Matroids over a ring: motivations, examples, perspectives based on joint work with Alex Fink (Queen Mary University of London)

Luca Moci

(Université de Paris 7)
Configuration Spaces - Cortona, September 2014

Matroids and their realizations

The notion of a matroid axiomatizes the relations of linear dependence of a vector configuration (i.e. of a list of elements in a vector space). If a matroid actually comes from such a list, one says that it is realizable.

Given a commutative ring R, we are going to introduce the notion of a matroid over R, that axiomatizes "relations of dependence" of a list of elements in an R-module. We will say that a matroid over R is realizable if it actually comes from such a list.

So the theory that we are going to introduce aims to generalize matroid theory, in the same sense as commutative algebra generalizes linear algebra

Matroids and their realizations

The notion of a matroid axiomatizes the relations of linear dependence of a vector configuration (i.e. of a list of elements in a vector space). If a matroid actually comes from such a list, one says that it is realizable.

Given a commutative ring R, we are going to introduce the notion of a matroid over R, that axiomatizes "relations of dependence" of a list of
elements in an R-module.
We will say that a matroid over R is realizable if it actually comes from such a list.

So the theory that we are going to introduce aims to generalize matroid theory, in the same sense as commutative algebra generalizes linear algebra.

Matroids and their realizations

The notion of a matroid axiomatizes the relations of linear dependence of a vector configuration (i.e. of a list of elements in a vector space). If a matroid actually comes from such a list, one says that it is realizable.

Given a commutative ring R, we are going to introduce the notion of a matroid over R, that axiomatizes "relations of dependence" of a list of elements in an R-module.
We will say that a matroid over R is realizable if it actually comes from
such a list.

So the theory that we are going to introduce aims to generalize matroid theory, in the same sense as commutative algebra generalizes linear
algebra

Matroids and their realizations

The notion of a matroid axiomatizes the relations of linear dependence of a vector configuration (i.e. of a list of elements in a vector space). If a matroid actually comes from such a list, one says that it is realizable.

Given a commutative ring R, we are going to introduce the notion of a matroid over R, that axiomatizes "relations of dependence" of a list of elements in an R-module.
We will say that a matroid over R is realizable if it actually comes from such a list.

So the theory that we are going to introduce aims to generalize matroid theory, in the same sense as commutative algebra generalizes linear algebra

Matroids and their realizations

The notion of a matroid axiomatizes the relations of linear dependence of a vector configuration (i.e. of a list of elements in a vector space). If a matroid actually comes from such a list, one says that it is realizable.

Given a commutative ring R, we are going to introduce the notion of a matroid over R, that axiomatizes "relations of dependence" of a list of elements in an R-module.
We will say that a matroid over R is realizable if it actually comes from such a list.

So the theory that we are going to introduce aims to generalize matroid theory, in the same sense as commutative algebra generalizes linear algebra.

Example 1: $R=\mathbb{Z}$

Let X be a list of vectors with integer coordinates.
As we have seen in Emanuele's talk, the toric arrangement defined by X do not depends only on the linear algebra of X, but also on its "arithmetics" The same is true for other objects associated to X, such as the Dahmen-Micchelli space DM (X).

Then it is desirable to have a structure keeping track of the linear algebra and of the arithmetics of X.
This is precisely what matroids over \mathbb{Z} (and previously defined arithmetic matroids) do.

Example 1: $R=\mathbb{Z}$

Let X be a list of vectors with integer coordinates.
As we have seen in Emanuele's talk, the toric arrangement defined by X do not depends only on the linear algebra of X, but also on its "arithmetics".

toric arrangement

hyperplane arrangement

> The same is true for other objects associated to X, such as the Dahmen-Micchelli space $D M(X)$.

> Then it is desirable to have a structure keeping track of the linear algebra and of the arithmetics of X.
> This is precisely what matroids over \mathbb{Z} (and previously defined

\square

Example 1: $R=\mathbb{Z}$

Let X be a list of vectors with integer coordinates.
As we have seen in Emanuele's talk, the toric arrangement defined by X do not depends only on the linear algebra of X, but also on its "arithmetics".

toric arrangement

hyperplane arrangement

The same is true for other objects associated to X, such as the Dahmen-Micchelli space $D M(X)$.

Then it is desirable to have a structure keeping track of the linear algebra and of the arithmetics of X This is precisely what matroids over Z (and previously defined

Example 1: $R=\mathbb{Z}$

Let X be a list of vectors with integer coordinates.
As we have seen in Emanuele's talk, the toric arrangement defined by X do not depends only on the linear algebra of X, but also on its "arithmetics".

toric arrangement

hyperplane arrangement

The same is true for other objects associated to X, such as the Dahmen-Micchelli space $D M(X)$.

Then it is desirable to have a structure keeping track of the linear algebra and of the arithmetics of X.
(and previously defined

Example 1: $R=\mathbb{Z}$

Let X be a list of vectors with integer coordinates.
As we have seen in Emanuele's talk, the toric arrangement defined by X do not depends only on the linear algebra of X, but also on its "arithmetics".

toric arrangement

The same is true for other objects associated to X, such as the Dahmen-Micchelli space DM(X).

Then it is desirable to have a structure keeping track of the linear algebra and of the arithmetics of X.
This is precisely what matroids over \mathbb{Z} (and previously defined arithmetic matroids) do.

Example 2: R is a valuation ring

Let F be a field with valuation (for instance the p-adic numbers \mathbb{Q}_{p}, or the Puiseux series $\left\{\sum_{i=k}^{\infty} a_{i} t^{i / n}\right\}$).
Let X be an "integer vector configuration", e.g. a list of elements of F^{d} with entries in $R=\mathcal{O}_{F}$. Then we may want to remember not only the linear dependencies, but also the valuations involved.
That precisely is what matroids over a valuation ring R (or previously defined valuated matroids) do.

Example 2: R is a valuation ring

Let F be a field with valuation (for instance the p-adic numbers \mathbb{Q}_{p}, or the Puiseux series $\left\{\sum_{i=k}^{\infty} a_{i} t^{i / n}\right\}$).
Let X be an "integer vector configuration", e.g. a list of elements of F^{d} with entries in $R=\mathcal{O}_{F}$. Then we may want to remember not only the linear dependencies, but also the valuations involved.

Example 2: R is a valuation ring

Let F be a field with valuation (for instance the p-adic numbers \mathbb{Q}_{p}, or the Puiseux series $\left\{\sum_{i=k}^{\infty} a_{i} t^{i / n}\right\}$).
Let X be an "integer vector configuration", e.g. a list of elements of F^{d} with entries in $R=\mathcal{O}_{F}$. Then we may want to remember not only the linear dependencies, but also the valuations involved.
That precisely is what matroids over a valuation ring R (or previously defined valuated matroids) do.

Classical matroids: definition and example

A structure that retains the linear algebraic information of a list of vector already exists since the 30s: matroids [Whitney, Maclane].

It has many appearently unrelated definitions. (Rota: "cryptomorphism".)
Definition
A matroid N on the finite ground set E assigns to each subset $A \subseteq E$ a $\operatorname{rank} \operatorname{rk}(A) \in \mathbb{Z}_{\geq 0}$, such that: $[\ldots]$

Main example: realizable matroids
v_{n} be vectors in a vector space V

$$
\operatorname{rk}(A):=\operatorname{dim} \operatorname{span}\left\{v_{i}: i \in A\right\}
$$

Classical matroids: definition and example

A structure that retains the linear algebraic information of a list of vector already exists since the 30s: matroids [Whitney, Maclane].

It has many appearently unrelated definitions. (Rota: "cryptomorphism".)

Main example: realizable matroids
v_{n} be vectors in a vector space V

$$
\operatorname{rk}(A):=\operatorname{dim} \operatorname{span}\left\{v_{i}: i \in A\right\}
$$

Classical matroids: definition and example

A structure that retains the linear algebraic information of a list of vector already exists since the 30s: matroids [Whitney, Maclane].

It has many appearently unrelated definitions. (Rota: "cryptomorphism".)

Definition

A matroid M on the finite ground set E assigns to each subset $A \subseteq E$ a rank $\operatorname{rk}(A) \in \mathbb{Z}_{\geq 0}$, such that: [...]
Main example: matroids
\square

Classical matroids: definition and example

A structure that retains the linear algebraic information of a list of vector already exists since the 30s: matroids [Whitney, Maclane].

It has many appearently unrelated definitions. (Rota: "cryptomorphism".)

Definition

A matroid M on the finite ground set E assigns to each subset $A \subseteq E$ a rank $\operatorname{rk}(A) \in \mathbb{Z}_{\geq 0}$, such that: [...]

