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1. Introduction

Let V = C`, A a hyperplane arrangement in V and G a finite
subgroup of GL(V ) such that GA = A.

To H ∈ A, corresponds `H ∈ V ∗ and we write
Q0 := ∏H∈A `H ∈ C[V ], and d = deg(Q0) = |A|.

For g ∈ G, gQ0 = λA(g)Q0 for λA(g) ∈ C×, and λA is a
character of G. Write e for |λA|, and note that Q := Qe

0 is
G-invariant.

Define the Milnor fibre of A: F = Q−1(1), and the reduced
Milnor fibre: F0 = Q−1

0 (1); m = deg(Q) = de.

The group Γ := G×µm fixes Q, and hence acts on F . If
Γ0 = {(g,ξ) ∈ Γ | (g,ξ)Q0 = Q0}, then Γ0 acts on Q0.
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The basic problems
Problem A: Determine PΓ(F , t) := ∑i≥0 H i(F ,C)t i as an
element of R(Γ)[t ], the Grothendieck ring..

‘Determine’ might mean: find the character

Problem A’: same as A, but with F0, Γ0. We’ll see soon that
problems A,A’ are equivalent.

Recall that H j(F ) has two canonical filtrations: the increasing
weight filtration W , and the decreasing Hodge filtration F .

These give rise to a mixed Hodge structure on H j : write

Hp,q(H j(F ,C) := Grp
F GrW

p+qH j(F ,C)
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The second, much harder, problem:

Problem B: Determine the Poincaré-Deligne polynomial
PDΓ(F ; u, v , t) := ∑p,q,j Hp,qH j(F )upvqt j as an element of
R(Γ)[u, v , t ].

We also have, correspondingly, Problem B’ for F0, Γ0.

Note that Problem A is the specialisation of Problem B at
u = v = 1.

We shall meet several other specialisations; a complete
solution for Problem B is beyond reach, even in the simplest
cases.
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Example

Let A be the arrangement of type A`. Then d = `(`+1)
2 , e = 2

(λ = ε) and m = `(` + 1).

Γ = Sym`+1 ×µm acts on F : ∏i 6=j(xi − xj) = 1.

This example has motivated much work on this
problem–applications in mathematical physics (monopoles-cf.
G. Segal, Selby).

Confession: not only is not much known in general about the
solution to Problems A and B, but not much is known even
about this special and very explicit case, where we have every
advantage such as Lie theory.
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Here is what is known:

I PG(F/µm, t) = PΓ(F , t)µm is known (GL, 1987). The
character is given by a product formula analogous to
Arn’old’s for the Poincaré polynomial. This is a special
case of results applying to all unitary reflection groups.

I The above result amounts to the cohomology of the
associated hyperplane complement, which is
cohomologically pure.

I F is anything but pure; its cohomology has a rich mixed
Hodge structure

I Pµm (F/G, t) = PΓ(F , t)G was computed by de
Concini-Procesi-Salvetti in 2001.
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I Denham-Lemire (2002) computed the Euler characteristic
PΓ(F ,−1) as a special case of a result about unitary
reflection groups.

More about this later

I Settepanella (2004, 2009) computed some low degree
examples of Pµd (F0, t) and gave some stability results for
this polynomial for the classical groups.

I Like de Concini-Procesi and Salvetti, Settepanella used
the Salvetti complex to compute the cohomology.
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Some basic results

Let γi denote the character ζ 7→ ζ i of any group µr ⊂ C× of
roots of unity.

If (g,ξ) ∈ Γ, since Q0 ∈ C[V ] is homogeneous of degree d ,
then (g,ξ)Q0(v) = ξdQ0(g−1v) = λA(g)ξdQ0(v).

So Γ0 = ker(λA⊗γd ) ⊆ G×µm.

It follows that any representation θ of Γ0 may be lifted to a
representation θ̃ of Γ,

and IndΓ
Γ0

(θ) = θ̃(∑
e−1
i=0 (λ⊗ζd )i).
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But for all p, q, j , Hp,qH j(F ,C) ∼= IndΓ
Γ0

(Hp,qH j(F0,C)).

This is because F = qζ∈µeF0(ζ), where F0(ζ) is given by
Q0(v) = ζ.

So it suffices to consider the reduced case.
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The following result is useful for studying Euler characteristics.

Proposition (Zarelua): Let G act freely on the CW complex X
and suppose that X/G ' a finite CW complex. Then
χG(X ) = PG(X ,−1) = χ(X/G)RegG.

