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Coxeter groups

The spherical and euclidean Coxeter groups are reflection
groups that act geometrically on spheres and euclidean space.
They arise in the study of regular polytopes and Lie theory.

Their classification is classical and their presentations are
encoded in the well-known Dynkin diagrams and extended
Dynkin diagrams, respectively, using conventions sufficient for
these groups, but not for general Coxeter groups.
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The spherical Coxeter group CoX(Bs)
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General Coxeter groups

Spherical and euclidean Coxeter groups are key examples that
motivate the general theory introduced by Jacques Tits in the
early 1960s. All Coxeter groups are defined by simple
presentations encoded in diagrams.

In that first (unpublished) paper, Tits proved that every Coxeter
group has a faithful linear representation preserving a
symmetric bilinear form and thus has a solvable word problem.

Coxeter groups can be coarsely classified by the signature of
the symmetric bilinear forms they preserve. The spherical and
euclidean groups are those which have positive definite and
positive semi-definite forms.
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General Artin groups

Artin groups first appear in print in 1972 (Brieskorn and Saito,
Deligne). General Artin groups are defined by simple
presentations that can be encoded in the same diagrams as
Coxeter groups and then coarsely classified in the same way.

Those early papers connected spherical Artin groups to the
fundamental groups of spaces derived from complexified
hyperplane complements and successfully analyzed their
structure.

Given the centrality of euclidean Coxeter groups and the
elegance of their structure, one might have expected euclidean
Artin groups to be well understood shortly thereafter. It is now
40 years later and these groups are still revealing their secrets.
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Basic Questions

In a recent article Eddy Godelle and Luis Paris highlight four
basic conjectures about irreducible Artin groups:

A) Every Artin group is torsion-free

B) Every non-spherical Artin group has trivial center
C) Every Artin group has a solvable word problem
D) Artin groups satisfy the K(x,1) conjecture

They also remark:

“A challenging question in the domain is to prove
Conjectures A, B, C, and D for the so-called Artin-Tits
groups of affine type, that is, those Artin-Tits groups
for which the associated Coxeter group is affine.”
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Example: ART(Bs)

The group ART(B;) has diagram

c
b
a
d
and presentation

abab = baba cd = dc
(a, b,c,d| bcb=cbc ad-=da
bdb=dbd ac-=ca

The basic questions were open for this group until very recently.
Callegaro, Moroni and Salvetti answered some of them.
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Known: planar Artin groups

The few previously known results about euclidean Artin groups
are easy to review.

In 1987 Craig Squier successfully analyzed the structure of the
three irreducible euclidean Artin groups ART(A,), ART(C>) and
ART(G) that correspond to the three irreducible euclidean
Coxeter groups acting on the euclidean plane.

He worked directly with the presentations and analyzed them
as amalgamated products and HNN extensions of well-known
groups.

His techniques do not appear to generalize to higher
dimensions.
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Known: euclidean braid groups

The euclidean braid group ART(A,) embeds into the annular
braid group ART(B.1), and this makes its structure clear. In
fact, there is a short exact sequence

ART(A,) = ART(Bps1) - Z
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Known: types Aand C

Finally, there are recent results due to Francgois Digne.

Theorem (Digne)
The groups ART(A,) and ART(C,) have Garside structures.

Digne uses the embedding ART(A,) = ART(B,1) to show that
type A has a Garside structure and then an embedding of type
C into type A to show the same for type C.

To my knowledge, these are the only euclidean Artin groups
that were previously fully understood, and they did not include
simple examples such as ART(Bj3).
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New: all euclidean Artin groups

Robert Sulway and | provide positive solutions to Conjectures
A, B and C for all euclidean Artin groups and we also make
progress on Conjecture D. In particular, we prove the following:

Theorem (M-Sulway)

Every irreducible euclidean Artin group ART(X,) is a
torsion-free centerless group with a solvable word problem and
a finite-dimensional classifying space.

The proof uses the structure of intervals in euclidean Coxeter
groups and other euclidean groups generated by reflections.
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Coxeter elements

Definition (Coxeter element)

Let W = Cox(X,) be an irreducible euclidean Coxeter group
with Coxeter generating set S. A Coxeter element w € W is
obtained by multiplying the elements of S in some order.

