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Abstract:

"The classical theory of cohomology of compact Lie groups,
started by Hopf and E. Cartan, was analized by Chevalley, Weil, H.
Cartan, Koszul through the study of invariants in the exterior
algebra of simple Lie algebras and the idea of transgression, the
entire structure as representation of this exterior algebra poses
several challenging problems and I will show some recent results in
this area" I will start from matrix theory
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the Cayley–Hamilton identity

A basic Theorem for matrices is the Cayley–Hamilton identity.
Take an n × n matrix X = (xi ,j), one starts from the characteristic
polynomial χX (t) : det(t1n − X ) and the CH theorem is
χX (X ) = 0. if X is a matrix of variables denote this by χn(X )

e.g . n = 2 χ2(X ) = X 2 − (x1,1 + x2,2)X + x1,1x2,2 − x1,2x2,1

= X 2 − tr(X )X + 1/2(tr(X )2 − tr(X 2))



Identities of matrices Amitsur–Levitzki Trace identities Simple Lie algebras

quasi–identities

The Cayley–Hamilton identity is a special kind of identity involving
matrix variables, in this case just one variable X and the entries xi ,j
of this matrix variable.
One gets from this, by substituting to X some expression in matrix
variables and entries variables, infinitely many identities.



Identities of matrices Amitsur–Levitzki Trace identities Simple Lie algebras

the polarized Cayley–Hamilton identity

e.g . n = 2 χ2(X + Y )− χ2(X )− χ2(Y ) = 0

= XY + YX − tr(X )Y − tr(Y )X + tr(X )tr(Y )− tr(XY ) =

XY+YX−(x1,1+x2,2)Y−(y1,1+y2,2)X+x1,1y2,2−x1,2y2,1+y1,1x2,2−y1,2x2,1



Identities of matrices Amitsur–Levitzki Trace identities Simple Lie algebras

Amitsur–Levitzki

In non–commutative algebra of particular importance are
polynomial identities which depend only upon the
non–commutative variables (and no entries). In particular recall the

Amitsur–Levitzki theorem

For any integer h one may define the standard polynomial

Sth(X1, . . . ,Xh) :=
∑
σ∈Sh

εσXσ(1) . . .Xσ(h)

it is a non commutative polynomial which for h = 2 gives the
commutative law.
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Amitsur–Levitzki

The theorem of Amitsur–Levitzki states that the standard
polynomial

St2n(X1, . . . ,X2n)

vanishes on the algebra of n× n matrices over a commutative ring,
we speak of the standard identity for matrices.

Why 2n?, how this 2 arises?, is a rather interesting fact.
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The identities of matrices

Denote by Mn(F ) the algebra of n × n matrices with entries in a
field F , I will assume F of characteristic 0

The study of the non commutative polynomials vanishing on
matrices is quite a difficult issue.
In between quasi–identities and polynomial identities there are
some quite remarkable type of formal identities, between
matrices and their traces.
These are called Trace identities of matrices and arise from
invariant theory.
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Trace identities of matrices

One should start from the algebra of polynomial maps

Mn(A) := {f : Mn(F )m → Mn(F )}

where A = S[(Mn(F )∗] = F [ξh
i ,j ], i , j = 1, . . . n, h = 1, . . . ,m is

the usual polynomial functions on the mn2 dimensional space
Mn(F )m of which the ξh

i ,j are coordinates.
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The identities of matrices

The linear group GL(n,F ) acts on maps by conjugation

(gf )(X1, . . . ,Xm) := gf (g−1X1g , . . . , g−1Xmg)g−1

so that an invariant map f : Mn(F )m → Mn(F ) is an equivariant
polynomial map that is

f (gX1g−1, . . . ,Xmg−1)g−1 = gf (X1, . . . ,Xm)g−1

in particular we have the coordinate maps

Xi : (X1, . . . ,Xm) 7→ Xi
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The identities of matrices

Inside the matrix algebra Mn(F [ξh
i ,j ]) there are three remarkable

algebras.
The algebra of quasi polynomial maps generated by the
coordinates Xi and by the polynomials in the coordinates
F [ξh

i ,j ].
The algebra of equivariant maps Mn(F [ξh

i ,j ])
GL(n,F ).