Next consider the diagram:

M̃
p1−−−→ M

π1

y yπ
F

p−−−→ U = P(M)

where M is the hyperplane complement of A and
M̃ = {(v ,ξ) ∈ V ×C× | Q(v) = ζm}.

p and p1 are both unramified µm-coverings.
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The Euler characteristic.

By Zarelua, we have: (i) χG(F ) = χ(F/G)RegG and
(ii) χµm (F ) = χ(F/µm)Regµm

= χ(U)Regµm
.

If G is a unitary reflection group, then PM(t) = ∏
`
i=1(1 + m∗i t),

where m∗1, . . . , m∗` are the coexponents of G.

i.e. the degrees of the generators of (C[V ]⊗V )G.

If m∗1 ≤ · · · ≤ m∗` , always have m∗1 = 1 (Euler form ∑i xi⊗ ∂

∂xi
is

invariant).

So PU(t) = 1
1+t PM(t) = ∏i≥2(1 + m∗i t), and we know χ(U).
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Observe: if v ∈ F and (g,ξ) ∈ Γ, then
(g,ξ)v = ξ−1gv = v ⇐⇒ v ∈ V (g,ξ),
the ξ-eigenspace of g ∈ G. NB: only regular (Springer)
eigenvalues can occur, as F ⊂ M.

Hence Γ acts freely on F 0 := F \ ∪g∈G,ξ∈CV (g,ξ). This leads
(via Zarelua, applied to a stratification of F by spaces F (d)0 like
F 0 for smaller G) to the following result of Denham-Lemire:

If G has invariant degrees d1, . . . , d` and d ∈ Z>0, define
d := gcd{di : d |di}.

Let P = {d | d is regular for G and d = d .} Then:

Theorem (Denham, Lemire 2002):
χΓ(F ) = ∑d∈P χ

(
U(d)0/G(d)

)
IndΓ

R(d)(1).
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The only unknowns in this formula are the coefficients, which
Denham-Lemire computed case by case.

The following result makes their result into a closed formula.

Theorem (Dimca-L): We have
χ(U0/G) = |Z (G)|∑d∈P µP(d)|G(d)|−1

∏i≥2(1−m∗i (d)).

We have computed PΓ(F , t) for types A2, A3, A4 and all
2-dimensional groups. We also noticed that in type A`, we have

dim H∗(F/Sym`+1) = 2` + 1.

We have no heuristic explanation of this.
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Relations between monodromy and cohomology
degree

We work now with the reduced Milnor fibre F0.

Since F0 is an unramified µd -covering of U, for any character
γ ∈ µ̂d , we have H j(F0,C)γ ∼= H j(U , Lγ),

where Lγ is the local system on U, corresponding to γ.

To prove vanishing results for the H j(U , Lγ), we need a
compactification of U, which we now describe:
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L = L(A) is the lattice of intersections of the hyperplanes in A.
Its elements will be called edges.

Say that A is reducible if V = V1 ⊕ V2, Vi 6= 0, and
A = A1 qA2,

where for each H ∈ Ai , H ⊇ Vi ′ , ({i , i ′} = {1, 2}).

For X ∈ L we have the arrangement AX := {H ∈ A | X ⊆ H}.
Say that X is dense if AX is irreducible.

(Example: in type A`, X corresponds to a partition
(p, 1, 1, . . . , 1)).
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Define a compactification Z of U along the divisor
N = ∪H∈AP(H) as follows.

First blow P(V ) up along the 1-dimensional dense edges, then
the 2-dimensional ones, etc.

We obtain a resolution p : Z−→P(V ), such that D := p−1(N) is
a normal crossing divisor D in Z ,

with smooth irreducible components DX , where X runs over the
dense edges in L.

Further, p induces an isomorphism : Z \D ∼−→U.

If Lγ (γ ∈ µ̂d ) is the local system (above) on U, then the
monodromy of Lγ about the irreducible component DX is γmX ,
where mX = |AX |.
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These facts may be used to prove:

Theorem: Suppose that Hp(F0,C)γ 6= 0 for some γ ∈ µ̂d .
Then there is a dense edge X ∈ L such that codim(X ) ≤ p + 1
and |γ| divides mX .

Corollary:(Assume A is essential). If γ is faithful (i.e. |γ| = d),
and Hp(F0)γ 6= 0, then p = `− 1 (the top degree) and
(γ, H`−1(F0))µd = |χ(U)|(= ∏i≥2(m∗i − 1) if A is a reflection
arrangement).