Definition (Axis)

Coxeter elements are hyperbolic isometries of maximal
reflection length and the line MIN(w) is called its axis. The
top-dimensional simplices whose interior nontrivially intersects
the axis are called axial simplices and the vertices of these
simplices are axial vertices.

The interval [1, w]" is the portion of the Cayley graph of W
w.r.t. all reflections between 1 and w. Not every reflection in W
labels an edge in this interval.
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Maximal hyperbolic isometries

When w is a hyperbolic euclidean isometry of maximal
reflection length, its min-set is a line and its move-set is a
nonlinear affine hyperplane.

We call the direction of its min-set vertical and the orthogonal
directions horizontal. More generally we call a motion vertical if
a portion of its motion is in the vertical direction.

For every u e [1, w] there is a v such that uv = w. We split
[1,w] into 3 rows based on the types of u and v. When one is
hyperbolic, the other is a purely horizontal elliptic. When both
are elliptic, both motions have vertical components. Within each
row we grade based on the dimensions of the basic invariants.
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Coarse structure

Let L = IsOM(E) be generated by its reflections. When w is a
hyperbolic isometry of maximal reflection length its min-set is a
line and [1, w]* has the following coarse structure:

ees . O— w) (hyp,ell) row

ee O—0O (ell,ell) row

Ry| <+ O———0O (ell,hyp) row

There is exactly one elliptic in [1, w]* for each affine subspace
M c E and exactly one hyperbolic for each affine subspace of
Mov(w) c V. Itis NOT a lattice.
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Reflection generators

Theorem (M)

Let w be a Coxeter element of an irreducible euclidean Coxeter
group W = Cox(Xp). A reflection labels an edge in the interval
[1, w]" iff its fixed hyperplane contains an axial vertex.

N

Definition (Vertical and horizontal)

The set of reflections labeling edges in [1, w]" consists of
every reflection whose hyperplane crosses the Coxeter axis
and those reflections which move points horizontally and bound
the convex hull of the axial simplices. We call these the vertical
and horizontal reflections below w.

Cox(Gy) has 2 horizontal reflections.
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Coarse structure of the G interval

The interval [1, w]" inside W = Cox(G,) has the following
coarse structure:

It has 2 horizontal reflections, 2 translations, 6 infinite families
of vertical reflections and 6 infinite families of rotations. Is this a
lattice? Yes.
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Coarse structure of the Eg interval

The interval [1, w]" inside W = Cox(Eg) has the following

coarse structure:

(30}—315}{1000}{1345} {826 {235} 28 }—1)

(270 }{5550 | 32550 }{ 75030 }{ 75030 }{ 32550 | 55

50 {270

(1}—28}—{235} {826 {1345}{1000}{315}—30)

It has 28 horizontal reflections, 30 translations, 270 infinite
families of vertical reflections and 5550 infinite families of
vertical rotations about an R®, etc. Is this a lattice? No.
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Intervals and Artin groups

It is now time for two basic questions:
@ Why look at intervals in euclidean Coxeter groups?
© Why do we care whether or not they are lattices?

And here are the answers:
@ Intervals give alternative presentations of Artin groups.
© Lattice = Garside = Nice.

We briefly describe how to get presentations from intervals and
the consequences of having a Garside structure.
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Interval groups and dual presentations

Intervals lead to presentations for new groups.

Definition (Interval groups)

Let [1, 9]¢ be an interval in a marked group G. The interval
group Gy is the group generated by the labels of edges in the
interval subject to the relations that are visible in the interval.

Intervals in Coxeter groups lead to interesting groups.

Definition (dual Artin groups)

Let w be a Coxter element in a Coxeter group W = Cox(I")
generated by the set of all reflections. The dual Artin group
ART*(I', w) is the interval group W, the one defined by the

interval [1, w]W.
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Spherical Artin groups

Theorem (Bessis,Brady-Watt)

If W = Cox(Xpy) is a spherical Coxeter group generated by its
reflections, and w is a Coxeter element, then [1,w]" is a

W -noncrossing partition lattice and W,, = ART* (X, w) is
naturally isomorphic to ART(X,).

