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Introduction

When Krammer and Bigelow independently proved that braid groups
are linear, they used the Lawrence-Krammer-Bigelow representation
for generic values of its variables q and t [Kra00, Big01, Kra02]. The
t variable is closely connected to the traditional Garside structure of
the braid groups and it plays a major role in Krammer’s proof [Kra02].
The q variable, associated with the dual Garside structure of the braid
groups, has received less attention.

In the special case t = 1 and q real, we show that there is an elegant
geometric interpretation of the LKB representation that highlights the
role of the q variable, at least when it is viewed in Krammer’s original
basis. Concretely, braid group elements can be viewed as acting on and
systematically reshaping euclidean simplices (Theorem A). In fact, for
each simple element in the dual Garside structure, the reshaping is an
elementary operation that we call edge rescaling (Theorem B).

Braids act by reshaping simplices

The specialized LKB representation that we work with is easy to de-
scribe and, in light of our first theorem, we call it the simplicial rep-
resentation of the braid group.

Definition 1 (Simplicial Representation). Let q be a nonzero positive
real number, let E be the set {ei,j} with 1 ≤ i < j ≤ n and let V

be the
(n

2

)
-dimensional real vector space with E as its basis. When

writing explicit matrices we order the basis E lexicographically (so that
for n = 4 the order is {e12, e13, e14, e23, e24, e34}). The simplicial
representation ρ : Braidn→ GL(V ) is defined by explicitly describ-
ing the action of the standard minimal generators of the braid group
r1,2, . . . , rn−1,n. If we let ri,i+1 also denote the matrix that represents
ρ(ri,i+1) with respect to the basis E , then:

(ejk)ri,i+1 =



q2ej,k i = j = k − 1

qej,i + (1− q)ej,k + (q2 − q)ei,k i = k − 1 6= j

qei,k + (1− q)ej,k + (q2 − q)ei,j i = j − 1
ej+1,k i = j 6= k − 1
ej,k+1 i = k
ej,k i, i + 1 6∈ {j, k}

Note that the t variable does not appear because we have set it equal
to 1 and that the matrix ri,i+1 as defined above is acting from the
right. This differs from the literature but we make this choice so that
the action we are interested in is an action from the left.

One part of the action merely permutes the subscripts of the eij’s ac-
cording to the standard permutation representation of the braid group.
We write Ri,i+1 for the matrix which remains when this permutation
has been stripped away. As an illustration, in the simplicial represen-
tation of Braid4, the matrix R12 acts on column vectors as follows:

R12


a
b
c
d
e
f

 =



q2a

(q2 − q)a + qb + (1− q)d
(q2 − q)a + qc + (1− q)e

d
e
f


=


a′

b′

c′

d′

e′

f ′

 (1)

Our first claim is that if the column vector with entries a through f
represents the squared edge lengths of a euclidean tetrahedron then the
same is true for the column vector with entries a′ through f ′. More
precisely we prove the following:

Theorem A (Braids act by reshaping simplices). The simplicial rep-
resentation ρ as defined above preserves the set of

(n
2

)
-tuples of

positive reals that represent the squared edge lengths of a euclidean
(n − 1)-simplex when acting from the left. In particular, if v is a
column vector that records the squared edge lengths of a euclidean
simplex and β is a braid, then the column vector ρ(β)·v also records
the squared edge lengths of a euclidean simplex.

The idea behind the proof is to use Cayley-Menger determinants, a
well-known way to test whether or not a list of real numbers come from
squared edge lengths of a euclidean simplex. To come from an actual
simplex, it is necessary and sufficient that the Cayley-Menger deter-
minant for the full simplex and for various subsimplices have certain
specified signs. For edges and triangles, the determinant inequalities
require that the entries are strictly positive, and that their square roots
satisfy the triangle inequality. The first non-obvious restriction is for
a tetrahedron and we illustrate it with the column vectors shown in
(1). Using standard row and column operations it is straightforward to
show that the follow equality holds:

det


0 1 1 1 1
1 0 a′ b′ c′

1 a′ 0 d′ e′

1 b′ d′ 0 f ′

1 c′ e′ f ′ 0

 = q2 · det


0 1 1 1 1
1 0 a b c
1 a 0 d e
1 b d 0 f
1 c e f 0

 (2)

This shows that the two Cayley-Menger determinants have the same
sign. Similar results hold for every standard generator, for any num-
ber of strings, and for every subsimplex. This is sufficient to prove
Theorem A.

Generators act by edge rescaling

The standard generators of the braid group (in the simplicial represen-
tation) reshape simplices in a very elementary way that we call edge
rescaling.

Definition 2 (Edge Rescaling). Let ∆ and ∆′ be two euclidean sim-
plices with labeled vertices in a common vector space. We say that an
edge e in ∆ is merely rescaled if it and the corresponding edge e′ in
∆′ point in the same direction. More generally, we say that ∆′ is an
edge rescaling of ∆ if there exist enough pairs of corresponding edges
pointing in the same direction (but with possibly different lengths) to
form a vector space basis out of these common direction vectors. An
example is shown in Figure 1.
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Figure 1: A reshaping that fixes e12 and rescales e13.