Main example: realizable matroids

Let v_{1}, \ldots, v_{n} be vectors in a vector space V.

$$
\operatorname{rk}(A):=\operatorname{dim} \operatorname{span}\left\{v_{i}: i \in A\right\}
$$

Classical matroids: definition and example

Definition

A matroid M on the finite ground set E assigns to each subset $A \subseteq E$ a rank $\operatorname{rk}(A) \in \mathbb{Z}_{\geq 0}$, such that:
(0) $\operatorname{rk}(\emptyset)=0$
(1) $\operatorname{rk}(A) \leq \operatorname{rk}(A \cup\{b\}) \leq \operatorname{rk}(A)+1 \quad \forall A \not \supset b$
(2) $\operatorname{rk}(A)+\operatorname{rk}(A \cup\{b, c\}) \leq \operatorname{rk}(A \cup\{b\})+\operatorname{rk}(A \cup\{c\}) \quad \forall A \not \supset b, c$

Main example: realizable matroids

Let v_{1}, \ldots, v_{n} be vectors in a vector space V.

$$
\operatorname{rk}(A):=\operatorname{dim} \operatorname{span}\left\{v_{i}: i \in A\right\}
$$

Classical matroids: definition and example

Definition

A matroid M on the finite ground set E assigns to each subset $A \subseteq E$ a rank $\operatorname{rk}(A) \in \mathbb{Z}_{\geq 0}$, such that:
(0) $\operatorname{rk}(\emptyset)=0$
(1) $\operatorname{rk}(A) \leq \operatorname{rk}(A \cup\{b\}) \leq \operatorname{rk}(A)+1 \quad \forall A \not \supset b$
(2) $\operatorname{rk}(A)+\operatorname{rk}(A \cup\{b, c\}) \leq \operatorname{rk}(A \cup\{b\})+\operatorname{rk}(A \cup\{c\}) \quad \forall A \not \supset b, c$

Example

$\left.X=\{(2,0),(0,3),(1,-1)\} \quad \begin{array}{llllccccc}A & \emptyset & 1 & 2 & 3 & 13 & 12 & 23 & 123 \\ & \operatorname{rk}(A) & 0 & 1 & 1 & 1 & 2 & 2 & 2\end{array}\right] 2$

Matroids over \mathbb{Z} : an example

Let v_{1}, \ldots, v_{n} be a configuration of vectors in an R-module N.
Already in the case $R=\mathbb{Z}$ we see that it is convenient to take a system of axioms for the quotients $N /\left\langle v_{i} \mid i \in A\right\rangle$

Realizable example

Matroids over \mathbb{Z} : an example

Let v_{1}, \ldots, v_{n} be a configuration of vectors in an R-module N.
Already in the case $R=\mathbb{Z}$ we see that it is convenient to take a system of axioms for the quotients $N /\left\langle v_{i} \mid i \in A\right\rangle$:

Realizable example

$X=\{(2,0),(0,3),(1,-1)\} \quad$| | A | \emptyset | 1 | 2 | 12 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | $M(A)$ | \mathbb{Z}^{2} | $\mathbb{Z} \oplus \mathbb{Z} / 2$ | $\mathbb{Z} \oplus \mathbb{Z} / 3$ | $\mathbb{Z} / 6$ |
| | A | 3 | 13 | 23 | 123 |
| | $M(A)$ | \mathbb{Z} | $\mathbb{Z} / 2$ | $\mathbb{Z} / 3$ | 0 |

Enriched variants of matroids

In general, as we have seen, one might want to capture more than just the linear dependences of a list of vectors:

- Arithmetic matroids come from configurations over \mathbb{Z}, and remember indices of sublattices. [D'Adderio-M.]
- Valuated matroids come from configurations over a field with valuation, and remember valuations. [Dress-Wenzel]

Matroids over rings encompass these constructions, by taking a new approach: not a matroid decorated with extra data, but a theory with only one simple, algebraic axiom.

Enriched variants of matroids

In general, as we have seen, one might want to capture more than just the linear dependences of a list of vectors:

- Arithmetic matroids come from configurations over \mathbb{Z}, and remember indices of sublattices.
[D'Adderio-M.]

Matroids over rings encompass these constructions, by taking a new
approach: not a matroid decorated with extra data, but a theory with only one simple, algebraic axiom.

Enriched variants of matroids

In general, as we have seen, one might want to capture more than just the linear dependences of a list of vectors:

- Arithmetic matroids come from configurations over \mathbb{Z}, and remember indices of sublattices.
[D'Adderio-M.]
- Valuated matroids come from configurations over a field with valuation, and remember valuations.
[Dress-Wenzel]

Enriched variants of matroids

In general, as we have seen, one might want to capture more than just the linear dependences of a list of vectors:

- Arithmetic matroids come from configurations over \mathbb{Z}, and remember indices of sublattices.
[D'Adderio-M.]
- Valuated matroids come from configurations over a field with valuation, and remember valuations.
[Dress-Wenzel]
Matroids over rings encompass these constructions, by taking a new approach: not a matroid decorated with extra data, but a theory with only one simple, algebraic axiom.

Enriched variants of matroids

In general, as we have seen, one might want to capture more than just the linear dependences of a list of vectors:

- Arithmetic matroids come from configurations over \mathbb{Z}, and remember indices of sublattices.
[D'Adderio-M.]
- Valuated matroids come from configurations over a field with valuation, and remember valuations.
[Dress-Wenzel]
Matroids over rings encompass these constructions, by taking a new approach: not a matroid decorated with extra data, but a theory with only one simple, algebraic axiom.

Definition

Let R be a commutative ring and E be a finite set.
A matroid over R on the ground set E is a function M
assigning to each subset $A \subseteq E$ a finitely-generated R-module $M(A)$ satisfying the following axiom:
for all $A \subseteq E$ and $b \neq c \notin A$, there exists a pushout square where all four morphisms are surjections with cyclic kernel:

are defined similarly, by discarding the "cyclic kernel"

Definition

Let R be a commutative ring and E be a finite set.
A matroid over R on the ground set E is a function M
assigning to each subset $A \subseteq E$ a finitely-generated R-module $M(A)$ satisfying the following axiom:
for all $A \subseteq E$ and $b \neq c \notin A$, there exists a pushout square where all four morphisms are surjections with cyclic kernel:

are defined similarly, by discarding the "cyclic kernel"

Definition

Let R be a commutative ring and E be a finite set.
A matroid over R on the ground set E is a function M
assigning to each subset $A \subseteq E$ a finitely-generated R-module $M(A)$ satisfying the following axiom:
for all $A \subseteq E$ and $b \neq c \notin A$, there exists a pushout square where all four morphisms are surjections with cyclic kernel:

Polymatroids are defined similarly, by discarding the "cyclic kernel" condition.

Definition

Let R be a commutative ring and E be a finite set.
A matroid over R on the ground set E is a function M assigning to each subset $A \subseteq E$ a finitely-generated R-module $M(A)$ satisfying the following axiom: for all $A \subseteq E$ and $b, c \notin A$, there are elements

$$
x=x(b, c), \quad y=y(b, c) \in M(A)
$$

such that there is a diagram

$$
\begin{gathered}
M(A) \xrightarrow{\mid x} M(A \cup\{b\}) \\
\mid y \downarrow \\
M(A \cup\{c\}) \xrightarrow{\perp} \xrightarrow{\perp} M(A \cup\{b, c\}) .
\end{gathered}
$$

Realizability

Fundamental example: "vector configurations" in an R-module.
Given a f.g. R-module N and a list $X=x_{1}, \ldots, x_{n}$ of elements of N, we have a matroid M_{X} associating to $A \subseteq X$ the quotient

For each $x_{i} \in X$ there is a quotient map

$$
M_{x}(A) \xrightarrow{/ x_{i}} M_{x}\left(A \cup\left\{x_{i}\right\}\right)
$$

and this system of maps obviously satisfies the axiom.
We say that a matroid M over R is realizable if it actually comes from
such a list.
Of course not all matroids over R are realizable!

Realizability

Fundamental example: "vector configurations" in an R-module. Given a f.g. R-module N and a list $X=x_{1}, \ldots, x_{n}$ of elements of N, we have a matroid M_{X} associating to $A \subseteq X$ the quotient

$$
M_{X}(A)=N /\left(\sum_{x \in A} R x\right)
$$

For each $x_{i} \in X$ there is a quotient map
$M_{X}(A) \xrightarrow{/ \overline{x_{i}}} M_{X}\left(A \cup\left\{x_{i}\right\}\right)$
and this system of maps obviously satisfies the axiom.
We say that a matroid M over R is realizable if it actually comes from such a list.
Of course not all matroids over R are realizable!

Realizability

Fundamental example: "vector configurations" in an R-module. Given a f.g. R-module N and a list $X=x_{1}, \ldots, x_{n}$ of elements of N, we have a matroid M_{X} associating to $A \subseteq X$ the quotient

$$
M_{X}(A)=N /\left(\sum_{x \in A} R x\right)
$$

For each $x_{i} \in X$ there is a quotient map

$$
M_{X}(A) \xrightarrow{/ \overline{x_{i}}} M_{X}\left(A \cup\left\{x_{i}\right\}\right)
$$

and this system of maps obviously satisfies the axiom.
We say that a matroid M over R is realizable if it actually comes from such a list.
Of course not all matroids over R are realizable!

Realizability

Fundamental example: "vector configurations" in an R-module. Given a f.g. R-module N and a list $X=x_{1}, \ldots, x_{n}$ of elements of N, we have a matroid M_{X} associating to $A \subseteq X$ the quotient

$$
M_{X}(A)=N /\left(\sum_{x \in A} R x\right)
$$

For each $x_{i} \in X$ there is a quotient map

$$
M_{X}(A) \xrightarrow{/ \overline{x_{i}}} M_{X}\left(A \cup\left\{x_{i}\right\}\right)
$$

and this system of maps obviously satisfies the axiom.
We say that a matroid M over R is realizable if it actually comes from such a list.
Of course not all matroids over R are realizable!

Classical matroids are matroids over fields

We can, and will, assume that the module $M(E)$ has no nontrivial projective summands, since this makes many results simpler to state.
Proposition
Matroids over a field \mathbb{K} are equivalent to matroids.
A f.g. \mathbb{K}-module is determined by its dimension $\in \mathbb{Z}$. If v_{1}, \ldots, v_{n} are vectors in \mathbb{K}^{r}, the dimension of $\mathbb{K}^{r} /\left\langle v_{i}: i \in N\right\rangle$ is $r-r k(A)$, the corank of A.

