

The cohomology of the Milnor fibre of an arrangement with symmetry

Gus Lehrer

University of Sydney NSW 2006 Australia

September 2014, Cortona This is joint work with Alex Dimca, Nice

The cohomology of the Milnor fibre of an arrangement with symmetry

Gus Lehrer

University of Sydney NSW 2006 Australia

September 2014, Cortona This is joint work with Alex Dimca, Nice

Let $V = \mathbb{C}^{\ell}$, \mathcal{A} a hyperplane arrangement in V and G a finite subgroup of GL(V) such that $G\mathcal{A} = \mathcal{A}$.

To $H \in \mathcal{A}$, corresponds $\ell_H \in V^*$ and we write $Q_0 := \prod_{H \in \mathcal{A}} \ell_H \in \mathbb{C}[V]$, and $d = \deg(Q_0) = |\mathcal{A}|$

For $g \in G$, $gQ_0 = \lambda_A(g)Q_0$ for $\lambda_A(g) \in \mathbb{C}^{\times}$, and λ_A is a character of *G*. Write *e* for $|\lambda_A|$, and note that $Q := Q_0^e$ is *G*-invariant.

Define the Milnor fibre of \mathcal{A} : $F = Q^{-1}(1)$, and the *reduced* Milnor fibre: $F_0 = Q_0^{-1}(1)$; m = deg(Q) = de.

Let $V = \mathbb{C}^{\ell}$, \mathcal{A} a hyperplane arrangement in V and G a finite subgroup of GL(V) such that $G\mathcal{A} = \mathcal{A}$.

To $H \in \mathcal{A}$, corresponds $\ell_H \in V^*$ and we write $Q_0 := \prod_{H \in \mathcal{A}} \ell_H \in \mathbb{C}[V]$, and $d = \deg(Q_0) = |\mathcal{A}|$.

For $g \in G$, $gQ_0 = \lambda_A(g)Q_0$ for $\lambda_A(g) \in \mathbb{C}^{\times}$, and λ_A is a character of *G*. Write *e* for $|\lambda_A|$, and note that $Q := Q_0^e$ is *G*-invariant.

Define the Milnor fibre of \mathcal{A} : $F = Q^{-1}(1)$, and the *reduced* Milnor fibre: $F_0 = Q_0^{-1}(1)$; $m = \deg(Q) = de$.

Let $V = \mathbb{C}^{\ell}$, \mathcal{A} a hyperplane arrangement in V and G a finite subgroup of GL(V) such that $G\mathcal{A} = \mathcal{A}$.

To $H \in \mathcal{A}$, corresponds $\ell_H \in V^*$ and we write $Q_0 := \prod_{H \in \mathcal{A}} \ell_H \in \mathbb{C}[V]$, and $d = \deg(Q_0) = |\mathcal{A}|$.

For $g \in G$, $gQ_0 = \lambda_A(g)Q_0$ for $\lambda_A(g) \in \mathbb{C}^{\times}$, and λ_A is a character of *G*. Write *e* for $|\lambda_A|$, and note that $Q := Q_0^e$ is *G*-invariant.

Define the Milnor fibre of \mathcal{A} : $F = Q^{-1}(1)$, and the *reduced* Milnor fibre: $F_0 = Q_0^{-1}(1)$; m = deg(Q) = de.

Let $V = \mathbb{C}^{\ell}$, \mathcal{A} a hyperplane arrangement in V and G a finite subgroup of GL(V) such that $G\mathcal{A} = \mathcal{A}$.

To $H \in \mathcal{A}$, corresponds $\ell_H \in V^*$ and we write $Q_0 := \prod_{H \in \mathcal{A}} \ell_H \in \mathbb{C}[V]$, and $d = \deg(Q_0) = |\mathcal{A}|$.

For $g \in G$, $gQ_0 = \lambda_A(g)Q_0$ for $\lambda_A(g) \in \mathbb{C}^{\times}$, and λ_A is a character of *G*. Write *e* for $|\lambda_A|$, and note that $Q := Q_0^e$ is *G*-invariant.

Define the Milnor fibre of \mathcal{A} : $F = Q^{-1}(1)$, and the *reduced* Milnor fibre: $F_0 = Q_0^{-1}(1)$; $m = \deg(Q) = de$.

Let $V = \mathbb{C}^{\ell}$, \mathcal{A} a hyperplane arrangement in V and G a finite subgroup of GL(V) such that $G\mathcal{A} = \mathcal{A}$.

To $H \in \mathcal{A}$, corresponds $\ell_H \in V^*$ and we write $Q_0 := \prod_{H \in \mathcal{A}} \ell_H \in \mathbb{C}[V]$, and $d = \deg(Q_0) = |\mathcal{A}|$.

For $g \in G$, $gQ_0 = \lambda_A(g)Q_0$ for $\lambda_A(g) \in \mathbb{C}^{\times}$, and λ_A is a character of *G*. Write *e* for $|\lambda_A|$, and note that $Q := Q_0^e$ is *G*-invariant.

Define the Milnor fibre of \mathcal{A} : $F = Q^{-1}(1)$, and the *reduced* Milnor fibre: $F_0 = Q_0^{-1}(1)$; $m = \deg(Q) = de$.

(日) (日) (日) (日) (日) (日) (日)

Problem A: Determine $P^{\Gamma}(F, t) := \sum_{i \ge 0} H^{i}(F, \mathbb{C})t^{i}$ as an element of $R(\Gamma)[t]$, the Grothendieck ring..

'Determine' might mean: find the character

Problem A': same as A, but with F_0 , Γ_0 . We'll see soon that problems A,A' are equivalent.

Recall that $H^{j}(F)$ has two canonical filtrations: the increasing weight filtration W, and the decreasing Hodge filtration F.

These give rise to a mixed Hodge structure on H^{j} : write

 $H^{p,q}(H^{j}(F,\mathbb{C}) := \operatorname{Gr}_{F}^{p}\operatorname{Gr}_{p+q}^{W}H^{j}(F,\mathbb{C})$

(日) (日) (日) (日) (日) (日) (日)

Problem A: Determine $P^{\Gamma}(F, t) := \sum_{i \ge 0} H^{i}(F, \mathbb{C})t^{i}$ as an element of $R(\Gamma)[t]$, the Grothendieck ring..

'Determine' might mean: find the character

Problem A': same as A, but with F_0 , Γ_0 . We'll see soon that problems A,A' are equivalent.

Recall that $H^{j}(F)$ has two canonical filtrations: the increasing weight filtration W, and the decreasing Hodge filtration F.

These give rise to a mixed Hodge structure on H^{j} : write

 $H^{p,q}(H^{j}(F,\mathbb{C})) := \mathrm{Gr}_{F}^{p}\mathrm{Gr}_{p+q}^{W}H^{j}(F,\mathbb{C})$

Problem A: Determine $P^{\Gamma}(F, t) := \sum_{i \ge 0} H^i(F, \mathbb{C})t^i$ as an element of $R(\Gamma)[t]$, the Grothendieck ring..

'Determine' might mean: find the character

Problem A': same as A, but with F_0 , Γ_0 . We'll see soon that problems A,A' are equivalent.

Recall that $H^{j}(F)$ has two canonical filtrations: the increasing weight filtration W, and the decreasing Hodge filtration F.

These give rise to a mixed Hodge structure on H^{j} : write

 $H^{p,q}(H^{j}(F,\mathbb{C}) := \operatorname{Gr}_{F}^{p}\operatorname{Gr}_{p+q}^{W}H^{j}(F,\mathbb{C})$

Problem A: Determine $P^{\Gamma}(F, t) := \sum_{i \ge 0} H^{i}(F, \mathbb{C})t^{i}$ as an element of $R(\Gamma)[t]$, the Grothendieck ring..

'Determine' might mean: find the character

Problem A': same as A, but with F_0 , Γ_0 . We'll see soon that problems A,A' are equivalent.

Recall that $H^{j}(F)$ has two canonical filtrations: the increasing weight filtration W, and the decreasing Hodge filtration F.

These give rise to a mixed Hodge structure on H^{j} : write

 $H^{p,q}(H^{j}(F,\mathbb{C})) := \operatorname{Gr}_{F}^{p}\operatorname{Gr}_{p+q}^{W}H^{j}(F,\mathbb{C})$

Problem A: Determine $P^{\Gamma}(F, t) := \sum_{i \ge 0} H^{i}(F, \mathbb{C})t^{i}$ as an element of $R(\Gamma)[t]$, the Grothendieck ring..

'Determine' might mean: find the character

Problem A': same as A, but with F_0 , Γ_0 . We'll see soon that problems A,A' are equivalent.

Recall that $H^{j}(F)$ has two canonical filtrations: the increasing weight filtration W, and the decreasing Hodge filtration F.

These give rise to a mixed Hodge structure on H^{j} : write

$$H^{p,q}(H^{j}(F,\mathbb{C}) := \mathrm{Gr}_{F}^{p}\mathrm{Gr}_{p+q}^{W}H^{j}(F,\mathbb{C})$$

The second, much harder, problem:

Problem B: Determine the Poincaré-Deligne polynomial $PD^{\Gamma}(F; u, v, t) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} t^{j}$ as an element of $R(\Gamma)[u, v, t]$.

We also have, correspondingly, Problem B' for F_0 , Γ_0 .

Note that Problem A is the specialisation of Problem B at u = v = 1.

The second, much harder, problem:

Problem B: Determine the Poincaré-Deligne polynomial $PD^{\Gamma}(F; u, v, t) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} t^{j}$ as an element of $R(\Gamma)[u, v, t]$.

We also have, correspondingly, Problem B' for F_0 , Γ_0 .

Note that Problem A is the specialisation of Problem B at u = v = 1.

The second, much harder, problem:

Problem B: Determine the Poincaré-Deligne polynomial $PD^{\Gamma}(F; u, v, t) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} t^{j}$ as an element of $R(\Gamma)[u, v, t]$.

We also have, correspondingly, Problem B' for F_0 , Γ_0 .

Note that Problem A is the specialisation of Problem B at u = v = 1.

The second, much harder, problem:

Problem B: Determine the Poincaré-Deligne polynomial $PD^{\Gamma}(F; u, v, t) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} t^{j}$ as an element of $R(\Gamma)[u, v, t]$.

We also have, correspondingly, Problem B' for F_0 , Γ_0 .

Note that Problem A is the specialisation of Problem B at u = v = 1.

The second, much harder, problem:

Problem B: Determine the Poincaré-Deligne polynomial $PD^{\Gamma}(F; u, v, t) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} t^{j}$ as an element of $R(\Gamma)[u, v, t]$.

We also have, correspondingly, Problem B' for F_0 , Γ_0 .

Note that Problem A is the specialisation of Problem B at u = v = 1.

Let \mathcal{A} be the arrangement of type A_{ℓ} . Then $d = \frac{\ell(\ell+1)}{2}$, e = 2 ($\lambda = \varepsilon$) and $m = \ell(\ell+1)$.

$$\Gamma = \operatorname{Sym}_{\ell+1} \times \mu_m$$
 acts on $F : \prod_{i \neq j} (x_i - x_j) = 1$.

This example has motivated much work on this problem—applications in mathematical physics (monopoles-cf. G. Segal, Selby).

Let \mathcal{A} be the arrangement of type A_{ℓ} . Then $d = \frac{\ell(\ell+1)}{2}$, e = 2 ($\lambda = \varepsilon$) and $m = \ell(\ell+1)$.

$$\Gamma = \operatorname{Sym}_{\ell+1} \times \mu_m$$
 acts on $F : \prod_{i \neq j} (x_i - x_j) = 1$.

This example has motivated much work on this problem—applications in mathematical physics (monopoles-cf. G. Segal, Selby).

