The cohomology of the Milnor fibre of an arrangement with symmetry

Gus Lehrer

University of Sydney
NSW 2006
Australia

September 2014, Cortona
This is joint work with Alex Dimca, Nice

The cohomology of the Milnor fibre of an arrangement with symmetry

Gus Lehrer

University of Sydney
NSW 2006
Australia

September 2014, Cortona
This is joint work with Alex Dimca, Nice

1. Introduction

Let $V=\mathbb{C}^{\ell}, \mathcal{A}$ a hyperplane arrangement in V and G a finite subgroup of $G L(V)$ such that $G \mathcal{A}=\mathcal{A}$.

To $H \in \mathcal{A}$, corresponds $\ell_{H} \in V^{*}$ and we write
$Q_{0}:=\prod_{H \in \mathcal{A}} \ell_{H} \in \mathbb{C}[V]$, and $d=\operatorname{deg}\left(Q_{0}\right)=|\mathcal{A}|$.
For $g \in G, g Q_{0}=\lambda_{\mathcal{A}}(g) Q_{0}$ for $\lambda_{\mathcal{A}}(g) \in \mathbb{C}^{\times}$, and $\lambda_{\mathcal{A}}$ is a character of G. Write e for $\left|\lambda_{\mathcal{A}}\right|$, and note that $Q:=Q_{0}^{e}$ is G-invariant.

Define the Milnor fibre of \mathcal{A} : $F=Q^{-1}(1)$, and the reduced Milnor fibre: $F_{0}=Q_{0}^{-1}(1) ; m=\operatorname{deg}(Q)=d e$.

The group $\Gamma:=G \times \mu_{m}$ fixes Q, and hence acts on F. If $\Gamma_{0}=\left\{(g, \xi) \in \Gamma \mid(g, \xi) Q_{0}=Q_{0}\right\}$, then Γ_{0} acts on Q_{0}.

1. Introduction

Let $V=\mathbb{C}^{\ell}, \mathcal{A}$ a hyperplane arrangement in V and G a finite subgroup of $\mathrm{GL}(V)$ such that $G \mathcal{A}=\mathcal{A}$.

To $H \in \mathcal{A}$, corresponds $\ell_{H} \in V^{*}$ and we write $Q_{0}:=\prod_{H \in \mathcal{A}} \ell_{H} \in \mathbb{C}[V]$, and $d=\operatorname{deg}\left(Q_{0}\right)=|\mathcal{A}|$.

For $g \in G, g Q_{0}=\lambda_{\mathcal{A}}(g) Q_{0}$ for $\lambda_{\mathcal{A}}(g) \in \mathbb{C}^{\times}$, and $\lambda_{\mathcal{A}}$ is a character of G. Write e for $\left|\lambda_{\mathcal{A}}\right|$, and note that $Q:=Q_{0}^{e}$ is G-invariant.
\square
The group $\Gamma:=G \times \mu_{m}$ fixes Q, and hence acts on F. If $\Gamma_{0}=\left\{(g, \xi) \in \Gamma \mid(g, \xi) Q_{0}=Q_{0}\right\}$, then Γ_{0} acts on Q_{0}.

1. Introduction

Let $V=\mathbb{C}^{\ell}, \mathcal{A}$ a hyperplane arrangement in V and G a finite subgroup of $\mathrm{GL}(V)$ such that $G \mathcal{A}=\mathcal{A}$.

To $H \in \mathcal{A}$, corresponds $\ell_{H} \in V^{*}$ and we write $Q_{0}:=\prod_{H \in \mathcal{A}} \ell_{H} \in \mathbb{C}[V]$, and $d=\operatorname{deg}\left(Q_{0}\right)=|\mathcal{A}|$.

For $g \in G, g Q_{0}=\lambda_{\mathcal{A}}(g) Q_{0}$ for $\lambda_{\mathcal{A}}(g) \in \mathbb{C}^{\times}$, and $\lambda_{\mathcal{A}}$ is a character of G. Write e for $\left|\lambda_{\mathcal{A}}\right|$, and note that $Q:=Q_{0}^{e}$ is G-invariant.

The group $\Gamma:=G \times \mu_{m}$ fixes Q, and hence acts on F. If $\Gamma_{0}=\left\{(g, \xi) \in \Gamma \mid(g, \xi) Q_{0}=Q_{0}\right\}$, then Γ_{0} acts on Q_{0}.

1. Introduction

Let $V=\mathbb{C}^{\ell}, \mathcal{A}$ a hyperplane arrangement in V and G a finite subgroup of $\mathrm{GL}(V)$ such that $G \mathcal{A}=\mathcal{A}$.

To $H \in \mathcal{A}$, corresponds $\ell_{H} \in V^{*}$ and we write $Q_{0}:=\prod_{H \in \mathcal{A}} \ell_{H} \in \mathbb{C}[V]$, and $d=\operatorname{deg}\left(Q_{0}\right)=|\mathcal{A}|$.

For $g \in G, g Q_{0}=\lambda_{\mathcal{A}}(g) Q_{0}$ for $\lambda_{\mathcal{A}}(g) \in \mathbb{C}^{\times}$, and $\lambda_{\mathcal{A}}$ is a character of G. Write e for $\left|\lambda_{\mathcal{A}}\right|$, and note that $Q:=Q_{0}^{e}$ is G-invariant.

Define the Milnor fibre of $\mathcal{A}: F=Q^{-1}(1)$, and the reduced Milnor fibre: $F_{0}=Q_{0}^{-1}(1) ; m=\operatorname{deg}(Q)=d e$.

1. Introduction

Let $V=\mathbb{C}^{\ell}, \mathcal{A}$ a hyperplane arrangement in V and G a finite subgroup of $\mathrm{GL}(V)$ such that $G \mathcal{A}=\mathcal{A}$.

To $H \in \mathcal{A}$, corresponds $\ell_{H} \in V^{*}$ and we write $Q_{0}:=\prod_{H \in \mathcal{A}} \ell_{H} \in \mathbb{C}[V]$, and $d=\operatorname{deg}\left(Q_{0}\right)=|\mathcal{A}|$.

For $g \in G, g Q_{0}=\lambda_{\mathcal{A}}(g) Q_{0}$ for $\lambda_{\mathcal{A}}(g) \in \mathbb{C}^{\times}$, and $\lambda_{\mathcal{A}}$ is a character of G. Write e for $\left|\lambda_{\mathcal{A}}\right|$, and note that $Q:=Q_{0}^{e}$ is G-invariant.

Define the Milnor fibre of $\mathcal{A}: F=Q^{-1}(1)$, and the reduced Milnor fibre: $F_{0}=Q_{0}^{-1}(1) ; m=\operatorname{deg}(Q)=d e$.

The group $\Gamma:=G \times \mu_{m}$ fixes Q, and hence acts on F. If $\Gamma_{0}=\left\{(g, \xi) \in \Gamma \mid(g, \xi) Q_{0}=Q_{0}\right\}$, then Γ_{0} acts on Q_{0}.

The basic problems

Problem A: Determine $P^{\Gamma}(F, t):=\sum_{i \geq 0} H^{i}(F, \mathbb{C}) t^{i}$ as an element of $R(\Gamma)[t]$, the Grothendieck ring..

'Determine' might mean: find the character

Problem A ': same as A, but with F_{0}, Γ_{0}. We'll see soon that problems A,A' are equivalent.

Recall that $H^{j}(F)$ has two canonical filtrations: the increasing weight filtration W, and the decreasing Hodge filtration F.

The basic problems

Problem A: Determine $P^{\Gamma}(F, t):=\sum_{i \geq 0} H^{i}(F, \mathbb{C}) t^{i}$ as an element of $R(\Gamma)[t]$, the Grothendieck ring..
'Determine' might mean: find the character
Problem A': same as A, but with F_{0}, Γ_{0}. We'll see soon that problems $\mathrm{A}, \mathrm{A}^{\prime}$ are equivalent.

Recall that $H^{i}(F)$ has two canonical filtrations: the increasing weight filtration W , and the decreasing Hodge filtration F.

The basic problems

Problem A: Determine $P^{\Gamma}(F, t):=\sum_{i \geq 0} H^{i}(F, \mathbb{C}) t^{i}$ as an element of $R(\Gamma)[t]$, the Grothendieck ring..
'Determine' might mean: find the character
Problem A': same as A, but with F_{0}, Γ_{0}. We'll see soon that problems $\mathrm{A}, \mathrm{A}^{\prime}$ are equivalent.

Recall that $H^{j}(F)$ has two canonical filtrations: the increasing weight filtration W, and the decreasing Hodge filtration F

The basic problems

Problem A: Determine $P^{\Gamma}(F, t):=\sum_{i \geq 0} H^{i}(F, \mathbb{C}) t^{i}$ as an element of $R(\Gamma)[t]$, the Grothendieck ring..
'Determine' might mean: find the character
Problem A': same as A, but with F_{0}, Γ_{0}. We'll see soon that problems $\mathrm{A}, \mathrm{A}^{\prime}$ are equivalent.

Recall that $H^{j}(F)$ has two canonical filtrations: the increasing weight filtration W, and the decreasing Hodge filtration F.

These give rise to a mixed Hodge structure on H^{j} : write

$$
H^{p, q}\left(H^{j}(F, \mathbb{C}):=\operatorname{Gr}_{F}^{p} \operatorname{Gr}_{p+q}^{W} H^{j}(F, \mathbb{C})\right.
$$

The basic problems

Problem A: Determine $P^{\Gamma}(F, t):=\sum_{i \geq 0} H^{i}(F, \mathbb{C}) t^{i}$ as an element of $R(\Gamma)[t]$, the Grothendieck ring..
'Determine' might mean: find the character
Problem A': same as A, but with F_{0}, Γ_{0}. We'll see soon that problems $\mathrm{A}, \mathrm{A}^{\prime}$ are equivalent.

Recall that $H^{j}(F)$ has two canonical filtrations: the increasing weight filtration W, and the decreasing Hodge filtration F.

These give rise to a mixed Hodge structure on H^{j} : write

$$
H^{p, q}\left(H^{j}(F, \mathbb{C}):=\operatorname{Gr}_{F}^{p} \operatorname{Gr}_{p+q}^{w} H^{j}(F, \mathbb{C})\right.
$$

The second, much harder, problem:

```
Problem B: Determine the Poincaré-Deligne polynomial
PD「}(F;u,v,t):=\mp@subsup{\sum}{p,q,j}{}\mp@subsup{H}{}{p,q}\mp@subsup{H}{}{j}(F)\mp@subsup{u}{}{p}\mp@subsup{v}{}{q}\mp@subsup{t}{}{j}\mathrm{ as an element of
R(\Gamma)[u,v,t].
```

We also have, correspondingly, Problem B^{\prime} for F_{0}, Γ_{0}.

Note that Problem A is the specialisation of Problem B at $u=v=1$.

We shall meet several other specialisations; a complete solution for Problem B is beyond reach, even in the simplest cases.

The second, much harder, problem:

> Problem B: Determine the Poincaré-Deligne polynomial $P D^{\Gamma}(F ; u, v, t):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q} t^{j}$ as an element of $R(\Gamma)[u, v, t]$.

We also have, correspondingly, Problem B^{\prime} for F_{0}, Γ_{0}.

Note that Problem A is the specialisation of Problem B at $u=v=1$.

We shall meet several other specialisations; a complete solution for Problem B is beyond reach, even in the simplest cases.

The second, much harder, problem:

> Problem B: Determine the Poincaré-Deligne polynomial $P D^{(}(F ; u, v, t):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q} t^{j}$ as an element of $R(\Gamma)[u, v, t]$.

We also have, correspondingly, Problem B' for F_{0}, Γ_{0}.
Note that Problem A is the specialisation of Problem B at $u=v=1$.

We shall meet several other specialisations; a complete solution for Problem B is beyond reach, even in the simplest cases.

The second, much harder, problem:

Problem B: Determine the Poincaré-Deligne polynomial $P D^{\Gamma}(F ; u, v, t):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q} t^{j}$ as an element of $R(\Gamma)[u, v, t]$.

We also have, correspondingly, Problem B' for F_{0}, Γ_{0}.

Note that Problem A is the specialisation of Problem B at $u=v=1$.

We shall meet several other specialisations; a complete solution for Problem B is beyond reach, even in the simplest cases.

The second, much harder, problem:

Problem B: Determine the Poincaré-Deligne polynomial $P D^{\Gamma}(F ; u, v, t):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q} t^{j}$ as an element of $R(\Gamma)[u, v, t]$.

We also have, correspondingly, Problem B' for F_{0}, Γ_{0}.

Note that Problem A is the specialisation of Problem B at $u=v=1$.

We shall meet several other specialisations; a complete solution for Problem B is beyond reach, even in the simplest cases.

