Braid Groups and Euclidean Simplices

Elizabeth Leyton Chisholm \& Jon McCammond University of California, Santa Barbara

Introduction

When Krammer and Bigelow independently proved that braid groups are linear, they used the Lawrence-Krammer-Bigelow representation for generic values of its variables q and $t[$ Kra00, Big01, Kra02]. The t variable is closely connected to the traditional Garside structure of
the braid groups and it plays a major role in Krammer's proof [Kra02]. The q variable, associated with the dual Garside structure of the braid groups, has received less attention.
In the special case $t=1$ and q real, we show that there is an elegant geometric interpretation of the LKB representation that highlights the role of the q variable, at least when it is viewed in Krammer's original basis. Concretely, braid group elements can be viewed as acting on and
systematically reshaping euclidean simplices (Theorem A). In fact, for systematically reshaping euclidean simplices (Theorem A). In fact, for elementary operation that we call edge rescaling (Theorem B).

Braids act by reshaping simplices

he specialized LKB representation that we work with is easy to de scribe and, in light of our first
Definition 1 (Simplicial Representation). Let q be a nonzero positive real number, let \mathcal{E} be the set $\left\{e_{i, j}\right\}$ with $1 \leq i<j \leq n$ and let V be the $\binom{n}{2}$-dimensional real vector space with \mathcal{E} as its basis. When writing explicit matrices we order the basis \mathcal{E} lexicographically (so that
for $n=4$ the order is $\left\{e_{12}, e_{13}, e_{14}, e_{23}, e_{24}, e_{34}\right\}$. The simplicial for $n=4$ the order is $\left.\left\{e_{12}, e_{13}, e_{14}, e_{23}, e_{24}, e_{34}\right\}\right)$. The simplicial
representation $\rho: \operatorname{BRAID}_{n} \rightarrow G L(V)$ is defined by explicitly describing the action of the standard minimal generators of the braid group $r_{1,2}, \ldots, r_{n-1, n}$. If we let $r_{i, i+1}$ also denote the matrix that represents $\rho\left(r_{i, i+1}\right)$ with respect to the basis \mathcal{E}, then:
$\left(e_{j k}\right) r_{i, i+1}=\left\{\begin{array}{lr}q^{2} e_{j, k} & i=j=k-1 \\ q e_{j, i}+(1-q) e_{j, k}+\left(q^{2}-q\right) e_{i, k} & i=k-1 \neq j \\ q e_{i, k}+(1-q) e_{j, k}+\left(q^{2}-q\right) e_{i, j} & i=j-1 \\ e_{j+1, k} & i=j \neq k-1 \\ e_{j, k+1} & i=k \\ e_{j, k} & i, i+1 \notin\{j, k\}\end{array}\right.$

Note that the t variable does not appear because we have set it equal to 1 and that the matrix $r_{i, i+1}$ as defined above is acting from the right. This differs from the literature but we make this choice so that he action we are interested in is an action from the left.
One part of the action merely permutes the subscripts of the $e_{i j}$'s according to the standard permutation representation of the braid group.
We write $R_{i, i+1}$ for the matrix which remains when this permutation has been stripped away. As an illustration, in the simplicial representation of BRAID 4 , the matrix R_{12} acts on column vectors as follows:

Our first claim is that if the column vector with entries a through epresents the squared edge lengths of a euclidean tetrahedron then the same is true for the column vector
precisely we prove the following
Theorem A (Braids act by reshaping simplices). The simplicial representation ρ as defined above preserves the set of $\binom{n}{2}$-tuples of positive reals that represent the squared edge lengths of a euclidean
$(n-1)$-simplex when acting from the left In particular, if v is a $(n-1)$-simplex when acting from the left. In particular, if \mathbf{v} is a
column vector that records the squared edge lengths of a euclidean simplex and β is a braid, then the column vector $\rho(\beta) \cdot \mathbf{v}$ also records the squared edge lengths of a euclidean simplex.

