Phased matroids

 $\mathcal{R}_{\mathbb{C}}(M)$

Let $E = \{1, ..., m\}$ be a finite ground set. A nonzero alternating function $\varphi: E^d \longrightarrow S^1 \cup \{0\}$ is called a rank d phirotope [AD12] if

$$0 \in \operatorname{pconv}\left(\left\{(-1)^k \varphi(x_1, x_2, \dots, \hat{x}_k, \dots, x_{d+1})\varphi(x_k, y_1, \dots, y_{d-1})\right\}\right)$$

for any two subsets $\{x_1, \ldots, x_{d+1}\}$ and $\{y_1, \ldots, y_{d-1}\}$ of E. Two phirotopes φ_1, φ_2 are called *equivalent* if $\varphi_1 = \alpha \varphi_2$ for some $\alpha \in S^1$.

A phased matroid is defined in [AD12] to be a pair $(E, \overline{\varphi})$, where $\overline{\varphi}$ is an equivalence class of phirotopes. The support of any representative φ of $\overline{\varphi}$ is the set of bases of a matroid M which is called the *underlying* matroid of $(E, \overline{\varphi})$.

Two phased matroids $(E, \overline{\varphi_1}), (E, \overline{\varphi_2})$ with same underlying matroid M are in the same *phasing class* if there exist $\alpha, \eta(1), \ldots, \eta(m) \in S^1$ such that

$$\varphi_1(z_1,\ldots,z_d) = \alpha \left(\prod_{j=1}^d \eta(z_j)\right) \varphi_2(z_1,\ldots,z_d).$$

Definition. $\mathcal{R}_{\mathbb{C}}(M)$ is the set of phasing classes of phased matroids with underlying matroid M.

Problem 1. Characterize the set $\mathcal{R}_{\mathbb{C}}(M)$ of phasing classes of phased matroids with underlying matroid M, as a phased counterpart to the results of [GRS95].

Review of basic definitions

The phase ph(x) of $x \in \mathbb{C}$ is defined to be 0 if x = 0 and $\frac{x}{|x|}$ otherwise.

Let $E = \{1, \ldots, m\}$. For $v \in \mathbb{C}^E$, ph(v) is defined componentwise. A phased vector is any $X \in (S^1 \cup \{0\})^E$.

Let X be a phased vector. The *support* of X is the set

$$supp(X) = \{ e \in E \mid X(e) \neq 0 \}.$$

Let $S \subseteq (S^1 \cup \{0\})$ be a finite set. The *phase convex hull* pconv(S) is the set of all phases of (real) strictly positive linear combinations of S. We set $pconv(\emptyset) = \{0\}.$

Two phased vectors X and Y are *orthogonal* if

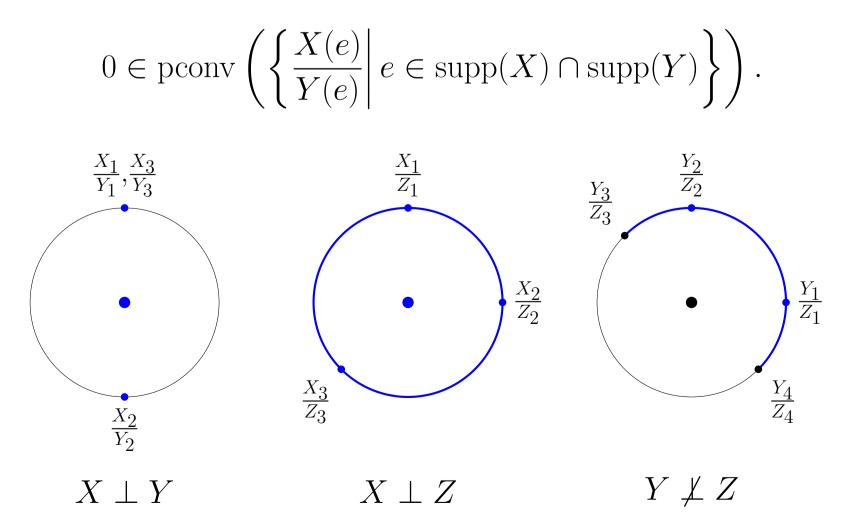


Figure 1: the orthogonality relations between the phased vectors $X = (i, 1, -1, 0), Y = (1, i, i, 1) \text{ and } Z = (1, 1, e^{-i\pi/4}, e^{i\pi/4}).$ The phase convex hulls are coloured in blue.