The algebra of generic matrices generated by the coordinates
Xi .

Encoding quasi, trace and polynomial identities of matrices.
The center of the first is F [ξh

i ,j ], of the second F [ξh
i ,j ]

GL(n,F ) and
the third has a rather mysterious center the central polynomials.
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The algebra of equivariant maps

The algebra of equivariant maps f : Mn(F )m → Mn(F ) is a
remarkable non–commutative algebra (for m > 1) which in a way
is the basis of invariant theory for matrices.
Let us denote it by

Rn,m = (S[(Mn(F )∗)m]⊗Mn(F ))GL(n,F ).

As in classical invariant theory we have a first and a second
fundamental theorem (FFT and SFT).
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The algebra of equivariant maps

For m = 1 the ring of invariants is generated by the coefficients of
the characteristic polynomial of X .
Rn,1 is generated over the invariants by X which satisfies the
Cayley–Hamilton identity.
In particular Rn,1 is a free module, with basis X i , i = 0, . . . , n − 1
over the invariants, a polynomial ring in n variables.
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The identities of matrices

In general

FFT
Rn,m is generated by the variables Xi and the traces
tr(Xi1Xi2 . . .Xik ) of the monomials in the Xi .

SFT
The relations between the variables Xi and the traces
tr(Xi1Xi2 . . .Xik ) of the monomials in the Xi are all consequences
of the Cayley–Hamilton identity.

e.g . n = 2 X 2 − tr(X )X + 1/2(tr(X )2 − tr(X 2))
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Representations

For m > 1 the algebra Rn,m of equivariant maps does not admit an
explicit description, except for n = 1, 2.

About a year ago I looked at the question of Brešar and Špenko,
is it also true that quasi–identities are all consequences of
Cayley–Hamilton?
The answer is NO but not easy,
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quasi identities and CH

We have a multiplication map

0→ K → F [ξh
i ,j ]⊗F [ξh

i,j ]
GL(n,F ) Rn,m → Mn(F [ξh

i ,j ])

The kernel K measures the quasi identities not consequence of CH.
The fact that this may be non zero is difficult, for this we needed
to look at a related algebra:

what is the structure of the algebra (under exterior mutiplication)
of antisymmetric equivariant functions from matrices to matrices?
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Representations

This is just the invariant algebra

[
∧

Mn(F )∗ ⊗Mn(F )]GL(n,F )

under conjugation action.
As a set antisymmetric equivariant functions from matrices to
matrices belong to the algebra
Rn,n2 = (S[(Mn(F )∗)n2 ]⊗Mn(F ))GL(n,F ) so are describable by the
FFT, but!

exterior multiplication is a different structure!
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What is exterior multiplication?

of two alternating maps f (v1, . . . , vh), g(v1, . . . , vk) from any
vector space V to any algebra L is

(f ∧ g)((v1, . . . , vh+k)

:=
1

h!k!

∑
σ∈Sh+k

εσf (vσ(1), . . . , vσ(h))g(vσ(h+1), . . . , vσ(h+k))

the product is in L (not necessarily associative) the algebra of
alternating maps then is ∧

V ∗ ⊗ L.

with the tensor product algebra structure.
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The structure of [∧Mn(F )∗ ⊗Mn(F )]GL(n,F )

Since F ⊂ Mn(F ) as scalar matrices, this (associative) algebra
contains the algebra of invariants, [

∧
Mn(F )∗]GL(n,F ).

This has been long studied since it describes cohomology, it is then
classical that [

∧
Mn(F )∗]GL(n,F ) is a Hopf algebra and by Hopf

theorem an exterior algebra in its primitive generators:

tr(St2k+1(X1, . . . ,X2k+1)), k = 0, . . . , n − 1.
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The structure of [∧Mn(F )∗ ⊗Mn(F )]GL(n,F )

The algebra [
∧
Mn(F )]GL(n,F ) also contains

all the standard polynomials

Stk(X1, . . . ,Xk) =
∑
σ∈Sk

εσXσ(1) . . .Xσ(k)
which are clearly equivariant multilinear and antisymmetric
functions from k–tuples of matrices to matrices.
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The structure of [∧Mn(F )∗ ⊗Mn(F )]GL(n,F )

In particular it contains X = St1(X1), the identity map!