If W =SyMs, then W, = (a,b,c| ab = bc = ca) ~ BRAID3.
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Euclidean Artin groups

It is not known in general whether Artin groups and dual Artin
groups are isomorphic, hence the distinct names. Fortunately,
a key result from quiver representation theory allows us to
simplify the dual presentations in the euclidean case and prove
the following:

If W = Cox(X,) is an irreducible euclidean Coxeter group
generated by its reflections, and w is a Coxeter element, then
the dual Artin group W,, = ART*(X,, w) is naturally isomorphic
to ART(X,)).

In other words, the interval [1, w]" give a new infinite
presentation of the corresponding Artin group.
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Garside structures

For this talk we treat Garside structures as a black box. We are
only interested in sufficient conditions and consequences.

Theorem (Sufficient conditions)

Let G be a group with a symmetric generating set closed under
conjugation. For each g ¢ G, if the interval [1, ¢ is a lattice,
then Gy is a Garside group in the expanded sense of Digne.

Theorem (Garside consequences)

If Gy is a Garside group in the expanded sense of Digne, then
Gy is a torsion-free group with a solvable word problem and a
finite dimensional classifying space.
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Artin groups as Garside groups?

Many dual Artin groups are known to be Garside.

Theorem (Artin/Garside)

A dual Artin group Wy, is_ Garside when W, (1) is spherical (2)
is free, (3) is type An or C, (4) has rank 3, or (5) has all m;; > 6.

(1) is due to Bessis and Brady-Watt, (2) is Bessis, (3) is Digne,
(4) and (5) are unpublished results with John Crisp.

All dual Artin groups are Garside groups.

This conjecture is too optimistic and false.
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Horizontal Roots

It turns out that for euclidean groups, the lattice property is
closely related to the structure of its horizontal root system.

Definition (Horizontal root system)

The horizontal reflections have roots orthogonal to the Coxeter
axis. These roots form a subroot system that we call the
horizontal root system.

N

Remark (Finding horizontal roots)

The horizontal root system is described by the subdiagram
obtained by removing both the white and the red dots. The red
dot is the long end of a multiple bond or the branch point if
either exists. For type A, there are many choices.

A

The key property is connectivity of the remaining graph.
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Four infinite families

A @---0
-0~
Zn .;.—.....;.
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Five sporadic examples
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Horizontal Root Systems

Type | Horizontal root system
An ¢Ap—1 U ¢Aq*1
Cn P4,
Bn ¢A1 U] ¢An—2
Dn (DA1 U ¢A1 U CDA,,,g
Gg ¢A1
F4 ¢A1 @] ¢A2
E6 ¢A1 U¢A2U¢A2
E7 ¢A1 U¢A2U¢A3
Eg (DA1 U¢A2U¢A4

Notice that types C and G are irreducible, types B, D, E and F
are reducible and for type A it depends.
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Failure of the lattice property

The interval [1,w]W is a lattice iff the horizontal root system is
irreducible. In particular, types C and G are lattices, types B, D,
E and F are not, and for type A it depends on the choice of
Coxeter element.

The dual Artin group ART* (X, w) is Garside when X is C or G
and it is not Garside when X is B, D, E or F. When the group
has type A there are distinct dual presentations and the one
investigated by Digne is the only one that is Garside.

These infinite intervals are just barely not lattices and we make
further progress by filling in the gaps.
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Middle groups

The way we fill the gaps relies of the properties of an
elementary group.

Definition (Middle groups)

We call the symmetries of Z" generated by coordinate
permutations and integral translations the middle group
MID(By). It is generated by the reflections r; that switch
coordinates / and j and the translations f; that adds 1 to
the i-th coordinate.

This is a semidirect product Z" x SYm,, with the translations
generating the normal free abelian subgroup.
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Middle groups and presentations

MID(By,) is minimally generated by {t;} u{ri2,r23,...,_1n}
and it has a presentation similar to ART(B,) and Cox(Bp).

t ro I3 I34 I45
ART(Bs) o o o o o

f ro 23 I34 I45
MID(Bs) o ° ° °

t a2 23 I34 I45
Cox(Bs) o o o

Solid means order 2 and empty means infinite order.
Factorizations of t;ri2re3:--rh_1, form a type B noncrossing
partition lattice. This explains the B, in the notation.
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Relatives of middle groups

The middle group is closely related to several Coxeter groups
and Artin groups, hence its name.