Example

Note: The definition of matroids over \mathbb{K} is blind to which field \mathbb{K} is,
but for realizability the choice of \mathbb{K} matters.

Classical matroids are matroids over fields

We can, and will, assume that the module $M(E)$ has no nontrivial projective summands, since this makes many results simpler to state.

Proposition

Matroids over a field \mathbb{K} are equivalent to matroids.
\square
Note: The definition of matroids over \mathbb{K} is blind to which field \mathbb{K} is,
but for realizability the choice of \mathbb{K} matters.

Classical matroids are matroids over fields

We can, and will, assume that the module $M(E)$ has no nontrivial projective summands, since this makes many results simpler to state.

Proposition

Matroids over a field \mathbb{K} are equivalent to matroids.

A f.g. \mathbb{K}-module is determined by its dimension $\in \mathbb{Z}$.
If v_{1}, \ldots, v_{n} are vectors in \mathbb{K}^{r}, the dimension of $\mathbb{K}^{r} /\left\langle v_{i}: i \in N\right\rangle$ is $r-\operatorname{rk}(A)$, the corank of A.

Example

Note: The definition of matroids over \mathbb{K} is blind to which field \mathbb{K} is,
but for realizability the choice of \mathbb{K} matters.

Classical matroids are matroids over fields

We can, and will, assume that the module $M(E)$ has no nontrivial projective summands, since this makes many results simpler to state.

Proposition

Matroids over a field \mathbb{K} are equivalent to matroids.

A f.g. \mathbb{K}-module is determined by its dimension $\in \mathbb{Z}$.
If v_{1}, \ldots, v_{n} are vectors in \mathbb{K}^{r},
the dimension of $\mathbb{K}^{r} /\left\langle v_{i}: i \in N\right\rangle$ is $r-\operatorname{rk}(A)$, the corank of A.

Example

$$
\begin{array}{llcccccccc}
X=\{(2,0),(0,3),(1,-1)\} & A & \emptyset & 1 & 2 & 12 & 3 & 13 & 23 & 123 \\
& M(A) & \mathbb{R}^{2} & \mathbb{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} & 0 & 0 & 0
\end{array}
$$

Note: The definition of matroids over \mathbb{K} is blind to which field \mathbb{K} is,
but for realizability the choice of \mathbb{K} matters.

Classical matroids are matroids over fields

We can, and will, assume that the module $M(E)$ has no nontrivial projective summands, since this makes many results simpler to state.

Proposition

Matroids over a field \mathbb{K} are equivalent to matroids.

A f.g. \mathbb{K}-module is determined by its dimension $\in \mathbb{Z}$.
If v_{1}, \ldots, v_{n} are vectors in \mathbb{K}^{r}, the dimension of $\mathbb{K}^{r} /\left\langle v_{i}: i \in N\right\rangle$ is $r-\operatorname{rk}(A)$, the corank of A.

Example

$\left.X=\{(2,0),(0,3),(1,-1)\} \quad A \quad \begin{array}{llccccccc} & & \emptyset & 1 & 2 & 12 & 3 & 13 & 23 \\ 123 \\ & M(A) & \mathbb{R}^{2} & \mathbb{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} & 0 & 0\end{array}\right) 0$
Note: The definition of matroids over \mathbb{K} is blind to which field \mathbb{K} is, but for realizability the choice of \mathbb{K} matters.

Sum, deletion, contraction, duality

Let M and M^{\prime} be matroids over R on E and E^{\prime}.
We define their direct sum $M \oplus M^{\prime}$ on $E \amalg E^{\prime}$ by

$$
\left(M \oplus M^{\prime}\right)\left(A \amalg A^{\prime}\right)=M(A) \oplus M^{\prime}\left(A^{\prime}\right) .
$$

For $i \in E$, we define two matroids over R on the ground set $E \backslash\{i\}$ the deletion of i in M, denoted $M \backslash i$, by

$$
(M \backslash i)(A)=M(A)
$$

and the contraction of i in M, denoted $M \backslash i$, by

$$
(M / i)(A)=M(A \cup\{i\}) .
$$

When R is a Dedekind domain, we can also define a dual matroid M^{*} having the expected properties (omitted).

If M is realizable, $M \backslash i$ and M / i can be realized in the usual way, while M^{*} can be realized by a generalization of Gale dualiity $y_{\text {on }}$

Sum, deletion, contraction, duality

Let M and M^{\prime} be matroids over R on E and E^{\prime}.
We define their direct sum $M \oplus M^{\prime}$ on $E \amalg E^{\prime}$ by

$$
\left(M \oplus M^{\prime}\right)\left(A \amalg A^{\prime}\right)=M(A) \oplus M^{\prime}\left(A^{\prime}\right) .
$$

For $i \in E$, we define two matroids over R on the ground set $E \backslash\{i\}$: the deletion of i in M, denoted $M \backslash i$, by

$$
(M \backslash i)(A)=M(A)
$$

and the contraction of i in M, denoted $M \backslash i$, by

$$
(M / i)(A)=M(A \cup\{i\})
$$

When R is a Dedekind domain, we can also define a dual matroid M^{*} having the expected properties (omitted)

If M is realizable, $M \backslash i$ and M / i can be realized in the usual way, while M^{*} can be realized

Sum, deletion, contraction, duality

Let M and M^{\prime} be matroids over R on E and E^{\prime}.
We define their direct sum $M \oplus M^{\prime}$ on $E \amalg E^{\prime}$ by

$$
\left(M \oplus M^{\prime}\right)\left(A \amalg A^{\prime}\right)=M(A) \oplus M^{\prime}\left(A^{\prime}\right) .
$$

For $i \in E$, we define two matroids over R on the ground set $E \backslash\{i\}$: the deletion of i in M, denoted $M \backslash i$, by

$$
(M \backslash i)(A)=M(A)
$$

and the contraction of i in M, denoted $M \backslash i$, by

$$
(M / i)(A)=M(A \cup\{i\})
$$

When R is a Dedekind domain, we can also define a dual matroid M^{*} having the expected properties (omitted).

If M is realizable, $M \backslash i$ and M / i can be realized in the usual way, while M^{*} can be realized

Sum, deletion, contraction, duality

Let M and M^{\prime} be matroids over R on E and E^{\prime}.
We define their direct sum $M \oplus M^{\prime}$ on $E \amalg E^{\prime}$ by

$$
\left(M \oplus M^{\prime}\right)\left(A \amalg A^{\prime}\right)=M(A) \oplus M^{\prime}\left(A^{\prime}\right) .
$$

For $i \in E$, we define two matroids over R on the ground set $E \backslash\{i\}$: the deletion of i in M, denoted $M \backslash i$, by

$$
(M \backslash i)(A)=M(A)
$$

and the contraction of i in M, denoted $M \backslash i$, by

$$
(M / i)(A)=M(A \cup\{i\})
$$

When R is a Dedekind domain, we can also define a dual matroid M^{*} having the expected properties (omitted).

If M is realizable, $M \backslash i$ and M / i can be realized in the usual way, while M^{*} can be realized by a generalization of Gale duality.

Tensor product. Localizations and generic matroid

Let $R \rightarrow S$ be a map of rings. Then the tensor product $-\otimes_{R} S$ is a functor R-Mod $\rightarrow S$-Mod. If M is a matroid over R, then

$$
\left(M \otimes_{R} S\right)(A) \doteq M(A) \otimes_{R} S .
$$

defines a matroid over S

Two special cases will be fundamental for us:
((For every prime ideal \mathfrak{m} of R, let R_{m} be the localization of R at m. We call $M \otimes_{R} R_{\mathfrak{m}}$ the localization of M at \mathfrak{m}.
(2) If R is a domain, let $\operatorname{Frac}(R)$ be the fraction field of R. Then we call $M \otimes_{R} \operatorname{Frac}(R)$ the generic matroid of M.
Notice that every matroid over R_{m} induces a matroid over the residue field $R_{\mathfrak{m}} /(\mathfrak{m})$

We can study the matroid M via all these "classical" matroids.

Tensor product. Localizations and generic matroid

Let $R \rightarrow S$ be a map of rings. Then the tensor product $-\otimes_{R} S$ is a functor R-Mod $\rightarrow S$-Mod. If M is a matroid over R, then

$$
\left(M \otimes_{R} S\right)(A) \doteq M(A) \otimes_{R} S
$$

defines a matroid over S.
Two special cases will be fundamental for us:
(1) For every prime ideal \mathfrak{m} of R, let $R_{\mathfrak{m}}$ be the localization of R at \mathfrak{m}. We call $M \otimes_{R} R_{\mathfrak{m}}$ the localization of M at \mathfrak{m}.
(2) If R is a domain, let $\operatorname{Frac}(R)$ be the fraction field of R. Then we call $M \otimes_{R} \operatorname{Frac}(R)$ the generic matroid of M.

Notice that every matroid over R_{m} induces a matroid over the residue field $R_{\mathrm{m}} /(\mathrm{m})$

We can study the matroid M via all these "classical" matroids.