Let \mathcal{A} be the arrangement of type A_{ℓ} . Then $d = \frac{\ell(\ell+1)}{2}$, e = 2 ($\lambda = \varepsilon$) and $m = \ell(\ell+1)$.

$$\Gamma = \operatorname{Sym}_{\ell+1} \times \mu_m$$
 acts on $F : \prod_{i \neq j} (x_i - x_j) = 1$.

This example has motivated much work on this problem–applications in mathematical physics (monopoles-cf. G. Segal, Selby).

Let \mathcal{A} be the arrangement of type A_{ℓ} . Then $d = \frac{\ell(\ell+1)}{2}$, e = 2 ($\lambda = \varepsilon$) and $m = \ell(\ell+1)$.

$$\Gamma = \operatorname{Sym}_{\ell+1} \times \mu_m$$
 acts on $F : \prod_{i \neq j} (x_i - x_j) = 1$.

This example has motivated much work on this problem–applications in mathematical physics (monopoles-cf. G. Segal, Selby).

- P^G(F/µm, t) = P^Γ(F, t)^{µm} is known (GL, 1987). The character is given by a product formula analogous to Arn'old's for the Poincaré polynomial. This is a special case of results applying to all unitary reflection groups.
- The above result amounts to the cohomology of the associated hyperplane complement, which is cohomologically pure.
- F is anything but pure; its cohomology has a rich mixed Hodge structure
- ► $P^{\mu_m}(F/G, t) = P^{\Gamma}(F, t)^G$ was computed by de Concini-Procesi-Salvetti in 2001.

- P^G(F/μ_m, t) = P^Γ(F, t)^{μ_m} is known (GL, 1987). The character is given by a product formula analogous to Arn'old's for the Poincaré polynomial. This is a special case of results applying to all unitary reflection groups.
- The above result amounts to the cohomology of the associated hyperplane complement, which is cohomologically pure.
- ► *F* is anything but pure; its cohomology has a rich mixed Hodge structure
- ► $P^{\mu_m}(F/G, t) = P^{\Gamma}(F, t)^G$ was computed by de Concini-Procesi-Salvetti in 2001.

- P^G(F/μm, t) = P^Γ(F, t)^{μm} is known (GL, 1987). The character is given by a product formula analogous to Arn'old's for the Poincaré polynomial. This is a special case of results applying to all unitary reflection groups.
- The above result amounts to the cohomology of the associated hyperplane complement, which is cohomologically pure.
- ► *F* is anything but pure; its cohomology has a rich mixed Hodge structure
- ► $P^{\mu_m}(F/G, t) = P^{\Gamma}(F, t)^G$ was computed by de Concini-Procesi-Salvetti in 2001.

- P^G(F/μm, t) = P^Γ(F, t)^{μm} is known (GL, 1987). The character is given by a product formula analogous to Arn'old's for the Poincaré polynomial. This is a special case of results applying to all unitary reflection groups.
- The above result amounts to the cohomology of the associated hyperplane complement, which is cohomologically pure.
- F is anything but pure; its cohomology has a rich mixed Hodge structure
- P^{µm}(F/G, t) = P^Γ(F, t)^G was computed by de Concini-Procesi-Salvetti in 2001.

- P^G(F/μm, t) = P^Γ(F, t)^{μm} is known (GL, 1987). The character is given by a product formula analogous to Arn'old's for the Poincaré polynomial. This is a special case of results applying to all unitary reflection groups.
- The above result amounts to the cohomology of the associated hyperplane complement, which is cohomologically pure.
- F is anything but pure; its cohomology has a rich mixed Hodge structure
- P^{µm}(F/G, t) = P^Γ(F, t)^G was computed by de Concini-Procesi-Salvetti in 2001.

► Denham-Lemire (2002) computed the Euler characteristic $P^{\Gamma}(F, -1)$ as a special case of a result about unitary reflection groups.

- ► Settepanella (2004, 2009) computed some low degree examples of P^{µd}(F₀, t) and gave some stability results for this polynomial for the classical groups.
- Like de Concini-Procesi and Salvetti, Settepanella used the Salvetti complex to compute the cohomology.

Denham-Lemire (2002) computed the Euler characteristic P^Γ(F, −1) as a special case of a result about unitary reflection groups.

- ► Settepanella (2004, 2009) computed some low degree examples of P^{µ_d}(F₀, t) and gave some stability results for this polynomial for the classical groups.
- Like de Concini-Procesi and Salvetti, Settepanella used the Salvetti complex to compute the cohomology.

(ロ) (同) (三) (三) (三) (○) (○)

Denham-Lemire (2002) computed the Euler characteristic P^Γ(F, −1) as a special case of a result about unitary reflection groups.

- ► Settepanella (2004, 2009) computed some low degree examples of P^{µ_d}(F₀, t) and gave some stability results for this polynomial for the classical groups.
- Like de Concini-Procesi and Salvetti, Settepanella used the Salvetti complex to compute the cohomology.

Denham-Lemire (2002) computed the Euler characteristic P^Γ(F, −1) as a special case of a result about unitary reflection groups.

- ► Settepanella (2004, 2009) computed some low degree examples of P^{µ_d}(F₀, t) and gave some stability results for this polynomial for the classical groups.
- Like de Concini-Procesi and Salvetti, Settepanella used the Salvetti complex to compute the cohomology.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let γ_i denote the character $\zeta \mapsto \zeta^i$ of any group $\mu_r \subset \mathbb{C}^{\times}$ of roots of unity.

If $(g,\xi) \in \Gamma$, since $Q_0 \in \mathbb{C}[V]$ is homogeneous of degree d, then $(g,\xi)Q_0(v) = \xi^d Q_0(g^{-1}v) = \lambda_{\mathcal{A}}(g)\xi^d Q_0(v)$.

So
$$\Gamma_0 = \ker(\lambda_{\mathcal{A}} \otimes \gamma_d) \subseteq G \times \mu_m$$
.

It follows that any representation θ of Γ_0 may be lifted to a representation $\tilde{\theta}$ of Γ ,

(日) (日) (日) (日) (日) (日) (日)

Let γ_i denote the character $\zeta \mapsto \zeta^i$ of any group $\mu_r \subset \mathbb{C}^{\times}$ of roots of unity.

If $(g, \xi) \in \Gamma$, since $Q_0 \in \mathbb{C}[V]$ is homogeneous of degree d, then $(g, \xi)Q_0(v) = \xi^d Q_0(g^{-1}v) = \lambda_{\mathcal{A}}(g)\xi^d Q_0(v)$.

So $\Gamma_0 = \ker(\lambda_A \otimes \gamma_d) \subseteq G \times \mu_m$.

It follows that any representation θ of Γ_0 may be lifted to a representation $\tilde{\theta}$ of Γ ,

(日) (日) (日) (日) (日) (日) (日)

Let γ_i denote the character $\zeta \mapsto \zeta^i$ of any group $\mu_r \subset \mathbb{C}^{\times}$ of roots of unity.

If $(g, \xi) \in \Gamma$, since $Q_0 \in \mathbb{C}[V]$ is homogeneous of degree d, then $(g, \xi)Q_0(v) = \xi^d Q_0(g^{-1}v) = \lambda_{\mathcal{A}}(g)\xi^d Q_0(v)$.

So $\Gamma_0 = \ker(\lambda_{\mathcal{A}} \otimes \gamma_d) \subseteq G \times \mu_m$.

It follows that any representation θ of Γ_0 may be lifted to a representation $\tilde{\theta}$ of Γ ,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let γ_i denote the character $\zeta \mapsto \zeta^i$ of any group $\mu_r \subset \mathbb{C}^{\times}$ of roots of unity.

If $(g, \xi) \in \Gamma$, since $Q_0 \in \mathbb{C}[V]$ is homogeneous of degree d, then $(g, \xi)Q_0(v) = \xi^d Q_0(g^{-1}v) = \lambda_{\mathcal{A}}(g)\xi^d Q_0(v)$.

So
$$\Gamma_0 = \ker(\lambda_{\mathcal{A}} \otimes \gamma_d) \subseteq G \times \mu_m$$
.

It follows that any representation θ of Γ_0 may be lifted to a representation $\tilde{\theta}$ of Γ ,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let γ_i denote the character $\zeta \mapsto \zeta^i$ of any group $\mu_r \subset \mathbb{C}^{\times}$ of roots of unity.

If $(g, \xi) \in \Gamma$, since $Q_0 \in \mathbb{C}[V]$ is homogeneous of degree d, then $(g, \xi)Q_0(v) = \xi^d Q_0(g^{-1}v) = \lambda_{\mathcal{A}}(g)\xi^d Q_0(v)$.

So
$$\Gamma_0 = \ker(\lambda_{\mathcal{A}} \otimes \gamma_d) \subseteq G \times \mu_m$$
.

It follows that any representation θ of Γ_0 may be lifted to a representation $\tilde{\theta}$ of Γ ,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

But for all $p, q, j, H^{p,q}H^j(F, \mathbb{C}) \cong \operatorname{Ind}_{\Gamma_0}^{\Gamma}(H^{p,q}H^j(F_0, \mathbb{C})).$

This is because $F = \prod_{\zeta \in \mu_{\theta}} F_0(\zeta)$, where $F_0(\zeta)$ is given by $Q_0(v) = \zeta$.

So it suffices to consider the reduced case.

But for all $p, q, j, H^{p,q}H^{j}(F, \mathbb{C}) \cong \operatorname{Ind}_{\Gamma_{0}}^{\Gamma}(H^{p,q}H^{j}(F_{0}, \mathbb{C})).$

This is because $F = \coprod_{\zeta \in \mu_e} F_0(\zeta)$, where $F_0(\zeta)$ is given by $Q_0(v) = \zeta$.

So it suffices to consider the reduced case.

But for all $p, q, j, H^{p,q}H^j(F, \mathbb{C}) \cong \operatorname{Ind}_{\Gamma_0}^{\Gamma}(H^{p,q}H^j(F_0, \mathbb{C})).$

This is because $F = \coprod_{\zeta \in \mu_e} F_0(\zeta)$, where $F_0(\zeta)$ is given by $Q_0(v) = \zeta$.

So it suffices to consider the reduced case.

The following result is useful for studying Euler characteristics

Proposition (Zarelua): Let *G* act freely on the CW complex *X* and suppose that $X/G \simeq$ a finite CW complex. Then $\chi^G(X) = P^G(X, -1) = \chi(X/G) \operatorname{Reg}_G$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where *M* is the hyperplane complement of *A* and $\widetilde{M} = \{(v, \xi) \in V \times \mathbb{C}^{\times} \mid Q(v) = \zeta^{m}\}.$

The following result is useful for studying Euler characteristics

(日) (日) (日) (日) (日) (日) (日)

Proposition (Zarelua): Let *G* act freely on the CW complex *X* and suppose that $X/G \simeq$ a finite CW complex. Then $\chi^G(X) = P^G(X, -1) = \chi(X/G) \operatorname{Reg}_G$.

where *M* is the hyperplane complement of *A* and $\widetilde{M} = \{(v, \xi) \in V \times \mathbb{C}^{\times} \mid Q(v) = \zeta^m\}.$

The following result is useful for studying Euler characteristics.

(日) (日) (日) (日) (日) (日) (日)

Proposition (Zarelua): Let *G* act freely on the CW complex *X* and suppose that $X/G \simeq$ a finite CW complex. Then $\chi^{G}(X) = P^{G}(X, -1) = \chi(X/G) \operatorname{Reg}_{G}$.

where *M* is the hyperplane complement of *A* and $\widetilde{M} = \{(v, \xi) \in V \times \mathbb{C}^{\times} \mid Q(v) = \zeta^{m}\}.$

The following result is useful for studying Euler characteristics

(日) (日) (日) (日) (日) (日) (日)

Proposition (Zarelua): Let *G* act freely on the CW complex *X* and suppose that $X/G \simeq$ a finite CW complex. Then $\chi^G(X) = P^G(X, -1) = \chi(X/G) \operatorname{Reg}_G$.

