **Poincaré pairing:**

$$PP \colon H^*(X) \times H^*(X) \to \mathbb{R}$$
$$([\alpha], [\beta]) \mapsto \int_X \alpha \wedge \beta$$

Classical fact

The Poincaré pairing PP is perfect (\Leftrightarrow non-degenerate).

Equivariant cohomology

G compact connected Lie group of rank r, acting on X

Equivariant cohomology: $H^*_G(X) = H^*(\Omega^*_G(X))$

Cartan model: $\Omega^*_{\mathcal{G}}(X) = (\Omega^*(X) \otimes \mathbb{R}[\mathfrak{g}^*])^{\mathcal{G}}$ with differential

$$d_{\mathcal{G}}(\alpha \otimes f) = d\alpha \otimes f + \sum_{k=1}^{r} \iota_{\xi_k} \alpha \otimes x_k f$$

 $(\xi_1, \ldots, \xi_r \text{ generating v. f. of basis of } \mathfrak{g}; x_1, \ldots, x_r \text{ dual basis of } \mathfrak{g}^*)$

Definition can be extended to G-stable closed subsets of X.

 $A = \mathbb{R}[\mathfrak{g}^*]^G$ polynomial ring in r indeterminates of even degrees $H^*_G(X)$ is an A-algebra, f. g. as A-module trivial action $\Rightarrow H^*_G(X) \cong H^*(X) \otimes A$ free A-module (locally) free action $\Rightarrow H^*_G(X) \cong H^*(X/G)$ torsion module

Equivariant Poincaré pairing

The A-bilinear equivariant Poincaré pairing

 $PP_G \colon H^*_G(X) \times H^*_G(X) \to A$

is induced by the pairing

$$egin{aligned} \Omega^*_{G}(X) imes \Omega^*_{G}(X) & o A \ & (lpha \otimes f, eta \otimes g) \mapsto \left(\int_X lpha \wedge eta
ight) extsf{fg} \end{aligned}$$

Proposition (Ginzburg, Brion) $H^*_G(X)$ free $/A \Rightarrow PP_G$ perfect

Equivariant Poincaré pairing II

Proposition

 PP_G non-degenerate $\Leftrightarrow H^*_G(X)$ torsion-free /A

```
(Special cases: Chang–Skjelbred, Bredon, Guillemin–Ginzburg–Karshon)
```

Theorem

 PP_G perfect

$$\Leftrightarrow H^*_{\mathcal{G}}(X)$$
 reflexive A-module

⇔ The following sequence is exact:

$$0
ightarrow H^*_G(X)
ightarrow H^*_G(X_0) \stackrel{\delta}{
ightarrow} H^{*+1}_G(X_1,X_0)$$

(Special cases: Brion, Goertsches-Rollenske, Allday-F-Puppe) $X_0 = \{x \in X \mid \text{rank } G_x = r\}, X_1 = \{x \in X \mid \text{rank } G_x \ge r - 1\}$ $X_0 = X^T$ if G = T. Both X_0 and X_1 may be singular. Syzygies

 $A \cong \mathbb{R}[t_1, \ldots, t_r], M$ f.g. A-module

M **k-th syzygy**: \exists exact sequence $0 \rightarrow M \rightarrow F_1 \rightarrow \cdots \rightarrow F_{k-1} \rightarrow F_k$ with F_1, \ldots, F_k f.g. free /A

Syzygies interpolate between torsion-freeness and freeness:

r-th syzygy = free

Syzygies in equivariant cohomology I

```
Let T be a maximal torus of G.
```

Restriction: X G-manifold \Rightarrow X T-manifold

Induction: Y T-manifold $\Rightarrow \hat{Y} = G \times_T Y$ G-manifold

Proposition

i) $H_G^*(X)$ k-th syzygy/ $A_G \iff H_T^*(X)$ k-th syzygy/ A_T ii) $H_T^*(Y)$ k-th syzygy/ $A_T \iff H_C^*(\hat{Y})$ k-th syzygy/ A_G

Syzygies in equivariant cohomology II

For non-compact X, syzygies of any order can appear as $H^*_G(X)$. However, in the presence of Poincaré duality:

Theorem

If $H^*_G(X)$ is a syzygy of order $\geq r/2$, then it is free over A.

