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Matroids and their realizations

The notion of a matroid axiomatizes the relations of linear dependence of
a vector configuration (i.e. of a list of elements in a vector space).
If a matroid actually comes from such a list, one says that it is realizable.

Given a commutative ring R, we are going to introduce the notion of a
matroid over R, that axiomatizes “relations of dependence” of a list of
elements in an R-module.
We will say that a matroid over R is realizable if it actually comes from
such a list.

So the theory that we are going to introduce aims to generalize matroid
theory, in the same sense as commutative algebra generalizes linear
algebra.
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Example 1: R = Z

Let X be a list of vectors with integer coordinates.
As we have seen in Emanuele’s talk, the toric arrangement defined by X do
not depends only on the linear algebra of X , but also on its ”arithmetics”.
The same is true for other objects associated to X , such as the
Dahmen-Micchelli space DM(X ).

Then it is desirable to have a structure keeping track of the linear algebra
and of the arithmetics of X .
This is precisely what matroids over Z (and previously defined arithmetic
matroids) do.
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Example 2: R is a valuation ring

Let F be a field with valuation (for instance the p-adic numbers Qp,
or the Puiseux series {

∑∞
i=k ai t

i/n}).
Let X be an “integer vector configuration”, e.g. a list of elements of F d

with entries in R = OF . Then we may want to remember not only the
linear dependencies, but also the valuations involved.
That precisely is what matroids over a valuation ring R (or previously
defined valuated matroids) do.
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Classical matroids: definition and example

A structure that retains the linear algebraic information of a list of vector
already exists since the 30s: matroids [Whitney, Maclane].

It has many appearently unrelated definitions. (Rota: “cryptomorphism”.)

Definition

A matroid M on the finite ground set E assigns to each subset A ⊆ E
a rank rk(A) ∈ Z≥0, such that: [. . . ]

Main example: realizable matroids

Let v1, . . . , vn be vectors in a vector space V .

rk(A) := dim span{vi : i ∈ A}
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Classical matroids: definition and example

Definition

A matroid M on the finite ground set E assigns to each subset A ⊆ E
a rank rk(A) ∈ Z≥0, such that:

(0) rk(∅) = 0

(1) rk(A) ≤ rk(A ∪ {b}) ≤ rk(A) + 1 ∀A 63 b

(2) rk(A) + rk(A ∪ {b, c}) ≤ rk(A ∪ {b}) + rk(A ∪ {c}) ∀A 63 b, c
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Classical matroids: definition and example

Definition

A matroid M on the finite ground set E assigns to each subset A ⊆ E
a rank rk(A) ∈ Z≥0, such that:

(0) rk(∅) = 0

(1) rk(A) ≤ rk(A ∪ {b}) ≤ rk(A) + 1 ∀A 63 b

(2) rk(A) + rk(A ∪ {b, c}) ≤ rk(A ∪ {b}) + rk(A ∪ {c}) ∀A 63 b, c

Example

X = {(2, 0), (0, 3), (1,−1)} A ∅ 1 2 3 13 12 23 123
rk(A) 0 1 1 1 2 2 2 2
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Matroids over Z: an example

Let v1, . . . , vn be a configuration of vectors in an R-module N.
Already in the case R = Z we see that it is convenient to take a system of
axioms for the quotients N/〈vi |i ∈ A〉:

Realizable example

X = {(2, 0), (0, 3), (1,−1)}
A ∅ 1 2 12
M(A) Z2 Z⊕ Z/2 Z⊕ Z/3 Z/6

A 3 13 23 123
M(A) Z Z/2 Z/3 0

Luca Moci (Paris 7) Matroids over a ring 7 / 28



Matroids over Z: an example

Let v1, . . . , vn be a configuration of vectors in an R-module N.
Already in the case R = Z we see that it is convenient to take a system of
axioms for the quotients N/〈vi |i ∈ A〉:

Realizable example

X = {(2, 0), (0, 3), (1,−1)}
A ∅ 1 2 12
M(A) Z2 Z⊕ Z/2 Z⊕ Z/3 Z/6

A 3 13 23 123
M(A) Z Z/2 Z/3 0

Luca Moci (Paris 7) Matroids over a ring 7 / 28



Enriched variants of matroids

In general, as we have seen, one might want to capture more than just the
linear dependences of a list of vectors:

Arithmetic matroids come from configurations over Z, and remember
indices of sublattices. [D’Adderio-M.]