Next consider the diagram:
$$\begin{array}{ccc} \widetilde{M} & \stackrel{p_1}{\longrightarrow} & M \\ \pi_1 & & & \downarrow \pi \\ F & \stackrel{p}{\longrightarrow} & U = \mathbb{P}(M) \end{array}$$

where *M* is the hyperplane complement of *A* and $\widetilde{M} = \{(v, \xi) \in V \times \mathbb{C}^{\times} \mid Q(v) = \zeta^{m}\}.$

The following result is useful for studying Euler characteristics

(日) (日) (日) (日) (日) (日) (日)

Proposition (Zarelua): Let *G* act freely on the CW complex *X* and suppose that $X/G \simeq$ a finite CW complex. Then $\chi^{G}(X) = P^{G}(X, -1) = \chi(X/G) \operatorname{Reg}_{G}$.

Next consider the diagram:
$$\begin{array}{ccc} \widetilde{M} & \stackrel{p_1}{\longrightarrow} & M \\ \pi_1 & & & \downarrow \pi \\ F & \stackrel{p}{\longrightarrow} & U = \mathbb{P}(M) \end{array}$$

where *M* is the hyperplane complement of *A* and $\widetilde{M} = \{(v, \xi) \in V \times \mathbb{C}^{\times} \mid Q(v) = \zeta^{m}\}.$

By Zarelua, we have: (i) $\chi^G(F) = \chi(F/G) \operatorname{Reg}_G$ and (ii) $\chi^{\mu_m}(F) = \chi(F/\mu_m) \operatorname{Reg}_{\mu_m} = \chi(U) \operatorname{Reg}_{\mu_m}$.

If G is a unitary reflection group, then $P_M(t) = \prod_{i=1}^{\ell} (1 + m_i^* t)$,

where m_1^*, \ldots, m_ℓ^* are the *coexponents* of *G*.

i.e. the degrees of the generators of $(\mathbb{C}[V] \otimes V)^G$.

If $m_1^* \leq \cdots \leq m_{\ell}^*$, always have $m_1^* = 1$ (Euler form $\sum_i x_i \otimes \frac{\partial}{\partial x_i}$ is invariant).

So $P_U(t) = \frac{1}{1+t} P_M(t) = \prod_{i \ge 2} (1 + m_i^* t)$, and we know $\chi(U)$.

◆□ → ◆□ → ◆ = → ◆ = → のへで

By Zarelua, we have: (i) $\chi^G(F) = \chi(F/G) \operatorname{Reg}_G$ and (ii) $\chi^{\mu_m}(F) = \chi(F/\mu_m) \operatorname{Reg}_{\mu_m} = \chi(U) \operatorname{Reg}_{\mu_m}$.

If G is a unitary reflection group, then $P_M(t) = \prod_{i=1}^{\ell} (1 + m_i^* t)$,

where m_1^*, \ldots, m_ℓ^* are the *coexponents* of *G*.

i.e. the degrees of the generators of $(\mathbb{C}[V] \otimes V)^G$.

If $m_1^* \leq \cdots \leq m_{\ell}^*$, always have $m_1^* = 1$ (Euler form $\sum_i x_i \otimes \frac{\partial}{\partial x_i}$ is invariant).

So $P_U(t) = \frac{1}{1+t} P_M(t) = \prod_{i \ge 2} (1 + m_i^* t)$, and we know $\chi(U)$.

By Zarelua, we have: (i) $\chi^G(F) = \chi(F/G) \operatorname{Reg}_G$ and (ii) $\chi^{\mu_m}(F) = \chi(F/\mu_m) \operatorname{Reg}_{\mu_m} = \chi(U) \operatorname{Reg}_{\mu_m}$.

If G is a unitary reflection group, then $P_M(t) = \prod_{i=1}^{\ell} (1 + m_i^* t)$,

where m_1^*, \ldots, m_ℓ^* are the *coexponents* of *G*.

i.e. the degrees of the generators of $(\mathbb{C}[V] \otimes V)^G$.

If $m_1^* \leq \cdots \leq m_{\ell}^*$, always have $m_1^* = 1$ (Euler form $\sum_i x_i \otimes \frac{\partial}{\partial x_i}$ is invariant).

So $P_U(t) = \frac{1}{1+t} P_M(t) = \prod_{i \ge 2} (1 + m_i^* t)$, and we know $\chi(U)$.

・ロト・(部・・モー・モー・)への

By Zarelua, we have: (i) $\chi^G(F) = \chi(F/G) \operatorname{Reg}_G$ and (ii) $\chi^{\mu_m}(F) = \chi(F/\mu_m) \operatorname{Reg}_{\mu_m} = \chi(U) \operatorname{Reg}_{\mu_m}$.

If G is a unitary reflection group, then $P_M(t) = \prod_{j=1}^{\ell} (1 + m_j^* t)$,

where m_1^*, \ldots, m_ℓ^* are the *coexponents* of *G*.

i.e. the degrees of the generators of $(\mathbb{C}[V] \otimes V)^G$.

If $m_1^* \leq \cdots \leq m_{\ell}^*$, always have $m_1^* = 1$ (Euler form $\sum_i x_i \otimes \frac{\partial}{\partial x_i}$ is invariant).

So $P_U(t) = \frac{1}{1+t} P_M(t) = \prod_{i \ge 2} (1 + m_i^* t)$, and we know $\chi(U)$.

・ロト・(部・・モー・モー・)への

By Zarelua, we have: (i) $\chi^G(F) = \chi(F/G) \operatorname{Reg}_G$ and (ii) $\chi^{\mu_m}(F) = \chi(F/\mu_m) \operatorname{Reg}_{\mu_m} = \chi(U) \operatorname{Reg}_{\mu_m}$.

If G is a unitary reflection group, then $P_M(t) = \prod_{j=1}^{\ell} (1 + m_j^* t)$,

where m_1^*, \ldots, m_ℓ^* are the *coexponents* of *G*.

i.e. the degrees of the generators of $(\mathbb{C}[V] \otimes V)^G$.

If $m_1^* \leq \cdots \leq m_{\ell}^*$, always have $m_1^* = 1$ (Euler form $\sum_i x_i \otimes \frac{\partial}{\partial x_i}$ is invariant).

So $P_U(t) = \frac{1}{1+t} P_M(t) = \prod_{i \ge 2} (1 + m_i^* t)$, and we know $\chi(U)$.

By Zarelua, we have: (i) $\chi^G(F) = \chi(F/G) \operatorname{Reg}_G$ and (ii) $\chi^{\mu_m}(F) = \chi(F/\mu_m) \operatorname{Reg}_{\mu_m} = \chi(U) \operatorname{Reg}_{\mu_m}$.

If G is a unitary reflection group, then $P_M(t) = \prod_{i=1}^{\ell} (1 + m_i^* t)$,

where m_1^*, \ldots, m_ℓ^* are the *coexponents* of *G*.

i.e. the degrees of the generators of $(\mathbb{C}[V] \otimes V)^G$.

If $m_1^* \leq \cdots \leq m_{\ell}^*$, always have $m_1^* = 1$ (Euler form $\sum_i x_i \otimes \frac{\partial}{\partial x_i}$ is invariant).

So
$$P_U(t) = \frac{1}{1+t}P_M(t) = \prod_{i \ge 2}(1+m_i^*t)$$
, and we know $\chi(U)$.

the ξ -eigenspace of $g \in G$. NB: only regular (Springer) eigenvalues can occur, as $F \subset M$.

Hence Γ acts freely on $F^0 := F \setminus \bigcup_{g \in G, \xi \in \mathbb{C}} V(g, \xi)$. This leads (via Zarelua, applied to a stratification of *F* by spaces $F(d)^0$ like F^0 for smaller *G*) to the following result of Denham-Lemire:

If G has invariant degrees d_1, \ldots, d_ℓ and $d \in \mathbb{Z}_{>0}$, define $\overline{d} := \gcd\{d_i : d | d_i\}$.

Let $\mathcal{P} = \{d \mid d \text{ is regular for } G \text{ and } d = \overline{d}.\}$ Then:

the ξ -eigenspace of $g \in G$. NB: only regular (Springer) eigenvalues can occur, as $F \subset M$.

Hence Γ acts freely on $F^0 := F \setminus \bigcup_{g \in G, \xi \in \mathbb{C}} V(g, \xi)$. This leads (via Zarelua, applied to a stratification of *F* by spaces $F(d)^0$ like F^0 for smaller *G*) to the following result of Denham-Lemire:

If G has invariant degrees d_1, \ldots, d_ℓ and $d \in \mathbb{Z}_{>0}$, define $\overline{d} := \gcd\{d_i : d | d_i\}$.

Let $\mathcal{P} = \{d \mid d \text{ is regular for } G \text{ and } d = \overline{d}.\}$ Then:

the ξ -eigenspace of $g \in G$. NB: only regular (Springer) eigenvalues can occur, as $F \subset M$.

Hence Γ acts freely on $F^0 := F \setminus \bigcup_{g \in G, \xi \in \mathbb{C}} V(g, \xi)$. This leads (via Zarelua, applied to a stratification of F by spaces $F(d)^0$ like F^0 for smaller G) to the following result of Denham-Lemire:

If G has invariant degrees d_1, \ldots, d_ℓ and $d \in \mathbb{Z}_{>0}$, define $\overline{d} := \gcd\{d_i : d | d_i\}$.

Let $\mathcal{P} = \{d \mid d \text{ is regular for } G \text{ and } d = \overline{d}.\}$ Then:

the ξ -eigenspace of $g \in G$. NB: only regular (Springer) eigenvalues can occur, as $F \subset M$.

Hence Γ acts freely on $F^0 := F \setminus \bigcup_{g \in G, \xi \in \mathbb{C}} V(g, \xi)$. This leads (via Zarelua, applied to a stratification of *F* by spaces $F(d)^0$ like F^0 for smaller *G*) to the following result of Denham-Lemire:

If G has invariant degrees d_1, \ldots, d_ℓ and $d \in \mathbb{Z}_{>0}$, define $\overline{d} := \gcd\{d_i : d | d_i\}$.

Let $\mathcal{P} = \{d \mid d \text{ is regular for } G \text{ and } d = \overline{d}.\}$ Then:

Observe: if $v \in F$ and $(g, \xi) \in \Gamma$, then $(g, \xi)v = \xi^{-1}gv = v \iff v \in V(g, \xi),$

the ξ -eigenspace of $g \in G$. NB: only regular (Springer) eigenvalues can occur, as $F \subset M$.

Hence Γ acts freely on $F^0 := F \setminus \bigcup_{g \in G, \xi \in \mathbb{C}} V(g, \xi)$. This leads (via Zarelua, applied to a stratification of *F* by spaces $F(d)^0$ like F^0 for smaller *G*) to the following result of Denham-Lemire:

If *G* has invariant degrees d_1, \ldots, d_ℓ and $d \in \mathbb{Z}_{>0}$, define $\overline{d} := \gcd\{d_i : d | d_i\}$.

Let $\mathcal{P} = \{d \mid d \text{ is regular for } G \text{ and } d = \overline{d}.\}$ Then:

Observe: if $v \in F$ and $(g, \xi) \in \Gamma$, then $(g, \xi)v = \xi^{-1}gv = v \iff v \in V(g, \xi),$

the ξ -eigenspace of $g \in G$. NB: only regular (Springer) eigenvalues can occur, as $F \subset M$.

Hence Γ acts freely on $F^0 := F \setminus \bigcup_{g \in G, \xi \in \mathbb{C}} V(g, \xi)$. This leads (via Zarelua, applied to a stratification of *F* by spaces $F(d)^0$ like F^0 for smaller *G*) to the following result of Denham-Lemire:

If *G* has invariant degrees d_1, \ldots, d_ℓ and $d \in \mathbb{Z}_{>0}$, define $\overline{d} := \gcd\{d_i : d | d_i\}$.