(Torus case: Allday (r = 2), Allday–F–Puppe)

For instance: $r \leq 2$: $H^*_G(X)$ torsion-free \Rightarrow free $r \leq 4$: $H^*_G(X)$ reflexive \Rightarrow free

Proof of the theorem

Set
$$X_i = \{x \in X \mid \text{rank } G_x \ge r - i\}$$
, $k \ge 1$

1) $H^*_{\mathcal{G}}(X)$ is k-th syzygy \iff the first line of the sequence

$$0 \to H^*_G(X) \to H^*_G(X_0) \to H^{*+1}_G(X_1, X_0) \to \dots \to H^{*+k-1}_G(X_{k-1}, X_{k-2}) \\ \to H^{*+k}_G(X_k, X_{k-1}) \to \dots \to H^{*+r}_G(X_r, X_{r-1}) \to 0$$

is exact

2) For $j \ge 1$, the *j*-th cohomology of this complex is $\operatorname{Ext}^j_A(H^*_G(X), A)$

(For general X this would involve equivariant homology.)

3) *M* is *k*-th syzygy
$$\implies \operatorname{Ext}_{A}^{j}(M, A) = 0$$
 for $j > r - k$

Syzygies in equivariant cohomology II

For non-compact X, syzygies of any order can appear as $H^*_G(X)$. However, in the presence of Poincaré duality:

Theorem

If $H^*_G(X)$ is a syzygy of order $\geq r/2$, then it is free over A.

(Torus case: Allday (r = 2), Allday–F–Puppe)

 $\begin{array}{lll} \mbox{For instance:} & r \leq 2: \ H^*_G(X) \ \mbox{torsion-free} \ \Rightarrow \ \mbox{free} \\ & r \leq 4: \ \ H^*_G(X) \ \mbox{reflexive} \ \Rightarrow \ \mbox{free} \\ \end{array}$

Question

Is the bound "r/2" sharp?

Enough to look at torus actions, so G = T for the rest of the talk.

Syzygies in equivariant cohomology III

Example (F–Puppe)

There is a 7-dimensional compact orientable **mutant** Z with an action of $T = (S^1)^3$ s.t.

$$H^*_T(Z) \cong A \oplus \mathfrak{m}[1] \oplus A[6] \oplus A[7]$$

is torsion-free, but not reflexive. ($\mathfrak{m} \lhd A$ maximal ideal)

Construction uses Hopf fibration $S^3 \rightarrow S^2$ (also possible: r = 5, 9).

Non-equivariantly, Z is a connected sum of products of spheres:

$$Z \approx \#_3 S^3 \times S^4$$

Similar connected sums appear in the work of López de Medrano and Bosio–Meersseman on intersections of real quadrics.

Looking for a generalization

First observation (Gómez-López de Medrano)

The mutant "looks like" the real algebraic variety Y defined by

$$\sum_{j=1}^{3} \lambda_j |z_j|^2 + uv = 0$$
$$\sum_{j=1}^{3} |z_j|^2 + |u|^2 + |v|^2 = 1$$

where $\lambda_j = e^{2\pi i j/3}$ and z_1 , z_2 , z_3 , u, $v \in \mathbb{C}$. T rotates the z_j .

Second observation

There is a change of variables such that Y is given by

$$|z_j|^2 + |u_j|^2 = 1$$
 $(j = 1, 2, 3),$ $u_1 + u_2 + u_3 = 0$

where z_1 , z_2 , z_3 , u_1 , u_2 , $u_3 \in \mathbb{C}$.

Polygon spaces

Choose a length vector $\ell \in \mathbb{R}_{\geq 0}^r$.

The **polygon space** $E_{2a}(\ell)$ is the real algebraic variety defined by

$$\begin{cases} |u_j|^2 = 1 \quad (j = 1, \dots, r) \\ \ell_1 u_1 + \dots + \ell_r u_r = 0 \end{cases}$$
 where $a \ge 1$ and $u_1, \dots, u_r \in \mathbb{C}^a$.

Polygon space have been studied by Walker (1985), Hausmann, Klyachko, Knutson, Farber, Schütz, Fromm, ...