The idea behind the proof is to use Cayley-Menger determinants, a well-known way to test whether or not a list of real numbers come from
squared edge lengths of a euclidean simplex. To come from an actual simplex, it is necessary and sufficient that the Coyley-Menger determinant for the full simplex and for various subsimplices have certain specified signs. For edges and triangles, the determinant inequalities require that the entries are strictly positive, and that their square roots a tetrahedron and we illustrate it with the column vectors shown in (1). Using standard row and column operations it is straightforward to show that the follow equality holds:

$$
\operatorname{det}\left[\begin{array}{ccccc}
0 & 1 & 1 & 1 & 1 \tag{2}\\
1 & 0 & a^{\prime} & b^{\prime} & c^{\prime} \\
1 & a^{\prime} & 0 & d^{\prime} & e^{\prime} \\
1 & b^{\prime} & d^{\prime} & 0 & f^{\prime} \\
1 & c^{\prime} & e^{\prime} & f^{\prime} & 0
\end{array}\right]=q^{2} \cdot\left[\begin{array}{lllll}
0 & 1 & 1 & l & 1 \\
1 & 0 & a & b & c \\
1 & a & 0 & d & e \\
1 & b & d & 0 & f \\
1 & c & e & f & 0
\end{array}\right]
$$

This shows that the two Cayley-Menger determinants have the same sign. Similar results hold for every standard generator, for any num-
ber of strings, and for every subsimplex. This is sufficient to prove Theorem A.

Generators act by edge rescaling
The standard generators of the braid group (in the simplicial representation) reshape simplices in a very elementary way that we call edge rescaling.
Definition 2 (Edge Rescaling). Let Δ and Δ^{\prime} be two euclidean simplices with labeled vertices in a common vector space. We say that an edge e in Δ is merely rescaled if it and the corresponding edge e^{\prime} in
Δ^{\prime} point in the same direction. More generally, we say that Δ^{\prime} is an Δ point in the same direction. More generally, we say that Δ is an
edge rescaling of Δ if there exist enough pairs of corresponding edges pointing in the same direction (but with possibly different lengths) to form a vector space basis out of these common direction vectors. An example is shown in Figure

Figure 1: A reshaping that fixes e_{12} and rescales e_{13}
Proposition 3 (Rescaling an edge of a triangle). Let Δ be a triangle whose edges have squared lengths a, b and c. If Δ^{\prime} is the triangle obtained by fixing the a edge and rescaling the b edge by a $a^{\prime}=a, b^{\prime}=q^{2} b$, and $c^{\prime}=(1-q) a+\left(q^{2}-q\right) b+q c$.
The values a^{\prime} and b^{\prime} are immediate and c^{\prime} follows from the law of cosines. Note the similarity with the entries of the simplicial represenΔ_{234} and rescales the edge e_{12} by a factor of q. See Figure 2 .

Figure 2: A reshaping that fixes Δ_{24} and rescales e_{12}.
A more precise statement of Theorem A would be that the standard rescaling followed by a permutation of the vertex labels.

Noncrossing partitions and dual simples To describe the way that dual simple elements reshape simplices, we need to recall noncrossing partitions and the dual Garside structure of Definition 4 (Noncrossing partitions). Let \mathbb{D}_{n} be a disc in \mathbb{R}^{2} with n points arranged so that they are the vertices of a convex n-gon labeled
1 through n in the order they occur in its boundary A partition of 1 through n in the order they occur in its boundary. A partition of
these n points is called a noncrossing partition if distinct blocks have disjoint convex hulls. These partitions form a bounded graded lattice under the refinement order. See Figure 3.

ㅁ.