Let $\mathcal{P} = \{ d \mid d \text{ is regular for } G \text{ and } d = \overline{d}. \}$ Then:

the ξ -eigenspace of $g \in G$. NB: only regular (Springer) eigenvalues can occur, as $F \subset M$.

Hence Γ acts freely on $F^0 := F \setminus \bigcup_{g \in G, \xi \in \mathbb{C}} V(g, \xi)$. This leads (via Zarelua, applied to a stratification of *F* by spaces $F(d)^0$ like F^0 for smaller *G*) to the following result of Denham-Lemire:

If *G* has invariant degrees d_1, \ldots, d_ℓ and $d \in \mathbb{Z}_{>0}$, define $\overline{d} := \gcd\{d_i : d | d_i\}$.

Let $\mathcal{P} = \{ d \mid d \text{ is regular for } G \text{ and } d = \overline{d}. \}$ Then:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The only unknowns in this formula are the coefficients, which Denham-Lemire computed case by case.

The following result makes their result into a closed formula.

Theorem (Dimca-L): We have $\chi(U^0/G) = |Z(G)| \sum_{d \in \mathcal{P}} \mu_{\mathcal{P}}(d) |G(d)|^{-1} \prod_{i \ge 2} (1 - m_i^*(d)).$

We have computed $P^{\Gamma}(F, t)$ for types A_2, A_3, A_4 and all 2-dimensional groups. We also noticed that in type A_{ℓ} , we have

 $\dim H^*(F/\operatorname{Sym}_{\ell+1}) = 2\ell + 1.$

The only unknowns in this formula are the coefficients, which Denham-Lemire computed case by case.

The following result makes their result into a closed formula.

Theorem (Dimca-L): We have $\chi(U^0/G) = |Z(G)| \sum_{d \in \mathcal{P}} \mu_{\mathcal{P}}(d) |G(d)|^{-1} \prod_{i \ge 2} (1 - m_i^*(d)).$

We have computed $P^{\Gamma}(F, t)$ for types A_2, A_3, A_4 and all 2-dimensional groups. We also noticed that in type A_{ℓ} , we have

 $\dim H^*(F/\operatorname{Sym}_{\ell+1}) = 2\ell + 1.$

The only unknowns in this formula are the coefficients, which Denham-Lemire computed case by case.

The following result makes their result into a closed formula.

Theorem (Dimca-L): We have $\chi(U^0/G) = |Z(G)| \sum_{d \in \mathcal{P}} \mu_{\mathcal{P}}(d) |G(d)|^{-1} \prod_{i \ge 2} (1 - m_i^*(d)).$

We have computed $P^{\Gamma}(F, t)$ for types A_2, A_3, A_4 and all 2-dimensional groups. We also noticed that in type A_{ℓ} , we have

 $\dim H^*(F/\mathrm{Sym}_{\ell+1}) = 2\ell + 1.$

The only unknowns in this formula are the coefficients, which Denham-Lemire computed case by case.

The following result makes their result into a closed formula.

Theorem (Dimca-L): We have $\chi(U^0/G) = |Z(G)| \sum_{d \in \mathcal{P}} \mu_{\mathcal{P}}(d) |G(d)|^{-1} \prod_{i \ge 2} (1 - m_i^*(d)).$

We have computed $P^{\Gamma}(F, t)$ for types A_2, A_3, A_4 and all 2-dimensional groups. We also noticed that in type A_{ℓ} , we have

 $\dim H^*(F/\operatorname{Sym}_{\ell+1}) = 2\ell + 1.$

The only unknowns in this formula are the coefficients, which Denham-Lemire computed case by case.

The following result makes their result into a closed formula.

Theorem (Dimca-L): We have $\chi(U^0/G) = |Z(G)| \sum_{d \in \mathcal{P}} \mu_{\mathcal{P}}(d) |G(d)|^{-1} \prod_{i \ge 2} (1 - m_i^*(d)).$

We have computed $P^{\Gamma}(F, t)$ for types A_2, A_3, A_4 and all 2-dimensional groups. We also noticed that in type A_{ℓ} , we have

 $\dim H^*(F/\mathrm{Sym}_{\ell+1})=2\ell+1.$

The only unknowns in this formula are the coefficients, which Denham-Lemire computed case by case.

The following result makes their result into a closed formula.

Theorem (Dimca-L): We have $\chi(U^0/G) = |Z(G)| \sum_{d \in \mathcal{P}} \mu_{\mathcal{P}}(d) |G(d)|^{-1} \prod_{i \ge 2} (1 - m_i^*(d)).$

We have computed $P^{\Gamma}(F, t)$ for types A_2, A_3, A_4 and all 2-dimensional groups. We also noticed that in type A_{ℓ} , we have

 $\dim H^*(F/\mathrm{Sym}_{\ell+1}) = 2\ell + 1.$

(日) (日) (日) (日) (日) (日) (日)

We work now with the reduced Milnor fibre F_0 .

Since F_0 is an unramified μ_d -covering of U, for any character $\gamma \in \hat{\mu}_d$, we have $H^j(F_0, \mathbb{C})^{\gamma} \cong H^j(U, L_{\gamma})$,

where L_{γ} is the local system on *U*, corresponding to γ .

(日) (日) (日) (日) (日) (日) (日)

We work now with the reduced Milnor fibre F_0 .

Since F_0 is an unramified μ_d -covering of U, for any character $\gamma \in \hat{\mu}_d$, we have $H^j(F_0, \mathbb{C})^{\gamma} \cong H^j(U, L_{\gamma})$,

where L_{γ} is the local system on U, corresponding to γ .

(日) (日) (日) (日) (日) (日) (日)

We work now with the reduced Milnor fibre F_0 .

Since F_0 is an unramified μ_d -covering of U, for any character $\gamma \in \hat{\mu}_d$, we have $H^j(F_0, \mathbb{C})^{\gamma} \cong H^j(U, L_{\gamma})$,

where L_{γ} is the local system on *U*, corresponding to γ .

(日) (日) (日) (日) (日) (日) (日)

We work now with the reduced Milnor fibre F_0 .

Since F_0 is an unramified μ_d -covering of U, for any character $\gamma \in \hat{\mu}_d$, we have $H^j(F_0, \mathbb{C})^{\gamma} \cong H^j(U, L_{\gamma})$,

where L_{γ} is the local system on *U*, corresponding to γ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $\mathcal{L} = \mathcal{L}(\mathcal{A})$ is the lattice of intersections of the hyperplanes in \mathcal{A} . Its elements will be called *edges*.

Say that \mathcal{A} is *reducible* if $V = V_1 \oplus V_2$, $V_i \neq 0$, and $\mathcal{A} = \mathcal{A}_1 \amalg \mathcal{A}_2$,

where for each $H \in A_i$, $H \supseteq V_{i'}$, $(\{i, i'\} = \{1, 2\})$.

For $X \in \mathcal{L}$ we have the arrangement $\mathcal{A}_X := \{H \in \mathcal{A} \mid X \subseteq H\}$. Say that *X* is *dense* if \mathcal{A}_X is irreducible.

(Example: in type A_{ℓ} , X corresponds to a partition (p, 1, 1, ..., 1)).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $\mathcal{L} = \mathcal{L}(\mathcal{A})$ is the lattice of intersections of the hyperplanes in \mathcal{A} . Its elements will be called *edges*.

Say that \mathcal{A} is *reducible* if $V = V_1 \oplus V_2$, $V_i \neq 0$, and $\mathcal{A} = \mathcal{A}_1 \amalg \mathcal{A}_2$,

where for each $H \in A_i$, $H \supseteq V_{i'}$, $(\{i, i'\} = \{1, 2\})$.

For $X \in \mathcal{L}$ we have the arrangement $\mathcal{A}_X := \{H \in \mathcal{A} \mid X \subseteq H\}$. Say that *X* is *dense* if \mathcal{A}_X is irreducible.

(Example: in type A_{ℓ} , X corresponds to a partition (p, 1, 1, ..., 1)).

(日) (日) (日) (日) (日) (日) (日)

 $\mathcal{L} = \mathcal{L}(\mathcal{A})$ is the lattice of intersections of the hyperplanes in \mathcal{A} . Its elements will be called *edges*.

Say that \mathcal{A} is *reducible* if $V = V_1 \oplus V_2$, $V_i \neq 0$, and $\mathcal{A} = \mathcal{A}_1 \amalg \mathcal{A}_2$,

where for each $H \in A_i$, $H \supseteq V_{i'}$, $(\{i, i'\} = \{1, 2\})$.

For $X \in \mathcal{L}$ we have the arrangement $\mathcal{A}_X := \{H \in \mathcal{A} \mid X \subseteq H\}$. Say that *X* is *dense* if \mathcal{A}_X is irreducible.

(Example: in type A_{ℓ} , X corresponds to a partition $(p, 1, 1, \ldots, 1)$).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathcal{L} = \mathcal{L}(\mathcal{A})$ is the lattice of intersections of the hyperplanes in \mathcal{A} . Its elements will be called *edges*.

Say that \mathcal{A} is *reducible* if $V = V_1 \oplus V_2$, $V_i \neq 0$, and $\mathcal{A} = \mathcal{A}_1 \amalg \mathcal{A}_2$,

where for each $H \in A_i$, $H \supseteq V_{i'}$, $(\{i, i'\} = \{1, 2\})$.

For $X \in \mathcal{L}$ we have the arrangement $\mathcal{A}_X := \{H \in \mathcal{A} \mid X \subseteq H\}$. Say that *X* is *dense* if \mathcal{A}_X is irreducible.

(Example: in type A_{ℓ} , X corresponds to a partition $(p, 1, 1, \ldots, 1)$).

A D F A 同 F A E F A E F A Q A

 $\mathcal{L} = \mathcal{L}(\mathcal{A})$ is the lattice of intersections of the hyperplanes in \mathcal{A} . Its elements will be called *edges*.

Say that \mathcal{A} is *reducible* if $V = V_1 \oplus V_2$, $V_i \neq 0$, and $\mathcal{A} = \mathcal{A}_1 \amalg \mathcal{A}_2$,

where for each $H \in A_i$, $H \supseteq V_{i'}$, $(\{i, i'\} = \{1, 2\})$.

For $X \in \mathcal{L}$ we have the arrangement $\mathcal{A}_X := \{H \in \mathcal{A} \mid X \subseteq H\}$. Say that *X* is *dense* if \mathcal{A}_X is irreducible.

(Example: in type A_{ℓ} , X corresponds to a partition (p, 1, 1, ..., 1)).

Define a compactification Z of U along the divisor $N = \bigcup_{H \in \mathcal{A}} \mathbb{P}(H)$ as follows.

First blow $\mathbb{P}(V)$ up along the 1-dimensional dense edges, then the 2-dimensional ones, etc.

We obtain a resolution $p: Z \longrightarrow \mathbb{P}(V)$, such that $D := p^{-1}(N)$ is a normal crossing divisor D in Z,

with smooth irreducible components D_X , where X runs over the dense edges in \mathcal{L} .

Further, *p* induces an isomorphism : $Z \setminus D \xrightarrow{\sim} U$.

If L_{γ} ($\gamma \in \hat{\mu}_d$) is the local system (above) on U, then the monodromy of L_{γ} about the irreducible component D_X is γ^{m_X} , where $m_X = |\mathcal{A}_X|$.

First blow $\mathbb{P}(V)$ up along the 1-dimensional dense edges, then the 2-dimensional ones, etc.

We obtain a resolution $p: Z \longrightarrow \mathbb{P}(V)$, such that $D := p^{-1}(N)$ is a normal crossing divisor D in Z,

with smooth irreducible components D_X , where X runs over the dense edges in \mathcal{L} .