Example

Let \mathcal{A} be the arrangement of type A_{ℓ}. Then $d=\frac{\ell(\ell+1)}{2}, e=2$ $(\lambda=\varepsilon)$ and $m=\ell(\ell+1)$.
$\Gamma=\operatorname{Sym}_{\ell+1} \times \mu_{m}$ acts on $F: \prod_{i \neq j}\left(x_{i}-x_{j}\right)=1$.
This example has motivated much work on this problem-applications in mathematical physics (monopoles-cf. G. Segal, Selby).

Confession: not only is not much known in general about the solution to Problems A and B, but not much is known even about this special and very explicit case, where we have every advantage such as Lie theory.

Example

Let \mathcal{A} be the arrangement of type A_{ℓ}. Then $d=\frac{\ell(\ell+1)}{2}, e=2$ $(\lambda=\varepsilon)$ and $m=\ell(\ell+1)$.
$\Gamma=\operatorname{Sym}_{\ell+1} \times \mu_{m}$ acts on $F: \prod_{i \neq j}\left(x_{i}-x_{j}\right)=1$.
This example has motivated much work on this problem-applications in mathematical physics (monopoles-cf. G. Segal, Selby).

Confession: not only is not much known in general about the solution to Problems A and B, but not much is known even about this special and very explicit case, where we have every advantage such as Lie theory.

Example

Let \mathcal{A} be the arrangement of type A_{ℓ}. Then $d=\frac{\ell(\ell+1)}{2}, e=2$ $(\lambda=\varepsilon)$ and $m=\ell(\ell+1)$.
$\Gamma=\operatorname{Sym}_{\ell+1} \times \mu_{m}$ acts on $F: \prod_{i \neq j}\left(x_{i}-x_{j}\right)=1$.
This example has motivated much work on this problem-applications in mathematical physics (monopoles-cf. G. Segal, Selby).

Confession: not only is not much known in general about the solution to Problems A and B, but not much is known even about this special and very explicit case, where we have every advantage such as Lie theory.

Example

Let \mathcal{A} be the arrangement of type A_{ℓ}. Then $d=\frac{\ell(\ell+1)}{2}, e=2$ ($\lambda=\varepsilon$) and $m=\ell(\ell+1)$.
$\Gamma=\operatorname{Sym}_{\ell+1} \times \mu_{m}$ acts on $F: \prod_{i \neq j}\left(x_{i}-x_{j}\right)=1$.
This example has motivated much work on this problem-applications in mathematical physics (monopoles-cf. G. Segal, Selby).

Confession: not only is not much known in general about the solution to Problems A and B, but not much is known even about this special and very explicit case, where we have every advantage such as Lie theory.

Here is what is known:

- $P^{G}\left(F / \mu_{m}, t\right)=P^{\Gamma}(F, t)^{\mu_{m}}$ is known (GL, 1987). The character is given by a product formula analogous to Arn'old's for the Poincaré polynomial. This is a special case of results applying to all unitary reflection groups.
- The above result amounts to the cohomology of the associated hyperplane complement, which is cohomologically pure.
- F is anything but pure; its cohomology has a rich mixed Hodge structure
- $P^{\mu_{m}}(F / G, t)=P^{\Gamma}(F, t)^{G}$ was computed by de Concini-Procesi-Salvetti in 2001.

Here is what is known:

- $P^{G}\left(F / \mu_{m}, t\right)=P^{\Gamma}(F, t)^{\mu_{m}}$ is known (GL, 1987). The character is given by a product formula analogous to Arn'old's for the Poincaré polynomial. This is a special case of results applying to all unitary reflection groups.
- The above result amounts to the cohomology of the associated hyperplane complement, which is cohomologically pure.
- F is anything but pure; its cohomology has a rich mixed Hodge structure
- $P^{\mu_{m}}(F / G, t)=P^{\Gamma}(F, t)^{G}$ was computed by de Concini-Procesi-Salvetti in 2001.

Here is what is known:

- $P^{G}\left(F / \mu_{m}, t\right)=P^{\Gamma}(F, t)^{\mu_{m}}$ is known (GL, 1987). The character is given by a product formula analogous to Arn'old's for the Poincaré polynomial. This is a special case of results applying to all unitary reflection groups.
- The above result amounts to the cohomology of the associated hyperplane complement, which is cohomologically pure.
- F is anything but pure; its cohomology has a rich mixed Hodge structure
- $P^{\mu_{m}}(F / G, t)=P^{\Gamma}(F, t)^{G}$ was computed by de Concini-Procesi-Salvetti in 2001.

Here is what is known:

- $P^{G}\left(F / \mu_{m}, t\right)=P^{\Gamma}(F, t)^{\mu_{m}}$ is known (GL, 1987). The character is given by a product formula analogous to Arn'old's for the Poincaré polynomial. This is a special case of results applying to all unitary reflection groups.
- The above result amounts to the cohomology of the associated hyperplane complement, which is cohomologically pure.
- F is anything but pure; its cohomology has a rich mixed Hodge structure
- $P^{\mu_{m}}(F / G, t)=P^{\Gamma}(F, t)^{G}$ was computed by de Concini-Procesi-Salvetti in 2001.

Here is what is known:

- $P^{G}\left(F / \mu_{m}, t\right)=P^{\Gamma}(F, t)^{\mu_{m}}$ is known (GL, 1987). The character is given by a product formula analogous to Arn'old's for the Poincaré polynomial. This is a special case of results applying to all unitary reflection groups.
- The above result amounts to the cohomology of the associated hyperplane complement, which is cohomologically pure.
- F is anything but pure; its cohomology has a rich mixed Hodge structure
- $P^{\mu_{m}}(F / G, t)=P^{\Gamma}(F, t)^{G}$ was computed by de Concini-Procesi-Salvetti in 2001.
- Denham-Lemire (2002) computed the Euler characteristic $P^{\Gamma}(F,-1)$ as a special case of a result about unitary reflection groups.

More about this later

- Settepanella $(2004,2009)$ computed some low degree examples of $P^{\mu_{d}}\left(F_{0}, t\right)$ and gave some stability results for this polynomial for the classical groups.
- Like de Concini-Procesi and Salvetti, Settepanella used the Salvetti complex to compute the cohomology.
- Denham-Lemire (2002) computed the Euler characteristic $P^{\Gamma}(F,-1)$ as a special case of a result about unitary reflection groups.

More about this later

- Settepanella $(2004,2009)$ computed some low degree examples of $P^{\mu_{d}}\left(F_{0}, t\right)$ and gave some stability results for this polynomial for the classical groups.
- Like de Concini-Procesi and Salvetti, Settepanella used the Salvetti complex to compute the cohomology.
- Denham-Lemire (2002) computed the Euler characteristic $P^{\Gamma}(F,-1)$ as a special case of a result about unitary reflection groups.

More about this later

- Settepanella $(2004,2009)$ computed some low degree examples of $P^{\mu_{d}}\left(F_{0}, t\right)$ and gave some stability results for this polynomial for the classical groups.
- Like de Concini-Procesi and Salvetti, Settepanella used the Salvetti complex to compute the cohomology.
- Denham-Lemire (2002) computed the Euler characteristic $P^{\complement}(F,-1)$ as a special case of a result about unitary reflection groups.

More about this later

- Settepanella $(2004,2009)$ computed some low degree examples of $P^{\mu_{d}}\left(F_{0}, t\right)$ and gave some stability results for this polynomial for the classical groups.
- Like de Concini-Procesi and Salvetti, Settepanella used the Salvetti complex to compute the cohomology.

Some basic results

Let γ_{i} denote the character $\zeta \mapsto \zeta^{i}$ of any group $\mu_{r} \subset \mathbb{C}^{\times}$of roots of unity.

If $(g, \xi) \in \Gamma$, since $Q_{0} \in \mathbb{C}[V]$ is homogeneous of degree d, then $(g, \xi) Q_{0}(v)=\xi^{d} Q_{0}\left(g^{-1} v\right)=\lambda_{\mathcal{A}}(g) \xi^{d} Q_{0}(v)$.

So $\Gamma_{0}=\operatorname{ker}\left(\lambda_{\mathcal{A}} \otimes \gamma_{d}\right) \subseteq G \times \mu_{m}$.
It follows that any representation θ of Γ_{0} may be lifted to a representation θ of Γ,
and $\operatorname{Ind}_{\Gamma_{0}}^{\Gamma}(\theta)=\widetilde{\theta}\left(\sum_{i=0}^{e-1}\left(\lambda \otimes \zeta_{d}\right)^{i}\right)$.

Some basic results

Let γ_{i} denote the character $\zeta \mapsto \zeta^{i}$ of any group $\mu_{r} \subset \mathbb{C}^{\times}$of roots of unity.

If $(g, \xi) \in \Gamma$, since $Q_{0} \in \mathbb{C}[V]$ is homogeneous of degree d, then $(g, \xi) Q_{0}(v)=\xi^{d} Q_{0}\left(g^{-1} v\right)=\lambda_{\mathcal{A}}(g) \xi^{d} Q_{0}(v)$.

So $\Gamma_{0}=\operatorname{ker}\left(\lambda_{\mathcal{A}} \otimes \gamma_{d}\right) \subseteq G \times \mu_{m}$.
It follows that any representation θ of Γ_{0} may be lifted to a representation θ of Γ,
and $\operatorname{Ind} \Gamma_{\Gamma_{0}}(\theta)=\widetilde{\theta}\left(\sum_{i=0}^{\theta-1}\left(\lambda \otimes \zeta_{d}\right)^{i}\right)$.

Some basic results

Let γ_{i} denote the character $\zeta \mapsto \zeta^{i}$ of any group $\mu_{r} \subset \mathbb{C}^{\times}$of roots of unity.

If $(g, \xi) \in \Gamma$, since $Q_{0} \in \mathbb{C}[V]$ is homogeneous of degree d, then $(g, \xi) Q_{0}(v)=\xi^{d} Q_{0}\left(g^{-1} v\right)=\lambda_{\mathcal{A}}(g) \xi^{d} Q_{0}(v)$.

So $\Gamma_{0}=\operatorname{ker}\left(\lambda_{\mathcal{A}} \otimes \gamma_{d}\right) \subseteq G \times \mu_{m}$.
It follows that any representation θ of Γ_{0} may be lifted to a representation θ of Γ,
and $\operatorname{Ind} \Gamma_{\Gamma_{0}}(\theta)=\widetilde{\theta}\left(\sum_{i=0}^{\theta-1}\left(\lambda \otimes \zeta_{d}\right)^{i}\right)$.

Some basic results

Let γ_{i} denote the character $\zeta \mapsto \zeta^{i}$ of any group $\mu_{r} \subset \mathbb{C}^{\times}$of roots of unity.

If $(g, \xi) \in \Gamma$, since $Q_{0} \in \mathbb{C}[V]$ is homogeneous of degree d, then $(g, \xi) Q_{0}(v)=\xi^{d} Q_{0}\left(g^{-1} v\right)=\lambda_{\mathcal{A}}(g) \xi^{d} Q_{0}(v)$.

So $\Gamma_{0}=\operatorname{ker}\left(\lambda_{\mathcal{A}} \otimes \gamma_{d}\right) \subseteq G \times \mu_{m}$.
It follows that any representation θ of Γ_{0} may be lifted to a representation $\tilde{\theta}$ of Γ,
and $\operatorname{Ind} \Gamma_{\Gamma_{0}}(\theta)=\widetilde{\theta}\left(\sum_{i=0}^{\theta-1}\left(\lambda \otimes \zeta_{d}\right)^{i}\right)$.

Some basic results

Let γ_{i} denote the character $\zeta \mapsto \zeta^{i}$ of any group $\mu_{r} \subset \mathbb{C}^{\times}$of roots of unity.

If $(g, \xi) \in \Gamma$, since $Q_{0} \in \mathbb{C}[V]$ is homogeneous of degree d, then $(g, \xi) Q_{0}(v)=\xi^{d} Q_{0}\left(g^{-1} v\right)=\lambda_{\mathcal{A}}(g) \xi^{d} Q_{0}(v)$.

So $\Gamma_{0}=\operatorname{ker}\left(\lambda_{\mathcal{A}} \otimes \gamma_{d}\right) \subseteq G \times \mu_{m}$.
It follows that any representation θ of Γ_{0} may be lifted to a representation $\tilde{\theta}$ of Γ,
and $\operatorname{Ind}_{\Gamma_{0}}^{\Gamma}(\theta)=\widetilde{\theta}\left(\sum_{i=0}^{e-1}\left(\lambda \otimes \zeta_{d}\right)^{i}\right)$.

But for all $p, q, j, H^{p, q} H^{j}(F, \mathbb{C}) \cong \operatorname{lnd}_{\Gamma_{0}}^{\Gamma}\left(H^{p, q} H^{j}\left(F_{0}, \mathbb{C}\right)\right)$.
This is because $F=\amalg_{\zeta \in \mu_{e}} F_{0}(\zeta)$, where $F_{0}(\zeta)$ is given by $Q_{0}(v)=\zeta$.