As matrix, with entries in the exterior algebra
∧
Mn(F )∗, the map

X is the
generic matrix with entries xi ,j , i.e. n2 Grassmann variables!.
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Exterior multiplication

One easily sees, be the definition of exterior multiplication, that

Stk(X1, . . . ,Xk) = X k

By invariant theory it follows that
[
∧
Mn(F )∗ ⊗Mn(F )]GL(n,F ) is generated by X and by the elements

tr(X 2i+1) which are just the primitive generators of cohomology.
In fact it is Z/(2) graded commutative!

Exercise: Compare it with [S[Mn(F )∗]⊗Mn(F )]GL(n,F )
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Theorem
The algebra [

∧
Mn(F )∗ ⊗Mn(F )]GL(n,F ) is generated by X

and the elements tr(X 2i−1), i = 1, . . . , n.
All these elements anti commute.
[
∧
Mn(F )⊗Mn(F )]GL(n,F ) is a free module with basis

X i , i = 0, . . . , 2n − 1 over the Grassman algebra in the
elements tr(X 2i−1), i = 1, . . . , n − 1 and
we have the two defining identities

X 2n = 0, tr(X 2n−1) = −
n−1∑
i=1

X 2i ∧ tr(X 2(n−i)−1) + nX 2n−1 .
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How do you prove this theorem?

You have to know a priori that

dim[
∧

Mn(F )⊗Mn(F )]GL(n,F ) = n2n

this can be proved in several different ways.
The relation X 2n = 0 is Amitsur–Levitzki.
Finally you deduce
tr(X 2n−1) = −

∑n−1
i=1 X 2i ∧ tr(X 2(n−i)−1) + nX 2n−1 from the

Cayley–Hamilton identity.
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Proof of Amitsur–Levitzki

We have seen that this Theorem is X 2n = 0, with X the matrix in
Grassmann variables.
Now X 2 is an n × n matrix with entries in the even Grassmann
algebra, a commutative algebra.
So X 2n = (X 2)n = 0 follows immediately from the fact that

tr(X 2)i = tr(X 2i ) = tr(St2i (X1, . . . ,X2i )) = 0, ∀i

a statement easy to verify by symmetry.
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Other examples

Salvatore Dolce has studied many variations of this case where,
using classical invariant theory, one takes symmetric or skew
symmetric matrices for orthogonal or symplectic groups.
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Simple Lie algebras

The trace zero matrices are a simple Lie algebra, in fact the
simplest class and then it was natural to ask if the previous
theorem has a counterpart for simple Lie algebras or for other
representations.

This is related to cohomology of groups.



Identities of matrices Amitsur–Levitzki Trace identities Simple Lie algebras

Cohomology of compact Lie groups

Due to the work of Hopf, one knows that the cohomology of a
group is a special Hopf algebra, that is an exterior algebra in
certain odd generators, called primitive of degrees 2mi + 1 where
the numbers mi are the exponents of the group.
The theory can be quickly reduced to the case of simple groups.
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Transgression

If G is a simple compact Lie group one considers the complexified
Lie algebra g of G and obtains that

H∗(G) =
∧

(g∗)G

The algebra of Invariant forms, is an exterior algebra

∧
(g∗)G =

∧
[P1, . . . ,Pr ]

where the Pi are the primitive generators of the Hopf algebra and r
is the rank of G .
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How to compute the Pi?

Example
For SU(n,C) the complexified Lie algebra is the Lie algebra of
n × n matrices with trace 0.

Pi = tr(St2i+1(X1, . . . ,X2i+1)), i = 1, . . . , n − 1

Stk(X1, . . . ,Xk) =
∑
σ∈Sk

εσXσ(1) . . .Xσ(k), ∀k

Similar formulas involving standard polynomials hold for symplectic
and odd orthogonal groups, for even orthogonal groups there is an
extra generator, related to the Pfaffian.
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Lie algebras

We perform the same construction when g is a simple Lie algebra
Define A as the space of multilinear alternating functions from
g to g∗ which are g-equivariant.