 $E_{2a}(\ell)$ is a compact orientable manifold if ℓ is **generic**:

$$\forall J \subset \{1, \dots, r\}$$
 $\sum_{j \in J} \ell_j \neq \sum_{j \notin J} \ell_j$

Depending on which side dominates, J is called ℓ -long or ℓ -short.

Equivalent length vectors (= same long/short sets) give diffeomorphic polygon spaces.

Big polygon spaces

The **big polygon space** $X_{a,b}(\ell)$ is defined by

$$\begin{cases} |z_j|^2 + |u_j|^2 = 1 & (j = 1, \dots, r) \\ \ell_1 u_1 + \dots + \ell_r u_r = 0 \end{cases}$$

where $a, b \geq 1$ and $u_1, \ldots u_r \in \mathbb{C}^a, z_1, \ldots z_r \in \mathbb{C}^b$.

= configuration space of chains of vectors of prescribed lengths, starting at $0 \in \mathbb{C}^{a+b}$ and ending on a fixed subspace $\mathbb{C}^b \subset \mathbb{C}^{a+b}$

For generic ℓ , $X_{a,b}(\ell)$ is a compact orientable manifold. $T = (S^1)^r$ acts by rotating the z_j 's. The fixed point set is $E_{2a}(\ell)$.

The mutant Z is T-homeomorphic to $X_{1,1}(1,1,1)$.

Observation

Betti sum of $X_{a,b}(\ell) = 2^r >$ Betti sum of $E_{2a}(\ell)$

 $\implies H^*_T(X_{a,b}(\ell)) ext{ not free } /A \implies ext{ syzord } H^*_T(X_{a,b}(\ell)) < r/2$

Equivariant cohomology of big polygon spaces

Theorem

• syzord $H^*_T(X_{a,b}(\ell)) \leq \mu(\ell) - 1$, where

$$\sigma_{\ell}(J) = \# \{ j \in J \mid J \setminus j \; \ell \text{-short} \}$$

$$\mu(\ell) = \min \{ \sigma_{\ell}(J) \mid J \; \ell \text{-long and } \sigma_{\ell}(J) > 0 \}$$

• Assume
$$0 \le m < r/2$$
. Then

syzord
$$H^*_T(X_{a,b}(0,\ldots,0,\underbrace{1,\ldots,1}_{2m+1})) = m$$

•
$$r = 2m + 1$$
: syzord $H^*_T(X_{a,b}(\ell)) = m \Leftrightarrow \ell \sim (1, ..., 1)$
• $r = 2m + 2$: syzord $H^*_T(X_{a,b}(\ell)) = m \Leftrightarrow \ell \sim (0, 1, ..., 1)$

Conjecture: One has equality in the first part.

Open questions

Geometric structures? More examples of (maximal) syzygies?

Let r = 2m + 1. Our smallest examples for maximal syzygies are the equilateral big polygon spaces $Y_m = X_{1,1}(1, ..., 1)$ with dim $Y_m = 6m + 1$. Are there lower-dimensional examples?

m = 0: dim $Y_0 = \dim S^1 = 1$. This is minimal.

m = 1: dim $Y_1 = 7$. This is also minimal:

Proposition

If X^T is discrete, then $H^*_T(X)$ torsion-free $\Leftrightarrow H^*_T(X)$ free/A

m = 2: dim $Y_2 = 13$. The Proposition gives the lower bound 11.

Question

Assume dim $X^T \leq 2k - 2$. Is the following true?

 $H^*_T(X)$ k-th syzygy \Leftrightarrow $H^*_T(X)$ free/A

References

- C. Allday, M. Franz, V. Puppe Equivariant cohomology, syzygies and orbit structure *Trans. AMS* (2014), online

M. Franz

Maximal syzygies in equivariant cohomology arXiv:1403.4485

M. Franz

Syzygies in equivariant cohomology for non-abelian Lie groups arXiv:1409.0681

M. Franz, V. Puppe

Freeness of equivariant cohomology and mutants of compactified representations

pp. 87–98 in: M. Harada *et al.* (eds.), Toric topology (Osaka, 2006), *Contemp. Math.* **460**, AMS, Providence, RI, 2008

Thank you.