So it suffices to consider the reduced case.

But for all $p, q, j, H^{p, q} H^{j}(F, \mathbb{C}) \cong \operatorname{Ind} \Gamma_{\Gamma_{0}}\left(H^{p, q} H^{j}\left(F_{0}, \mathbb{C}\right)\right)$.
This is because $F=\amalg_{\zeta \in \mu_{e}} F_{0}(\zeta)$, where $F_{0}(\zeta)$ is given by $Q_{0}(v)=\zeta$.

So it suffices to consider the reduced case.

But for all $p, q, j, H^{p, q} H^{j}(F, \mathbb{C}) \cong \operatorname{Ind} \Gamma_{\Gamma_{0}}^{\Gamma}\left(H^{p, q} H^{j}\left(F_{0}, \mathbb{C}\right)\right)$.
This is because $F=\amalg_{\zeta \in \mu_{e}} F_{0}(\zeta)$, where $F_{0}(\zeta)$ is given by $Q_{0}(v)=\zeta$.

So it suffices to consider the reduced case.

The following result is useful for studying Euler characteristics.

```
Proposition (Zarelua): Let G act freely on the CW complex X
and suppose that }X/G\simeq\mathrm{ a finite CW complex. Then
\chi ^ { G } ( X ) = P ^ { G } ( X , - 1 ) = \chi ( X / G ) \operatorname { R e g } _ { G }
```

Next consider the diagram:

$$
F \xrightarrow{p} U=\mathbb{P}(M)
$$

where M is the hyperplane complement of \mathcal{A} and
$\widetilde{M}=\left\{(v, \xi) \in V \times \mathbb{C}^{\times} \mid Q(v)=\zeta^{m}\right\}$.
p and p_{1} are both unramified μ_{m}-coverings.

The following result is useful for studying Euler characteristics.
Proposition (Zarelua): Let G act freely on the CW complex X and suppose that $X / G \simeq$ a finite CW complex. Then $\chi^{G}(X)=P^{G}(X,-1)=\chi(X / G) \operatorname{Reg}_{G}$.

Next consider the diagram:

where M is the hyperplane complement of \mathcal{A} and $\widetilde{M}=\left\{(v, \xi) \in V \times \mathbb{C}^{\times} \mid Q(v)=\zeta^{m}\right\}$.

The following result is useful for studying Euler characteristics.
Proposition (Zarelua): Let G act freely on the CW complex X and suppose that $X / G \simeq$ a finite CW complex. Then $\chi^{G}(X)=P^{G}(X,-1)=\chi(X / G) \operatorname{Reg}_{G}$.
$\begin{array}{lcl} & \widetilde{M} \xrightarrow{p_{1}} & M \\ \text { Next consider the diagram: } & \pi_{1} \downarrow & \\ & F \xrightarrow{p} U=\mathbb{P}(M)\end{array}$
where M is the hyperplane complement of \mathcal{A} and $\widetilde{M}=\left\{(v, \xi) \in V \times \mathbb{C}^{\times} \mid Q(v)=\zeta^{m}\right\}$.
p and p_{1} are both unramified μ_{m}-coverings.

The following result is useful for studying Euler characteristics.
Proposition (Zarelua): Let G act freely on the CW complex X and suppose that $X / G \simeq$ a finite CW complex. Then $\chi^{G}(X)=P^{G}(X,-1)=\chi(X / G) \operatorname{Reg}_{G}$.

Next consider the diagram:

where M is the hyperplane complement of \mathcal{A} and $\widetilde{M}=\left\{(v, \xi) \in V \times \mathbb{C}^{\times} \mid Q(v)=\zeta^{m}\right\}$.
p and p_{1} are both unramified μ_{m}-coverings.

The following result is useful for studying Euler characteristics.
Proposition (Zarelua): Let G act freely on the CW complex X and suppose that $X / G \simeq$ a finite CW complex. Then $\chi^{G}(X)=P^{G}(X,-1)=\chi(X / G) \operatorname{Reg}_{G}$.

Next consider the diagram:

where M is the hyperplane complement of \mathcal{A} and $\widetilde{M}=\left\{(v, \xi) \in V \times \mathbb{C}^{\times} \mid Q(v)=\zeta^{m}\right\}$.
p and p_{1} are both unramified μ_{m}-coverings.

The Euler characteristic.

By Zarelua, we have: (i) $\chi^{G}(F)=\chi(F / G) \operatorname{Reg}_{G}$ and
(ii) $\chi^{\mu_{m}}(F)=\chi\left(F / \mu_{m}\right) \operatorname{Reg}_{\mu_{m}}=\chi(U) \operatorname{Reg}_{\mu_{m}}$.

If G is a unitary reflection group, then $P_{M}(t)=\prod_{i=1}^{\ell}\left(1+m_{i}^{*} t\right)$,
where $m_{1}^{*}, \ldots, m_{\ell}^{*}$ are the coexponents of G.
i.e. the degrees of the generators of $(\mathbb{C}[V] \otimes V)^{G}$.

If $m_{1}^{*} \leq \cdots \leq m_{\ell}^{*}$, always have $m_{1}^{*}=1$ (Euler form $\sum_{i} x_{i} \otimes \frac{\partial}{\partial x_{i}}$ is invariant).

The Euler characteristic.

By Zarelua, we have: (i) $\chi^{G}(F)=\chi(F / G) \operatorname{Reg}_{G}$ and
(ii) $\chi^{\mu_{m}}(F)=\chi\left(F / \mu_{m}\right) \operatorname{Reg}_{\mu_{m}}=\chi(U) \operatorname{Reg}_{\mu_{m}}$.

If G is a unitary reflection group, then $P_{M}(t)=\prod_{i=1}^{\ell}\left(1+m_{i}^{*} t\right)$,
where $m_{1}^{*}, \ldots, m_{\ell}^{*}$ are the coexponents of G.
i.e. the degrees of the generators of $(\mathbb{C}[V] \otimes V)^{G}$.

If $m_{1}^{*} \leq \cdots \leq m_{\ell}^{*}$, always have $m_{1}^{*}=1$ (Euler form $\sum_{i} x_{i} \otimes \frac{\partial}{\partial x_{i}}$ is invariant).

The Euler characteristic.

By Zarelua, we have: (i) $\chi^{G}(F)=\chi(F / G) \operatorname{Reg}_{G}$ and
(ii) $\chi^{\mu_{m}}(F)=\chi\left(F / \mu_{m}\right) \operatorname{Reg}_{\mu_{m}}=\chi(U) \operatorname{Reg}_{\mu_{m}}$.

If G is a unitary reflection group, then $P_{M}(t)=\prod_{i=1}^{\ell}\left(1+m_{i}^{*} t\right)$,
where $m_{1}^{*}, \ldots, m_{\ell}^{*}$ are the coexponents of G.
i.e. the degrees of the generators of $(\mathbb{C}[V] \otimes V)^{G}$.

If $m_{1}^{*} \leq \cdots \leq m_{\ell}^{*}$, always have $m_{1}^{*}=1$ (Euler form $\sum_{i} x_{i} \otimes \frac{\partial}{\partial x_{i}}$ is invariant).

So $P_{U}(t)=\frac{1}{1+t} P_{M}(t)=\prod_{i \geq 2}\left(1+m_{i}^{*} t\right)$, and we know $\chi(U)$.

The Euler characteristic.

By Zarelua, we have: (i) $\chi^{G}(F)=\chi(F / G) \operatorname{Reg}_{G}$ and
(ii) $\chi^{\mu_{m}}(F)=\chi\left(F / \mu_{m}\right) \operatorname{Reg}_{\mu_{m}}=\chi(U) \operatorname{Reg}_{\mu_{m}}$.

If G is a unitary reflection group, then $P_{M}(t)=\prod_{i=1}^{\ell}\left(1+m_{i}^{*} t\right)$,
where $m_{1}^{*}, \ldots, m_{\ell}^{*}$ are the coexponents of G.
i.e. the degrees of the generators of $(\mathbb{C}[V] \otimes V)^{G}$.

If $m_{1}^{*} \leq \cdots \leq m_{\ell}^{*}$, always have $m_{1}^{*}=1$ (Euler form $\sum_{i} x_{i} \otimes \frac{\partial}{\partial x_{i}}$ is
invariant).
So $P_{U}(t)=\frac{1}{1+t} P_{M}(t)=\prod_{i \geq 2}\left(1+m_{i}^{*} t\right)$, and we know $\chi(U)$.

The Euler characteristic.

By Zarelua, we have: (i) $\chi^{G}(F)=\chi(F / G) \operatorname{Reg}_{G}$ and
(ii) $\chi^{\mu_{m}}(F)=\chi\left(F / \mu_{m}\right) \operatorname{Reg}_{\mu_{m}}=\chi(U) \operatorname{Reg}_{\mu_{m}}$.

If G is a unitary reflection group, then $P_{M}(t)=\prod_{i=1}^{\ell}\left(1+m_{i}^{*} t\right)$,
where $m_{1}^{*}, \ldots, m_{\ell}^{*}$ are the coexponents of G.
i.e. the degrees of the generators of $(\mathbb{C}[V] \otimes V)^{G}$.

If $m_{1}^{*} \leq \cdots \leq m_{\ell}^{*}$, always have $m_{1}^{*}=1$ (Euler form $\sum_{i} x_{i} \otimes \frac{\partial}{\partial x_{i}}$ is invariant).

So $P_{U}(t)=\frac{1}{1+t} P_{M}(t)=\prod_{i \geq 2}\left(1+m_{i}^{*} t\right)$, and we know $\chi(U)$.

The Euler characteristic.

By Zarelua, we have: (i) $\chi^{G}(F)=\chi(F / G) \operatorname{Reg}_{G}$ and
(ii) $\chi^{\mu_{m}}(F)=\chi\left(F / \mu_{m}\right) \operatorname{Reg}_{\mu_{m}}=\chi(U) \operatorname{Reg}_{\mu_{m}}$.

If G is a unitary reflection group, then $P_{M}(t)=\prod_{i=1}^{\ell}\left(1+m_{i}^{*} t\right)$,
where $m_{1}^{*}, \ldots, m_{\ell}^{*}$ are the coexponents of G.
i.e. the degrees of the generators of $(\mathbb{C}[V] \otimes V)^{G}$.

If $m_{1}^{*} \leq \cdots \leq m_{\ell}^{*}$, always have $m_{1}^{*}=1$ (Euler form $\sum_{i} x_{i} \otimes \frac{\partial}{\partial x_{i}}$ is invariant).

So $P_{U}(t)=\frac{1}{1+t} P_{M}(t)=\prod_{i \geq 2}\left(1+m_{i}^{*} t\right)$, and we know $\chi(U)$.

Observe: if $v \in F$ and $(g, \xi) \in \Gamma$, then $(g, \xi) v=\xi^{-1} g v=v \Longleftrightarrow v \in V(g, \xi)$,
the ξ-eigenspace of $g \in G$. NB: only regular (Springer)
eigenvalues can occur, as $F \subset M$.
Hence Γ acts freely on $F^{0}:=F \backslash \cup_{g \in G, \xi \in \mathbb{C}} V(g, \xi)$. This leads (via Zarelua, applied to a stratification of F by spaces $F(d)^{0}$ like F^{0} for smaller G) to the following result of Denham-Lemire:

If G has invariant degrees d_{1}, \ldots, d_{ℓ} and $d \in \mathbb{Z}_{>0}$, define $\bar{d}:=\operatorname{gcd}\left\{d_{i}: d \mid d_{i}\right\}$.

Let $\mathcal{P}=\{d \mid d$ is regular for G and $d=\bar{d}$.$\} Then:$

Theorem (Denham, Lemire 2002):
$\chi^{\Gamma}(F)=\sum_{d \in \mathcal{P}} \chi\left(U(d)^{0} / G(d)\right) \operatorname{lnd}_{R(c)}^{\ulcorner }(1)$.

Observe: if $v \in F$ and $(g, \xi) \in \Gamma$, then $(g, \xi) v=\xi^{-1} g v=v \Longleftrightarrow v \in V(g, \xi)$, the ξ-eigenspace of $g \in G$. NB: only regular (Springer) eigenvalues can occur, as $F \subset M$.

> Hence Γ acts freely on $F^{0}:=F \backslash \cup_{g \in G, \xi \in \mathbb{C}} V(g, \xi)$. This leads (via Zarelua, applied to a stratification of F by spaces $F(d)^{0}$ like F^{0} for smaller G) to the following result of Denham-Lemire:

If G has invariant degrees d_{1}, \ldots, d_{ℓ} and $d \in \mathbb{Z}_{>0}$, define $\bar{d}:=\operatorname{gcd}\left\{d_{i}: d \mid d_{i}\right\}$.