Further, *p* induces an isomorphism : $Z \setminus D \xrightarrow{\sim} U$.

First blow $\mathbb{P}(V)$ up along the 1-dimensional dense edges, then the 2-dimensional ones, etc.

We obtain a resolution $p: Z \longrightarrow \mathbb{P}(V)$, such that $D := p^{-1}(N)$ is a normal crossing divisor D in Z,

with smooth irreducible components D_X , where X runs over the dense edges in \mathcal{L} .

Further, *p* induces an isomorphism : $Z \setminus D \xrightarrow{\sim} U$.

First blow $\mathbb{P}(V)$ up along the 1-dimensional dense edges, then the 2-dimensional ones, etc.

We obtain a resolution $p: Z \longrightarrow \mathbb{P}(V)$, such that $D := p^{-1}(N)$ is a normal crossing divisor D in Z,

with smooth irreducible components D_X , where X runs over the dense edges in \mathcal{L} .

Further, *p* induces an isomorphism : $Z \setminus D \xrightarrow{\sim} U$.

First blow $\mathbb{P}(V)$ up along the 1-dimensional dense edges, then the 2-dimensional ones, etc.

We obtain a resolution $p : Z \longrightarrow \mathbb{P}(V)$, such that $D := p^{-1}(N)$ is a normal crossing divisor D in Z,

with smooth irreducible components D_X , where X runs over the dense edges in \mathcal{L} .

Further, *p* induces an isomorphism : $Z \setminus D \xrightarrow{\sim} U$.

First blow $\mathbb{P}(V)$ up along the 1-dimensional dense edges, then the 2-dimensional ones, etc.

We obtain a resolution $p : Z \longrightarrow \mathbb{P}(V)$, such that $D := p^{-1}(N)$ is a normal crossing divisor D in Z,

with smooth irreducible components D_X , where X runs over the dense edges in \mathcal{L} .

Further, *p* induces an isomorphism : $Z \setminus D \xrightarrow{\sim} U$.

First blow $\mathbb{P}(V)$ up along the 1-dimensional dense edges, then the 2-dimensional ones, etc.

We obtain a resolution $p : Z \longrightarrow \mathbb{P}(V)$, such that $D := p^{-1}(N)$ is a normal crossing divisor D in Z,

with smooth irreducible components D_X , where X runs over the dense edges in \mathcal{L} .

Further, *p* induces an isomorphism : $Z \setminus D \xrightarrow{\sim} U$.

First blow $\mathbb{P}(V)$ up along the 1-dimensional dense edges, then the 2-dimensional ones, etc.

We obtain a resolution $p : Z \longrightarrow \mathbb{P}(V)$, such that $D := p^{-1}(N)$ is a normal crossing divisor D in Z,

with smooth irreducible components D_X , where X runs over the dense edges in \mathcal{L} .

Further, *p* induces an isomorphism : $Z \setminus D \xrightarrow{\sim} U$.

Theorem: Suppose that $H^p(F_0, \mathbb{C})^{\gamma} \neq 0$ for some $\gamma \in \hat{\mu}_d$. Then there is a dense edge $X \in \mathcal{L}$ such that $\operatorname{codim}(X) \leq p + 1$ and $|\gamma|$ divides m_X .

Corollary:(Assume \mathcal{A} is essential). If γ is faithful (i.e. $|\gamma| = d$), and $H^p(F_0)^{\gamma} \neq 0$, then $p = \ell - 1$ (the top degree) and $(\gamma, H^{\ell-1}(F_0))_{\mu_d} = |\chi(U)| (= \prod_{i \ge 2} (m_i^* - 1) \text{ if } \mathcal{A} \text{ is a reflection arrangement}).$

Proof: If $H^p(F_0, \mathbb{C})^{\gamma} \neq 0$, then by the theorem there is a dense edge $X \in \mathcal{L}$ with $\operatorname{codim}(X) \leq p + 1$ and $d|m_X$. But for any $X \in \mathcal{L}$ with $X \neq 0$, $m_X = |\mathcal{A}_X| < |\mathcal{A}| = d$.

Hence $\operatorname{codim} X = \ell$ implies that $p = \ell - 1$.

Theorem: Suppose that $H^p(F_0, \mathbb{C})^{\gamma} \neq 0$ for some $\gamma \in \hat{\mu}_d$. Then there is a dense edge $X \in \mathcal{L}$ such that $\operatorname{codim}(X) \leq p + 1$

Corollary:(Assume \mathcal{A} is essential). If γ is faithful (i.e. $|\gamma| = d$), and $H^p(F_0)^{\gamma} \neq 0$, then $p = \ell - 1$ (the top degree) and $(\gamma, H^{\ell-1}(F_0))_{\mu_d} = |\chi(U)| (= \prod_{i \ge 2} (m_i^* - 1)$ if \mathcal{A} is a reflection arrangement).

Proof: If $H^p(F_0, \mathbb{C})^{\gamma} \neq 0$, then by the theorem there is a dense edge $X \in \mathcal{L}$ with $\operatorname{codim}(X) \leq p+1$ and $d|m_X$. But for any $X \in \mathcal{L}$ with $X \neq 0$, $m_X = |\mathcal{A}_X| < |\mathcal{A}| = d$.

Hence $\operatorname{codim} X = \ell$ implies that $p = \ell - 1$.

Theorem: Suppose that $H^p(F_0, \mathbb{C})^{\gamma} \neq 0$ for some $\gamma \in \hat{\mu}_d$. Then there is a dense edge $X \in \mathcal{L}$ such that $\operatorname{codim}(X) \leq p + 1$ and $|\gamma|$ divides m_X .

Corollary:(Assume \mathcal{A} is essential). If γ is faithful (i.e. $|\gamma| = d$), and $H^p(F_0)^{\gamma} \neq 0$, then $p = \ell - 1$ (the top degree) and $(\gamma, H^{\ell-1}(F_0))_{\mu_d} = |\chi(U)| (= \prod_{i \ge 2} (m_i^* - 1)$ if \mathcal{A} is a reflection arrangement).

Proof: If $H^p(F_0, \mathbb{C})^{\gamma} \neq 0$, then by the theorem there is a dense edge $X \in \mathcal{L}$ with $\operatorname{codim}(X) \leq p + 1$ and $d|m_X$. But for any $X \in \mathcal{L}$ with $X \neq 0$, $m_X = |\mathcal{A}_X| < |\mathcal{A}| = d$.

Hence $\operatorname{codim} X = \ell$ implies that $p = \ell - 1$.

Theorem: Suppose that $H^p(F_0, \mathbb{C})^{\gamma} \neq 0$ for some $\gamma \in \hat{\mu}_d$. Then there is a dense edge $X \in \mathcal{L}$ such that $\operatorname{codim}(X) \leq p + 1$ and $|\gamma|$ divides m_X .

Corollary:(Assume \mathcal{A} is essential). If γ is faithful (i.e. $|\gamma| = d$), and $H^{p}(F_{0})^{\gamma} \neq 0$, then $p = \ell - 1$ (the top degree) and $(\gamma, H^{\ell-1}(F_{0}))_{\mu_{d}} = |\chi(U)| (= \prod_{i \geq 2} (m_{i}^{*} - 1)$ if \mathcal{A} is a reflection arrangement).

Proof: If $H^p(F_0, \mathbb{C})^{\gamma} \neq 0$, then by the theorem there is a dense edge $X \in \mathcal{L}$ with $\operatorname{codim}(X) \leq p+1$ and $d|m_X$. But for any $X \in \mathcal{L}$ with $X \neq 0$, $m_X = |\mathcal{A}_X| < |\mathcal{A}| = d$.

Hence $\operatorname{codim} X = \ell$ implies that $p = \ell - 1$.

Theorem: Suppose that $H^p(F_0, \mathbb{C})^{\gamma} \neq 0$ for some $\gamma \in \hat{\mu}_d$. Then there is a dense edge $X \in \mathcal{L}$ such that $\operatorname{codim}(X) \leq p + 1$ and $|\gamma|$ divides m_X .

Corollary:(Assume \mathcal{A} is essential). If γ is faithful (i.e. $|\gamma| = d$), and $H^{p}(F_{0})^{\gamma} \neq 0$, then $p = \ell - 1$ (the top degree) and $(\gamma, H^{\ell-1}(F_{0}))_{\mu_{d}} = |\chi(U)| (= \prod_{i \geq 2} (m_{i}^{*} - 1)$ if \mathcal{A} is a reflection arrangement).

Proof: If $H^{p}(F_{0}, \mathbb{C})^{\gamma} \neq 0$, then by the theorem there is a dense edge $X \in \mathcal{L}$ with $\operatorname{codim}(X) \leq p + 1$ and $d|m_{X}$. But for any $X \in \mathcal{L}$ with $X \neq 0$, $m_{X} = |\mathcal{A}_{X}| < |\mathcal{A}| = d$.

Hence $\operatorname{codim} X = \ell$ implies that $p = \ell - 1$.

Theorem: Suppose that $H^p(F_0, \mathbb{C})^{\gamma} \neq 0$ for some $\gamma \in \hat{\mu}_d$. Then there is a dense edge $X \in \mathcal{L}$ such that $\operatorname{codim}(X) \leq p + 1$ and $|\gamma|$ divides m_X .

Corollary:(Assume \mathcal{A} is essential). If γ is faithful (i.e. $|\gamma| = d$), and $H^{p}(F_{0})^{\gamma} \neq 0$, then $p = \ell - 1$ (the top degree) and $(\gamma, H^{\ell-1}(F_{0}))_{\mu_{d}} = |\chi(U)| (= \prod_{i \geq 2} (m_{i}^{*} - 1)$ if \mathcal{A} is a reflection arrangement).

Proof: If $H^{p}(F_{0}, \mathbb{C})^{\gamma} \neq 0$, then by the theorem there is a dense edge $X \in \mathcal{L}$ with $\operatorname{codim}(X) \leq p + 1$ and $d|m_{X}$. But for any $X \in \mathcal{L}$ with $X \neq 0$, $m_{X} = |\mathcal{A}_{X}| < |\mathcal{A}| = d$.

Hence $\operatorname{codim} X = \ell$ implies that $p = \ell - 1$.

Theorem: Suppose that $H^p(F_0, \mathbb{C})^{\gamma} \neq 0$ for some $\gamma \in \hat{\mu}_d$. Then there is a dense edge $X \in \mathcal{L}$ such that $\operatorname{codim}(X) \leq p + 1$ and $|\gamma|$ divides m_X .

Corollary:(Assume \mathcal{A} is essential). If γ is faithful (i.e. $|\gamma| = d$), and $H^{p}(F_{0})^{\gamma} \neq 0$, then $p = \ell - 1$ (the top degree) and $(\gamma, H^{\ell-1}(F_{0}))_{\mu_{d}} = |\chi(U)| (= \prod_{i \geq 2} (m_{i}^{*} - 1)$ if \mathcal{A} is a reflection arrangement).

Proof: If $H^{p}(F_{0}, \mathbb{C})^{\gamma} \neq 0$, then by the theorem there is a dense edge $X \in \mathcal{L}$ with $\operatorname{codim}(X) \leq p + 1$ and $d|m_{X}$. But for any $X \in \mathcal{L}$ with $X \neq 0$, $m_{X} = |\mathcal{A}_{X}| < |\mathcal{A}| = d$.

Hence $\operatorname{codim} X = \ell$ implies that $p = \ell - 1$.