Tensor product. Localizations and generic matroid

Let $R \rightarrow S$ be a map of rings. Then the tensor product $-\otimes_{R} S$ is a functor R-Mod $\rightarrow S$-Mod. If M is a matroid over R, then

$$
\left(M \otimes_{R} S\right)(A) \doteq M(A) \otimes_{R} S
$$

defines a matroid over S.
Two special cases will be fundamental for us:
(1) For every prime ideal \mathfrak{m} of R, let $R_{\mathfrak{m}}$ be the localization of R at \mathfrak{m}. We call $M \otimes_{R} R_{\mathfrak{m}}$ the localization of M at \mathfrak{m}.
(2) If R is a domain, let $\operatorname{Frac}(R)$ be the fraction field of R. Then we call $M \otimes_{R} \operatorname{Frac}(R)$ the generic matroid of M.

Notice that every matroid over R_{m} induces a matroid over the residue field $R_{\mathrm{m}} /(\mathrm{m})$

We can study the matroid M via all these "classical" matroids.

Tensor product. Localizations and generic matroid

Let $R \rightarrow S$ be a map of rings. Then the tensor product $-\otimes_{R} S$ is a functor R-Mod $\rightarrow S$-Mod. If M is a matroid over R, then

$$
\left(M \otimes_{R} S\right)(A) \doteq M(A) \otimes_{R} S
$$

defines a matroid over S.
Two special cases will be fundamental for us:
(1) For every prime ideal \mathfrak{m} of R, let $R_{\mathfrak{m}}$ be the localization of R at \mathfrak{m}. We call $M \otimes_{R} R_{\mathfrak{m}}$ the localization of M at \mathfrak{m}.
(2) If R is a domain, let $\operatorname{Frac}(R)$ be the fraction field of R. Then we call $M \otimes_{R} \operatorname{Frac}(R)$ the generic matroid of M.

Notice that every matroid over R_{m} induces a matroid over the residue field $R_{\mathfrak{m}} /(\mathfrak{m})$

We can study the matroid M via all these "classical" matroids.

Tensor product. Localizations and generic matroid

Let $R \rightarrow S$ be a map of rings. Then the tensor product $-\otimes_{R} S$ is a functor R-Mod $\rightarrow S$-Mod. If M is a matroid over R, then

$$
\left(M \otimes_{R} S\right)(A) \doteq M(A) \otimes_{R} S
$$

defines a matroid over S.
Two special cases will be fundamental for us:
(1) For every prime ideal \mathfrak{m} of R, let $R_{\mathfrak{m}}$ be the localization of R at \mathfrak{m}. We call $M \otimes_{R} R_{\mathfrak{m}}$ the localization of M at \mathfrak{m}.
(2) If R is a domain, let $\operatorname{Frac}(R)$ be the fraction field of R. Then we call $M \otimes_{R} \operatorname{Frac}(R)$ the generic matroid of M.
Notice that every matroid over $R_{\mathfrak{m}}$ induces a matroid over the residue field $R_{\mathfrak{m}} /(\mathfrak{m})$.

We can study the matroid M via all these "classical" matroids.

Tensor product. Localizations and generic matroid

Let $R \rightarrow S$ be a map of rings. Then the tensor product $-\otimes_{R} S$ is a functor R-Mod $\rightarrow S$-Mod. If M is a matroid over R, then

$$
\left(M \otimes_{R} S\right)(A) \doteq M(A) \otimes_{R} S
$$

defines a matroid over S.
Two special cases will be fundamental for us:
(1) For every prime ideal \mathfrak{m} of R, let $R_{\mathfrak{m}}$ be the localization of R at \mathfrak{m}. We call $M \otimes_{R} R_{\mathfrak{m}}$ the localization of M at \mathfrak{m}.
(2) If R is a domain, let $\operatorname{Frac}(R)$ be the fraction field of R. Then we call $M \otimes_{R} \operatorname{Frac}(R)$ the generic matroid of M.
Notice that every matroid over R_{m} induces a matroid over the residue field $R_{\mathfrak{m}} /(\mathfrak{m})$.

We can study the matroid M via all these "classical" matroids.

Dedekind rings and DVR

From now on, we will always assume R to be a Dedekind domain (i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).

```
The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a
Dedekind domain that is not a field and has a unique maximal ideal m}\mathrm{ )
(Actually, the theory works in a more general framework:
R}\mathrm{ is a Prüfer domain, i.e. its localizations are valuation rings)
Any indecomposible f.g. module over a DVR R is isomorphic to either R
or }R/\mp@subsup{\mathfrak{m}}{}{n}\mathrm{ for some integer }n\geq1\mathrm{ .
So a f.g. R-module are parametrized by "partitions" that may have some
infinitely long lines.
```


Dedekind rings and DVR

From now on, we will always assume R to be a Dedekind domain (i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).
The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}). (Actually, the theory works in a more general framework: R is a Prüfer domain, i.e. its localizations are valuation rings) Any indecomposible f.g. module over a DVR R is isomorphic to either R or R / \mathfrak{m}^{n} for some integer $n \geq 1$. So a f.g. R-module are parametrized by "partitions" that may have some infinitely long lines

Dedekind rings and DVR

From now on, we will always assume R to be a Dedekind domain (i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).
The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}). (Actually, the theory works in a more general framework: R is a Prüfer domain, i.e. its localizations are valuation rings).

Any indecomposible f.g. module over a DVR R is isomorphic to either R or R / \mathfrak{m}^{n} for some integer $n \geq 1$.
So a f.g. R-module are parametrized by "partitions" that may have some infinitely long lines.

Dedekind rings and DVR

From now on, we will always assume R to be a Dedekind domain (i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).
The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}). (Actually, the theory works in a more general framework: R is a Prüfer domain, i.e. its localizations are valuation rings).

Any indecomposible f.g. module over a DVR R is isomorphic to either R or R / \mathfrak{m}^{n} for some integer $n \geq 1$.

Dedekind rings and DVR

From now on, we will always assume R to be a Dedekind domain (i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).
The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}). (Actually, the theory works in a more general framework: R is a Prüfer domain, i.e. its localizations are valuation rings).

Any indecomposible f.g. module over a DVR R is isomorphic to either R or R / \mathfrak{m}^{n} for some integer $n \geq 1$.
So a f.g. R-module are parametrized by "partitions" that may have some infinitely long lines.

Local theory: matroids over a DVR

We denote by r_{i} the cardinality of the i-th row of such a "partition", and by $s_{i} \doteq \sum_{j \geq i} r_{j}$.
Let $r_{i}(A b)$ be stenography for $r_{i}(M(A \cup\{b\}))$ and so on.
Our first result is a combinatorial characterization of matroids over a DVR:

Theorem (Fink, M.)

M: $2^{E} \rightarrow\{f$ g. R-modules $\}$ is a matroid over R if and only if:

- for every 1-element minor $M(A) \rightarrow M(A \cup\{b\})$ the difference of the two "partitions" is a (Pieri-like) stripe (i.e. $r_{i}(A) \geq r_{i}(A b) \geq r_{i+1}(A)$);
- for every 2-element minor, the miminum of the three quantities

$$
s_{i}(A b)+s_{i+1}(A c), s_{i}(A c)+s_{i+1}(A b), s_{i}(A b c)+s_{i+1}(A)
$$

is attained twice.

Local theory: matroids over a DVR

We denote by r_{i} the cardinality of the i-th row of such a "partition", and by $s_{i} \doteq \sum_{j \geq i} r_{j}$.
Let $r_{i}(A b)$ be stenography for $r_{i}(M(A \cup\{b\}))$ and so on.
Our first result is a combinatorial characterization of matroids over a DVR:

Theorem (Fink, M.)

$M: 2^{E} \rightarrow\{f . g . R$-modules $\}$ is a matroid over R if and only if:

- for every 1-element minor $M(A) \rightarrow M(A \cup\{b\})$ the difference of the two "partitions" is a (Pieri-like) stripe (i.e. $r_{i}(A) \geq r_{i}(A b) \geq r_{i+1}(A)$)
- for every 2-element minor, the miminum of the three quantities

$$
s_{i}(A b)+s_{i+1}(A c), s_{i}(A c)+s_{i+1}(A b), s_{i}(A b c)+s_{i+1}(A)
$$

Local theory: matroids over a DVR

We denote by r_{i} the cardinality of the i-th row of such a "partition", and by $s_{i} \doteq \sum_{j \geq i} r_{j}$.
Let $r_{i}(A b)$ be stenography for $r_{i}(M(A \cup\{b\}))$ and so on.
Our first result is a combinatorial characterization of matroids over a DVR:

Theorem (Fink, M.)

$M: 2^{E} \rightarrow\{f . g . R$-modules $\}$ is a matroid over R if and only if:

- for every 1-element minor $M(A) \rightarrow M(A \cup\{b\})$ the difference of the two "partitions" is a (Pieri-like) stripe (i.e. $r_{i}(A) \geq r_{i}(A b) \geq r_{i+1}(A)$);

							\ldots
							\ldots

Local theory: matroids over a DVR

We denote by r_{i} the cardinality of the i-th row of such a "partition", and by $s_{i} \doteq \sum_{j \geq i} r_{j}$.
Let $r_{i}(A b)$ be stenography for $r_{i}(M(A \cup\{b\}))$ and so on.
Our first result is a combinatorial characterization of matroids over a DVR:

Theorem (Fink, M.)

$M: 2^{E} \rightarrow\{f . g . R$-modules $\}$ is a matroid over R if and only if:

- for every 1-element minor $M(A) \rightarrow M(A \cup\{b\})$ the difference of the two "partitions" is a (Pieri-like) stripe (i.e. $r_{i}(A) \geq r_{i}(A b) \geq r_{i+1}(A)$);
- for every 2-element minor, the miminum of the three quantities

$$
s_{i}(A b)+s_{i+1}(A c), s_{i}(A c)+s_{i+1}(A b), s_{i}(A b c)+s_{i+1}(A)
$$

is attained twice.