A :=
(∧

g∗ ⊗ g∗
)g

= hom(
∧

g, g∗)g = hom(g,
∧

g∗)g. (1)

By the work of Kostant, it is known that dim(A) = 2r r .
The Poincaré polynomial GM(q) describing the dimension of
A in each degree is given by a formula conjectured by Joseph
and proved by Bazlov (mi the exponents):

GM(q) = (1 + q−1)
r−1∏
i=1

(1 + q2mi+1)
r∑

i=1
q2mi . (2)
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Lie algebras

The dimension formulas of Kostant and Bazlov suggested to
extend the theory of alternating maps, from matrices to all simple
Lie algebras (although in the general case we loose the associative
structure).
The space A := (

∧
g∗ ⊗ g∗)G is still a module over the invariant

algebra (
∧
g∗)G =

∧
(P1, . . . ,Pr ) cohomology of g, we have

Theorem

There exist elements fi , ui ∈ (
∧
g∗ ⊗ g∗)G = A of degrees

2mi , 2mi − 1 so that A is a free module, with basis the elements
fi , ui , i = 1, . . . , r , over the exterior algebra

∧
(P1, . . . ,Pr−1).
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Lie algebras

The proof of this Theorem requires the formalism of transgression
and the theory of Koszul differential, the elements fi , ui are
constructed this way.
Then we need a non degeneracy property of the scalar product of
the differentials of the invariants of the symmetric algebra. This
property appears also in a work of Givental, Slodowy on
deformations of surface singularities (the swallowtails of Arnhold).
We complete the Theorem with explicit formula of the
multiplication for the missing generator Pr .
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IN GENERAL

Constructing the primitive generators
The construction of the elements Pi and even the
computation of their degrees has been a challenging project.
For classical groups we have computations by Richard Brauer,
for exceptional groups one has to understand first a simpler
problem, the study of invariants of the symmetric algebra
S[g∗] that is the algebra of invariant polynomials on g.
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Cartan subalgebras and Weyl groups

The root system is the set of eigenvalues Φ of a maximal
subalgebra of semisimple commuting elements, a Cartan or toral
subalgebra h.
The Weyl group W acts on h as reflection group.
A great amount of structure theory for simple Lie algebras is
extracted from h, Φ, W .
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Symmetric algebra

Invariants
When we study the invariants of S[g∗] the main result is
Chevalley’s restriction theorem

Theorem
Under restriction to a Cartan’s subalgebra the invariants S[g∗]G are
isomorphic to the invariants S[h∗]W under the Weyl group of the
reflection representation on the root system.
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exponents of exceptional groups

By Chevalley
the invariants of a reflection representation form a polynomial
ring in r generators,
r is the rank, the degrees of the generators are mi + 1 where
the numbers mi , are the exponents
The exponents can be computed directly from the root system
or from the Coxeter element in the Weyl group.
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The exponents (and Coxeter number)

Type Exponents h

E6 1, 4, 5, 7, 8, 11 12

E7 1, 5, 7, 9, 11, 13, 17 18

E8 1, 7, 11, 13, 17, 19, 23, 29 30

F4 1, 5, 7 ,11 12

G2 1, 5 6

Table 1: exponents for the exceptional types.
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IN GENERAL

The Pi are constructed in three steps
Step 1 The dual of the Lie multiplication gives a map

g∗ →
2∧
g∗

this map extends to a homomorphism

s : S[g∗]→
even∧

g∗
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Transgression
Step 2 there is another map T called transgression from the
symmetric algebra of g∗ to the exterior algebra of g∗ defined by

T (f ) = m(s ⊗ 1)(df )

df is the usual differential.

df ∈ S[g∗]⊗ g∗, s ⊗ 1(df ) ∈
∧

[g∗]⊗ g∗
m multiplication−→

∧
[g∗]
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Transgression
Step 3 the generators Pi are obtained by transgression from
generators of invariants of the symmetric algebra of g∗
thus a generator f ∈ S[g∗]G of degree e + 1 where e is an
exponent gives rise by transgression to a primitive generator
T (f ) ∈

∧
[g∗]G of degree 2e + 1

Example
The generator tr(St2i+1(X1, . . . ,X2i+1)) is the transgression of
tr(X i+1).
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The elements fi , ui

we have for the generators ai of S[g∗]G the formulas

Pi = T (ai ), fi = (s ⊗ 1)dai , ui = (T ⊗ 1)dai .