Phasing Classes of Matroids

Elia Saini (Fribourg)

 $\mathcal{P}_{\mathbb{C}}(M)$

Projective phasings

Extending and generalizing a construction of [GRS95] in the oriented case, we define a *projective phasing* $\mathbb{P}_{\mathbb{C}}$ of a matroid M with set of circuits \mathfrak{C} , set of cocircuits \mathfrak{C}^* and finite ground set E to be a function

$$\mathbb{P}_{\mathbb{C}}:\left\{(C,D,x,y)\in\mathfrak{C}\times\mathfrak{C}^*\times E\times E \mid \begin{array}{c} C\cap D\neq\emptyset\\ x,y\in C\cap D\end{array}\right\}\longrightarrow S^1$$

whose values, denoted by $\begin{pmatrix} C & D \\ x & y \end{pmatrix}$, satisfy conditions

$$\begin{pmatrix} C & D \\ x & x \end{pmatrix} = 1,$$

$$\begin{pmatrix} C & D \\ x & y \end{pmatrix} \begin{pmatrix} C & D \\ y & z \end{pmatrix} \begin{pmatrix} C & D \\ z & x \end{pmatrix} = 1,$$

$$\begin{pmatrix} C_1 & D_1 \\ x & y \end{pmatrix} \begin{pmatrix} C_2 & D_2 \\ x & y \end{pmatrix} = \begin{pmatrix} C_1 & D_2 \\ x & y \end{pmatrix} \begin{pmatrix} C_2 & D_1 \\ x & y \end{pmatrix},$$

$$\forall y \in C \cap D, \quad 0 \in \operatorname{pconv}\left(\left\{ \begin{pmatrix} C & D \\ x & y \end{pmatrix} \middle| x \in C \cap D \right\} \right)$$

Definition. $\mathcal{P}_{\mathbb{C}}(M)$ is the set of projective phasings of M.

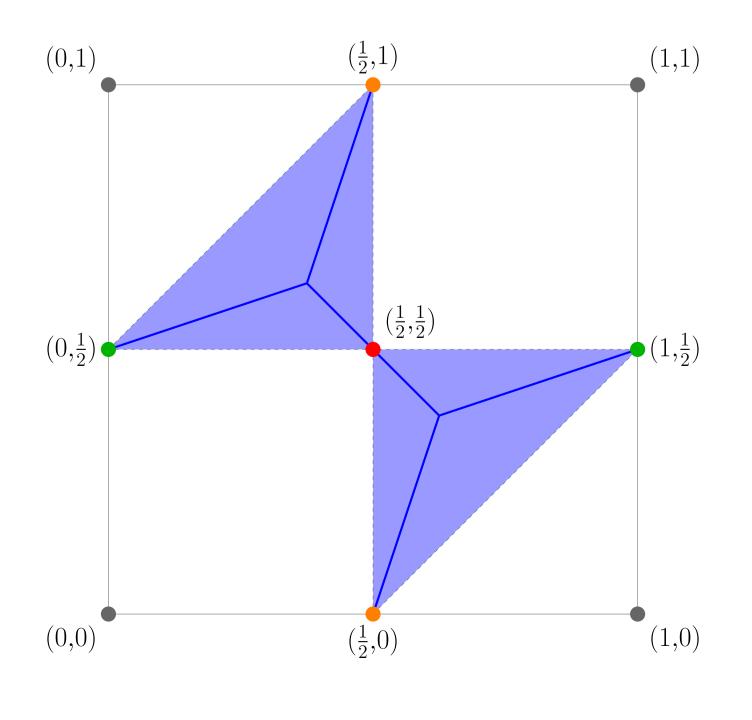
Main result

Let M be a matroid without minors of Fano or dual-Fano type. There exist one-to-one correspondences

$$\mathcal{R}_{\mathbb{C}}(M) \longleftrightarrow \mathcal{P}_{\mathbb{C}}(M) \longleftrightarrow \mathcal{H}_{\mathbb{C}}(M)$$