Connections with tropical geometry

Furthermore, by looking at the 3-element minors of the matroid M, we get that the minimum of

$$
s_{i}(A b)+s_{i}(A c d), s_{i}(A c)+s_{i}(A b d), s_{i}(A d)+s_{i}(A b c)
$$

is attained twice.

These are tropicalizations of the Plücker relations for the Grassmanian! Then we get:

Proposition (F ink, M.)

The vector $\left(s_{i}(M(A)),|A|=k\right)$ defines a point on the Dressian* $\operatorname{Dr}(k,|E|)$
In fact, we conjecture that in this way we get a point on the Dressian polyhedral fans parametrizing tropical linear spaces, and full flags of t.l.s., respectively)

Connections with tropical geometry

Furthermore, by looking at the 3-element minors of the matroid M, we get that the minimum of

$$
s_{i}(A b)+s_{i}(A c d), s_{i}(A c)+s_{i}(A b d), s_{i}(A d)+s_{i}(A b c)
$$

is attained twice.
These are tropicalizations of the Plücker relations for the Grassmanian!
Then we get:
Proposition (Fink, M.)
The vector $\left(s_{i}(M(A)),|A|=k\right)$ defines a point on the $\operatorname{Dressian*} \operatorname{Dr}(k,|E|)$
In fact, we conjecture that in this way we get a point on the Dressian polyhedral fans parametrizing tropical linear spaces, and full flags of t.I.s., respectively)

Connections with tropical geometry

Furthermore, by looking at the 3-element minors of the matroid M, we get that the minimum of

$$
s_{i}(A b)+s_{i}(A c d), s_{i}(A c)+s_{i}(A b d), s_{i}(A d)+s_{i}(A b c)
$$

is attained twice.
These are tropicalizations of the Plücker relations for the Grassmanian! Then we get:

Proposition (Fink, M.)

The vector $\left(s_{i}(M(A)),|A|=k\right)$ defines a point on the $\operatorname{Dressian*} \operatorname{Dr}(k,|E|)$
In fact, we conjecture that in this way we get a point on the Dressian analogue of the full flag variety*. (* polyhedral fans parametrizing tropical linear spaces, and full flags of t.l.s., respectively).

Valuated matroids

A valuated matroid is defined as a matroid decorated with an integer valued function \mathcal{V} on the set of the bases \mathcal{B}, satisfying a certain axiom [Dress and Wenzel]. There is a bijection
\{tropical linear spaces\} \longleftrightarrow \{valuated matroids\}

Then, as consequence of the Proposition above, we get:

Corollary (Fink, M.)

Let M be a matroid over a $\operatorname{DVR}(R, \mathfrak{m})$
Then the function $\mathcal{V}(A) \doteq \operatorname{dim}_{R / \mathrm{m}} M(A)$ makes the generic matroid of M into a valuated matroid.

Then a matroid over a DVR contains richer information than the valuated matroid

Valuated matroids

A valuated matroid is defined as a matroid decorated with an integer valued function \mathcal{V} on the set of the bases \mathcal{B}, satisfying a certain axiom [Dress and Wenzel]. There is a bijection

$$
\{\text { tropical linear spaces }\} \longleftrightarrow\{\text { valuated matroids }\}
$$

Then, as consequence of the Proposition above, we get:

Corollary (Fink, M.)

Let M be a matroid over a $\operatorname{DVR}(R, \mathfrak{m})$.
Then the function $\mathcal{V}(A) \doteq \operatorname{dim}_{R / \mathrm{m}} M(A)$ makes the generic matroid of M into a valuated matroid.

Then a matroid over a DVR contains richer information than the valuated matroid.

Valuated matroids

A valuated matroid is defined as a matroid decorated with an integer valued function \mathcal{V} on the set of the bases \mathcal{B}, satisfying a certain axiom [Dress and Wenzel]. There is a bijection

$$
\{\text { tropical linear spaces }\} \longleftrightarrow\{\text { valuated matroids }\}
$$

Then, as consequence of the Proposition above, we get:

Corollary (Fink, M.)

Let M be a matroid over a $\operatorname{DVR}(R, \mathfrak{m})$.
Then the function $\mathcal{V}(A) \doteq \operatorname{dim}_{R / \mathfrak{m}} M(A)$ makes the generic matroid of M into a valuated matroid.

Then a matroid over a DVR contains richer information than the valuated matroid.

Matroid polytope－work in progress！

We can also define an（unbounded）polytope in $\mathbb{R}^{|E|+2}$ as follows：

$$
P(M) \doteq \operatorname{Conv}\left\{\left(e_{A}, i, s_{i}(A)\right), A \subseteq E, i \in \mathbb{N}\right\}+\mathbb{R}_{\geq 0}(\underline{0}, 1,0)
$$

It is easy to see that $P(M)$ has indeed a finite number of vertices，and that it is possible to recover $P(M)$ from M ．Furthermore：

> Proposition（Fink M ）
> If we disregard the last coordinate，the direction of each edge of $P(M)$ has the shape $e_{i}-e_{j}$ for some i, j

This generalizes a known fact for classical matroids．Consequences：
－by adding a few simple conditions，one gets a characterization of the polytopes that are $P(M)$ for some M ，and hence a cryptomorphic axiomatization for matroids over a valuation ring！
－By replacing A_{n} by other root systems，

> can be defined!

Do they come from the corresponding Grassmannians？$\overline{\text { B }}$ ， $\bar{\equiv}$ ．

Matroid polytope - work in progress!

We can also define an (unbounded) polytope in $\mathbb{R}^{|E|+2}$ as follows:

$$
P(M) \doteq \operatorname{Conv}\left\{\left(e_{A}, i, s_{i}(A)\right), A \subseteq E, i \in \mathbb{N}\right\}+\mathbb{R}_{\geq 0}(\underline{0}, 1,0)
$$

It is easy to see that $P(M)$ has indeed a finite number of vertices, and that it is possible to recover $P(M)$ from M. Furthermore

Proposition (Fink, M.

If we disregard the last coordinate, the direction of each edge of $P(M)$ has the shape $e_{i}-e_{i}$ for some i, i

This generalizes a known fact for classical matroids. Consequences:

- by adding a few simple conditions, one gets a characterization of the
polytopes that are $P(M)$ for some M, and hence a cryptomorphic
axiomatization for matroids over a valuation ring!
- By replacing A_{n} by other root systems,

Matroid polytope - work in progress!

We can also define an (unbounded) polytope in $\mathbb{R}^{|E|+2}$ as follows:

$$
P(M) \doteq \operatorname{Conv}\left\{\left(e_{A}, i, s_{i}(A)\right), A \subseteq E, i \in \mathbb{N}\right\}+\mathbb{R}_{\geq 0}(\underline{0}, 1,0)
$$

It is easy to see that $P(M)$ has indeed a finite number of vertices, and that it is possible to recover $P(M)$ from M. Furthermore:

Proposition (Fink, M.)

If we disregard the last coordinate, the direction of each edge of $P(M)$ has the shape $e_{i}-e_{j}$ for some i, j.

> This generalizes a known fact for classical matroids. Consequences:
> - by adding a few simple conditions, one gets a characterization of the
> polytopes that are $P(M)$ for some M, and hence a cryptomorphic
> axiomatization for matroids over a valuation ring!
> - By replacing A_{n} by other root systems,
can be defined!

[^0]
Matroid polytope - work in progress!

We can also define an (unbounded) polytope in $\mathbb{R}^{|E|+2}$ as follows:

$$
P(M) \doteq \operatorname{Conv}\left\{\left(e_{A}, i, s_{i}(A)\right), A \subseteq E, i \in \mathbb{N}\right\}+\mathbb{R}_{\geq 0}(\underline{0}, 1,0)
$$

It is easy to see that $P(M)$ has indeed a finite number of vertices, and that it is possible to recover $P(M)$ from M. Furthermore:

Proposition (Fink, M.)

If we disregard the last coordinate, the direction of each edge of $P(M)$ has the shape $e_{i}-e_{j}$ for some i, j.

This generalizes a known fact for classical matroids. Consequences:

- by adding a few simple conditions, one gets a characterization of the polytopes that are $P(M)$ for some M, and hence a cryptomorphic axiomatization for matroids over a valuation ring!

[^1]
Matroid polytope - work in progress!

We can also define an (unbounded) polytope in $\mathbb{R}^{|E|+2}$ as follows:

$$
P(M) \doteq \operatorname{Conv}\left\{\left(e_{A}, i, s_{i}(A)\right), A \subseteq E, i \in \mathbb{N}\right\}+\mathbb{R}_{\geq 0}(\underline{0}, 1,0)
$$

It is easy to see that $P(M)$ has indeed a finite number of vertices, and that it is possible to recover $P(M)$ from M. Furthermore:

Proposition (Fink, M.)

If we disregard the last coordinate, the direction of each edge of $P(M)$ has the shape $e_{i}-e_{j}$ for some i, j.

This generalizes a known fact for classical matroids. Consequences:

- by adding a few simple conditions, one gets a characterization of the polytopes that are $P(M)$ for some M, and hence a cryptomorphic axiomatization for matroids over a valuation ring!
- By replacing A_{n} by other root systems, Coxeter matroids over a valuation rings can be defined!
Do they come from the corresponding Grassmannians?

Matroid polytope - work in progress!

