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Objective

Characterization of toric arrangements via matroid theory
(cf. relationship between oriented matroids and pseudosphere arrangement).

Or: "What is a toric pseudoarrangement?"

Toric Arrangements

Let X = S1 or C∗, so T = Xd is either the compact or complex torus. A toric arrange-
ment is a finite collection A of toric hyperplanes in the torus. A toric hyperplane is given
as a level set of character.
A character of T is a map χ : (C∗)d→ C∗ given by

x 7→ χ(x) = xa1
1 ... x

ad
d with aχ = (a1, ..., ad) ∈ Zd.

A toric arrangement can be regarded as the set A = {(χi, bi)}i ⊂ Zd×X, each pair (χi, bi)
defining a toric hyperplane Ki = {x ∈ T | χi(x) = bi}. Its complement is denoted by

M(A) = (C∗)d − ∪A.

The arrangement A is called complexified if bi ∈ S1 for all i = 1 . . . n. We will suppose
from now that A is complexified.

Motivation and Background

A complexified toric arrangement gives a polytopal decomposition of the compact torus
(S1)d into faces. We denote the face category of A by F (A). Notice that the combinatorial
data of F (A) determines the homotopy type of M(A) (see [1]).

−→

The lift of a toric arrangement through the universal cover Cd→ (C∗)d resp. Rd→ (S1)d
is a periodic hyperplane arrangement BA.

−→

Furthermore, the character lattice Λ ' Zd acts on the face poset F (BA) of the affine
arrangement BA (see [1]), s.t. regarded as categories we obtain the relation

F (A) = F (BA)/Λ. (1)

Oriented Matroids

For inspiration we look at central hyperplane arrangements in Rd, which correspond to
arrangements of (d− 2)-subspheres on Sd−1. Each face of the decomposition of the sphere
can be characterized by a tuple which denotes the position corresponding to each hyperplane
(equipped with an orientation). Abstractly this can be given as follows.
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Let E be finite, L ⊆ {+,−, 0}E is a set of covectors of an oriented matroid if
(L0) 0 ∈ L,
(L1)X ∈ L implies −X ∈ L,
(L2)X, Y ∈ L implies X ◦ Y ∈ L,
(L3) if X, Y ∈ L and e ∈ S(X, Y ) then there exists a Z ∈ L such that Ze = 0 and

Zf = (X◦Y )f = (Y ◦X)f for all f /∈ S(X, Y ).

Composition: (X◦Y )e =
{
Xe, if Xe 6= 0,
Ye, otherwise.

Separation set: S(X, Y )={e ∈ E :Xe=−Ye 6= 0}.

Topological Representation Theorem (Lawrence ’78, see e.g. [2]).
Oriented matroids correspond bijectively to the cell decompositions obtained by arrange-
ments of pseudospheres (centrally symmetric codimension 1 subspheres with "good" inter-
section properties, for the formal definition see [2]).

Approach

• Abstract characterization of the intersection poset and the face poset of non-central
arrangements.

• Toric version via an abstractly characterized action of the integer lattice (e.g., as (1)).
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(Sanity check: The finite case should correspond to an affine oriented matroid, i.e., a
pseudoarrangement restricted to a halfsphere.)

Semimatroids and Geometric Semilattices

Semimatroids are a generalization of matroids which aims at describing non-central ar-
rangements as well. We extend the definition from Ardila [3] to an infinite ground set.
A semimatroid is given by
• a (possibly infinite) set S,
• a m-dim. simpl. complex C on S (the "central sets"),
• a rank function r on C.

A geometric semilattice (see [4]) is a ranked meet semilattice L satisfying:
(G3)Every interval is isomorphic to the poset of flats of a matroid.
(G4) Let A be an independent set of atoms and x ∈ L with r(x) < r(∨A), then there

exists an a ∈ A such that a � x and x ∨ a ∈ L.

Theorem. (R. ’14) A poset is an (infinite) geometric semilattice if and only if it is
isomorphic to the poset of flats of an (infinite) semimatroid.

Oriented Semimatroids

Let E be an arbitrary set, F ⊆ {+,−, 0}E is the set of covectors of an oriented
semimatroid if

(F1)X, Y ∈ F implies X◦Y ∈ F ,
(F2) if X, Y ∈ F and e ∈ S(X, Y ) then there exists a Z ∈ F such that Ze = 0 and

Zf = (X◦Y )f = (Y ◦X)f for all f /∈ S(X, Y ),
(F3)S(X, Y ) is finite for all X, Y ∈ F ,
(F4) all zero sets X0 are finite and bounded by m ∈ N,
(F5) the deletion F\X = {Y |X0 : Y ∈ F} is an oriented matroid for all X ∈ F ,
(F6) if A ⊆ E and X ∈ {V ∈ F|A ⊆ V 0,@ W ∈ F : A ⊆ W 0 ( V 0} then holds

for all Y ∈ F with rk(F\X) > rk(F\Y ) that there exist an a ∈ A− Y 0 and a
Z ∈ F such that a ∪ Y 0 ⊆ Z0.

Proposition. (R. ’14) The collection of zero sets of F
forms a geometric semilattice. Hence, F determines an
underlying semimatroid.
Conjecture. The order complex of the poset of covectors
of an oriented semimatroid is homeomorphic to RrkF .

Observation. An finite oriented semimatroid is more
general as an affine oriented matroid (as the figure shows).
We need an additional restriction.

+++
++-

+-+

-++

+0+

0++

++0

Application. Understanding which affine topological arrangements correspond to
oriented matroids (Open problem, see e.g. Forge and Zaslavsky [5]).
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