So the main theorem is that (
∧
g∗ ⊗ g∗)G is a free module, with

basis the elements fi , ui , i = 1, . . . , r , over the exterior algebra∧
(P1, . . . ,Pr−1). There is an explicit formula for the action of Pr .

In principle this should be a first step in representation theory of
the exterior algebra.
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Representations

The full representation
It is then interesting to study both the symmetric S[g∗] and the
exterior algebra

∧
[g∗] as representations of the adjoint group.

For the symmetric algebra there is a nice theorem of Kostant
which exhibits

S[g∗] = S[g∗]G ⊗ H

where H are harmonic polynomials isomorphic to the coordinate
ring of the nilpotent cone.
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In particular when we study the isotypic component of some
irreducible representation N we have to analyze

(S[g∗]⊗ N∗)G = S[g∗]G ⊗ (H ⊗ N∗)G

We see that
Theorem
Each (S[g∗]⊗ N∗)G is a a free module over the invariants S[g∗]G .

This Theorem is called separation of variables.
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Representations

In particular
it follows that (S[g∗]⊗ g∗)G is a free rank r module over the ring
of invariants S[g∗]G .

For the exterior algebra we have a more elusive picture, there is no
separation of variables and different isotypic components behave in
different ways. Nevertheless Kostant proved a

Clifford algebra
separation of variables for the Clifford algebra of g with the Killing
form which as representation is the same as the exterior algebra.

But this gives us no information on the graded structure.
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Representations

The Theorem I explained

Theorem
There exist elements fi , ui ∈ (

∧
g∗ ⊗ g∗)G of degrees 2mi , 2mi − 1

so that (
∧
g∗ ⊗ g∗)G is a free module, with basis the elements

fi , ui , i = 1, . . . , r , over the exterior algebra
∧

(P1, . . . ,Pr−1).

gives a precise description of the isotypic component of type g in∧
g.

For the other isotypic components at the moment we have no nice
description as module over the invariants.



Identities of matrices Amitsur–Levitzki Trace identities Simple Lie algebras

Reference

1. arXiv:1212.4597 Quasi-identities on matrices and the
Cayley-Hamilton polynomial Matej Brešar, Claudio Procesi, Špela
Špenko
2. arXiv:1311.4338
The adjoint representation inside the exterior algebra of a simple
Lie algebra
Corrado De Concini, Paolo Papi, Claudio Procesi
3. arXiv:1404.4222
On special covariants in the exterior algebra of a simple Lie algebra
Corrado De Concini, Pierluigi Möseneder Frajria, Paolo Papi,
Claudio Procesi
4. arXiv:1404.2855
Invariant theory of symplectic and orthogonal groups
Salvatore Dolce



Identities of matrices Amitsur–Levitzki Trace identities Simple Lie algebras

THE END



Identities of matrices Amitsur–Levitzki Trace identities Simple Lie algebras

THE END



Identities of matrices Amitsur–Levitzki Trace identities Simple Lie algebras

THE END



Identities of matrices Amitsur–Levitzki Trace identities Simple Lie algebras

THE END



Identities of matrices Amitsur–Levitzki Trace identities Simple Lie algebras

THE END



Identities of matrices Amitsur–Levitzki Trace identities Simple Lie algebras

THE END



Identities of matrices Amitsur–Levitzki Trace identities Simple Lie algebras

THE END



Identities of matrices Amitsur–Levitzki Trace identities Simple Lie algebras

THE END



Identities of matrices Amitsur–Levitzki Trace identities Simple Lie algebras

THE END



Identities of matrices Amitsur–Levitzki Trace identities Simple Lie algebras

THE END


	Identities of matrices
	Amitsur–Levitzki 
	Trace identities
	Simple Lie algebras