Let $\mathcal{P}=\{d \mid d$ is regular for G and $d=\bar{d}$.$\} Then:$

Theorem (Denham, Lemire 2002):
$\chi^{\Gamma}(F)=\sum_{d \in \mathcal{P}} \chi\left(U(d)^{0} / G(d)\right) \operatorname{Ind}_{R(c)}^{\ulcorner }(1)$.

Observe: if $v \in F$ and $(g, \xi) \in \Gamma$, then $(g, \xi) v=\xi^{-1} g v=v \Longleftrightarrow v \in V(g, \xi)$, the ξ-eigenspace of $g \in G$. NB: only regular (Springer) eigenvalues can occur, as $F \subset M$.

Hence Γ acts freely on $F^{0}:=F \backslash \cup_{g \in G, \xi \in \mathbb{C}} V(g, \xi)$.
(via Zarelua, applied to a stratification of F by spaces $F(d)^{0}$ like F^{0} for smaller G) to the following result of Denham-Lemire:

If G has invariant degrees d_{1}, \ldots, d_{ℓ} and $d \in \mathbb{Z}_{>0}$, define $\bar{d}:=\operatorname{gcd}\left\{d_{i}: d \mid d_{i}\right\}$.

Let $\mathcal{P}=\{d \mid d$ is regular for G and $d=\bar{d}$.$\} Then:$

Theorem (Denham, Lemire 2002):
$\chi^{\Gamma}(F)=\sum_{d \in \mathcal{P}} \chi\left(U(d)^{0} / G(d)\right) \operatorname{Ind}_{R(a)}^{\Gamma}(1)$.

Observe: if $v \in F$ and $(g, \xi) \in \Gamma$, then $(g, \xi) v=\xi^{-1} g v=v \Longleftrightarrow v \in V(g, \xi)$, the ξ-eigenspace of $g \in G$. NB: only regular (Springer) eigenvalues can occur, as $F \subset M$.

Hence Γ acts freely on $F^{0}:=F \backslash \cup_{g \in G, \xi \in \mathbb{C}} V(g, \xi)$. This leads (via Zarelua, applied to a stratification of F by spaces $F(d)^{0}$ like F^{0} for smaller G) to the following result of Denham-Lemire:

If G has invariant degrees d_{1}, \ldots, d_{ℓ} and $d \in \mathbb{Z}_{>0}$, define $\bar{d}:=\operatorname{gcd}\left\{d_{i}: d \mid d_{i}\right\}$

Let $\mathcal{P}=\{d \mid d$ is regular for G and $d=\bar{d}$.$\} Then:$
Theorem (Denham, Lemire 2002):
$\chi^{\Gamma}(F)=\sum_{d \in \mathcal{P}} \chi\left(U(d)^{0} / G(d)\right) \operatorname{Ind}_{R(d)}^{\Gamma}(1)$.

Observe: if $v \in F$ and $(g, \xi) \in \Gamma$, then
$(g, \xi) v=\xi^{-1} g v=v \Longleftrightarrow v \in V(g, \xi)$,
the ξ-eigenspace of $g \in G$. NB: only regular (Springer) eigenvalues can occur, as $F \subset M$.

Hence Γ acts freely on $F^{0}:=F \backslash \cup_{g \in G, \xi \in \mathbb{C}} V(g, \xi)$. This leads (via Zarelua, applied to a stratification of F by spaces $F(d)^{0}$ like F^{0} for smaller G) to the following result of Denham-Lemire:

If G has invariant degrees d_{1}, \ldots, d_{ℓ} and $d \in \mathbb{Z}_{>0}$, define $\bar{d}:=\operatorname{gcd}\left\{d_{i}: d \mid d_{i}\right\}$.

Let $\mathcal{P}=\{d \mid d$ is regular for G and $d=\bar{d}$.$\} Then:$

Theorem (Denham, Lemire 2002):

Observe: if $v \in F$ and $(g, \xi) \in \Gamma$, then
$(g, \xi) v=\xi^{-1} g v=v \Longleftrightarrow v \in V(g, \xi)$,
the ξ-eigenspace of $g \in G$. NB: only regular (Springer) eigenvalues can occur, as $F \subset M$.

Hence Γ acts freely on $F^{0}:=F \backslash \cup_{g \in G, \xi \in \mathbb{C}} V(g, \xi)$. This leads (via Zarelua, applied to a stratification of F by spaces $F(d)^{0}$ like F^{0} for smaller G) to the following result of Denham-Lemire:

If G has invariant degrees d_{1}, \ldots, d_{ℓ} and $d \in \mathbb{Z}_{>0}$, define $\bar{d}:=\operatorname{gcd}\left\{d_{i}: d \mid d_{i}\right\}$.

Let $\mathcal{P}=\{d \mid d$ is regular for G and $d=\bar{d}$. $\}$ Then:

Observe: if $v \in F$ and $(g, \xi) \in \Gamma$, then
$(g, \xi) v=\xi^{-1} g v=v \Longleftrightarrow v \in V(g, \xi)$,
the ξ-eigenspace of $g \in G$. NB: only regular (Springer) eigenvalues can occur, as $F \subset M$.

Hence Γ acts freely on $F^{0}:=F \backslash \cup_{g \in G, \xi \in \mathbb{C}} V(g, \xi)$. This leads (via Zarelua, applied to a stratification of F by spaces $F(d)^{0}$ like F^{0} for smaller G) to the following result of Denham-Lemire:

If G has invariant degrees d_{1}, \ldots, d_{ℓ} and $d \in \mathbb{Z}_{>0}$, define $\bar{d}:=\operatorname{gcd}\left\{d_{i}: d \mid d_{i}\right\}$.

Let $\mathcal{P}=\{d \mid d$ is regular for G and $d=\bar{d}$. $\}$ Then:
Theorem (Denham, Lemire 2002):
$\chi^{\Gamma}(F)=\sum_{d \in \mathcal{P}} \chi\left(U(d)^{0} / G(d)\right) \operatorname{Ind}_{R(d)}^{\Gamma}(1)$.

The only unknowns in this formula are the coefficients, which Denham-Lemire computed case by case.

The following result makes their result into a closed formula.

Theorem (Dimca-L): We have
$\chi\left(U^{0} / G\right)=|Z(G)| \sum_{d \in \mathcal{P}} \mu_{\mathcal{P}}(d)|G(d)|^{-1} \Pi_{i \geq 2}\left(1-m_{i}^{*}(d)\right)$.
We have computed $P^{\Gamma}(F, t)$ for types A_{2}, A_{3}, A_{4} and all
2-dimensional groups. We also noticed that in type A_{ℓ}, we have
$\operatorname{dim} H^{*}\left(F / \operatorname{Sym}_{\ell+1}\right)=2 \ell+1$.
We have no heuristic explanation of this.

The only unknowns in this formula are the coefficients, which Denham-Lemire computed case by case.

The following result makes their result into a closed formula.
Theorem (Dimca-L): We have
$\chi\left(U^{0} / G\right)=|Z(G)| \sum_{d \in \mathcal{P}} \mu_{\mathcal{P}}(d)|G(d)|^{-1} \Pi_{i \geq 2}\left(1-m_{i}^{*}(d)\right)$.
We have computed P (F, t) for types A_{2}, A_{3}, A_{4} and all 2-dimensional groups. We also noticed that in type A_{ℓ}, we have
$\operatorname{dim} H^{*}\left(F /\right.$ Sym $\left._{\ell+1}\right)=2 \ell+1$.
We have no heuristic explanation of this.

The only unknowns in this formula are the coefficients, which Denham-Lemire computed case by case.

The following result makes their result into a closed formula.
Theorem (Dimca-L): We have
$\chi\left(U^{0} / G\right)=|Z(G)| \sum_{d \in \mathcal{P}} \mu_{\mathcal{P}}(d)|G(d)|^{-1} \Pi_{i \geq 2}\left(1-m_{i}^{*}(d)\right)$.
We have computed $P^{\Gamma}(F, t)$ for types A_{2}, A_{3}, A_{4} and all
2-dimensional groups. We also noticed that in type A_{ℓ}, we have
$\operatorname{dim} H^{*}\left(F / \operatorname{Sym}_{\ell+1}\right)=2 \ell+1$.
We have no heuristic explanation of this.

The only unknowns in this formula are the coefficients, which Denham-Lemire computed case by case.

The following result makes their result into a closed formula.
Theorem (Dimca-L): We have
$\chi\left(U^{0} / G\right)=|Z(G)| \sum_{d \in \mathcal{P}} \mu_{\mathcal{P}}(d)|G(d)|^{-1} \prod_{i \geq 2}\left(1-m_{i}^{*}(d)\right)$.
We have computed $P^{\Gamma}(F, t)$ for types A_{2}, A_{3}, A_{4} and all
2-dimensional groups. We also noticed that in type A_{ℓ}, we have
$\operatorname{dim} H^{*}\left(F / \operatorname{Sym}_{\ell+1}\right)=2 \ell+1$.
We have no heuristic explanation of this.

The only unknowns in this formula are the coefficients, which Denham-Lemire computed case by case.

The following result makes their result into a closed formula.

Theorem (Dimca-L): We have
$\chi\left(U^{0} / G\right)=|Z(G)| \sum_{d \in \mathcal{P}} \mu_{\mathcal{P}}(d)|G(d)|^{-1} \prod_{i \geq 2}\left(1-m_{i}^{*}(d)\right)$.
We have computed $P^{\Gamma}(F, t)$ for types A_{2}, A_{3}, A_{4} and all 2-dimensional groups. We also noticed that in type A_{ℓ}, we have $\operatorname{dim} H^{*}\left(F / \operatorname{Sym}_{\ell+1}\right)=2 \ell+1$.

We have no heuristic explanation of this.

The only unknowns in this formula are the coefficients, which Denham-Lemire computed case by case.

The following result makes their result into a closed formula.

Theorem (Dimca-L): We have
$\chi\left(U^{0} / G\right)=|Z(G)| \sum_{d \in \mathcal{P}} \mu_{\mathcal{P}}(d)|G(d)|^{-1} \Pi_{i \geq 2}\left(1-m_{i}^{*}(d)\right)$.
We have computed $P^{\Gamma}(F, t)$ for types A_{2}, A_{3}, A_{4} and all 2-dimensional groups. We also noticed that in type A_{ℓ}, we have $\operatorname{dim} H^{*}\left(F / \operatorname{Sym}_{\ell+1}\right)=2 \ell+1$.

We have no heuristic explanation of this.

Relations between monodromy and cohomology degree

We work now with the reduced Milnor fibre F_{0}.

Since F_{0} is an unramified μ_{d}-covering of U, for any character $\gamma \in \hat{\mu}_{d}$, we have $H^{j}\left(F_{0}, \mathbb{C}\right)^{\gamma} \cong H^{j}\left(U, L_{\gamma}\right)$,
where L_{γ} is the local system on U, corresponding to γ.

To prove vanishing results for the $H^{j}\left(U, L_{\gamma}\right)$, we need a compactification of U, which we now describe:

Relations between monodromy and cohomology degree

We work now with the reduced Milnor fibre F_{0}.
Since F_{0} is an unramified μ_{d}-covering of U, for any character $\gamma \in \hat{\mu}_{d}$, we have $H^{j}\left(F_{0}, \mathbb{C}\right)^{\gamma} \cong H^{j}\left(U, L_{\gamma}\right)$,
where L_{γ} is the local system on U, corresponding to γ.

To prove vanishing results for the $H^{j}\left(U, L_{\gamma}\right)$, we need a compactification of U, which we now describe:

Relations between monodromy and cohomology degree

We work now with the reduced Milnor fibre F_{0}.

Since F_{0} is an unramified μ_{d}-covering of U, for any character $\gamma \in \hat{\mu}_{d}$, we have $H^{j}\left(F_{0}, \mathbb{C}\right)^{\gamma} \cong H^{j}\left(U, L_{\gamma}\right)$,
where L_{γ} is the local system on U, corresponding to γ.

To prove vanishing results for the $H^{j}\left(U, L_{\gamma}\right)$, we need a compactification of U, which we now describe:

Relations between monodromy and cohomology degree

We work now with the reduced Milnor fibre F_{0}.
Since F_{0} is an unramified μ_{d}-covering of U, for any character $\gamma \in \hat{\mu}_{d}$, we have $H^{j}\left(F_{0}, \mathbb{C}\right)^{\gamma} \cong H^{i}\left(U, L_{\gamma}\right)$,
where L_{γ} is the local system on U, corresponding to γ.
To prove vanishing results for the $H^{j}\left(U, L_{\gamma}\right)$, we need a compactification of U, which we now describe:
$\mathcal{L}=\mathcal{L}(\mathcal{A})$ is the lattice of intersections of the hyperplanes in \mathcal{A}. Its elements will be called edges.