Proof: If Hp(F0,C)γ 6= 0, then by the theorem there is a dense
edge X ∈ L with codim(X ) ≤ p + 1 and d |mX . But for any
X ∈ L with X 6= 0, mX = |AX | < |A| = d .

Hence codimX = ` implies that p = `− 1.

Further, since χµd (F0) = χ(U)Regµd
, and there is no

cancellation since γ appears in just one cohomology degree,
the second statement follows. �
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Mixed Hodge structure.

Recall we have

Hp,q(H j(F ,C) := Grp
F GrW

p+qH j(F ,C),

and the Poincaré-Deligne polynomial:

PDΓ(F ; u, v , t) := ∑p,q,j Hp,qH j(F )upvqt j .

A useful specialisation is the Hodge-Deligne polynomial:

HDΓ(F ; u, v) := ∑p,q,j Hp,qH j(F )upvq(−1)j = PDΓ(F ; u, v ,−1).

Note that HDΓ(F ; u, v) = ∑p,q EΓ:p,q(F )upvq,

where EΓ:p,q(F ) = ∑j(−1)jHp,qH j(F ,C),

the latter being additive over locally closed subvarieties.
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Hodge-Deligne and the spectrum

For an essential arrangement A ⊂ V = C`,
the spectrum is defined by
Sp(A) := ∑α∈Q mαtα, where
mα = ∑j(−1)j+1−` dim Grp

F H j(F )(h−j , exp(2π
√
−1α)),

where h is the generator of the monodromy.

It has recently been shown by Budur and Saito that Sp(A)
depends only on L(A), not on A.

Proposition Let
M(p) = (−1)`−1

∑j(−1)jGrp
F H̃ j(F0,C)(∈ R(µd )).

Then

Sp(A) =

(
`−1

∑
p=0

M(p)t `−1−p ,
d

∑
j=1
γj t

j
d

)
µd

.



Hodge-Deligne and the spectrum

For an essential arrangement A ⊂ V = C`,
the spectrum is defined by
Sp(A) := ∑α∈Q mαtα, where
mα = ∑j(−1)j+1−` dim Grp

F H j(F )(h−j , exp(2π
√
−1α)),

where h is the generator of the monodromy.

It has recently been shown by Budur and Saito that Sp(A)
depends only on L(A), not on A.

Proposition Let
M(p) = (−1)`−1

∑j(−1)jGrp
F H̃ j(F0,C)(∈ R(µd )).

Then

Sp(A) =

(
`−1

∑
p=0

M(p)t `−1−p ,
d

∑
j=1
γj t

j
d

)
µd

.



Hodge-Deligne and the spectrum

For an essential arrangement A ⊂ V = C`,
the spectrum is defined by
Sp(A) := ∑α∈Q mαtα, where
mα = ∑j(−1)j+1−` dim Grp

F H j(F )(h−j , exp(2π
√
−1α)),

where h is the generator of the monodromy.

It has recently been shown by Budur and Saito that Sp(A)
depends only on L(A), not on A.

Proposition Let
M(p) = (−1)`−1

∑j(−1)jGrp
F H̃ j(F0,C)(∈ R(µd )).

Then

Sp(A) =

(
`−1

∑
p=0

M(p)t `−1−p ,
d

∑
j=1
γj t

j
d

)
µd

.



Hodge-Deligne and the spectrum

For an essential arrangement A ⊂ V = C`,
the spectrum is defined by
Sp(A) := ∑α∈Q mαtα, where
mα = ∑j(−1)j+1−` dim Grp

F H j(F )(h−j , exp(2π
√
−1α)),

where h is the generator of the monodromy.

It has recently been shown by Budur and Saito that Sp(A)
depends only on L(A), not on A.

Proposition Let
M(p) = (−1)`−1

∑j(−1)jGrp
F H̃ j(F0,C)(∈ R(µd )).

Then

Sp(A) =

(
`−1

∑
p=0

M(p)t `−1−p ,
d

∑
j=1
γj t

j
d

)
µd

.



Hodge-Deligne and the spectrum

For an essential arrangement A ⊂ V = C`,
the spectrum is defined by
Sp(A) := ∑α∈Q mαtα, where
mα = ∑j(−1)j+1−` dim Grp

F H j(F )(h−j , exp(2π
√
−1α)),

where h is the generator of the monodromy.

It has recently been shown by Budur and Saito that Sp(A)
depends only on L(A), not on A.

Proposition Let
M(p) = (−1)`−1

∑j(−1)jGrp
F H̃ j(F0,C)(∈ R(µd )).