Valuated matroids come from configurations over a field with
valuation, and remember valuations. [Dress-Wenzel]

Matroids over rings encompass these constructions, by taking a new
approach: not a matroid decorated with extra data, but a theory with only
one simple, algebraic axiom.

Luca Moci (Paris 7) Matroids over a ring 8 / 28



Enriched variants of matroids

In general, as we have seen, one might want to capture more than just the
linear dependences of a list of vectors:

Arithmetic matroids come from configurations over Z, and remember
indices of sublattices. [D’Adderio-M.]

Valuated matroids come from configurations over a field with
valuation, and remember valuations. [Dress-Wenzel]

Matroids over rings encompass these constructions, by taking a new
approach: not a matroid decorated with extra data, but a theory with only
one simple, algebraic axiom.

Luca Moci (Paris 7) Matroids over a ring 8 / 28



Enriched variants of matroids

In general, as we have seen, one might want to capture more than just the
linear dependences of a list of vectors:

Arithmetic matroids come from configurations over Z, and remember
indices of sublattices. [D’Adderio-M.]

Valuated matroids come from configurations over a field with
valuation, and remember valuations. [Dress-Wenzel]

Matroids over rings encompass these constructions, by taking a new
approach: not a matroid decorated with extra data, but a theory with only
one simple, algebraic axiom.

Luca Moci (Paris 7) Matroids over a ring 8 / 28



Enriched variants of matroids

In general, as we have seen, one might want to capture more than just the
linear dependences of a list of vectors:

Arithmetic matroids come from configurations over Z, and remember
indices of sublattices. [D’Adderio-M.]

Valuated matroids come from configurations over a field with
valuation, and remember valuations. [Dress-Wenzel]

Matroids over rings encompass these constructions, by taking a new
approach: not a matroid decorated with extra data, but a theory with only
one simple, algebraic axiom.

Luca Moci (Paris 7) Matroids over a ring 8 / 28



Enriched variants of matroids

In general, as we have seen, one might want to capture more than just the
linear dependences of a list of vectors:

Arithmetic matroids come from configurations over Z, and remember
indices of sublattices. [D’Adderio-M.]

Valuated matroids come from configurations over a field with
valuation, and remember valuations. [Dress-Wenzel]

Matroids over rings encompass these constructions, by taking a new
approach: not a matroid decorated with extra data, but a theory with only
one simple, algebraic axiom.

Luca Moci (Paris 7) Matroids over a ring 8 / 28



Definition

Let R be a commutative ring and E be a finite set.
A matroid over R on the ground set E is a function M
assigning to each subset A ⊆ E a finitely-generated R-module M(A)
satisfying the following axiom:

for all A ⊆ E and b 6= c 6∈ A, there exists a pushout square
where all four morphisms are surjections with cyclic kernel:

M(A)

y
//

��

M(A ∪ {b})

��
M(A ∪ {c}) // M(A ∪ {b, c})

Polymatroids are defined similarly, by discarding the “cyclic kernel”
condition.
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Definition

Let R be a commutative ring and E be a finite set.
A matroid over R on the ground set E is a function M
assigning to each subset A ⊆ E a finitely-generated R-module M(A)
satisfying the following axiom:
for all A ⊆ E and b, c 6∈ A, there are elements

x = x(b, c), y = y(b, c) ∈ M(A)

such that there is a diagram

M(A)

y

/x //

/y
��

M(A ∪ {b})

/y
��

M(A ∪ {c})
/x
// M(A ∪ {b, c}).
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Realizability

Fundamental example: “vector configurations” in an R-module.
Given a f.g. R-module N and a list X = x1, . . . , xn of elements of N,
we have a matroid MX associating to A ⊆ X the quotient

MX (A) = N
/(∑

x∈A
Rx

)
.