Say that \mathcal{A} is reducible if $V=V_{1} \oplus V_{2}, V_{i} \neq 0$, and $\mathcal{A}=\mathcal{A}_{1} \amalg \mathcal{A}_{2}$,
where for each $H \in \mathcal{A}_{i}, H \supseteq V_{i^{\prime}},\left(\left\{i, i^{\prime}\right\}=\{1,2\}\right)$.

For $X \in \mathcal{L}$ we have the arrangement $\mathcal{A}_{X}:=\{H \in \mathcal{A} \mid X \subseteq H\}$. Say that X is dense if \mathcal{A}_{X} is irreducible.
(Example: in type A_{ℓ}, X corresponds to a partition ($p, 1,1, \ldots, 1$)).
$\mathcal{L}=\mathcal{L}(\mathcal{A})$ is the lattice of intersections of the hyperplanes in \mathcal{A}. Its elements will be called edges.

Say that \mathcal{A} is reducible if $V=V_{1} \oplus V_{2}, V_{i} \neq 0$, and $\mathcal{A}=\mathcal{A}_{1} \amalg \mathcal{A}_{2}$,
where for each $H \in \mathcal{A}_{i}, H \supseteq V_{i^{\prime}},\left(\left\{i, i^{\prime}\right\}=\{1,2\}\right)$.

For $X \in \mathcal{L}$ we have the arrangement $\mathcal{A}_{X}:=\{H \in \mathcal{A} \mid X \subseteq H\}$. Say that X is dense if \mathcal{A}_{X} is irreducible.
(Example: in type A_{ℓ}, X corresponds to a partition ($p, 1,1, \ldots, 1$)).
$\mathcal{L}=\mathcal{L}(\mathcal{A})$ is the lattice of intersections of the hyperplanes in \mathcal{A}. Its elements will be called edges.

Say that \mathcal{A} is reducible if $V=V_{1} \oplus V_{2}, V_{i} \neq 0$, and $\mathcal{A}=\mathcal{A}_{1} \amalg \mathcal{A}_{2}$,
where for each $H \in \mathcal{A}_{i}, H \supseteq V_{i^{\prime}},\left(\left\{i, i^{\prime}\right\}=\{1,2\}\right)$.

For $X \in \mathcal{L}$ we have the arrangement $\mathcal{A}_{X}:=\{H \in \mathcal{A} \mid X \subseteq H\}$. Say that X is dense if \mathcal{A}_{X} is irreducible.
(Example: in type A_{ℓ}, X corresponds to a partition ($p, 1,1, \ldots, 1$)).
$\mathcal{L}=\mathcal{L}(\mathcal{A})$ is the lattice of intersections of the hyperplanes in \mathcal{A}. Its elements will be called edges.

Say that \mathcal{A} is reducible if $V=V_{1} \oplus V_{2}, V_{i} \neq 0$, and $\mathcal{A}=\mathcal{A}_{1} \amalg \mathcal{A}_{2}$,
where for each $H \in \mathcal{A}_{i}, H \supseteq V_{i^{\prime}},\left(\left\{i, i^{\prime}\right\}=\{1,2\}\right)$.

For $X \in \mathcal{L}$ we have the arrangement $\mathcal{A}_{X}:=\{H \in \mathcal{A} \mid X \subseteq H\}$. Say that X is dense if \mathcal{A}_{X} is irreducible.
(Example: in type A_{ℓ}, X corresponds to a partition
$\mathcal{L}=\mathcal{L}(\mathcal{A})$ is the lattice of intersections of the hyperplanes in \mathcal{A}. Its elements will be called edges.

Say that \mathcal{A} is reducible if $V=V_{1} \oplus V_{2}, V_{i} \neq 0$, and $\mathcal{A}=\mathcal{A}_{1} \amalg \mathcal{A}_{2}$,
where for each $H \in \mathcal{A}_{i}, H \supseteq V_{i^{\prime}},\left(\left\{i, i^{\prime}\right\}=\{1,2\}\right)$.
For $X \in \mathcal{L}$ we have the arrangement $\mathcal{A}_{X}:=\{H \in \mathcal{A} \mid X \subseteq H\}$. Say that X is dense if \mathcal{A}_{X} is irreducible.
(Example: in type A_{ℓ}, X corresponds to a partition $(p, 1,1, \ldots, 1))$.

Define a compactification Z of U along the divisor $N=\cup_{H \in \mathcal{A}} \mathbb{P}(H)$ as follows.

First blow $\mathbb{P}(V)$ up along the 1-dimensional dense edges, then the 2-dimensional ones, etc.

We obtain a resolution $p: Z \longrightarrow \mathbb{P}(V)$, such that $D:=p^{-1}(N)$ is a normal crossing divisor D in Z,
with smooth irreducible components D_{X}, where X runs over the dense edges in \mathcal{L}.

Further, p induces an isomorphism : $Z \backslash D \xrightarrow{\sim} U$.

If $L_{\gamma}\left(\gamma \in \hat{\mu}_{d}\right)$ is the local system (above) on U, then the monodromy of L_{γ} about the irreducible component D_{X} is $\gamma^{m x}$, where $m_{x}=\left|\mathcal{A}_{x}\right|$.

Define a compactification Z of U along the divisor $N=\cup_{H \in \mathcal{A}} \mathbb{P}(H)$ as follows.

First blow $\mathbb{P}(V)$ up along the 1-dimensional dense edges, then the 2-dimensional ones, etc.

We obtain a resolution $p: Z \longrightarrow \mathbb{P}(V)$, such that $D:=p^{-1}(N)$ is a normal crossing divisor D in Z,
with smooth irreducible components D_{X}, where X runs over the dense edges in \mathcal{L}.

Further, p induces an isomorphism : $Z \backslash D \xrightarrow{\sim} U$.

If $L_{\gamma}\left(\gamma \in \hat{\mu}_{d}\right)$ is the local system (above) on U, then the monodromy of L_{γ} about the irreducible component D_{X} is $\gamma^{m x}$, where $m_{x}=\left|\mathcal{A}_{x}\right|$.

Define a compactification Z of U along the divisor $N=\cup_{H \in \mathcal{A}} \mathbb{P}(H)$ as follows.

First blow $\mathbb{P}(V)$ up along the 1-dimensional dense edges, then the 2-dimensional ones, etc.

We obtain a resolution $p: Z \longrightarrow \mathbb{P}(V)$, such that $D:=p^{-1}(N)$ is a normal crossing divisor D in Z,
with smooth irreducible components D_{X}, where X runs over the dense edges in \mathcal{L}.

Further, p induces an isomorphism : $Z \backslash D \xrightarrow{\sim} U$.

If $L_{\gamma}\left(\gamma \in \hat{\mu}_{d}\right)$ is the local system (above) on U, then the monodromy of L_{γ} about the irreducible component D_{X} is $\gamma^{m_{x}}$, where $m_{x}=\left|\mathcal{A}_{x}\right|$.

Define a compactification Z of U along the divisor $N=\cup_{H \in \mathcal{A}} \mathbb{P}(H)$ as follows.

First blow $\mathbb{P}(V)$ up along the 1 -dimensional dense edges, then the 2 -dimensional ones, etc.

with smooth irreducible components D_{X}, where X runs over the dense edges in \mathcal{L}.

Further, p induces an isomorphism : $Z \backslash D \xrightarrow{\sim} U$.

If $L_{\gamma}\left(\gamma \in \hat{\mu}_{d}\right)$ is the local system (above) on U, then the monodromy of L_{γ} about the irreducible component D_{X} is $\gamma^{m x}$, where $m_{x}=\left|\mathcal{A}_{x}\right|$.

Define a compactification Z of U along the divisor $N=\cup_{H \in \mathcal{A}} \mathbb{P}(H)$ as follows.

First blow $\mathbb{P}(V)$ up along the 1-dimensional dense edges, then the 2-dimensional ones, etc.

We obtain a resolution $p: Z \longrightarrow \mathbb{P}(V)$, such that $D:=p^{-1}(N)$ is a normal crossing divisor D in Z,
with smooth irreducible components D_{X}, where X runs over the dense edges in \mathcal{L}.

Further, p induces an isomorphism : $Z \backslash D \xrightarrow{\sim} U$.

If $L_{\gamma}\left(\gamma \in \hat{\mu}_{d}\right)$ is the local system (above) on U, then the monodromy of L_{γ} about the irreducible component D_{X} is $\gamma^{m_{X}}$, where $m_{X}=\left|\mathcal{A}_{X}\right|$.

Define a compactification Z of U along the divisor $N=\cup_{H \in \mathcal{A}} \mathbb{P}(H)$ as follows.

First blow $\mathbb{P}(V)$ up along the 1-dimensional dense edges, then the 2-dimensional ones, etc.

We obtain a resolution $p: Z \longrightarrow \mathbb{P}(V)$, such that $D:=p^{-1}(N)$ is a normal crossing divisor D in Z,
with smooth irreducible components D_{X}, where X runs over the dense edges in \mathcal{L}.

Further, p induces an isomorphism : $Z \backslash D \xrightarrow{\sim} U$.

If $L_{\gamma}\left(\gamma \in \hat{\mu}_{d}\right)$ is the local system (above) on U, then the monodromy of L_{γ} about the irreducible component D_{X} is $\gamma^{m x}$, where $m_{X}=\left|\mathcal{A}_{X}\right|$.

Define a compactification Z of U along the divisor $N=\cup_{H \in \mathcal{A}} \mathbb{P}(H)$ as follows.

First blow $\mathbb{P}(V)$ up along the 1-dimensional dense edges, then the 2-dimensional ones, etc.

We obtain a resolution $p: Z \longrightarrow \mathbb{P}(V)$, such that $D:=p^{-1}(N)$ is a normal crossing divisor D in Z,
with smooth irreducible components D_{X}, where X runs over the dense edges in \mathcal{L}.

Further, p induces an isomorphism : $Z \backslash D \xrightarrow{\sim} U$.
If $L_{\gamma}\left(\gamma \in \hat{\mu}_{d}\right)$ is the local system (above) on U, then the monodromy of L_{γ} about the irreducible component D_{X} is $\gamma^{m_{x}}$, where $m_{X}=\left|\mathcal{A}_{x}\right|$.

Define a compactification Z of U along the divisor $N=\cup_{H \in \mathcal{A}} \mathbb{P}(H)$ as follows.

First blow $\mathbb{P}(V)$ up along the 1-dimensional dense edges, then the 2-dimensional ones, etc.

We obtain a resolution $p: Z \longrightarrow \mathbb{P}(V)$, such that $D:=p^{-1}(N)$ is a normal crossing divisor D in Z,
with smooth irreducible components D_{X}, where X runs over the dense edges in \mathcal{L}.

Further, p induces an isomorphism : $Z \backslash D \xrightarrow{\sim} U$.

If $L_{\gamma}\left(\gamma \in \hat{\mu}_{d}\right)$ is the local system (above) on U, then the monodromy of L_{γ} about the irreducible component D_{X} is $\gamma^{m_{X}}$, where $m_{X}=\left|\mathcal{A}_{X}\right|$.

These facts may be used to prove:
Theorem: Suppose that $H^{P}\left(F_{0}, \mathbb{C}\right)^{\gamma} \neq 0$ for some $\gamma \in \hat{\mu}_{d}$. Then there is a dense edge $X \in \mathcal{L}$ such that $\operatorname{codim}(X) \leq p+1$ and $|\gamma|$ divides m_{X}.

Corollary:(Assume \mathcal{A} is essential). If γ is faithful (i.e. $|\gamma|=d$), and $H^{p}\left(F_{0}\right)^{\gamma} \neq 0$, then $p=\ell-1$ (the top degree) and $\left(\gamma, H^{\ell-1}\left(F_{0}\right)\right)_{\mu_{d}}=|\chi(U)|\left(=\prod_{i \geq 2}\left(m_{i}^{*}-1\right)\right.$ if \mathcal{A} is a reflection arrangement).

Proof: If $H^{p}\left(F_{0}, \mathbb{C}\right)^{\gamma} \neq 0$, then by the theorem there is a dense edge $X \in \mathcal{L}$ with codim $(X) \leq p+1$ and $d \mid m_{X}$. But for any $X \in \mathcal{L}$ with $X \neq 0, m_{X}=\left|\mathcal{A}_{X}\right|<|\mathcal{A}|=d$.

Hence $\operatorname{codim} X=\ell$ implies that $p=\ell-1$.
Further, since $\chi^{\mu_{d}}\left(F_{0}\right)=\chi(U) \operatorname{Reg}_{\mu_{d}}$, and there is no cancellation since γ appears in just one cohomology degree, the second statement follows. \square

These facts may be used to prove:
Theorem: Suppose that $H^{p}\left(F_{0}, \mathbb{C}\right)^{\gamma} \neq 0$ for some $\gamma \in \hat{\mu}_{d}$. Then there is a dense edge $X \in \mathcal{L}$ such that $\operatorname{codim}(X) \leq p+1$ and $|\gamma|$ divides m_{x}.