Recall we have

$$H^{p,q}(H^{j}(F,\mathbb{C})) := \mathrm{Gr}_{F}^{p}\mathrm{Gr}_{p+q}^{W}H^{j}(F,\mathbb{C}),$$

and the Poincaré-Deligne polynomial:

$$PD^{\Gamma}(F; u, v, t) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} t^{j}.$$

A useful specialisation is the Hodge-Deligne polynomial:

$$HD^{\Gamma}(F; u, v) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} (-1)^{j} = PD^{\Gamma}(F; u, v, -1).$$

Note that $HD^{\Gamma}(F; u, v) = \sum_{p,q} E^{\Gamma;p,q}(F) u^p v^q$,

where $E^{\Gamma:p,q}(F) = \sum_{j} (-1)^{j} H^{p,q} H^{j}(F, \mathbb{C}),$

the latter being additive over locally closed subvarieties, and a social subvarieties, and a social subvarieties.

Recall we have

$$H^{p,q}(H^j(F,\mathbb{C})) := \mathrm{Gr}_F^p \mathrm{Gr}_{p+q}^W H^j(F,\mathbb{C}),$$

and the Poincaré-Deligne polynomial:

$$PD^{\Gamma}(F; u, v, t) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} t^{j}.$$

A useful specialisation is the Hodge-Deligne polynomial:

$$HD^{\Gamma}(F; u, v) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q}(-1)^{j} = PD^{\Gamma}(F; u, v, -1).$$

Note that $HD^{\Gamma}(F; u, v) = \sum_{p,q} E^{\Gamma;p,q}(F) u^p v^q$,

where $E^{\Gamma:p,q}(F) = \sum_{j} (-1)^{j} H^{p,q} H^{j}(F,\mathbb{C}),$

the latter being additive over locally closed subvarieties, and a solution over locally closed subvarieties, and a solution of the solution of

Recall we have

$$H^{p,q}(H^j(F,\mathbb{C})) := \mathrm{Gr}_F^p \mathrm{Gr}_{p+q}^W H^j(F,\mathbb{C}),$$

and the Poincaré-Deligne polynomial:

$$PD^{\Gamma}(F; u, v, t) := \sum_{\rho, q, j} H^{\rho, q} H^{j}(F) u^{\rho} v^{q} t^{j}.$$

A useful specialisation is the Hodge-Deligne polynomial:

 $HD^{\Gamma}(F; u, v) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q}(-1)^{j} = PD^{\Gamma}(F; u, v, -1).$

Note that $HD^{\Gamma}(F; u, v) = \sum_{p,q} E^{\Gamma;p,q}(F) u^p v^q$,

where $E^{\Gamma:p,q}(F) = \sum_{j} (-1)^{j} H^{p,q} H^{j}(F,\mathbb{C}),$

the latter being additive over locally closed subvarieties, and a second

Recall we have

$$H^{p,q}(H^j(F,\mathbb{C})) := \mathrm{Gr}_F^p \mathrm{Gr}_{p+q}^W H^j(F,\mathbb{C}),$$

and the Poincaré-Deligne polynomial:

$$PD^{\Gamma}(F; u, v, t) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} t^{j}.$$

A useful specialisation is the Hodge-Deligne polynomial:

$$HD^{\Gamma}(F; u, v) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} (-1)^{j} = PD^{\Gamma}(F; u, v, -1).$$

Note that $HD^{\Gamma}(F; u, v) = \sum_{p,q} E^{\Gamma:p,q}(F) u^p v^q$,

where $E^{\Gamma:p,q}(F) = \sum_{j} (-1)^{j} H^{p,q} H^{j}(F, \mathbb{C}),$

the latter being additive over locally closed subvarieties, and a source subvarieties, and a source subvarieties.

Recall we have

$$H^{p,q}(H^{j}(F,\mathbb{C}) := \mathrm{Gr}_{F}^{p}\mathrm{Gr}_{p+q}^{W}H^{j}(F,\mathbb{C}),$$

and the Poincaré-Deligne polynomial:

$$PD^{\Gamma}(F; u, v, t) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} t^{j}.$$

A useful specialisation is the Hodge-Deligne polynomial:

$$HD^{\Gamma}(F; u, v) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} (-1)^{j} = PD^{\Gamma}(F; u, v, -1).$$

Note that $HD^{\Gamma}(F; u, v) = \sum_{p,q} E^{\Gamma:p,q}(F) u^p v^q$,

where $E^{\Gamma:p,q}(F) = \sum_{j} (-1)^{j} H^{p,q} H^{j}(F, \mathbb{C}),$

the latter being additive over locally closed subvarieties, and a source subvarieties.

Recall we have

$$H^{p,q}(H^{j}(F,\mathbb{C})) := \mathrm{Gr}_{F}^{p}\mathrm{Gr}_{p+q}^{W}H^{j}(F,\mathbb{C}),$$

and the Poincaré-Deligne polynomial:

$$PD^{\Gamma}(F; u, v, t) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} t^{j}.$$

A useful specialisation is the Hodge-Deligne polynomial:

$$HD^{\Gamma}(F; u, v) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} (-1)^{j} = PD^{\Gamma}(F; u, v, -1).$$

Note that $HD^{\Gamma}(F; u, v) = \sum_{p,q} E^{\Gamma:p,q}(F) u^{p} v^{q}$,

where $E^{\Gamma:p,q}(F) = \sum_{j} (-1)^{j} H^{p,q} H^{j}(F, \mathbb{C}),$

the latter being additive over locally closed subvarieties,

Recall we have

$$H^{p,q}(H^{j}(F,\mathbb{C})) := \mathrm{Gr}_{F}^{p}\mathrm{Gr}_{p+q}^{W}H^{j}(F,\mathbb{C}),$$

and the Poincaré-Deligne polynomial:

$$PD^{\Gamma}(F; u, v, t) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} t^{j}.$$

A useful specialisation is the Hodge-Deligne polynomial:

$$HD^{\Gamma}(F; u, v) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q}(-1)^{j} = PD^{\Gamma}(F; u, v, -1).$$

Note that $HD^{\Gamma}(F; u, v) = \sum_{p,q} E^{\Gamma:p,q}(F) u^{p} v^{q},$

where $E^{\Gamma:p,q}(F) = \sum_{j} (-1)^{j} H^{p,q} H^{j}(F,\mathbb{C}),$

the latter being additive over locally closed subvarieties.

ъ

Recall we have

$$H^{p,q}(H^{j}(F,\mathbb{C})) := \mathrm{Gr}_{F}^{p}\mathrm{Gr}_{p+q}^{W}H^{j}(F,\mathbb{C}),$$

and the Poincaré-Deligne polynomial:

$$PD^{\Gamma}(F; u, v, t) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q} t^{j}.$$

A useful specialisation is the Hodge-Deligne polynomial:

$$HD^{\Gamma}(F; u, v) := \sum_{p,q,j} H^{p,q} H^{j}(F) u^{p} v^{q}(-1)^{j} = PD^{\Gamma}(F; u, v, -1).$$

Note that $HD^{\Gamma}(F; u, v) = \sum_{p,q} E^{\Gamma:p,q}(F) u^{p} v^{q}$,

where
$$E^{\Gamma:p,q}(F) = \sum_{j} (-1)^{j} H^{p,q} H^{j}(F,\mathbb{C}),$$

the latter being additive over locally closed subvarieties.

For an essential arrangement $\mathcal{A} \subset \mathcal{V} = \mathbb{C}^{\ell}$,

the spectrum is defined by $Sp(A) := \sum_{\alpha \in \mathbb{Q}} m_{\alpha} t^{\alpha}$, where $m_{\alpha} = \sum_{j} (-1)^{j+1-\ell} \dim \operatorname{Gr}_{F}^{p} H^{j}(F)(h^{-j}, \exp(2\pi\sqrt{-1}\alpha))$, where *h* is the generator of the monodromy

It has recently been shown by Budur and Saito that Sp(A) depends only on $\mathcal{L}(A)$, not on A.

Proposition Let $M^{(p)} = (-1)^{\ell-1} \sum_{j} (-1)^{j} \operatorname{Gr}_{F}^{p} \widetilde{H}^{j}(F_{0}, \mathbb{C}) (\in R(\mu_{d})).$

Then

$$Sp(\mathcal{A}) = \left(\sum_{p=0}^{\ell-1} M^{(p)} t^{\ell-1-p}, \sum_{j=1}^{d} \gamma_j t^{j}\right)_{\mu_d}$$

For an essential arrangement $\mathcal{A} \subset \mathcal{V} = \mathbb{C}^{\ell}$, the spectrum is defined by

 $Sp(\mathcal{A}) := \sum_{\alpha \in \mathbb{Q}} m_{\alpha} t^{\alpha}$, where $m_{\alpha} = \sum_{j} (-1)^{j+1-\ell} \dim \operatorname{Gr}_{F}^{p} H^{j}(F)(h^{-j}, \exp(2\pi\sqrt{-1}\alpha)),$ where *h* is the generator of the monodromy

It has recently been shown by Budur and Saito that Sp(A) depends only on $\mathcal{L}(A)$, not on A.

Proposition Let $M^{(p)} = (-1)^{\ell-1} \sum_{j} (-1)^{j} \operatorname{Gr}_{F}^{p} \widetilde{H}^{j}(F_{0}, \mathbb{C}) (\in R(\mu_{d})).$

Then

$$Sp(\mathcal{A}) = \left(\sum_{p=0}^{\ell-1} M^{(p)} t^{\ell-1-p}, \sum_{j=1}^{d} \gamma_j t^{j}\right)_{\mu_d}$$

For an essential arrangement $\mathcal{A} \subset V = \mathbb{C}^{\ell}$, the spectrum is defined by $Sp(\mathcal{A}) := \sum_{\alpha \in \mathbb{Q}} m_{\alpha} t^{\alpha}$, where $m_{\alpha} = \sum_{j} (-1)^{j+1-\ell} \dim \operatorname{Gr}_{F}^{\rho} H^{j}(F)(h^{-j}, \exp(2\pi\sqrt{-1}a))$ where *h* is the generator of the monodromy.

It has recently been shown by Budur and Saito that $Sp(\mathcal{A})$ depends only on $\mathcal{L}(\mathcal{A})$, not on \mathcal{A} .

Proposition Let $M^{(p)} = (-1)^{\ell-1} \sum_{j} (-1)^{j} \operatorname{Gr}_{F}^{p} \widetilde{H}^{j}(F_{0}, \mathbb{C}) (\in R(\mu_{d})).$

Then

$$Sp(\mathcal{A}) = \left(\sum_{\rho=0}^{\ell-1} M^{(\rho)} t^{\ell-1-\rho}, \sum_{j=1}^{d} \gamma_j t^{\frac{j}{d}}\right)_{\mu_d}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

For an essential arrangement $\mathcal{A} \subset V = \mathbb{C}^{\ell}$, the spectrum is defined by $Sp(\mathcal{A}) := \sum_{\alpha \in \mathbb{Q}} m_{\alpha} t^{\alpha}$, where $m_{\alpha} = \sum_{j} (-1)^{j+1-\ell} \dim \operatorname{Gr}_{F}^{p} H^{j}(F)(h^{-j}, \exp(2\pi\sqrt{-1}\alpha)),$ where *h* is the generator of the monodromy.

It has recently been shown by Budur and Saito that Sp(A) depends only on $\mathcal{L}(A)$, not on A.

Proposition Let $M^{(p)} = (-1)^{\ell-1} \sum_{j} (-1)^{j} \operatorname{Gr}_{F}^{p} \widetilde{H}^{j}(F_{0}, \mathbb{C}) (\in R(\mu_{d})).$

Then

$$Sp(\mathcal{A}) = \left(\sum_{\rho=0}^{\ell-1} M^{(\rho)} t^{\ell-1-\rho}, \sum_{j=1}^{d} \gamma_j t^{j}\right)_{\mu_d}$$

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

For an essential arrangement $\mathcal{A} \subset V = \mathbb{C}^{\ell}$, the spectrum is defined by $Sp(\mathcal{A}) := \sum_{\alpha \in \mathbb{Q}} m_{\alpha} t^{\alpha}$, where $m_{\alpha} = \sum_{j} (-1)^{j+1-\ell} \dim \operatorname{Gr}_{F}^{p} H^{j}(F)(h^{-j}, \exp(2\pi\sqrt{-1}\alpha))$, where *h* is the generator of the monodromy.