For each xi ∈ X there is a quotient map

MX (A)
/xi−→ MX (A ∪ {xi})

and this system of maps obviously satisfies the axiom.
We say that a matroid M over R is realizable if it actually comes from
such a list.
Of course not all matroids over R are realizable!
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Classical matroids are matroids over fields

We can, and will, assume that the module M(E ) has no nontrivial
projective summands, since this makes many results simpler to state.

Proposition

Matroids over a field K are equivalent to matroids.

A f.g. K-module is determined by its dimension ∈ Z.

If v1, . . . , vn are vectors in Kr ,
the dimension of Kr/〈vi : i ∈ N〉 is r − rk(A), the corank of A.

Example

X = {(2, 0), (0, 3), (1,−1)} A ∅ 1 2 12 3 13 23 123
M(A) R2 R R R R 0 0 0

Note: The definition of matroids over K is blind to which field K is,
but for realizability the choice of K matters.
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Sum, deletion, contraction, duality

Let M and M ′ be matroids over R on E and E ′.
We define their direct sum M ⊕M ′ on E q E ′ by

(M ⊕M ′)(Aq A′) = M(A)⊕M ′(A′).

For i ∈ E , we define two matroids over R on the ground set E \ {i}:
the deletion of i in M, denoted M \ i , by

(M \ i)(A) = M(A)

and the contraction of i in M, denoted M \ i , by

(M/i)(A) = M(A ∪ {i}).

When R is a Dedekind domain, we can also define a dual matroid M∗

having the expected properties (omitted).

If M is realizable, M \ i and M/i can be realized in the usual way, while
M∗ can be realized by a generalization of Gale duality.
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and the contraction of i in M, denoted M \ i , by

(M/i)(A) = M(A ∪ {i}).

When R is a Dedekind domain, we can also define a dual matroid M∗

having the expected properties (omitted).

If M is realizable, M \ i and M/i can be realized in the usual way, while
M∗ can be realized by a generalization of Gale duality.
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Tensor product. Localizations and generic matroid

Let R → S be a map of rings. Then the tensor product —⊗R S is a
functor R-Mod→ S-Mod. If M is a matroid over R, then

(M ⊗R S)(A)
.

= M(A)⊗R S .

defines a matroid over S .
Two special cases will be fundamental for us:

1 For every prime ideal m of R, let Rm be the localization of R at m.
We call M ⊗R Rm the localization of M at m.

2 If R is a domain, let Frac(R) be the fraction field of R. Then we call
M ⊗R Frac(R) the generic matroid of M.

Notice that every matroid over Rm induces a matroid over the residue field
Rm/(m).

We can study the matroid M via all these “classical” matroids.
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Dedekind rings and DVR

From now on, we will always assume R to be a Dedekind domain
(i.e., an integral domain in which every nonzero proper ideal factors into a
product of prime ideals).
The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a
Dedekind domain that is not a field and has a unique maximal ideal m).
(Actually, the theory works in a more general framework:
R is a Prüfer domain, i.e. its localizations are valuation rings).

Any indecomposible f.g. module over a DVR R is isomorphic to either R
or R/mn for some integer n ≥ 1.
So a f.g. R-module are parametrized by “partitions” that may have some
infinitely long lines.
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Local theory: matroids over a DVR

We denote by ri the cardinality of the i-th row of such a “partition”,
and by si

.
=
∑

j≥i rj .
Let ri (Ab) be stenography for ri (M(A ∪ {b})) and so on.
Our first result is a combinatorial characterization of matroids over a DVR:

Theorem (Fink, M.)

M : 2E → {f. g. R-modules} is a matroid over R if and only if:

for every 1-element minor M(A)→ M(A ∪ {b}) the difference of the
two “partitions” is a (Pieri-like) stripe (i.e. ri (A) ≥ ri (Ab) ≥ ri+1(A));

for every 2-element minor, the miminum of the three quantities

si (Ab) + si+1(Ac), si (Ac) + si+1(Ab), si (Abc) + si+1(A)

is attained twice.
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Connections with tropical geometry

Furthermore, by looking at the 3-element minors of the matroid M,
we get that the minimum of

si (Ab) + si (Acd), si (Ac) + si (Abd), si (Ad) + si (Abc)

is attained twice.
These are tropicalizations of the Plücker relations for the Grassmanian!
Then we get:

Proposition (Fink, M.)