We can also define an (unbounded) polytope in $\mathbb{R}^{|E|+2}$ as follows:

$$
P(M) \doteq \operatorname{Conv}\left\{\left(e_{A}, i, s_{i}(A)\right), A \subseteq E, i \in \mathbb{N}\right\}+\mathbb{R}_{\geq 0}(\underline{0}, 1,0)
$$

It is easy to see that $P(M)$ has indeed a finite number of vertices, and that it is possible to recover $P(M)$ from M. Furthermore:

Proposition (Fink, M.)

If we disregard the last coordinate, the direction of each edge of $P(M)$ has the shape $e_{i}-e_{j}$ for some i, j.

This generalizes a known fact for classical matroids. Consequences:

- by adding a few simple conditions, one gets a characterization of the polytopes that are $P(M)$ for some M, and hence a cryptomorphic axiomatization for matroids over a valuation ring!
- By replacing A_{n} by other root systems, Coxeter matroids over a valuation rings can be defined!
Do they come from the corresponding Grassmannians?

Modules over Dedekind domains

We can now pass to the global theory. Let R be a Dedekind domain. In order to have a matroid over R, is it sufficient that every localization $M_{\mathfrak{m}}$ is a matroid over the DVR $R_{\mathfrak{m}}$?

NO! In general there is an extra "global" condition.
This will be simple to state, once we will have recalled some facts.
Given an R-module N, let $N_{\text {tors }} \subseteq N$ denote the submodule of its torsion elements, and $N_{\text {proj }}$ denote the projective module $N / N_{\text {tors }}$. Then $N \simeq N_{\text {tors }} \oplus N_{\text {proj }}$.

Modules over Dedekind domains

We can now pass to the global theory. Let R be a Dedekind domain.
In order to have a matroid over R, is it sufficient that every localization $M_{\mathfrak{m}}$ is a matroid over the DVR $R_{\mathfrak{m}}$?

NO! In general there is an extra "global" condition.
This will be simple to state, once we will have recalled some facts.
Given an R-module N, let $N_{\text {tors }} \subseteq N$ denote the submodule of its torsion
elements, and $N_{\text {proj }}$ denote the projective module $N / N_{\text {tors }}$.
Then $N \simeq N_{\text {tors }} \oplus N_{\text {proj }}$

Modules over Dedekind domains

We can now pass to the global theory. Let R be a Dedekind domain.
In order to have a matroid over R, is it sufficient that every localization $M_{\mathfrak{m}}$ is a matroid over the DVR $R_{\mathfrak{m}}$?

NO! In general there is an extra "global" condition.
This will be simple to state, once we will have recalled some facts.
Given an R-module N, let $N_{\text {tors }} \subseteq N$ denote the submodule of its torsion elements, and $N_{\text {proj }}$ denote the projective module $N / N_{\text {tors }}$. Then $N \simeq N_{\text {tors }} \oplus N_{\text {proj }}$

Modules over Dedekind domains

We can now pass to the global theory. Let R be a Dedekind domain.
In order to have a matroid over R, is it sufficient that every localization $M_{\mathfrak{m}}$ is a matroid over the DVR $R_{\mathfrak{m}}$?

NO! In general there is an extra "global" condition.
This will be simple to state, once we will have recalled some facts.
Given an R-module N, let $N_{\text {tors }} \subseteq N$ denote the submodule of its torsion elements, and $N_{\text {proj }}$ denote the projective module $N / N_{\text {tors }}$.
Then $N \simeq N_{\text {tors }} \oplus N_{\text {proj }}$.

Determinant of a module

The Picard group of $R, \operatorname{Pic}(R)$, is the set of the isomorphism classes of f.g. projective modules of rank 1, with product induced by the tensor product. If P is a projective module of rank n, then $\bigwedge^{n} P$ is a f.g. projective module of rank $\binom{n}{n}=1$. We call determinant, and denote by $\operatorname{det}(P)$, its class in $\operatorname{Pic}(R)$.

\square
In fact, when P is a projective module, the map above is simply given by $\Phi([P])=(\operatorname{rk}(P), \operatorname{det}(P))$
Then for any f.g. R-module N we will still denote by $\mathrm{rk}(N)$ the first summand of $\Phi([N])$, and by $\operatorname{det}(N)$ the second summand of $\Phi([N])$. The former coincides with the rank of $N_{\text {proi }}$.

Determinant of a module

The Picard group of $R, \operatorname{Pic}(R)$, is the set of the isomorphism classes of f.g. projective modules of rank 1, with product induced by the tensor product. If P is a projective module of rank n, then $\bigwedge^{n} P$ is a f.g. projective module of rank $\binom{n}{n}=1$. We call determinant, and denote by $\operatorname{det}(P)$, its class in $\operatorname{Pic}(R)$.
The algebraic K-theory group $K_{0}(R)$ of f.g. R-modules is the abelian group generated by iso classes $[N]$ of f.g. R-modules, modulo the relations $[N]=\left[N^{\prime}\right]+\left[N^{\prime \prime}\right]$ for any exact sequence $0 \rightarrow N^{\prime} \rightarrow N \rightarrow N^{\prime \prime} \rightarrow 0$.
$\Phi: K_{0}(R) \longrightarrow \mathbb{Z} \oplus \operatorname{Pic}(R)$.

In fact, when P is a projective module, the map above is simply given by $\Phi([P])=(\operatorname{rk}(P), \operatorname{det}(P))$.
Then for any f.g. R-module N we will still denote by $r k(N)$ the first summand of $\Phi([N])$, and by $\operatorname{det}(N)$ the second summand of $\Phi([N])$. The former coincides with the rank of $N_{\text {proi. }}$

Determinant of a module

The Picard group of $R, \operatorname{Pic}(R)$, is the set of the isomorphism classes of f.g. projective modules of rank 1, with product induced by the tensor product. If P is a projective module of rank n, then $\bigwedge^{n} P$ is a f.g. projective module of rank $\binom{n}{n}=1$. We call determinant, and denote by $\operatorname{det}(P)$, its class in $\operatorname{Pic}(R)$.
The algebraic K-theory group $K_{0}(R)$ of f.g. R-modules is the abelian group generated by iso classes $[N]$ of f.g. R-modules, modulo the relations $[N]=\left[N^{\prime}\right]+\left[N^{\prime \prime}\right]$ for any exact sequence $0 \rightarrow N^{\prime} \rightarrow N \rightarrow N^{\prime \prime} \rightarrow 0$.
Fact: there is an isomorphism of groups

$$
\Phi: K_{0}(R) \longrightarrow \mathbb{Z} \oplus \operatorname{Pic}(R)
$$

In fact, when P is a projective module, the map above is simply given by $\Phi([P])=(\operatorname{rk}(P), \operatorname{det}(P))$.

Determinant of a module

The Picard group of $R, \operatorname{Pic}(R)$, is the set of the isomorphism classes of f.g. projective modules of rank 1, with product induced by the tensor product. If P is a projective module of rank n, then $\bigwedge^{n} P$ is a f.g. projective module of rank $\binom{n}{n}=1$. We call determinant, and denote by $\operatorname{det}(P)$, its class in $\operatorname{Pic}(R)$.
The algebraic K-theory group $K_{0}(R)$ of f.g. R-modules is the abelian group generated by iso classes $[N]$ of f.g. R-modules, modulo the relations $[N]=\left[N^{\prime}\right]+\left[N^{\prime \prime}\right]$ for any exact sequence $0 \rightarrow N^{\prime} \rightarrow N \rightarrow N^{\prime \prime} \rightarrow 0$.
Fact: there is an isomorphism of groups

$$
\Phi: K_{0}(R) \longrightarrow \mathbb{Z} \oplus \operatorname{Pic}(R)
$$

In fact, when P is a projective module, the map above is simply given by $\Phi([P])=(\operatorname{rk}(P), \operatorname{det}(P))$.
Then for any f.g. R-module N we will still denote by $\operatorname{rk}(N)$ the first summand of $\Phi([N])$, and by $\operatorname{det}(N)$ the second summand of $\Phi([N])$. The former coincides with the rank of $N_{\text {proj }}$.

Global theory: matroids over a Dedekind domain

By this det function we can characterize matroids over a Dedekind domain R :

Theorem (Fink, M.)

$M: 2^{E} \rightarrow\{f$. g. R-modules $\}$ is a matroid over R if and only if every localization at a prime ideal \mathfrak{m} is a matroid over $R_{\mathfrak{m}}$,
and for every 1-element minor $N \rightarrow N^{\prime}$ we have:

- if $\operatorname{rk}(N)-\operatorname{rk}\left(N^{\prime}\right)=1$ then $\operatorname{det}(N)=\operatorname{det}\left(N^{\prime}\right)$,
- if $\operatorname{rk}(N)-\operatorname{rk}\left(N^{\prime}\right)=0$ then $\operatorname{det}\left(N_{\text {proi }}\right)=\operatorname{det}\left(N_{\text {proj }}^{\prime}\right)$.

In particular when $\operatorname{Pic}(R)=\{0\}$ there are no global conditions,
so that "being a matroid" can be checked prime by prime,
by the combinatorial/tropical condition stated before!

Global theory: matroids over a Dedekind domain

By this det function we can characterize matroids over a Dedekind domain R :

Theorem (Fink, M.)

$M: 2^{E} \rightarrow\{f$. g. R-modules $\}$ is a matroid over R if and only if every localization at a prime ideal \mathfrak{m} is a matroid over $R_{\mathfrak{m}}$, and for every 1-element minor $N \rightarrow N^{\prime}$ we have:

- if $\operatorname{rk}(N)-\operatorname{rk}\left(N^{\prime}\right)=1$ then $\operatorname{det}(N)=\operatorname{det}\left(N^{\prime}\right)$,
- if $\operatorname{rk}(N)-\operatorname{rk}\left(N^{\prime}\right)=0$ then $\operatorname{det}\left(N_{\text {proj }}\right)=\operatorname{det}\left(N_{\text {proj }}^{\prime}\right)$.