Figure 3: Noncrossing partitions for $n=4$
Elements of the braid group can be identified with (equivalence classes of) motions of the labeled points in the disc \mathbb{D}_{n} and the dual simple elements are a set of
Definition 5 (Rotations). The dual Garside element δ of the n string braid group is the motion where each labeled point in \mathbb{D}_{n} moves clockwise along the boundary of the convex hull of all n points to the next vertex. We cali this rotating the vertices. More generally, for each
set $B \subset\{1, \ldots, n\}$, let P_{B} be the convex hull of the vertices indexed by B and let \mathbb{D}_{B} be an ϵ-neighborhood of P_{B}. The braid group element r_{B} is a similiar motion restricted to the subdisc \mathbb{D}_{B}, i.e. the vertices in the subdisc move clockwise along one side of the polygon P_{B} to the next vertex, leaving all other vertices fixed. See Figure 4 , In this notation, the dual Garside element δ is the rotation $r_{1,2, \ldots, n}$ and the identity $\mathrm{I}=r_{\text {d }}$. When B has two elements, the points avoid collisions by passing on the left.

Figure 4: The rotation r_{137}.
Rotations can be used to assign a braid to each noncrossing partition. Definition 6 (Dual simple elements). The dual simple elements of the braid group are in one-to-one correspondence with the set of non-
crossing partitions. More precisely, for each noncrossing partition, we associate the product of the rotations corresponding to each of its blocks. Because rotations of noncrossing blocks commute, the resulting element in the braid group is well-defined. The dual simple elements in BramD_{4} written as products
$r_{123}-r_{124}-r_{23} r_{14}, r_{12} r_{34} r_{234} r_{134}$
$\left.r_{12}<r_{23}\right\} r_{13}$

Figure 5: Dual simple elements for $n=4$

Dual simples act by edge rescaling

The action of the dual simple elements under the simpicial represencation can be described as an edge rescaling based on a noncrossing partition and its left/right complemen
Definition 7 (Left/right complements). Given two group elements and δ, there are, of course, unique elements s^{\prime} and $s^{\prime \prime}$ such that $s^{\prime} s=$ and $s s^{\prime \prime}=\delta$. When δ is the dual Garside element of the braid group and s is one of its dual simple elements, it turns out that the elements s^{\prime} and $s^{\prime \prime}$ are also dual simple elements called the left and right com in BRAIDg is $r_{12} r_{315} r_{6789}$ and its right complement is $r_{23} r_{456} r_{1789}$.

Figure 6: The left and right complements of r,

Definition 8 (Hypergraphs and hypertrees). A hypergraph is a generalization of a graph where its hyperedges are allowed span more than can be seen in Figure 6 , the blocks of the noncrossing partition associ ated to a dual simple element and the blocks of one of its complements together form the hyperedges of a planar hypertree.
We connect diagrams in the disc \mathbb{D}_{n} to high-dimensional simplices via their vertex labelings. For example, the three blocks of the left comple ment of r_{136} shown in Figure 6 correspond to an edge, a triangle and a tetrahedron in any 8 -dimensional simplex with 9 labeled vertices.
Theorem B (Dual simples act by edge rescaling). Under the simplicial representation of the braid group, each dual simple elemen acts by fixing the length and direction of the edges corresponding to the blocks of its right complement, rescaling the edges correspond ing to its own blocks by a factor of q and then permuting the label, left complement is used instead of the right complement.

Final remarks

We conclude with a few remarks about the broader context.

- The set of euclidean simplices, with dilated simplices identified, is one of the standard parameterizations of the higher rank symmet ric space $S L(V) / S O(V)$ and the simplicial re
braid group action by is
- The simplicial representation is not faithful for large n because it -The simplicial representation is not faithful for large n because it representation (which is known to not be faithful for $n \geq 5$).
- Similar constructions/interpretations should be possible for the othe spherical Artin groups, but we have not yet investigated these. The

References

[Big01] Stephen J. Bigelow, Braid groups are linear, J. Amer. Math Soc. 14 (2001), no. 2, 471-486 (electronic). MR 2002a:20043 (Kra00] Daan Krammer, The braid group B_{4} is linear, Invent. Math. 142 (2000), no. 3, 451-486. MR 2001k:20078
[Kra02] _ Braid groups are linear, Ann. of Math. (2) 155 (2002), no. 1, 131-156. MR 2003c:20040