The vector
(
si (M(A)), |A| = k

)
defines a point on the Dressian∗ Dr(k , |E |)

In fact, we conjecture that in this way we get a point on the Dressian
analogue of the full flag variety∗. (∗ polyhedral fans parametrizing tropical
linear spaces, and full flags of t.l.s., respectively).
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Valuated matroids

A valuated matroid is defined as a matroid decorated with an integer
valued function V on the set of the bases B, satisfying a certain axiom
[Dress and Wenzel]. There is a bijection

{tropical linear spaces} ←→ {valuated matroids}

Then, as consequence of the Proposition above, we get:

Corollary (Fink, M.)

Let M be a matroid over a DVR (R,m).
Then the function V(A)

.
= dimR/mM(A) makes the generic matroid of M

into a valuated matroid.

Then a matroid over a DVR contains richer information than the valuated
matroid.
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Matroid polytope - work in progress!

We can also define an (unbounded) polytope in R|E |+2 as follows:

P(M)
.

= Conv
{(

eA, i , si (A)
)
,A ⊆ E , i ∈ N

}
+ R≥0(0, 1, 0)

It is easy to see that P(M) has indeed a finite number of vertices, and
that it is possible to recover P(M) from M. Furthermore:

Proposition (Fink, M.)

If we disregard the last coordinate, the direction of each edge of P(M) has
the shape ei − ej for some i , j .

This generalizes a known fact for classical matroids. Consequences:

by adding a few simple conditions, one gets a characterization of the
polytopes that are P(M) for some M, and hence a cryptomorphic
axiomatization for matroids over a valuation ring!
By replacing An by other root systems, Coxeter matroids over a
valuation rings can be defined!
Do they come from the corresponding Grassmannians?
Luca Moci (Paris 7) Matroids over a ring 19 / 28
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Modules over Dedekind domains

We can now pass to the global theory. Let R be a Dedekind domain.

In order to have a matroid over R, is it sufficient that every localization
Mm is a matroid over the DVR Rm?

NO! In general there is an extra ”global” condition.
This will be simple to state, once we will have recalled some facts.

Given an R-module N, let Ntors ⊆ N denote the submodule of its torsion
elements, and Nproj denote the projective module N/Ntors.
Then N ' Ntors ⊕ Nproj.
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Determinant of a module

The Picard group of R, Pic(R), is the set of the isomorphism classes of f.g.
projective modules of rank 1, with product induced by the tensor product.
If P is a projective module of rank n, then

∧n P is a f.g. projective module
of rank

(n
n

)
= 1. We call determinant, and denote by det(P), its class in

Pic(R).
The algebraic K -theory group K0(R) of f.g. R-modules is the abelian
group generated by iso classes [N] of f.g. R-modules, modulo the relations
[N] = [N ′] + [N ′′] for any exact sequence 0→ N ′ → N → N ′′ → 0.
Fact: there is an isomorphism of groups

Φ : K0(R) −→ Z⊕ Pic(R).

In fact, when P is a projective module, the map above is simply given by
Φ([P]) = (rk(P), det(P)).
Then for any f.g. R-module N we will still denote by rk(N) the first
summand of Φ([N]), and by det(N) the second summand of Φ([N]). The
former coincides with the rank of Nproj.
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former coincides with the rank of Nproj.
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Global theory: matroids over a Dedekind domain

By this det function we can characterize matroids over a Dedekind domain
R:

Theorem (Fink, M.)

M : 2E → {f. g. R-modules} is a matroid over R if and only if every
localization at a prime ideal m is a matroid over Rm,
and for every 1-element minor N → N ′ we have:

if rk(N)− rk(N ′) = 1 then det(N) = det(N ′),

if rk(N)− rk(N ′) = 0 then det(Nproj) = det(N ′proj).

In particular when Pic(R) = {0} there are no global conditions,
so that “being a matroid” can be checked prime by prime,
by the combinatorial/tropical condition stated before!
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Arithmetic matroids

If M is a matroid over Z, we define the two functions

cork(A) = rk(M(A)proj) and m(A)
.