It has recently been shown by Budur and Saito that Sp(A) depends only on $\mathcal{L}(A)$, not on A.

Proposition Let

$$\mathcal{A}^{(p)} = (-1)^{\ell-1} \sum_{j} (-1)^{j} \operatorname{Gr}_{F}^{p} \widetilde{H}^{j}(F_{0}, \mathbb{C}) (\in R(\mu_{d})).$$
Then

$$Sp(\mathcal{A}) = \left(\sum_{p=0}^{\ell-1} M^{(p)} t^{\ell-1-p}, \sum_{i=1}^{d} \gamma_{j} t^{i}_{d}\right)$$

▲□▶▲圖▶★≧▶★≧▶ 差 の�?

For an essential arrangement $\mathcal{A} \subset V = \mathbb{C}^{\ell}$, the spectrum is defined by $Sp(\mathcal{A}) := \sum_{\alpha \in \mathbb{Q}} m_{\alpha} t^{\alpha}$, where $m_{\alpha} = \sum_{j} (-1)^{j+1-\ell} \dim \operatorname{Gr}_{F}^{p} H^{j}(F)(h^{-j}, \exp(2\pi\sqrt{-1}\alpha))$, where *h* is the generator of the monodromy.

It has recently been shown by Budur and Saito that Sp(A) depends only on $\mathcal{L}(A)$, not on A.

Proposition Let $M^{(p)} = (-1)^{\ell-1} \sum_{j} (-1)^{j} \operatorname{Gr}_{F}^{p} \widetilde{H}^{j}(F_{0}, \mathbb{C}) (\in R(\mu_{d})).$ Then

$$Sp(\mathcal{A}) = \left(\sum_{p=0}^{\ell-1} M^{(p)} t^{\ell-1-p}, \sum_{j=1}^{d} \gamma_j t^{\frac{j}{d}}\right)_{\mu_0}$$

For an essential arrangement $\mathcal{A} \subset V = \mathbb{C}^{\ell}$, the spectrum is defined by $Sp(\mathcal{A}) := \sum_{\alpha \in \mathbb{Q}} m_{\alpha} t^{\alpha}$, where $m_{\alpha} = \sum_{j} (-1)^{j+1-\ell} \dim \operatorname{Gr}_{F}^{p} H^{j}(F)(h^{-j}, \exp(2\pi\sqrt{-1}\alpha))$, where *h* is the generator of the monodromy.

It has recently been shown by Budur and Saito that Sp(A) depends only on $\mathcal{L}(A)$, not on A.

Proposition Let $M^{(p)} = (-1)^{\ell-1} \sum_{j} (-1)^{j} \operatorname{Gr}_{F}^{p} \widetilde{H}^{j}(F_{0}, \mathbb{C}) (\in R(\mu_{d})).$

Then

$$Sp(\mathcal{A}) = \left(\sum_{\rho=0}^{\ell-1} M^{(\rho)} t^{\ell-1-\rho}, \sum_{j=1}^{d} \gamma_j t^{\frac{j}{d}}\right)_{\mu_d}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

(日) (日) (日) (日) (日) (日) (日)

It follows that the information encoded by the spectrum is precisely the μ_d module structure of the virtual modules $M^{(p)}$.

Corollary: $HD^{\mu_d}(F_0; u, 1)$ depends only on the combinatorics of the arrangement A.

Theorem: Suppose \mathcal{A} is essential in \mathbb{C}^{ℓ} . Let $\gamma \in \hat{\mu}_d$ be such that for all dense $X \in \mathcal{L}, X \neq 0, \gamma^{m_X} \neq 1$. Then $H^p(F_0)^{\gamma} \oplus H^p(F_0)^{\overline{\gamma}}$ is 0 for $p < \ell - 1$ and is a pure Hodge structure of weight $\ell - 1$ if $p = \ell - 1$.

(日) (日) (日) (日) (日) (日) (日)

It follows that the information encoded by the spectrum is precisely the μ_d module structure of the virtual modules $M^{(p)}$.

Corollary: $HD^{\mu_d}(F_0; u, 1)$ depends only on the combinatorics of the arrangement A.

Theorem: Suppose \mathcal{A} is essential in \mathbb{C}^{ℓ} . Let $\gamma \in \hat{\mu}_d$ be such that for all dense $X \in \mathcal{L}, X \neq 0, \gamma^{m_X} \neq 1$. Then $H^p(F_0)^{\gamma} \oplus H^p(F_0)^{\overline{\gamma}}$ is 0 for $p < \ell - 1$ and is a pure Hodge structure of weight $\ell - 1$ if $p = \ell - 1$.

(日) (日) (日) (日) (日) (日) (日)

It follows that the information encoded by the spectrum is precisely the μ_d module structure of the virtual modules $M^{(p)}$.

Corollary: $HD^{\mu_d}(F_0; u, 1)$ depends only on the combinatorics of the arrangement A.

Theorem: Suppose \mathcal{A} is essential in \mathbb{C}^{ℓ} . Let $\gamma \in \hat{\mu}_d$ be such that for all dense $X \in \mathcal{L}, X \neq 0, \gamma^{m_X} \neq 1$. Then $H^p(F_0)^{\gamma} \oplus H^p(F_0)^{\overline{\gamma}}$ is 0 for $p < \ell - 1$ and is a pure Hodge structure of weight $\ell - 1$ if $p = \ell - 1$.

It is known that in this case, $H^1(F)^{\mu_m}$ is a pure Hodge structure of weight 2, and we have already seen that its cohomology classes are all Tate-of type (1, 1).

Further, $H^1(F) = H^1(F)^{\mu_m} \oplus H^1(F)'$, and $H^1(F)'$ is pure, of weight 1; it therefore contains classes only of type (1,0) and (0,1). Moreover, $H^1(F)' = 0$ if $\ell \ge 4$

Since $H^1(F)^{\mu_m} \cong \Theta - 1$ as *G*-module, where Θ is the permutation action of *G* on *A*, we have dim $H^1(F)^{\mu_m} = \frac{(\ell+2)(\ell-1)}{2}$.

It is known that in this case, $H^1(F)^{\mu_m}$ is a pure Hodge structure of weight 2, and we have already seen that its cohomology classes are all Tate-of type (1, 1).

Further, $H^1(F) = H^1(F)^{\mu_m} \oplus H^1(F)'$, and $H^1(F)'$ is pure, of weight 1; it therefore contains classes only of type (1,0) and (0,1). Moreover, $H^1(F)' = 0$ if $\ell \ge 4$

Since $H^1(F)^{\mu_m} \cong \Theta - 1$ as *G*-module, where Θ is the permutation action of *G* on *A*, we have dim $H^1(F)^{\mu_m} = \frac{(\ell+2)(\ell-1)}{2}$.

It is known that in this case, $H^1(F)^{\mu_m}$ is a pure Hodge structure of weight 2, and we have already seen that its cohomology classes are all Tate-of type (1, 1).

Further, $H^1(F) = H^1(F)^{\mu_m} \oplus H^1(F)'$, and $H^1(F)'$ is pure, of weight 1; it therefore contains classes only of type (1,0) and (0,1). Moreover, $H^1(F)' = 0$ if $\ell \ge 4$

Since $H^1(F)^{\mu_m} \cong \Theta - 1$ as *G*-module, where Θ is the permutation action of *G* on *A*, we have dim $H^1(F)^{\mu_m} = \frac{(\ell+2)(\ell-1)}{2}$.

It is known that in this case, $H^1(F)^{\mu_m}$ is a pure Hodge structure of weight 2, and we have already seen that its cohomology classes are all Tate-of type (1, 1).

Further, $H^1(F) = H^1(F)^{\mu_m} \oplus H^1(F)'$, and $H^1(F)'$ is pure, of weight 1; it therefore contains classes only of type (1,0) and (0,1). Moreover, $H^1(F)' = 0$ if $\ell \ge 4$

Since $H^1(F)^{\mu_m} \cong \Theta - 1$ as *G*-module, where Θ is the permutation action of *G* on *A*, we have dim $H^1(F)^{\mu_m} = \frac{(\ell+2)(\ell-1)}{2}$.

The formula in the Proposition also gives complete information about the Hodge structure of $H^1(F)$ in certain cases, e.g. when $\mathcal{A} = A_{\ell}$.

It is known that in this case, $H^1(F)^{\mu_m}$ is a pure Hodge structure of weight 2, and we have already seen that its cohomology classes are all Tate-of type (1, 1).

Further, $H^1(F) = H^1(F)^{\mu_m} \oplus H^1(F)'$, and $H^1(F)'$ is pure, of weight 1; it therefore contains classes only of type (1,0) and (0,1). Moreover, $H^1(F)' = 0$ if $\ell \ge 4$

Since $H^1(F)^{\mu_m} \cong \Theta - 1$ as *G*-module, where Θ is the permutation action of *G* on *A*, we have dim $H^1(F)^{\mu_m} = \frac{(\ell+2)(\ell-1)}{2}$.

It is easy to compute the spectrum in the cases $\ell = 2, \ell = 3$. Thus the Hodge structure of $H^1(F)$ is completely understood for the braid arrangement. The formula in the Proposition also gives complete information about the Hodge structure of $H^1(F)$ in certain cases, e.g. when $\mathcal{A} = A_{\ell}$.

It is known that in this case, $H^1(F)^{\mu_m}$ is a pure Hodge structure of weight 2, and we have already seen that its cohomology classes are all Tate-of type (1, 1).

Further, $H^1(F) = H^1(F)^{\mu_m} \oplus H^1(F)'$, and $H^1(F)'$ is pure, of weight 1; it therefore contains classes only of type (1,0) and (0,1). Moreover, $H^1(F)' = 0$ if $\ell \ge 4$

Since $H^1(F)^{\mu_m} \cong \Theta - 1$ as *G*-module, where Θ is the permutation action of *G* on *A*, we have dim $H^1(F)^{\mu_m} = \frac{(\ell+2)(\ell-1)}{2}$.

It is easy to compute the spectrum in the cases $\ell = 2, \ell = 3$. Thus the Hodge structure of $H^1(F)$ is completely understood for the braid arrangement.

For
$$\ell = 3$$
 (case of Sym₄), we have
 $H^{1,0}H^1(F) = 1 \otimes \gamma_4 + \varepsilon \otimes \gamma_{10} = (1 \otimes \gamma_0 + \varepsilon \otimes \gamma_6)(1 \otimes \gamma_4)$
and

$$H^{0,1}H^1(F) = 1 \otimes \gamma_2 + \varepsilon \otimes \gamma_8 = (1 \otimes \gamma_0 + \varepsilon \otimes \gamma_6)(1 \otimes \gamma_2).$$

For these low dimensional groups (i.e. Sym_3 and Sym_4) we have computed the whole of PD(F; u, v, t).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For
$$\ell = 3$$
 (case of Sym₄), we have
 $H^{1,0}H^1(F) = 1 \otimes \gamma_4 + \varepsilon \otimes \gamma_{10} = (1 \otimes \gamma_0 + \varepsilon \otimes \gamma_6)(1 \otimes \gamma_4)$
and

$$H^{0,1}H^1(F) = 1 \otimes \gamma_2 + \varepsilon \otimes \gamma_8 = (1 \otimes \gamma_0 + \varepsilon \otimes \gamma_6)(1 \otimes \gamma_2).$$

For these low dimensional groups (i.e. Sym_3 and Sym_4) we have computed the whole of PD(F; u, v, t).