Proposition 3 (Rescaling an edge of a triangle). Let ∆ be a tri-
angle whose edges have squared lengths a, b and c. If ∆′ is the
triangle obtained by fixing the a edge and rescaling the b edge by a
factor of q, then the squared edge lengths of the new triangle are
a′ = a, b′ = q2b, and c′ = (1− q)a + (q2 − q)b + qc.

The values a′ and b′ are immediate and c′ follows from the law of
cosines. Note the similarity with the entries of the simplicial represen-
tation. The reshaping described in (1) fixes the edges in the triangle
∆234 and rescales the edge e12 by a factor of q. See Figure 2.

a

b

c

d

e

fp1

p2

p3

p4

R12

a′

b′

c′

d′

e′

f ′

p′1

p2

p3

p4

Figure 2: A reshaping that fixes ∆234 and rescales e12.

A more precise statement of Theorem A would be that the standard
generators act on the set of labeled euclidean simplices by an edge
rescaling followed by a permutation of the vertex labels.

Noncrossing partitions and dual simples

To describe the way that dual simple elements reshape simplices, we
need to recall noncrossing partitions and the dual Garside structure of
the braid group.

Definition 4 (Noncrossing partitions). Let Dn be a disc in R2 with n
points arranged so that they are the vertices of a convex n-gon labeled
1 through n in the order they occur in its boundary. A partition of
these n points is called a noncrossing partition if distinct blocks have
disjoint convex hulls. These partitions form a bounded graded lattice
under the refinement order. See Figure 3.

Figure 3: Noncrossing partitions for n = 4.

Elements of the braid group can be identified with (equivalence classes
of) motions of the labeled points in the disc Dn and the dual simple
elements are a set of braid group elements indexed by the noncrossing
partitions as follows.

Definition 5 (Rotations). The dual Garside element δ of the n-
string braid group is the motion where each labeled point in Dn moves
clockwise along the boundary of the convex hull of all n points to the
next vertex. We call this rotating the vertices. More generally, for each
set B ⊂ {1, . . . , n}, let PB be the convex hull of the vertices indexed
by B and let DB be an ε-neighborhood of PB. The braid group el-
ement rB is a similiar motion restricted to the subdisc DB, i.e. the
vertices in the subdisc move clockwise along one side of the polygon
PB to the next vertex, leaving all other vertices fixed. See Figure 4.
In this notation, the dual Garside element δ is the rotation r1,2,...,n
and the identity 1 = r∅. When B has two elements, the points avoid
collisions by passing on the left.
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Figure 4: The rotation r137.

Rotations can be used to assign a braid to each noncrossing partition.

Definition 6 (Dual simple elements). The dual simple elements of
the braid group are in one-to-one correspondence with the set of non-
crossing partitions. More precisely, for each noncrossing partition, we
associate the product of the rotations corresponding to each of its
blocks. Because rotations of noncrossing blocks commute, the resulting
element in the braid group is well-defined. The dual simple elements
in Braid4 written as products of rotations are shown in Figure 5.
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δ

Figure 5: Dual simple elements for n = 4.

Dual simples act by edge rescaling

The action of the dual simple elements under the simplicial represen-
tation can be described as an edge rescaling based on a noncrossing
partition and its left/right complement.

Definition 7 (Left/right complements). Given two group elements s
and δ, there are, of course, unique elements s′ and s′′ such that s′s = δ
and ss′′ = δ. When δ is the dual Garside element of the braid group
and s is one of its dual simple elements, it turns out that the elements
s′ and s′′ are also dual simple elements called the left and right com-
plement of s, respectively. For example, the left complement of r136
in Braid9 is r12r345r6789 and its right complement is r23r456r1789.
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Figure 6: The left and right complements of r136.

Definition 8 (Hypergraphs and hypertrees). A hypergraph is a gen-
eralization of a graph where its hyperedges are allowed span more than
two vertices, and a hypertree is the natural generalization of a tree. As
can be seen in Figure 6, the blocks of the noncrossing partition associ-
ated to a dual simple element and the blocks of one of its complements
together form the hyperedges of a planar hypertree.

We connect diagrams in the disc Dn to high-dimensional simplices via
their vertex labelings. For example, the three blocks of the left comple-
ment of r136 shown in Figure 6 correspond to an edge, a triangle and
a tetrahedron in any 8-dimensional simplex with 9 labeled vertices.

Theorem B (Dual simples act by edge rescaling). Under the sim-
plicial representation of the braid group, each dual simple element
acts by fixing the length and direction of the edges corresponding to
the blocks of its right complement, rescaling the edges correspond-
ing to its own blocks by a factor of q and then permuting the labels
on the vertices. If the vertex relabeling is performed first, then the
left complement is used instead of the right complement.

Final remarks

We conclude with a few remarks about the broader context.

• The set of euclidean simplices, with dilated simplices identified, is
one of the standard parameterizations of the higher rank symmet-
ric space SL(V )/SO(V ) and the simplicial representation induces a
braid group action by isometries on this space.

• The simplicial representation is not faithful for large n because it
is essentially the same as the symmetric tensor square of the Burau
representation (which is known to not be faithful for n ≥ 5).

• Similar constructions/interpretations should be possible for the other
spherical Artin groups, but we have not yet investigated these. The
idea would be to rescale root systems rather than euclidean simplices.
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