Corollary:(Assume \mathcal{A} is essential). If γ is faithful (i.e. $|\gamma|=d$), and $H^{p}\left(F_{0}\right)^{\gamma} \neq 0$, then $p=\ell-1$ (the top degree) and $\left(\gamma, H^{\ell-1}\left(F_{0}\right)\right)_{\mu_{d}}=|\chi(U)|\left(=\prod_{i \geq 2}\left(m_{i}^{*}-1\right)\right.$ if \mathcal{A} is a reflection arrangement).

Proof: If $H^{P}\left(F_{0}, \mathbb{C}\right)^{\gamma} \neq 0$, then by the theorem there is a dense edge $X \in \mathcal{L}$ with $\operatorname{codim}(X) \leq p+1$ and $d \mid m_{X}$. But for any $X \in \mathcal{L}$ with $X \neq 0, m_{X}=\left|\mathcal{A}_{X}\right|<|\mathcal{A}|=d$.

Hence $\operatorname{codim} X=\ell$ implies that $p=\ell-1$.
Further, since $\chi^{\mu_{d}}\left(F_{0}\right)=\chi(U) \operatorname{Reg}_{\mu_{d}}$, and there is no
cancellation since γ appears in just one cohomology degree,
the second statement follows

These facts may be used to prove:
Theorem: Suppose that $H^{p}\left(F_{0}, \mathbb{C}\right)^{\gamma} \neq 0$ for some $\gamma \in \hat{\mu}_{d}$. Then there is a dense edge $X \in \mathcal{L}$ such that $\operatorname{codim}(X) \leq p+1$ and $|\gamma|$ divides m_{X}.

Corollary:(Assume \mathcal{A} is essential). If γ is faithful (i.e. $|\gamma|=d$), and $H^{p}\left(F_{0}\right)^{\gamma} \neq 0$, then $p=\ell-1$ (the top degree) and $\left(\gamma, H^{\ell-1}\left(F_{0}\right)\right)_{\mu_{d}}=|\chi(U)|\left(=\prod_{i \geq 2}\left(m_{i}^{*}-1\right)\right.$ if \mathcal{A} is a reflection arrangement),

Proof: If $H^{p}\left(F_{0}, \mathbb{C}\right)^{\gamma} \neq 0$, then by the theorem there is a dense edge $X \in \mathcal{L}$ with $\operatorname{codim}(X) \leq p+1$ and $d \mid m_{X}$. But for any $X \in \mathcal{L}$ with $X \neq 0, m_{X}=\left|\mathcal{A}_{X}\right|<|\mathcal{A}|=d$.

Hence $\operatorname{codim} X=\ell$ implies that $p=\ell-1$.
Further, since $\chi^{\prime \prime \prime} d\left(F_{0}\right)=\chi\left(U^{\prime}\right) \operatorname{Reg}_{\mu d}$, and there is no
cancellation since γ appears in just one cohomology degree,
the second statement follows. \square

These facts may be used to prove:
Theorem: Suppose that $H^{p}\left(F_{0}, \mathbb{C}\right)^{\gamma} \neq 0$ for some $\gamma \in \hat{\mu}_{d}$. Then there is a dense edge $X \in \mathcal{L}$ such that $\operatorname{codim}(X) \leq p+1$ and $|\gamma|$ divides m_{X}.

Corollary:(Assume \mathcal{A} is essential). If γ is faithful (i.e. $|\gamma|=d$), and $H^{p}\left(F_{0}\right)^{\gamma} \neq 0$, then $p=\ell-1$ (the top degree) and $\left(\gamma, H^{\ell-1}\left(F_{0}\right)\right)_{\mu_{d}}=|\chi(U)|\left(=\Pi_{i \geq 2}\left(m_{i}^{*}-1\right)\right.$ if \mathcal{A} is a reflection arrangement).

Proof: If $H^{P}\left(F_{0}, \mathbb{C}\right)^{\gamma} \neq 0$, then by the theorem there is a dense edge $X \in \mathcal{L}$ with $\operatorname{codim}(X) \leq p+1$ and $d \mid m_{X}$. But for any
\square

These facts may be used to prove:
Theorem: Suppose that $H^{p}\left(F_{0}, \mathbb{C}\right)^{\gamma} \neq 0$ for some $\gamma \in \hat{\mu}_{d}$. Then there is a dense edge $X \in \mathcal{L}$ such that $\operatorname{codim}(X) \leq p+1$ and $|\gamma|$ divides m_{X}.

Corollary:(Assume \mathcal{A} is essential). If γ is faithful (i.e. $|\gamma|=d$), and $H^{p}\left(F_{0}\right)^{\gamma} \neq 0$, then $p=\ell-1$ (the top degree) and $\left(\gamma, H^{\ell-1}\left(F_{0}\right)\right)_{\mu_{d}}=|\chi(U)|\left(=\Pi_{i \geq 2}\left(m_{i}^{*}-1\right)\right.$ if \mathcal{A} is a reflection arrangement).

Proof: If $H^{P}\left(F_{0}, \mathbb{C}\right)^{\gamma} \neq 0$, then by the theorem there is a dense edge $X \in \mathcal{L}$ with $\operatorname{codim}(X) \leq p+1$ and $d \mid m_{X}$. But for any $X \in \mathcal{L}$ with $X \neq 0, m_{X}=\left|\mathcal{A}_{X}\right|<|\mathcal{A}|=d$.

These facts may be used to prove:
Theorem: Suppose that $H^{p}\left(F_{0}, \mathbb{C}\right)^{\gamma} \neq 0$ for some $\gamma \in \hat{\mu}_{d}$. Then there is a dense edge $X \in \mathcal{L}$ such that $\operatorname{codim}(X) \leq p+1$ and $|\gamma|$ divides m_{X}.

Corollary:(Assume \mathcal{A} is essential). If γ is faithful (i.e. $|\gamma|=d$), and $H^{p}\left(F_{0}\right)^{\gamma} \neq 0$, then $p=\ell-1$ (the top degree) and $\left(\gamma, H^{\ell-1}\left(F_{0}\right)\right)_{\mu_{d}}=|\chi(U)|\left(=\Pi_{i \geq 2}\left(m_{i}^{*}-1\right)\right.$ if \mathcal{A} is a reflection arrangement).

Proof: If $H^{P}\left(F_{0}, \mathbb{C}\right)^{\gamma} \neq 0$, then by the theorem there is a dense edge $X \in \mathcal{L}$ with $\operatorname{codim}(X) \leq p+1$ and $d \mid m_{X}$. But for any $X \in \mathcal{L}$ with $X \neq 0, m_{X}=\left|\mathcal{A}_{X}\right|<|\mathcal{A}|=d$.

Hence $\operatorname{codim} X=\ell$ implies that $p=\ell-1$.
Further, since $\chi^{\mu_{d}}\left(F_{0}\right)=\chi(U)$ Reg $_{\mu_{d}}$, and there is no cancellation since γ appears in just one cohomology degree, the second statement follows. \square

These facts may be used to prove:
Theorem: Suppose that $H^{p}\left(F_{0}, \mathbb{C}\right)^{\gamma} \neq 0$ for some $\gamma \in \hat{\mu}_{d}$. Then there is a dense edge $X \in \mathcal{L}$ such that $\operatorname{codim}(X) \leq p+1$ and $|\gamma|$ divides m_{X}.

Corollary:(Assume \mathcal{A} is essential). If γ is faithful (i.e. $|\gamma|=d$), and $H^{p}\left(F_{0}\right)^{\gamma} \neq 0$, then $p=\ell-1$ (the top degree) and $\left(\gamma, H^{\ell-1}\left(F_{0}\right)\right)_{\mu_{d}}=|\chi(U)|\left(=\prod_{i \geq 2}\left(m_{i}^{*}-1\right)\right.$ if \mathcal{A} is a reflection arrangement).

Proof: If $H^{P}\left(F_{0}, \mathbb{C}\right)^{\gamma} \neq 0$, then by the theorem there is a dense edge $X \in \mathcal{L}$ with $\operatorname{codim}(X) \leq p+1$ and $d \mid m_{X}$. But for any $X \in \mathcal{L}$ with $X \neq 0, m_{X}=\left|\mathcal{A}_{X}\right|<|\mathcal{A}|=d$.

Hence $\operatorname{codim} X=\ell$ implies that $p=\ell-1$.
Further, since $\chi^{\mu_{d}}\left(F_{0}\right)=\chi(U) \operatorname{Reg}_{\mu_{d}}$, and there is no cancellation since γ appears in just one cohomology degree, the second statement follows. \square

Mixed Hodge structure.

Recall we have

$$
H^{p, q}\left(H^{j}(F, \mathbb{C}):=\operatorname{Gr}_{F}^{p} \operatorname{Gr}_{p+q}^{W} H^{j}(F, \mathbb{C})\right.
$$

and the Poincaré-Deligne polynomial:
$P D^{\top}(F ; u, v, t):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} V^{q} t^{j}$.
A useful specialisation is the Hodge-Deligne polynomial:
$H D^{\Gamma}(F ; u, v):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q}(-1)^{j}=P D^{\Gamma}(F ; u, v,-1)$.
Note that $H D^{\ulcorner }(F ; u, v)=\sum_{p, q} E^{\ulcorner: p, q}(F) u^{p} v^{q}$,
where $E^{\Gamma: p, q}(F)=\sum_{j}(-1)^{j} H^{p, q} H^{j}(F, \mathbb{C})$,
the latter being additive over locally closed şubvarietiees;

Mixed Hodge structure.

Recall we have

$$
H^{p, q}\left(H^{j}(F, \mathbb{C}):=\operatorname{Gr}_{F}^{p} \operatorname{Gr}_{p+q}^{w} H^{j}(F, \mathbb{C})\right.
$$

and the Poincaré-Deligne polynomial:
$P D^{\Gamma}(F ; u, v, t):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q} t^{j}$.
A useful specialisation is the Hodge-Deligne polynomial:
$H D^{\Gamma}(F ; u, v):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q}(-1)^{j}=P D^{\Gamma}(F ; u, v,-1)$.
Note that $H D^{\Gamma}(F ; u, v)=\sum_{p, q} E^{\Gamma: p, q}(F) u^{p} v^{q}$,
where $E^{\Gamma: p, q}(F)=\sum_{j}(-1)^{j} H^{p, q} H^{j}(F, \mathbb{C})$,

Mixed Hodge structure.

Recall we have

$$
H^{p, q}\left(H^{j}(F, \mathbb{C}):=\operatorname{Gr}_{F}^{p} \operatorname{Gr}_{p+q}^{W} H^{j}(F, \mathbb{C})\right.
$$

and the Poincaré-Deligne polynomial:
$P D^{\Gamma}(F ; u, v, t):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q} t^{j}$.
A useful specialisation is the Hodge-Deligne polynomial:
$H D^{\ulcorner }(F ; u, v):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q}(-1)^{j}=P D^{\ulcorner }(F ; u, v,-1)$.
Note that $\operatorname{HD}^{\Gamma}(\Gamma ; U, V)=\sum_{p, q} E^{\Gamma \cdot p, q}(\Gamma) U^{p} V^{q}$,
where $E^{\Gamma: p, q}(F)=\sum_{j}(-1)^{j} H^{p, q} H^{j}(F, \mathbb{C})$,

Mixed Hodge structure.

Recall we have

$$
H^{p, q}\left(H^{j}(F, \mathbb{C}):=\operatorname{Gr}_{F}^{p} \operatorname{Gr}_{p+q}^{W} H^{j}(F, \mathbb{C})\right.
$$

and the Poincaré-Deligne polynomial:
$P D^{\ulcorner }(F ; u, v, t):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q} t^{j}$.
A useful specialisation is the Hodge-Deligne polynomial:
$H D^{\ulcorner }(F ; u, v):=\sum_{p, q, j} H^{p, q} H_{j}^{j}(F) u^{p} v^{q}(-1)^{j}=P D^{\ulcorner }(F ; u, v,-1)$.
Note that $H D^{\ulcorner }(F ; u, v)=\sum_{p, q} E^{\Gamma: p, q}(F) u^{p} v^{q}$,
where $E^{\ulcorner: p, q}(F)=\sum_{j}(-1)^{i} H^{p, q} H^{j}(F, \mathbb{C})$,

Mixed Hodge structure.