Let \mathcal{A} be the arrangement of type A_4 in \mathbb{C}^5 .

Then $\Gamma = \text{Sym}_5 \times \mu_{20}$, $\Gamma_0 = \text{ker}(\varepsilon \otimes \gamma_{10})$, and we have the following formula for $P^{\Gamma}(F, t)$.

 $P^{\Gamma}(F,t) = (1 \otimes \gamma_0 + \varepsilon \otimes \gamma_{10}) P_0^{\Gamma_0}(F_0,t), \text{ where}$ $P_0^{\Gamma_0}(F_0,t) = 1 + [\rho \otimes \gamma_0 + \chi^{(3,2)} \otimes \gamma_0]t + [1 \otimes (\gamma_5 + \gamma_{15}) + \rho \otimes \gamma_0 + \chi^{(3,2)} \otimes (\gamma_0 + \gamma_{10}) + \chi^{(3,1^2)} \otimes (\gamma_0 + \gamma_{10})]t^2 + [1 \otimes (\gamma_2 + \gamma_6 + \gamma_{14} + \gamma_{18}) + \rho \otimes (\gamma_0 + \gamma_5 + \gamma_{10} + \gamma_{15}) + \chi^{(3,2)} \otimes (\gamma_0 + \gamma_4 + \gamma_8 + \gamma_{10} + \gamma_{12} + \gamma_{16}) + \chi^{(3,1^2)} \otimes (\gamma_0 + \gamma_1 + \gamma_3 + \gamma_7 + \gamma_9)]t^3.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

(日) (日) (日) (日) (日) (日) (日)

Let \mathcal{A} be the arrangement of type A_4 in \mathbb{C}^5 . Then $\Gamma = \operatorname{Sym}_5 \times \mu_{20}$, $\Gamma_0 = \ker(\varepsilon \otimes \gamma_{10})$, and we have the following formula for $P^{\Gamma}(F, t)$.

 $P^{\Gamma}(F,t) = (1 \otimes \gamma_0 + \varepsilon \otimes \gamma_{10}) P_0^{\Gamma_0}(F_0,t), \text{ where}$ $P_0^{\Gamma_0}(F_0,t) = 1 + [\rho \otimes \gamma_0 + \chi^{(3,2)} \otimes \gamma_0]t + [1 \otimes (\gamma_5 + \gamma_{15}) + \rho \otimes \gamma_0 + \chi^{(3,2)} \otimes (\gamma_0 + \gamma_{10}) + \chi^{(3,1^2)} \otimes (\gamma_0 + \gamma_{10})]t^2 + [1 \otimes (\gamma_2 + \gamma_6 + \gamma_{14} + \gamma_{18}) + \rho \otimes (\gamma_0 + \gamma_5 + \gamma_{10} + \gamma_{15}) + \chi^{(3,2)} \otimes (\gamma_0 + \gamma_4 + \gamma_8 + \gamma_{10} + \gamma_{12} + \gamma_{16}) + \chi^{(3,1^2)} \otimes (\gamma_0 + \gamma_1 + \gamma_3 + \gamma_7 + \gamma_9)]t^3.$

Let \mathcal{A} be the arrangement of type A_4 in \mathbb{C}^5 . Then $\Gamma = \operatorname{Sym}_5 \times \mu_{20}$, $\Gamma_0 = \ker(\varepsilon \otimes \gamma_{10})$, and we have the following formula for $P^{\Gamma}(F, t)$.

$P^{\Gamma}(F,t) = (1 \otimes \gamma_0 + \varepsilon \otimes \gamma_{10}) P_0^{\Gamma_0}(F_0,t)$, where

 $P_0^{\Gamma_0}(F_0,t) = 1 + [
ho \otimes \gamma_0 + \chi^{(3,2)} \otimes \gamma_0]t +$

 $[1 \otimes (\gamma_5 + \gamma_{15}) + \rho \otimes \gamma_0 + \chi^{(3,2)} \otimes (\gamma_0 + \gamma_{10}) + \chi^{(3,1^2)} \otimes (\gamma_0 + \gamma_{10})] t^2 +$

$$\begin{split} & [1 \otimes (\gamma_2 + \gamma_6 + \gamma_{14} + \gamma_{18}) + \rho \otimes (\gamma_0 + \gamma_5 + \gamma_{10} + \gamma_{15}) + \\ & \chi^{(3,2)} \otimes (\gamma_0 + \gamma_4 + \gamma_8 + \gamma_{10} + \gamma_{12} + \gamma_{16}) + \chi^{(3,1^2)} \otimes (\gamma_0 + \gamma_1 + \\ & \gamma_3 + \gamma_7 + \gamma_9)] t^3. \end{split}$$

Let \mathcal{A} be the arrangement of type A_4 in \mathbb{C}^5 . Then $\Gamma = \operatorname{Sym}_5 \times \mu_{20}$, $\Gamma_0 = \ker(\varepsilon \otimes \gamma_{10})$, and we have the following formula for $P^{\Gamma}(F, t)$.

$$P^{\Gamma}(F,t) = (1 \otimes \gamma_{0} + \varepsilon \otimes \gamma_{10}) P_{0}^{\Gamma_{0}}(F_{0},t), \text{ where}$$

$$P_{0}^{\Gamma_{0}}(F_{0},t) = 1 + [\rho \otimes \gamma_{0} + \chi^{(3,2)} \otimes \gamma_{0}]t + [1 \otimes (\gamma_{5} + \gamma_{15}) + \rho \otimes \gamma_{0} + \chi^{(3,2)} \otimes (\gamma_{0} + \gamma_{10}) + \chi^{(3,1^{2})} \otimes (\gamma_{0} + \gamma_{10})]t^{2} + [1 \otimes (\gamma_{2} + \gamma_{6} + \gamma_{14} + \gamma_{18}) + \rho \otimes (\gamma_{0} + \gamma_{5} + \gamma_{10} + \gamma_{15}) + \chi^{(3,2)} \otimes (\gamma_{0} + \gamma_{4} + \gamma_{8} + \gamma_{10} + \gamma_{12} + \gamma_{16}) + \chi^{(3,1^{2})} \otimes (\gamma_{0} + \gamma_{1} + \gamma_{18}) + \rho \otimes (\gamma_{12} + \gamma_{16}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{18}) + \rho \otimes (\gamma_{12} + \gamma_{16}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{18}) + \rho \otimes (\gamma_{10} + \gamma_{12} + \gamma_{16}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{18}) + \rho \otimes (\gamma_{10} + \gamma_{12} + \gamma_{16}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{18}) + \rho \otimes (\gamma_{10} + \gamma_{10} + \gamma_{10}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{18}) + \rho \otimes (\gamma_{10} + \gamma_{10} + \gamma_{10} + \gamma_{10}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{18}) + \rho \otimes (\gamma_{10} + \gamma_{10} + \gamma_{10} + \gamma_{10}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{10} + \gamma_{10}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{1} + \gamma_{10}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{10} + \gamma_{10}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{1} + \gamma_{10}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{1} + \gamma_{10}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{1} + \gamma_{10}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{1} + \gamma_{1} + \gamma_{10}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{1} + \gamma_{1} + \gamma_{1}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{1} + \gamma_{1} + \gamma_{1}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{1} + \gamma_{1}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{1} + \gamma_{1}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{1}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{1}) + \chi^{(3,1^{2})} \otimes (\gamma_{10} + \gamma_{1} + \gamma_{1}) + \chi^{(3,1^{2})} \otimes (\gamma_{1} + \gamma_{1} + \gamma_{1}) + \chi^{(3,1^{2})}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let \mathcal{A} be the arrangement of type A_4 in \mathbb{C}^5 . Then $\Gamma = \operatorname{Sym}_5 \times \mu_{20}$, $\Gamma_0 = \ker(\varepsilon \otimes \gamma_{10})$, and we have the following formula for $P^{\Gamma}(F, t)$.

$$P^{\Gamma}(F,t) = (1 \otimes \gamma_{0} + \varepsilon \otimes \gamma_{10}) P_{0}^{\Gamma_{0}}(F_{0},t), \text{ where}$$

$$P_{0}^{\Gamma_{0}}(F_{0},t) = 1 + [\rho \otimes \gamma_{0} + \chi^{(3,2)} \otimes \gamma_{0}]t + [1 \otimes (\gamma_{5} + \gamma_{15}) + \rho \otimes \gamma_{0} + \chi^{(3,2)} \otimes (\gamma_{0} + \gamma_{10}) + \chi^{(3,1^{2})} \otimes (\gamma_{0} + \gamma_{10})]t^{2} + [1 \otimes (\gamma_{2} + \gamma_{6} + \gamma_{14} + \gamma_{18}) + \rho \otimes (\gamma_{0} + \gamma_{5} + \gamma_{10} + \gamma_{15}) + (3^{2}) \otimes (\gamma_{0} + \gamma_{15}) + (3^{2}) \otimes (\gamma_{0} + \gamma_{15} + \gamma_{15}) + (3^{2}) \otimes (\gamma_{15} + \gamma_{15} + \gamma_{15}) + (3^{2}) \otimes (\gamma_{15} + \gamma_{15} + \gamma_{15} + \gamma_{15}) + (3^{2}) \otimes (\gamma_{15} + \gamma_{15} + \gamma_{15}) + (3^{2}) \otimes (\gamma_{15} + \gamma_{15} + \gamma_{15} + \gamma_{15}) + (3^{2}) \otimes (\gamma_{15} + \gamma_{15} + \gamma_{15} + \gamma_{15} + \gamma_{15}) + (3^{2}) \otimes (\gamma_{15} + \gamma_{15} + \gamma_{15} + \gamma_{15} + \gamma_{15} + \gamma_{15} + \gamma_{15}) + (3^{2}) \otimes (\gamma_{15} + \gamma_{15} +$$

 $\chi^{(3,2)}\otimes(\gamma_0+\gamma_4+\gamma_8+\gamma_{10}+\gamma_{12}+\gamma_{16})+\chi^{(3,1^-)}\otimes(\gamma_0+\gamma_1+\gamma_3+\gamma_7+\gamma_9)]t^3.$

(日) (日) (日) (日) (日) (日) (日)

Let \mathcal{A} be the arrangement of type A_4 in \mathbb{C}^5 . Then $\Gamma = \operatorname{Sym}_5 \times \mu_{20}$, $\Gamma_0 = \ker(\varepsilon \otimes \gamma_{10})$, and we have the following formula for $P^{\Gamma}(F, t)$.

$$P^{\Gamma}(F,t) = (1 \otimes \gamma_{0} + \varepsilon \otimes \gamma_{10}) P_{0}^{\Gamma_{0}}(F_{0},t), \text{ where}$$

$$P_{0}^{\Gamma_{0}}(F_{0},t) = 1 + [\rho \otimes \gamma_{0} + \chi^{(3,2)} \otimes \gamma_{0}]t + [1 \otimes (\gamma_{5} + \gamma_{15}) + \rho \otimes \gamma_{0} + \chi^{(3,2)} \otimes (\gamma_{0} + \gamma_{10}) + \chi^{(3,1^{2})} \otimes (\gamma_{0} + \gamma_{10})]t^{2} + [1 \otimes (\gamma_{2} + \gamma_{6} + \gamma_{14} + \gamma_{18}) + \rho \otimes (\gamma_{0} + \gamma_{5} + \gamma_{10} + \gamma_{15}) + \chi^{(3,2)} \otimes (\gamma_{0} + \gamma_{4} + \gamma_{8} + \gamma_{10} + \gamma_{12} + \gamma_{16}) + \chi^{(3,1^{2})} \otimes (\gamma_{0} + \gamma_{1} + \gamma_{3} + \gamma_{7} + \gamma_{9})]t^{3}.$$

There is still much to be done, but some fascinating hints as to what is happening.