= |M(A)tors|.

As a corollary of the previous theorem, we can prove that (E , cork,m) is
(essentially) an arithmetic matroid, i.e. that the function m satisfies the
axioms introduced by [D’Adderio-M].

Notice that matroids over Z and arithmetic matroids and are not truly
equivalent, since the information contained in the former is richer, since
there are many groups with the same cardinality.
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Definition of the Tutte-Grothendieck ring

Several invariants can be associated to a classical matroid; the universal
deletion-contraction invariant is the well-known Tutte polynomial.
We will now define and compute the universal deletion-contraction
invariant of matroids over any Dedekind domain R.

Essentially following Brylawski, define the Tutte-Grothendieck ring of
matroids over R, K (R-Mat), to be the abelian group generated by a
symbol TM for each matroid M over R, modulo the relations

TM = TM\a + TM/a

whenever a is not a loop nor coloop for the generic matroid.
The product is given by TM · TM′ = TM⊕M′
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Description of the Tutte-Grothendieck ring

Define Z[R-Mod] to be the ring of Z-linear combinations of symbols XN ,
one for each f.g. R-module N up to isomorphism,
and product XNXN′ = XN⊕N′ .

Theorem (Fink, M.)

The Tutte-Grothendieck ring K (R-Mat)
is the subring of Z[R-Mod]⊗ Z[R-Mod] generated by
XP and Y P as P ranges over rank 1 projective modules,
and XNY N as N ranges over torsion modules.
The class of M is

TM =
∑
A⊆E

XM(A)YM∗(E\A)
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Classical Tutte polynomial and arithmetic Tutte polynomial

When R is a field, Pic(R) is trivial and there is no torsion, thus
Z[R-Mod]⊗ Z[R-Mod] ' Z[X ,Y ].
Then by the substitution X = x − 1 and Y = y − 1 we can see that
TM =

∑
A⊆E XM(A)YM∗(E\A) is simply the classical Tutte polynomial,

since dimM(A) is the corank of A and dimM∗(E \ A) is its nullity.

When R = Z, since there are nontrivial torsion modules, we get

TM =
∑
A⊆E

XM(A)projYM∗(E\A)projXM(A)torsYM(A)tors .

By evaluating XNY N to the cardinality of N for each torsion module N,
we get the arithmetic Tutte polynomial. This polynomial proved to have
several applications to toric arrangements, partition functions, Ehrhart
polynomial of zonotopes, graphs, CW-complexes, . . .
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The Tutte quasi-polynomial

Another invariant that we can obtain from the Grothendieck-Tutte
invariant TM in the case R = Z is the Tutte quasi-polynomial

QM(x , y) =
∑
A⊆E

|M(A)tors|
|q ·M(A)tors|

(x − 1)rk(E)−rk(A)(y − 1)|A|−rk(A).

where q = (x − 1)(y − 1).
This is a quasi-polynomial in q, interpolating between the classical and the
arithmetic Tutte polynomials.
This polynomial was introduced in [Brändén- M.], and has application to
generalized colorings and flows on graphs with labeled edges.

Notice that QM(x , y) is not an invariant of the arithmetic matroid, (as it
depends on the groups M(A)tors and not just on their cardinalities), but it
is an invariant of the matroid over Z.
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generalized colorings and flows on graphs with labeled edges.

Notice that QM(x , y) is not an invariant of the arithmetic matroid, (as it
depends on the groups M(A)tors and not just on their cardinalities), but it
is an invariant of the matroid over Z.

Luca Moci (Paris 7) Matroids over a ring 27 / 28



Developments and applications

Future developments:

study other examples, such as R coordinate ring of an algebraic curve
(e.g. the affine line or an elliptic curve);

provide more cryptomorphic definitions;

study Coxeter matroids over a valuation ring;

Possible applications:

combinatorial topology: [Bajo-Burdick-Chmutov],
[Duval-Klivans-Martin], ...;

tropical geometry;

intersection theory for arrangements of subtori, toric varieties, . . . ;

error-correcting codes over rings.

THANK YOU!
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