Recall we have

$$
H^{p, q}\left(H^{j}(F, \mathbb{C}):=\operatorname{Gr}_{F}^{p} \operatorname{Gr}_{p+q}^{w} H^{j}(F, \mathbb{C})\right.
$$

and the Poincaré-Deligne polynomial:
$P D^{\ulcorner }(F ; u, v, t):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q} t^{j}$.
A useful specialisation is the Hodge-Deligne polynomial:
$H D^{\ulcorner }(F ; u, v):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q}(-1)^{j}=P D^{\ulcorner }(F ; u, v,-1)$.
Note that $H D^{\ulcorner }(F ; u, v)=\sum_{p, q} E^{\Gamma ; p, q}(F) u^{p} v^{q}$,
where $E^{\ulcorner: p, q}(F)=\sum_{j}(-1)^{j} H^{p, q} H^{j}(F, \mathbb{C})$,

Mixed Hodge structure.

Recall we have

$$
H^{p, q}\left(H^{j}(F, \mathbb{C}):=\operatorname{Gr}_{F}^{p} \operatorname{Gr}_{p+q}^{W} H^{j}(F, \mathbb{C})\right.
$$

and the Poincaré-Deligne polynomial:
$P D^{\Gamma}(F ; u, v, t):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q} t^{j}$.
A useful specialisation is the Hodge-Deligne polynomial:
$H D^{\ulcorner }(F ; u, v):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q}(-1)^{j}=P D^{\ulcorner }(F ; u, v,-1)$.
Note that $H D^{\ulcorner }(F ; u, v)=\sum_{p, q} E^{\Gamma: p, q}(F) u^{p} v^{q}$,
where $E^{\ulcorner: p, q}(F)=\sum_{j}(-1)^{j} H^{p, q} H^{j}(F, \mathbb{C})$,

Mixed Hodge structure.

Recall we have

$$
H^{p, q}\left(H^{j}(F, \mathbb{C}):=\operatorname{Gr}_{F}^{p} \operatorname{Gr}_{p+q}^{W} H^{j}(F, \mathbb{C})\right.
$$

and the Poincaré-Deligne polynomial:
$P D^{\Gamma}(F ; u, v, t):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q} t^{j}$.
A useful specialisation is the Hodge-Deligne polynomial:
$H D^{\ulcorner }(F ; u, v):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q}(-1)^{j}=P D^{\ulcorner }(F ; u, v,-1)$.
Note that $H D^{\ulcorner }(F ; u, v)=\sum_{p, q} E^{\Gamma: p, q}(F) u^{p} v^{q}$,
where $E^{\Gamma: p, q}(F)=\sum_{j}(-1)^{j} H^{p, q} H^{j}(F, \mathbb{C})$,

Mixed Hodge structure.

Recall we have

$$
H^{p, q}\left(H^{j}(F, \mathbb{C}):=\operatorname{Gr}_{F}^{p} \operatorname{Gr}_{p+q}^{W} H^{j}(F, \mathbb{C})\right.
$$

and the Poincaré-Deligne polynomial:
$P D^{\Gamma}(F ; u, v, t):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q} t^{j}$.
A useful specialisation is the Hodge-Deligne polynomial:
$H D^{\ulcorner }(F ; u, v):=\sum_{p, q, j} H^{p, q} H^{j}(F) u^{p} v^{q}(-1)^{j}=P D^{\ulcorner }(F ; u, v,-1)$.
Note that $H D^{\ulcorner }(F ; u, v)=\sum_{p, q} E^{\Gamma: p, q}(F) u^{p} v^{q}$,
where $E^{\Gamma: p, q}(F)=\sum_{j}(-1)^{j} H^{p, q} H^{j}(F, \mathbb{C})$,
the latter being additive over locally closed subvarieties.

Hodge-Deligne and the spectrum

For an essential arrangement $\mathcal{A} \subset V=\mathbb{C}^{\ell}$,
the spectrum is defined by
$\operatorname{Sp}(\mathcal{A}):=\sum_{\alpha \in \mathbb{Q}} m_{\alpha} t^{\alpha}$, where
$m_{\alpha}=\sum_{j}(-1)^{j+1-\ell} \operatorname{dim} \operatorname{Gr}_{F}^{p} H^{j}(F)\left(h^{-j}, \exp (2 \pi \sqrt{-1} \alpha)\right)$,
where h is the generator of the monodromy.
It has recently been shown by Budur and Saito that $\operatorname{Sp}(\mathcal{A})$ depends only on $\mathcal{L}(\mathcal{A})$, not on \mathcal{A}.

Proposition Let
$M^{(p)}=(-1)^{\ell-1} \sum_{j}(-1)^{j} \operatorname{Gr}_{F}^{p} \tilde{H}^{j}\left(F_{0}, \mathbb{C}\right)\left(\in R\left(\mu_{d}\right)\right)$.
Then

Hodge-Deligne and the spectrum

For an essential arrangement $\mathcal{A} \subset V=\mathbb{C}^{\ell}$, the spectrum is defined by
$\operatorname{Sp}(\mathcal{A}):=\sum_{\alpha \in \mathbb{Q}} m_{\alpha} t^{\alpha}$, where

where h is the generator of the monodromy.
It has recently been shown by Budur and Saito that $\operatorname{Sp}(\mathcal{A})$ depends only on $\mathcal{L}(\mathcal{A})$, not on \mathcal{A}.

Proposition Let
$M^{(p)}=(-1)^{\ell-1} \sum_{j}(-1)^{j} \operatorname{Gr}_{F}^{p} H_{j}^{j}\left(F_{0}, \mathbb{C}\right)\left(\in R\left(\mu_{d}\right)\right)$.
Then

Hodge-Deligne and the spectrum

For an essential arrangement $\mathcal{A} \subset V=\mathbb{C}^{\ell}$, the spectrum is defined by
$\operatorname{Sp}(\mathcal{A}):=\sum_{\alpha \in \mathbb{Q}} m_{\alpha} t^{\alpha}$, where

where h is the generator of the monodromy.
It has recently been shown by Budur and Saito that $\operatorname{Sp}(\mathcal{A})$ depends only on $\mathcal{L}(\mathcal{A})$, not on \mathcal{A}.

Proposition Let
$M^{(p)}=(-1)^{\ell-1} \sum_{j}(-1)^{j} \operatorname{Gr}_{F}^{p} H^{j}\left(F_{0}, \mathbb{C}\right)\left(\in R\left(\mu_{d}\right)\right)$.
Then

Hodge-Deligne and the spectrum

For an essential arrangement $\mathcal{A} \subset V=\mathbb{C}^{\ell}$, the spectrum is defined by
$\operatorname{Sp}(\mathcal{A}):=\sum_{\alpha \in \mathbb{Q}} m_{\alpha} t^{\alpha}$, where $m_{\alpha}=\sum_{j}(-1)^{j+1-\ell} \operatorname{dim} \operatorname{Gr}_{F}^{p} H^{j}(F)\left(h^{-j}, \exp (2 \pi \sqrt{-} 1 \alpha)\right)$,
where h is the generator of the monodromy.
It has recently been shown by Budur and Saito that $\operatorname{Sp}(\mathcal{A})$ depends only on $\mathcal{L}(\mathcal{A})$, not on \mathcal{A}.

Proposition Let
$M^{(p)}=(-1)^{\ell-1} \sum_{j}(-1)^{j} \operatorname{Gr}_{F}^{p} \widetilde{H}^{j}\left(F_{0}, \mathbb{C}\right)\left(\in R\left(\mu_{d}\right)\right)$.
Then

Hodge-Deligne and the spectrum

For an essential arrangement $\mathcal{A} \subset V=\mathbb{C}^{\ell}$, the spectrum is defined by
$\operatorname{Sp}(\mathcal{A}):=\sum_{\alpha \in \mathbb{Q}} m_{\alpha} t^{\alpha}$, where $m_{\alpha}=\sum_{j}(-1)^{j+1-\ell} \operatorname{dim} \operatorname{Gr}_{F}^{p} H^{j}(F)\left(h^{-j}, \exp (2 \pi \sqrt{-} 1 \alpha)\right)$, where h is the generator of the monodromy.

It has recently been shown by Budur and Saito that $\operatorname{Sp}(\mathcal{A})$ depends only on $\mathcal{L}(\mathcal{A})$, not on \mathcal{A}.

Proposition Let
$M^{(p)}=(-1)^{\ell-1} \sum_{j}(-1)^{j} \operatorname{Gr}_{F}^{p} H_{j}^{j}\left(F_{0}, \mathbb{C}\right)\left(\in R\left(\mu_{d}\right)\right)$.
Then

Hodge-Deligne and the spectrum

For an essential arrangement $\mathcal{A} \subset V=\mathbb{C}^{\ell}$, the spectrum is defined by
$\operatorname{Sp}(\mathcal{A}):=\sum_{\alpha \in \mathbb{Q}} m_{\alpha} t^{\alpha}$, where $m_{\alpha}=\sum_{j}(-1)^{j+1-\ell} \operatorname{dim} \operatorname{Gr}_{F}^{p} H^{j}(F)\left(h^{-j}, \exp (2 \pi \sqrt{-} 1 \alpha)\right)$,
where h is the generator of the monodromy.
It has recently been shown by Budur and Saito that $\operatorname{Sp}(\mathcal{A})$ depends only on $\mathcal{L}(\mathcal{A})$, not on \mathcal{A}.

Proposition Let
$M^{(p)}=(-1)^{\ell-1} \sum_{j}(-1)^{j} \operatorname{Gr}_{F}^{p} \widetilde{H}^{j}\left(F_{0}, \mathbb{C}\right)\left(\in R\left(\mu_{d}\right)\right)$.
Then

Hodge-Deligne and the spectrum

For an essential arrangement $\mathcal{A} \subset V=\mathbb{C}^{\ell}$, the spectrum is defined by
$\operatorname{Sp}(\mathcal{A}):=\sum_{\alpha \in \mathbb{Q}} m_{\alpha} t^{\alpha}$, where $m_{\alpha}=\sum_{j}(-1)^{j+1-\ell} \operatorname{dim} \operatorname{Gr}_{F}^{p} H^{j}(F)\left(h^{-j}, \exp (2 \pi \sqrt{-} 1 \alpha)\right)$,
where h is the generator of the monodromy.
It has recently been shown by Budur and Saito that $\operatorname{Sp}(\mathcal{A})$ depends only on $\mathcal{L}(\mathcal{A})$, not on \mathcal{A}.

Proposition Let
$M^{(p)}=(-1)^{\ell-1} \sum_{j}(-1)^{j} \operatorname{Gr}_{F}^{p} \widetilde{H}^{j}\left(F_{0}, \mathbb{C}\right)\left(\in R\left(\mu_{d}\right)\right)$.
Then

$$
\operatorname{Sp}(\mathcal{A})=\left(\sum_{p=0}^{\ell-1} M^{(p)} t^{\ell-1-p}, \sum_{j=1}^{d} \gamma_{j} t^{j}\right)_{\mu_{d}} .
$$

It follows that the information encoded by the spectrum is precisely the μ_{d} module structure of the virtual modules $M^{(p)}$.

Corollary: ${H D^{\mu_{d}}\left(F_{0} ; u, 1\right) \text { depends only on the combinatorics }}^{2}$ of the arrangement \mathcal{A}.

Theorem: Suppose \mathcal{A} is essential in \mathbb{C}^{ℓ}. Let $\gamma \in \hat{\mu}_{d}$ be such that for all dense $X \in \mathcal{L}, X \neq 0, \gamma^{m_{X}} \neq 1$. Then
$H^{P}\left(F_{0}\right)^{\gamma} \oplus H^{p}\left(F_{0}\right)^{\gamma}$ is 0 for $p<\ell-1$ and is a pure Hodge structure of weight $\ell-1$ if $p=\ell-1$

It follows that the information encoded by the spectrum is precisely the μ_{d} module structure of the virtual modules $M^{(p)}$.

Corollary: $H D^{\mu_{d}}\left(F_{0} ; u, 1\right)$ depends only on the combinatorics of the arrangement \mathcal{A}.

It follows that the information encoded by the spectrum is precisely the μ_{d} module structure of the virtual modules $M^{(p)}$.

Corollary: $H D^{\mu_{d}}\left(F_{0} ; u, 1\right)$ depends only on the combinatorics of the arrangement \mathcal{A}.

Theorem: Suppose \mathcal{A} is essential in \mathbb{C}^{ℓ}. Let $\gamma \in \hat{\mu}_{d}$ be such that for all dense $X \in \mathcal{L}, X \neq 0, \gamma^{m_{X}} \neq 1$. Then $H^{p}\left(F_{0}\right)^{\gamma} \oplus H^{p}\left(F_{0}\right)^{\bar{\gamma}}$ is 0 for $p<\ell-1$ and is a pure Hodge structure of weight $\ell-1$ if $p=\ell-1$.

The formula in the Proposition also gives complete information about the Hodge structure of $H^{1}(F)$ in certain cases, e.g. when $\mathcal{A}=A_{\ell}$.