Example:
$$U_2(4)$$

We denote by $U_2(4)$ the uniform rank 2 matroid with 4 elements. The set $\mathcal{R}_{\mathbb{C}}(U_2(4))$ is in bijection with the topological subspace of the torus given by $\{(f,g) \in S^1 \times S^1 \mid 0 \in pconv\{1,f,g\}\}$, which corresponds to the two coloured (i.e., not gray) part in the picture. Topologically, this space is homotopy equivalent to a wedge of two circles.



and

Theorem. Let M be a matroid without minors of Fano or dual-Fano type and let A be the matrix associated to the lift of the system of "green equations" (box on the right hand side).

If b_M denotes the rank of the free part of $\mathbb{T}_M^{(0)}$, then

The same result holds with a reduced matrix B. This, together with [Wen89], allows us a computationally tractable solution to Problem 2 for matroids with up to 7 elements. The following are some samples.

Tutte groups

 $\mathcal{H}_{\mathbb{C}}(M)$

The extended Tutte group $\mathbb{T}^{\mathfrak{C}}_{M}$ of a matroid M is defined in [DW89] to be the finitely generated abelian group with formal generators ϵ and a symbol C(x) for every $C \in \mathfrak{C}$ and all $x \in C$. The relations are $\epsilon^2 = 1$

 $\frac{C_1(x_2)C_2(x_3)C_3(x_1)}{C_1(x_3)C_2(x_1)C_3(x_2)} = \epsilon$ for $C_i \in \mathfrak{C}$, $L = C_1 \cup C_2 \cup C_3 = C_i \cup C_j$ $(i \neq j), x_i \in L \setminus C_i$ and $|L| = \operatorname{rk}(L) + 2.$

The *inner Tutte group* $\mathbb{T}_M^{(0)}$ of M is the subgroup of $\mathbb{T}_M^{\mathfrak{C}}$ generated by ϵ and all products of the form

$$\frac{C_1(x)C_2(y)}{C_1(y)C_2(x)}$$

for circuits C_1, C_2 with $x, y \in C_1 \cap C_2$ and $|C_1 \cup C_2| = rk(C_1 \cup C_2) + 2$.

Dress and Wenzel [DW89] computed the groups $\mathbb{T}_M^{(0)}$ for M uniform.

Problem 2. Compute the group $\mathbb{T}_M^{(0)}$ for *M* non uniform.

Definition. $\mathcal{H}_{\mathbb{C}}(M)$ is the set of homomorphisms $\Phi : \mathbb{T}_{M}^{(0)} \longrightarrow S^{1}$ which satisfy $\epsilon \mapsto -1$ and

 $0 \in \operatorname{pconv}\left(\left\{1, -\Phi\left(\frac{C_1(x_3)C_2(x_4)}{C_1(x_4)C_2(x_3)}\right), -\Phi\left(\frac{C_4(x_3)C_2(x_1)}{C_4(x_1)C_2(x_3)}\right)\right\}\right)$

where L and all C_i , x_i are as above with C_i pairwise distinct circuits.

 $(M) \longleftrightarrow \mathcal{G}_{\mathbb{C}}(M)$

Application

 $b_M = \dim \ker(A).$

Matroid	Inner Tutte Group
F_7^-	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$
O7	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}^2$
P6	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}^9$
P7	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}^2$
Q6	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}^5$
R6	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}^4$

Generalized cross-ratios

The *generalized cross-ratios* of M are the values

defined for $C_1, C_2, C_3, C_4 \in \mathfrak{C}$ with $\dim(C_1 \cup C_2 \cup C_3 \cup C_4) = 1$ and $\{C_1, C_2\} \cap \{C_3, C_4\} = \emptyset$, ranging in S^1 , satisfying

• $0 \in \operatorname{pconv}(\{1, -\psi(C_1C_2|C_3C_4), -\psi(C_1C_3|C_4C_2)\})$

for pairwise distinct circuits, $\dim(C_1 \cup C_2 \cup C_3 \cup C_4) = 1$

and conditions:

References

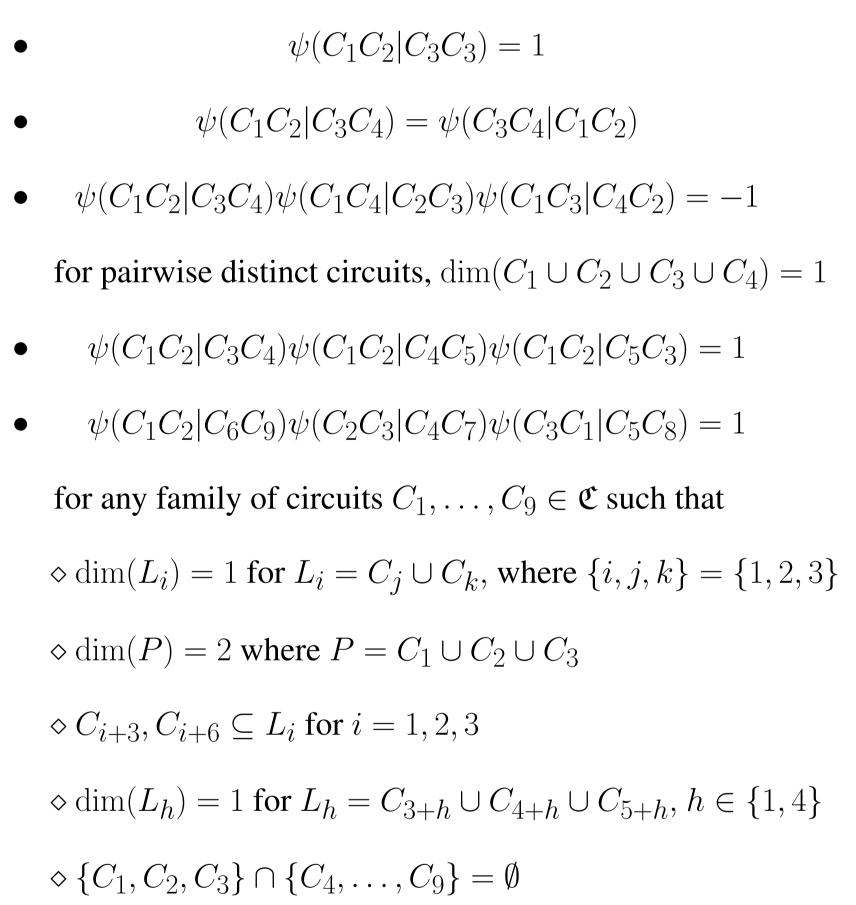
[AD12]	Laura
	a theo
	(2012)
[DW89]	Andrea
	for con
	1–36.
[GRS95]	Israel
	Projec
	no. 1, 1
[Wen89]	Walter

$\mathcal{G}_{\mathbb{C}}(M)$

Let M be a matroid without minors of Fano or dual-Fano type. Let Ebe the finite ground set of M and let \mathfrak{C} be the set of circuits of M. A *flat* of M is any set of the form $F = C_1 \cup \cdots \cup C_k$ with $C_i \in \mathfrak{C}$ for all i. For brevity, we define the *dimension* of a flat F as

$$\dim(F) = |F| - \operatorname{rk}(F) - 1.$$

$$\psi(C_1C_2|C_3C_4)$$



Definition. $\mathcal{G}_{\mathbb{C}}(M)$ is the set of generalized cross-ratios of M.

- Anderson and Emanuele Delucchi, Foundations for ory of complex matroids, Discrete Comput. Geom. 48 2), no. 4, 807–846.
- eas W. M. Dress and Walter Wenzel, *Geometric algebra* ombinatorial geometries, Adv. Math. 77 (1989), no. 1,
- M. Gel'fand, Grigori L. Rybnikov, and David A. Stone, ctive orientations of matroids, Adv. Math. 113 (1995), 118–150.
- r Wenzel, A group-theoretic interpretation of Tutte's ho*motopy theory*, Adv. Math. **77** (1989), no. 1, 37–75.