In particular when $\operatorname{Pic}(R)=\{0\}$ there are no global conditions,
so that "being a matroid" can be checked prime by prime,
by the combinatorial/tropical condition stated before!

Global theory: matroids over a Dedekind domain

By this det function we can characterize matroids over a Dedekind domain R :

Theorem (Fink, M.)

$M: 2^{E} \rightarrow\{f$. g. R-modules $\}$ is a matroid over R if and only if every localization at a prime ideal \mathfrak{m} is a matroid over $R_{\mathfrak{m}}$, and for every 1-element minor $N \rightarrow N^{\prime}$ we have:

- if $\operatorname{rk}(N)-\operatorname{rk}\left(N^{\prime}\right)=1$ then $\operatorname{det}(N)=\operatorname{det}\left(N^{\prime}\right)$,
- if $\operatorname{rk}(N)-\operatorname{rk}\left(N^{\prime}\right)=0$ then $\operatorname{det}\left(N_{\text {proj }}\right)=\operatorname{det}\left(N_{\text {proj }}^{\prime}\right)$.

In particular when $\operatorname{Pic}(R)=\{0\}$ there are no global conditions, so that "being a matroid" can be checked prime by prime, by the combinatorial/tropical condition stated before!

Arithmetic matroids

If M is a matroid over \mathbb{Z}, we define the two functions

$$
\operatorname{cork}(A)=\operatorname{rk}\left(M(A)_{\operatorname{proj}}\right) \text { and } m(A) \doteq\left|M(A)_{\mathrm{tors}}\right|
$$

As a corollary of the previous theorem, we can prove that (E, cork, m) is (essentially) an arithmetic matroid, i.e. that the function m satisfies the axioms introduced by [D'Adderio-M].

Notice that matroids over \mathbb{Z} and arithmetic matroids and are not truly equivalent, since the information contained in the former is richer, since there are many groups with the same cardinality.

Arithmetic matroids

If M is a matroid over \mathbb{Z}, we define the two functions

$$
\operatorname{cork}(A)=\operatorname{rk}\left(M(A)_{\operatorname{proj}}\right) \text { and } m(A) \doteq\left|M(A)_{\mathrm{tors}}\right|
$$

As a corollary of the previous theorem, we can prove that (E, cork, m) is (essentially) an arithmetic matroid, i.e. that the function m satisfies the axioms introduced by [D'Adderio-M].

Notice that matroids over \mathbb{Z} and arithmetic matroids and are not truly equivalent, since the information contained in the former is richer, since there are many groups with the same cardinality.

Arithmetic matroids

If M is a matroid over \mathbb{Z}, we define the two functions

$$
\operatorname{cork}(A)=\operatorname{rk}\left(M(A)_{\operatorname{proj}}\right) \text { and } m(A) \doteq\left|M(A)_{\mathrm{tors}}\right|
$$

As a corollary of the previous theorem, we can prove that (E, cork, m) is (essentially) an arithmetic matroid, i.e. that the function m satisfies the axioms introduced by [D'Adderio-M].

Notice that matroids over \mathbb{Z} and arithmetic matroids and are not truly equivalent, since the information contained in the former is richer, since there are many groups with the same cardinality.

Definition of the Tutte-Grothendieck ring

Several invariants can be associated to a classical matroid; the universal deletion-contraction invariant is the well-known Tutte polynomial. We will now define and compute the universal deletion-contraction invariant of matroids over any Dedekind domain R.

whenever a is not a loop nor coloop for the generic matroid The product is given by $\mathbf{T}_{M} \cdot \mathbf{T}_{M^{\prime}}=\mathbf{T}_{M \oplus M^{\prime}}$

Definition of the Tutte-Grothendieck ring

Several invariants can be associated to a classical matroid; the universal deletion-contraction invariant is the well-known Tutte polynomial. We will now define and compute the universal deletion-contraction invariant of matroids over any Dedekind domain R.

Essentially following Brylawski, define the Tutte-Grothendieck ring of matroids over $R, K(R$-Mat $)$, to be the abelian group generated by a symbol \mathbf{T}_{M} for each matroid M over R, modulo the relations

$$
\mathbf{T}_{M}=\mathbf{T}_{M \backslash a}+\mathbf{T}_{M / a}
$$

whenever a is not a loop nor coloop for the generic matroid.

Definition of the Tutte-Grothendieck ring

Several invariants can be associated to a classical matroid; the universal deletion-contraction invariant is the well-known Tutte polynomial. We will now define and compute the universal deletion-contraction invariant of matroids over any Dedekind domain R.

Essentially following Brylawski, define the Tutte-Grothendieck ring of matroids over $R, K(R$-Mat $)$, to be the abelian group generated by a symbol \mathbf{T}_{M} for each matroid M over R, modulo the relations

$$
\mathbf{T}_{M}=\mathbf{T}_{M \backslash a}+\mathbf{T}_{M / a}
$$

whenever a is not a loop nor coloop for the generic matroid.
The product is given by $\mathbf{T}_{M} \cdot \mathbf{T}_{M^{\prime}}=\mathbf{T}_{M \oplus M^{\prime}}$

Description of the Tutte-Grothendieck ring

Define $\mathbb{Z}\left[R\right.$-Mod] to be the ring of \mathbb{Z}-linear combinations of symbols X^{N}, one for each f.g. R-module N up to isomorphism, and product $X^{N} X^{N^{\prime}}=X^{N \oplus N^{\prime}}$.

Description of the Tutte-Grothendieck ring

Define $\mathbb{Z}\left[R\right.$-Mod] to be the ring of \mathbb{Z}-linear combinations of symbols X^{N}, one for each f.g. R-module N up to isomorphism, and product $X^{N} X^{N^{\prime}}=X^{N \oplus N^{\prime}}$.

Theorem (Fink, M.)

The Tutte-Grothendieck ring $K(R$-Mat) is the subring of $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $]$ generated by X^{P} and Y^{P} as P ranges over rank 1 projective modules, and $X^{N} Y^{N}$ as N ranges over torsion modules.
The class of M is

Description of the Tutte-Grothendieck ring

Define $\mathbb{Z}\left[R\right.$-Mod] to be the ring of \mathbb{Z}-linear combinations of symbols X^{N}, one for each f.g. R-module N up to isomorphism, and product $X^{N} X^{N^{\prime}}=X^{N \oplus N^{\prime}}$.

Theorem (Fink, M.)

The Tutte-Grothendieck ring $K(R$-Mat) is the subring of $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $]$ generated by X^{P} and Y^{P} as P ranges over rank 1 projective modules, and $X^{N} Y^{N}$ as N ranges over torsion modules.
The class of M is

$$
\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)}
$$

Classical Tutte polynomial and arithmetic Tutte polynomial

When R is a field, $\operatorname{Pic}(R)$ is trivial and there is no torsion, thus $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $] \simeq \mathbb{Z}[X, Y]$.
Then by the substitution $X=x-1$ and $Y=y-1$ we can see that $T_{M}=\sum_{A C E} X^{M(A)} Y^{M^{*}(E \backslash A)}$ is simply the classical Tutte polynomial, since $\operatorname{dim} \bar{M}(A)$ is the corank of A and $\operatorname{dim} M^{*}(E \backslash A)$ is its nullity.

When $R=\mathbb{Z}$, since there are nontrivial torsion modules, we get

By evaluating $X^{N} Y^{N}$ to the cardinality of N for each torsion module N, we get the arithmetic Tutte polynomial. This polynomial proved to have several applications to toric arrangements, partition functions, Ehrhart polynomial of zonotopes, graphs, CW-complexes,

Classical Tutte polynomial and arithmetic Tutte polynomial

When R is a field, $\operatorname{Pic}(R)$ is trivial and there is no torsion, thus $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $] \simeq \mathbb{Z}[X, Y]$.
Then by the substitution $X=x-1$ and $Y=y-1$ we can see that $\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)}$ is simply the classical Tutte polynomial, since $\operatorname{dim} \bar{M}(A)$ is the corank of A and $\operatorname{dim} M^{*}(E \backslash A)$ is its nullity.

When $R=\mathbb{Z}$, since there are nontrivial torsion modules, we get

By evaluating $X^{N} Y^{N}$ to the cardinality of N for each torsion module N we get the arithmetic Tutte polynomial. This polynomial proved to have several applications to toric arrangements, partition functions, Ehrhart polynomial of zonotopes, graphs, CW-complexes,

Classical Tutte polynomial and arithmetic Tutte polynomial

When R is a field, $\operatorname{Pic}(R)$ is trivial and there is no torsion, thus $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $] \simeq \mathbb{Z}[X, Y]$.
Then by the substitution $X=x-1$ and $Y=y-1$ we can see that $\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)}$ is simply the classical Tutte polynomial, since $\operatorname{dim} \bar{M}(A)$ is the corank of A and $\operatorname{dim} M^{*}(E \backslash A)$ is its nullity.