It is known that in this case, $H^{1}(F)^{\mu_{m}}$ is a pure Hodge structure of weight 2, and we have already seen that its cohomology classes are all Tate-of type $(1,1)$.

Further, $H^{1}(F)=H^{1}(F)^{\mu_{m}} \oplus H^{1}(F)^{\prime}$, and $H^{1}(F)^{\prime}$ is pure, of weight 1 ; it therefore contains classes only of type $(1,0)$ and $(0,1)$. Moreover, $H^{-1}(F)^{\prime}=0$ if $\ell \geq 4$

Since $H^{1}(F)^{\mu_{m}} \cong \Theta-1$ as G-module, where Θ is the
permutation action of G on \mathcal{A}, we have $\operatorname{dim} H^{1}(F)^{\mu_{m}}=\frac{(\ell+2)(\ell-1)}{2}$.

It is easy to compute the spectrum in the cases $\ell=2, \ell=3$. Thus the Hodge structure of $H^{1}(F)$ is completely understood for the braid arrangement.

The formula in the Proposition also gives complete information about the Hodge structure of $H^{1}(F)$ in certain cases, e.g. when $\mathcal{A}=A_{\ell}$.

It is known that in this case, $H^{1}(F)^{\mu_{m}}$ is a pure Hodge structure of weight 2, and we have already seen that its cohomology classes are all Tate-of type $(1,1)$.

Since $H^{1}(F)^{\mu_{m}} \cong \Theta-1$ as G-module, where Θ is the permutation action of G on \mathcal{A}, we have $\operatorname{dim} H^{1}(F)^{\mu_{m}}=\frac{(1+2)(C-1)}{2}$.

It is easy to compute the spectrum in the cases $\ell=2, \ell=3$.
Thus the Hodge structure of $H^{1}(F)$ is completely understood for the braid arrangement.

The formula in the Proposition also gives complete information about the Hodge structure of $H^{1}(F)$ in certain cases, e.g. when $\mathcal{A}=A_{\ell}$.

It is known that in this case, $H^{1}(F)^{\mu_{m}}$ is a pure Hodge structure of weight 2, and we have already seen that its cohomology classes are all Tate-of type $(1,1)$.

Further, $H^{1}(F)=H^{1}(F)^{\mu_{m}} \oplus H^{1}(F)^{\prime}$, and $H^{1}(F)^{\prime}$ is pure, of weight 1 ; it therefore contains classes only of type $(1,0)$ and $(0,1)$.

Since $H^{1}(F)^{\mu_{m}} \cong \Theta-1$ as G-module, where Θ is the permutation action of G on \mathcal{A}, we have

It is easy to compute the spectrum in the cases $\ell=2, \ell=3$.
\square for the braid arrangement.

The formula in the Proposition also gives complete information about the Hodge structure of $H^{1}(F)$ in certain cases, e.g. when $\mathcal{A}=A_{\ell}$.

It is known that in this case, $H^{1}(F)^{\mu_{m}}$ is a pure Hodge structure of weight 2, and we have already seen that its cohomology classes are all Tate-of type $(1,1)$.

Further, $H^{1}(F)=H^{1}(F)^{\mu_{m}} \oplus H^{1}(F)^{\prime}$, and $H^{1}(F)^{\prime}$ is pure, of weight 1 ; it therefore contains classes only of type $(1,0)$ and $(0,1)$. Moreover, $H^{1}(F)^{\prime}=0$ if $\ell \geq 4$

Since $H^{1}(F)^{\mu_{m}} \cong \Theta-1$ as G-module, where Θ is the permutation action of G on \mathcal{A}, we have

It is easy to compute the spectrum in the cases $\ell=2, \ell=3$.
\square for the braid arrangement.

The formula in the Proposition also gives complete information about the Hodge structure of $H^{1}(F)$ in certain cases, e.g. when $\mathcal{A}=A_{\ell}$.

It is known that in this case, $H^{1}(F)^{\mu_{m}}$ is a pure Hodge structure of weight 2 , and we have already seen that its cohomology classes are all Tate-of type $(1,1)$.

Further, $H^{1}(F)=H^{1}(F)^{\mu_{m}} \oplus H^{1}(F)^{\prime}$, and $H^{1}(F)^{\prime}$ is pure, of weight 1 ; it therefore contains classes only of type $(1,0)$ and $(0,1)$. Moreover, $H^{1}(F)^{\prime}=0$ if $\ell \geq 4$

Since $H^{1}(F)^{\mu_{m}} \cong \Theta-1$ as G-module, where Θ is the permutation action of G on \mathcal{A}, we have $\operatorname{dim} H^{1}(F)^{\mu_{m}}=\frac{(\ell+2)(\ell-1)}{2}$.

It is easy to compute the spectrum in the cases $\ell=2, \ell=3$. for the braid arrangement.

The formula in the Proposition also gives complete information about the Hodge structure of $H^{1}(F)$ in certain cases, e.g. when $\mathcal{A}=A_{\ell}$.

It is known that in this case, $H^{1}(F)^{\mu_{m}}$ is a pure Hodge structure of weight 2 , and we have already seen that its cohomology classes are all Tate-of type $(1,1)$.

Further, $H^{1}(F)=H^{1}(F)^{\mu_{m}} \oplus H^{1}(F)^{\prime}$, and $H^{1}(F)^{\prime}$ is pure, of weight 1 ; it therefore contains classes only of type $(1,0)$ and $(0,1)$. Moreover, $H^{1}(F)^{\prime}=0$ if $\ell \geq 4$

Since $H^{1}(F)^{\mu_{m}} \cong \Theta-1$ as G-module, where Θ is the permutation action of G on \mathcal{A}, we have $\operatorname{dim} H^{1}(F)^{\mu_{m}}=\frac{(\ell+2)(\ell-1)}{2}$.

It is easy to compute the spectrum in the cases $\ell=2, \ell=3$.
Thus the Hodge structure of $H^{1}(F)$ is completely understood for the braid arrangement.

For $\ell=3$ (case of Sym_{4}), we have

$$
H^{1,0} H^{1}(F)=1 \otimes \gamma_{4}+\varepsilon \otimes \gamma_{10}=\left(1 \otimes \gamma_{0}+\varepsilon \otimes \gamma_{6}\right)\left(1 \otimes \gamma_{4}\right)
$$

and

$$
H^{0,1} H^{1}(F)=1 \otimes \gamma_{2}+\varepsilon \otimes \gamma_{8}=\left(1 \otimes \gamma_{0}+\varepsilon \otimes \gamma_{6}\right)\left(1 \otimes \gamma_{2}\right)
$$

For these low dimensional groups (i.e. Sym_{3} and Sym_{4}) we have computed the whole of $P D(F ; u, v, t)$.

For $\ell=3$ (case of Sym_{4}), we have

$$
H^{1,0} H^{1}(F)=1 \otimes \gamma_{4}+\varepsilon \otimes \gamma_{10}=\left(1 \otimes \gamma_{0}+\varepsilon \otimes \gamma_{6}\right)\left(1 \otimes \gamma_{4}\right)
$$

and

$$
H^{0,1} H^{1}(F)=1 \otimes \gamma_{2}+\varepsilon \otimes \gamma_{8}=\left(1 \otimes \gamma_{0}+\varepsilon \otimes \gamma_{6}\right)\left(1 \otimes \gamma_{2}\right)
$$

For these low dimensional groups (i.e. Sym_{3} and Sym_{4}) we have computed the whole of $P D(F ; u, v, t)$.

An example.

Let \mathcal{A} be the arrangement of type A_{4} in \mathbb{C}^{5}.
Then $\Gamma=\operatorname{Sym}_{5} \times \mu_{20}, \Gamma_{0}=\operatorname{ker}\left(\varepsilon \otimes \gamma_{10}\right)$, and we have the following formula for $P^{\Gamma}(F, t)$.

An example.

Let \mathcal{A} be the arrangement of type A_{4} in \mathbb{C}^{5}.
Then $\Gamma=\operatorname{Sym}_{5} \times \mu_{20}, \Gamma_{0}=\operatorname{ker}\left(\varepsilon \otimes \gamma_{10}\right)$, and we have the following formula for $P^{\Gamma}(F, t)$.
$P^{\Gamma}(F, t)=\left(1 \otimes \gamma_{0}+\varepsilon \otimes \gamma_{10}\right) P_{0}^{\Gamma_{0}\left(F_{0}, t\right) \text {, where }}$

An example.

Let \mathcal{A} be the arrangement of type A_{4} in \mathbb{C}^{5}.
Then $\Gamma=\operatorname{Sym}_{5} \times \mu_{20}, \Gamma_{0}=\operatorname{ker}\left(\varepsilon \otimes \gamma_{10}\right)$, and we have the following formula for $P^{\Gamma}(F, t)$.
$P^{\ulcorner }(F, t)=\left(1 \otimes \gamma_{0}+\varepsilon \otimes \gamma_{10}\right) P_{0}^{\Gamma_{0}}\left(F_{0}, t\right)$, where

An example.

Let \mathcal{A} be the arrangement of type A_{4} in \mathbb{C}^{5}.
Then $\Gamma=\operatorname{Sym}_{5} \times \mu_{20}, \Gamma_{0}=\operatorname{ker}\left(\varepsilon \otimes \mathcal{\gamma}_{10}\right)$, and we have the following formula for $P\ulcorner(F, t)$.
$P^{\Gamma}(F, t)=\left(1 \otimes \gamma_{0}+\varepsilon \otimes \gamma_{10}\right) P_{0}^{\Gamma_{0}}\left(F_{0}, t\right)$, where
$P_{0}^{\Gamma_{0}}\left(F_{0}, t\right)=1+\left[\rho \otimes \gamma_{0}+\chi^{(3,2)} \otimes \gamma_{0}\right] t+$

An example.

Let \mathcal{A} be the arrangement of type A_{4} in \mathbb{C}^{5}.
Then $\Gamma=\operatorname{Sym}_{5} \times \mu_{20}, \Gamma_{0}=\operatorname{ker}\left(\varepsilon \otimes \gamma_{10}\right)$, and we have the following formula for $P^{\Gamma}(F, t)$.
$P^{\ulcorner }(F, t)=\left(1 \otimes \gamma_{0}+\varepsilon \otimes \gamma_{10}\right) P_{0}^{\Gamma_{0}}\left(F_{0}, t\right)$, where
$P_{0}^{\Gamma_{0}}\left(F_{0}, t\right)=1+\left[\rho \otimes \gamma_{0}+\chi^{(3,2)} \otimes \gamma_{0}\right] t+$
$\left[1 \otimes\left(\gamma_{5}+\gamma_{15}\right)+\rho \otimes \gamma_{0}+\chi^{(3,2)} \otimes\left(\gamma_{0}+\gamma_{10}\right)+\chi^{\left(3,1^{2}\right)} \otimes\left(\gamma_{0}+\right.\right.$ $\left.\left.\gamma_{10}\right)\right] t^{2}+$

An example.

Let \mathcal{A} be the arrangement of type A_{4} in \mathbb{C}^{5}.
Then $\Gamma=\operatorname{Sym}_{5} \times \mu_{20}, \Gamma_{0}=\operatorname{ker}\left(\varepsilon \otimes \gamma_{10}\right)$, and we have the following formula for $P^{\Gamma}(F, t)$.
$P^{\ulcorner }(F, t)=\left(1 \otimes \gamma_{0}+\varepsilon \otimes \gamma_{10}\right) P_{0}^{\Gamma_{0}}\left(F_{0}, t\right)$, where
$P_{0}^{{ }_{0}}\left(F_{0}, t\right)=1+\left[\rho \otimes \gamma_{0}+\chi^{(3,2)} \otimes \gamma_{0}\right] t+$
$\left[1 \otimes\left(\gamma_{5}+\gamma_{15}\right)+\rho \otimes \gamma_{0}+\chi^{(3,2)} \otimes\left(\gamma_{0}+\gamma_{10}\right)+\chi^{\left(3,1^{2}\right)} \otimes\left(\gamma_{0}+\right.\right.$ $\left.\left.\gamma_{10}\right)\right] t^{2}+$
$\left[1 \otimes\left(\gamma_{2}+\gamma_{6}+\gamma_{14}+\gamma_{18}\right)+\rho \otimes\left(\gamma_{0}+\gamma_{5}+\gamma_{10}+\gamma_{15}\right)+\right.$ $\chi^{(3,2)} \otimes\left(\gamma_{0}+\gamma_{4}+\gamma_{8}+\gamma_{10}+\gamma_{12}+\gamma_{16}\right)+\chi^{\left(3,1^{2}\right)} \otimes\left(\gamma_{0}+\gamma_{1}+\right.$ $\left.\left.\gamma_{3}+\gamma_{7}+\gamma_{9}\right)\right] t^{3}$.

There is still much to be done, but some fascinating hints as to what is happening.

THANK YOU.