ART(A,.1) < ART(B,) — Z

3 | !
Cox(Ap.1) = MID(B,) —» Z
v
Cox(Bp)

The top row is the short exact sequence that is often used to
understand ART(A,_1). Geometrically middle groups are easy
to recognize as a symmetric group generated by reflections and
a translation with a component out of this subspace.
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Diagonal subgroup

The places where the lattice property fails only involve
elements from the top and bottom rows of the coarse structure.
Thus it makes sense to focus on the corresponding subgroup.

Definition (Diagonal subgroup)

Let Ry and T be horizontal reflections and translations in the
interval [1, w]" and let D denote the subgroup of W generated
by Ry u T. The interval [1, w]? is a subposet of [1, w]W
consisting of only the top and bottom rows and interval group
Dy, is the group defined by this restricted interval.

We introduce middle groups because [1, w]? is almost a poset
product and the group D is almost a product of middle groups.
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Factored translations

The poset [1, w]P is almost a product of type B noncrossing
partitions lattices and the missing elements are added if we
factor the translations.

Definition (Factored translations)

Each pure translation t in [1, w]P projects nontrivially to the
Coxeter axis and to each of the kK components of the horizontal
root system. Let t; be the translation which agrees with t on the
i-th component and contains 1/k of the translation in the
Coxeter direction. Let Tr denote the set of all factored
translations.

The factorable group F is the crystallographic group generated
by Ry u Te. The product of the {;’s is t, the i-th horizontal roots
and t; generate a middle group and [1, w]’ is a product of type
B noncrossing partition lattices.
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New groups

Finally let H be the subgroup of W generated by Ry alone and
let C be the crystallographic group generated by Ry u Ry u Tk.
This gives five groups so far:

Name Symbol | Generating set
Horizontal H Ry
Diagonal D RyuT
Coxeter w RyuRy (UuT)
Factorable F RyuTe (uT)
Crystallographic C RyuRyuTE(uT)

Let Dy, Fw, W, and C,, be based on the interval [1, w] in each,
and let H,, be the horizontal portion of D,,.
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Ten groups

We define ten groups for each choice of w ¢ W = Cox(X,).
Here are some of the maps between them.

Fu G
/| /!
Hu Du A
|
F C
S /
He D w

H and W are Coxeter, D, F and C are crystallographic, and the
groups on the top are derived from the ones below. We write
A=W, and G = Cy since these are an Artin group and a
previously unstudied Garside group.
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Example: Eg groups

Example

Since the horizontal Eg root system decomposes as
b, Udy, Udy,, the group F is a central product of MID(Bo),
MID(B3) and MID(Bs). In addition,

o [1,w]F = NCg, x NCg, x NCg,,

@ F, 2 ART(B>) x ART(B3) x ART(Bs),

@ Hy = ART(A;) x ART(Az) x ART(A,), and
@ H = Cox(A) x COX(Az) x COX(Ay).
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Thm A: crystallographic Garside groups

The addition of the factored translations as generators solves
the lattice problem.

Theorem (Crystallographic Garside groups)

If C = CRYST(X,, w) is the crystallographic group obtained by
adding the factored translations to the Coxeter group

W = Cox(X,), then the interval [1,w]C is a lattice. As a
consequence, this interval defines a group G = C,, with a
Garside structure.

| wrote GAP/Sage code to compute the intervals and check the
lattice property. We prove the theorem for the infinite families
and then rely on the program for the sporadic cases.
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Thm B: Artin groups as subgroups

Euclidean Artin groups are understandable because they are
subgroups of Garside groups.

Theorem (Subgroup)

For each Coxeter element w ¢ W = COx(X,), the Garside
group G is an amalgamated product of F,, and A over D,,. As a
consequence, the euclidean Artin group A = G.

Fw

/| /

G
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Thm C: structure of euclidean Artin groups

Once we know that euclidean Artin groups are subgroups of
Garside groups, we get many structural results for free.

Theorem (Structure)

Every irreducible euclidean Artin group is a torsion-free
centerless group with a solvable word problem and a
finite-dimensional classifying space.

The only aspect that requires a bit more work is the center. The
Garside structure on G, the product structure on F,, and the
fact that we are amalgamating over Dy, are all used in the proof
that shows the center of A is trivial.
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