Then

Sp(A) =

(
`−1

∑
p=0

M(p)t `−1−p ,
d

∑
j=1
γj t

j
d

)
µd

.



Hodge-Deligne and the spectrum

For an essential arrangement A ⊂ V = C`,
the spectrum is defined by
Sp(A) := ∑α∈Q mαtα, where
mα = ∑j(−1)j+1−` dim Grp

F H j(F )(h−j , exp(2π
√
−1α)),

where h is the generator of the monodromy.

It has recently been shown by Budur and Saito that Sp(A)
depends only on L(A), not on A.

Proposition Let
M(p) = (−1)`−1

∑j(−1)jGrp
F H̃ j(F0,C)(∈ R(µd )).

Then

Sp(A) =

(
`−1

∑
p=0

M(p)t `−1−p ,
d

∑
j=1
γj t

j
d

)
µd

.



Hodge-Deligne and the spectrum

For an essential arrangement A ⊂ V = C`,
the spectrum is defined by
Sp(A) := ∑α∈Q mαtα, where
mα = ∑j(−1)j+1−` dim Grp

F H j(F )(h−j , exp(2π
√
−1α)),

where h is the generator of the monodromy.

It has recently been shown by Budur and Saito that Sp(A)
depends only on L(A), not on A.

Proposition Let
M(p) = (−1)`−1

∑j(−1)jGrp
F H̃ j(F0,C)(∈ R(µd )).

Then

Sp(A) =

(
`−1

∑
p=0

M(p)t `−1−p ,
d

∑
j=1
γj t

j
d

)
µd

.



It follows that the information encoded by the spectrum is
precisely the µd module structure of the virtual modules M(p).

Corollary: HDµd (F0; u, 1) depends only on the combinatorics
of the arrangement A.

Theorem: Suppose A is essential in C`. Let γ ∈ µ̂d be such
that for all dense X ∈ L, X 6= 0, γmX 6= 1. Then
Hp(F0)γ ⊕Hp(F0)γ is 0 for p < `− 1 and is a pure Hodge
structure of weight `− 1 if p = `− 1.
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The formula in the Proposition also gives complete information
about the Hodge structure of H1(F ) in certain cases, e.g. when
A = A`.

It is known that in this case, H1(F )µm is a pure Hodge structure
of weight 2, and we have already seen that its cohomology
classes are all Tate-of type (1, 1).

Further, H1(F ) = H1(F )µm ⊕H1(F )′, and H1(F )′ is pure, of
weight 1; it therefore contains classes only of type (1, 0) and
(0, 1). Moreover, H1(F )′ = 0 if ` ≥ 4

Since H1(F )µm ∼= Θ− 1 as G-module, where Θ is the
permutation action of G on A, we have
dim H1(F )µm = (`+2)(`−1)

2 .

It is easy to compute the spectrum in the cases ` = 2, ` = 3.
Thus the Hodge structure of H1(F ) is completely understood
for the braid arrangement.
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For ` = 3 (case of Sym4), we have

H1,0H1(F ) = 1⊗γ4 +ε⊗γ10 = (1⊗γ0 +ε⊗γ6)(1⊗γ4)

and

H0,1H1(F ) = 1⊗γ2 +ε⊗γ8 = (1⊗γ0 +ε⊗γ6)(1⊗γ2).

For these low dimensional groups (i.e. Sym3 and Sym4) we
have computed the whole of PD(F ; u, v , t).
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An example.

Let A be the arrangement of type A4 in C5.
Then Γ = Sym5 ×µ20, Γ0 = ker(ε⊗γ10), and we have the
following formula for PΓ(F , t).

PΓ(F , t) = (1⊗γ0 +ε⊗γ10)PΓ0
0 (F0, t), where

PΓ0
0 (F0, t) = 1 + [ρ⊗γ0 + χ(3,2)⊗γ0]t+

[1⊗(γ5 +γ15) + ρ⊗γ0 + χ(3,2)⊗(γ0 +γ10) + χ(3,12)⊗(γ0 +
γ10)]t2+

[1⊗(γ2 +γ6 +γ14 +γ18) + ρ⊗(γ0 +γ5 +γ10 +γ15) +

χ(3,2)⊗(γ0 +γ4 +γ8 +γ10 +γ12 +γ16) + χ(3,12)⊗(γ0 +γ1 +
γ3 +γ7 +γ9)]t3.
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There is still much to be done, but some fascinating hints as to
what is happening.



THANK YOU.
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