When $R=\mathbb{Z}$, since there are nontrivial torsion modules, we get

$$
\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)_{\text {proj }}} Y^{M^{*}(E \backslash A)_{\mathrm{proj}}} X^{M(A)_{\mathrm{tors}}} Y^{M(A)_{\mathrm{tors}}}
$$

By evaluating $X^{N} Y^{N}$ to the cardinality of N for each torsion module N, we get the arithmetic Tutte polynomial. This polynomial proved to have several applications to toric arrangements, partition functions, Ehrhart polynomial of zonotopes, graphs, CW-complexes,

Classical Tutte polynomial and arithmetic Tutte polynomial

When R is a field, $\operatorname{Pic}(R)$ is trivial and there is no torsion, thus $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $] \simeq \mathbb{Z}[X, Y]$.
Then by the substitution $X=x-1$ and $Y=y-1$ we can see that $\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)}$ is simply the classical Tutte polynomial, since $\operatorname{dim} \bar{M}(A)$ is the corank of A and $\operatorname{dim} M^{*}(E \backslash A)$ is its nullity.

When $R=\mathbb{Z}$, since there are nontrivial torsion modules, we get

$$
\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)_{\mathrm{proj}}} Y^{M^{*}(E \backslash A)_{\mathrm{proj}}} X^{M(A)_{\mathrm{tors}}} Y^{M(A)_{\mathrm{tors}}}
$$

By evaluating $X^{N} Y^{N}$ to the cardinality of N for each torsion module N, we get the arithmetic Tutte polynomial.
several applications to toric arrangements, partition functions, Ehrhart polynomial of zonotopes, graphs, CW-complexes,

Classical Tutte polynomial and arithmetic Tutte polynomial

When R is a field, $\operatorname{Pic}(R)$ is trivial and there is no torsion, thus $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $] \simeq \mathbb{Z}[X, Y]$.
Then by the substitution $X=x-1$ and $Y=y-1$ we can see that $\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)}$ is simply the classical Tutte polynomial, since $\operatorname{dim} \bar{M}(A)$ is the corank of A and $\operatorname{dim} M^{*}(E \backslash A)$ is its nullity.

When $R=\mathbb{Z}$, since there are nontrivial torsion modules, we get

$$
\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)_{\operatorname{proj}}} Y^{M^{*}(E \backslash A)_{\mathrm{proj}}} X^{M(A)_{\mathrm{tors}}} Y^{M(A)_{\mathrm{tors}}}
$$

By evaluating $X^{N} Y^{N}$ to the cardinality of N for each torsion module N, we get the arithmetic Tutte polynomial. This polynomial proved to have several applications to toric arrangements,

Classical Tutte polynomial and arithmetic Tutte polynomial

When R is a field, $\operatorname{Pic}(R)$ is trivial and there is no torsion, thus $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $] \simeq \mathbb{Z}[X, Y]$.
Then by the substitution $X=x-1$ and $Y=y-1$ we can see that $\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)}$ is simply the classical Tutte polynomial, since $\operatorname{dim} \bar{M}(A)$ is the corank of A and $\operatorname{dim} M^{*}(E \backslash A)$ is its nullity.

When $R=\mathbb{Z}$, since there are nontrivial torsion modules, we get

$$
\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)_{\text {proj }}} Y^{M^{*}(E \backslash A)_{\mathrm{proj}}} X^{M(A)_{\mathrm{tors}}} Y^{M(A)_{\mathrm{tors}}}
$$

By evaluating $X^{N} Y^{N}$ to the cardinality of N for each torsion module N, we get the arithmetic Tutte polynomial. This polynomial proved to have several applications to toric arrangements, partition functions, Ehrhart polynomial of zonotopes, graphs, CW-complexes, ...

The Tutte quasi-polynomial

Another invariant that we can obtain from the Grothendieck-Tutte invariant \mathbf{T}_{M} in the case $R=\mathbb{Z}$ is the Tutte quasi-polynomial

$$
\mathbf{Q}_{M}(x, y)=\sum_{A \subseteq E} \frac{\left|M(A)_{\operatorname{tors}}\right|}{\left|q \cdot M(A)_{\mathrm{tors}}\right|}(x-1)^{\mathrm{rk}(E)-\mathrm{rk}(A)}(y-1)^{|A|-\mathrm{rk}(A)} .
$$

where $q=(x-1)(y-1)$.
This is a quasi-polynomial in q, interpolating between the classical and the arithmetic Tutte polynomials.
This polynomial was introduced in [Brändén- M.], and has application to generalized colorings and flows on graphs with labeled edges.

Notice that $\mathbf{Q}_{M}(x, y)$ is not an invariant of the arithmetic matroid, (as it depends on the groups $M(A)_{\text {tors }}$ and not just on their cardinalities), but it is an invariant of the matroid over \mathbb{Z}.

The Tutte quasi-polynomial

Another invariant that we can obtain from the Grothendieck-Tutte invariant \mathbf{T}_{M} in the case $R=\mathbb{Z}$ is the Tutte quasi-polynomial

$$
\mathbf{Q}_{M}(x, y)=\sum_{A \subseteq E} \frac{\left|M(A)_{\operatorname{tors}}\right|}{\left|q \cdot M(A)_{\mathrm{tors}}\right|}(x-1)^{\mathrm{rk}(E)-\mathrm{rk}(A)}(y-1)^{|A|-\mathrm{rk}(A)} .
$$

where $q=(x-1)(y-1)$.
This is a quasi-polynomial in q, interpolating between the classical and the arithmetic Tutte polynomials.

> This polynomial was introduced in [Brändén- M.], and has application to generalized colorings and flows on graphs with labeled edges.

> Notice that $Q_{M}(x, y)$ is not an invariant of the arithmetic matroid, (as it depends on the groups $M(A)_{\text {tors }}$ and not just on their cardinalities), but it is an invariant of the matroid over \mathbb{Z}.

The Tutte quasi-polynomial

Another invariant that we can obtain from the Grothendieck-Tutte invariant \mathbf{T}_{M} in the case $R=\mathbb{Z}$ is the Tutte quasi-polynomial

$$
\mathbf{Q}_{M}(x, y)=\sum_{A \subseteq E} \frac{\left|M(A)_{\operatorname{tors}}\right|}{\left|q \cdot M(A)_{\mathrm{tors}}\right|}(x-1)^{\mathrm{rk}(E)-\mathrm{rk}(A)}(y-1)^{|A|-\mathrm{rk}(A)} .
$$

where $q=(x-1)(y-1)$.
This is a quasi-polynomial in q, interpolating between the classical and the arithmetic Tutte polynomials.
This polynomial was introduced in [Brändén- M.], and has application to generalized colorings and flows on graphs with labeled edges.

The Tutte quasi-polynomial

Another invariant that we can obtain from the Grothendieck-Tutte invariant \mathbf{T}_{M} in the case $R=\mathbb{Z}$ is the Tutte quasi-polynomial

$$
\mathbf{Q}_{M}(x, y)=\sum_{A \subseteq E} \frac{\left|M(A)_{\operatorname{tors}}\right|}{\left|q \cdot M(A)_{\mathrm{tors}}\right|}(x-1)^{\mathrm{rk}(E)-\mathrm{rk}(A)}(y-1)^{|A|-\mathrm{rk}(A)} .
$$

where $q=(x-1)(y-1)$.
This is a quasi-polynomial in q, interpolating between the classical and the arithmetic Tutte polynomials.
This polynomial was introduced in [Brändén- M.], and has application to generalized colorings and flows on graphs with labeled edges.

Notice that $\mathbf{Q}_{M}(x, y)$ is not an invariant of the arithmetic matroid, (as it depends on the groups $M(A)_{\text {tors }}$ and not just on their cardinalities), but it is an invariant of the matroid over \mathbb{Z}.

Developments and applications

Future developments:

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide more cryptomorphic definitions;
- study Coxeter matroids over a valuation ring;

Possible applications:

- combinatorial topology: [Bajo-Burdick-Chmutov],
[Duval-Klivans-Martin],
- tropical geometry:
- intersection theory for arrangements of subtori, toric varieties,
- error-correcting codes over rings.

Developments and applications

Future developments:

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide more cryptomorphic definitions;
- study Coxeter matroids over a valuation ring;

Possible applications:

- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin],
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties,
- error-correcting codes over rings.

Developments and applications

Future developments:

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide more cryptomorphic definitions;
- study Coxeter matroids over a valuation ring;

```
Possible applications:
    - combinatorial topology: [Bajo-Burdick-Chmutov],
    [Duval-Klivans-Martin],
    - tropical geometry;
    - intersection theory for arrangements of subtori, toric varieties,
    - error-correcting codes over rings
```


Developments and applications

Future developments:

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide more cryptomorphic definitions;
- study Coxeter matroids over a valuation ring;

Possible applications:

- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], ...;
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties,
- error-correcting codes over rings.

Developments and applications

Future developments:

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide more cryptomorphic definitions;
- study Coxeter matroids over a valuation ring;

Possible applications:

- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], ...;
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties,
- error-correcting codes over rings.

Developments and applications

Future developments:

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide more cryptomorphic definitions;
- study Coxeter matroids over a valuation ring;

Possible applications:

- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], ...;
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties, ...;
- error-correcting codes over rings.

Developments and applications

Future developments:

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide more cryptomorphic definitions;
- study Coxeter matroids over a valuation ring;

Possible applications:

- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], ...;
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties, ...;
- error-correcting codes over rings.

Developments and applications

Future developments:

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide more cryptomorphic definitions;
- study Coxeter matroids over a valuation ring;

Possible applications:

- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], ...;
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties, ...;
- error-correcting codes over rings.

THANK YOU!

[^0]: Do they come from the corres

[^1]: - By replacing A_{n} by other root systems,
 can be defined!
 Do they come from the corresponding Grassmannians? 4 $\bar{\equiv}$ •

