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Phased matroids RC(M)

Let E = {1, . . . ,m} be a finite ground set. A nonzero alternating func-
tion ϕ : Ed −→ S1 ∪ {0} is called a rank d phirotope [AD12] if

0 ∈ pconv
({

(−1)kϕ(x1, x2, . . . , x̂k, . . . , xd+1)ϕ(xk, y1, . . . , yd−1)
})

for any two subsets {x1, . . . , xd+1} and {y1, . . . , yd−1} of E. Two phi-
rotopes ϕ1, ϕ2 are called equivalent if ϕ1 = αϕ2 for some α ∈ S1.

A phased matroid is defined in [AD12] to be a pair (E,ϕ), where ϕ is
an equivalence class of phirotopes. The support of any representative ϕ
of ϕ is the set of bases of a matroid M which is called the underlying
matroid of (E,ϕ).

Two phased matroids (E,ϕ1), (E,ϕ2) with same underlying matroid M
are in the same phasing class if there exist α, η(1), . . . , η(m) ∈ S1 such
that

ϕ1(z1, . . . , zd) = α

 d∏
j=1

η(zj)

ϕ2(z1, . . . , zd).

Definition. RC(M) is the set of phasing classes of phased matroids with
underlying matroid M.

Problem 1. Characterize the set RC(M) of phasing classes of phased
matroids with underlying matroid M, as a phased counterpart to the re-
sults of [GRS95].

Review of basic definitions

The phase ph(x) of x ∈ C is defined to be 0 if x = 0 and x
|x| otherwise.

Let E = {1, . . . ,m}. For v ∈ CE, ph(v) is defined componentwise.

A phased vector is any X ∈ (S1 ∪ {0})E.

Let X be a phased vector. The support of X is the set

supp(X) = {e ∈ E | X(e) 6= 0} .

Let S ⊆ (S1 ∪ {0}) be a finite set. The phase convex hull pconv(S) is
the set of all phases of (real) strictly positive linear combinations of S.
We set pconv(∅) = {0}.

Two phased vectors X and Y are orthogonal if

0 ∈ pconv

({
X(e)

Y (e)

∣∣∣∣ e ∈ supp(X) ∩ supp(Y )

})
.
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Figure 1: the orthogonality relations between the phased vectors
X = (i, 1,−1, 0), Y = (1, i, i, 1) and Z = (1, 1, e−iπ/4, eiπ/4).
The phase convex hulls are coloured in blue.

Projective phasings PC(M)

Extending and generalizing a construction of [GRS95] in the oriented
case, we define a projective phasing PC of a matroid M with set of
circuits C, set of cocircuits C∗ and finite ground set E to be a function

PC :

{
(C,D, x, y) ∈ C× C∗ × E × E

∣∣∣∣ C ∩D 6= ∅
x, y ∈ C ∩D

}
−→ S1

whose values, denoted by
(
C D
x y

)
, satisfy conditions

(
C D
x x

)
= 1,

(
C D
x y

)(
C D
y z

)(
C D
z x

)
= 1,

(
C1 D1
x y

)(
C2 D2
x y

)
=

(
C1 D2
x y

)(
C2 D1
x y

)
,

∀y ∈ C ∩D, 0 ∈ pconv

({(
C D
x y

)∣∣∣∣x ∈ C ∩D}) .
Definition. PC(M) is the set of projective phasings of M .

Tutte groups HC(M)

The extended Tutte group TC
M of a matroid M is defined in [DW89] to

be the finitely generated abelian group with formal generators ε and a
symbol C(x) for every C ∈ C and all x ∈ C. The relations are ε2 = 1
and

C1(x2)C2(x3)C3(x1)

C1(x3)C2(x1)C3(x2)
= ε

for Ci ∈ C, L = C1 ∪ C2 ∪ C3 = Ci ∪ Cj (i 6= j), xi ∈ L \ Ci and
|L| = rk(L) + 2.

The inner Tutte group T(0)
M of M is the subgroup of TC

M generated by ε
and all products of the form

C1(x)C2(y)

C1(y)C2(x)

for circuits C1, C2 with x, y ∈ C1∩C2 and |C1∪C2| = rk(C1∪C2) + 2.

Dress and Wenzel [DW89] computed the groups T(0)
M for M uniform.

Problem 2. Compute the group T(0)
M for M non uniform.

Definition. HC(M) is the set of homomorphisms Φ : T(0)
M −→ S1

which satisfy ε 7→ −1 and

0 ∈ pconv

({
1,−Φ

(
C1(x3)C2(x4)

C1(x4)C2(x3)

)
,−Φ

(
C4(x3)C2(x1)

C4(x1)C2(x3)

)})
where L and all Ci, xi are as above with Ci pairwise distinct circuits.

Generalized cross-ratios GC(M)

Let M be a matroid without minors of Fano or dual-Fano type. Let E
be the finite ground set of M and let C be the set of circuits of M. A flat
of M is any set of the the form F = C1 ∪ · · · ∪Ck with Ci ∈ C for all i.
For brevity, we define the dimension of a flat F as

dim(F ) = |F | − rk(F )− 1.

The generalized cross-ratios of M are the values

ψ(C1C2|C3C4)

defined for C1, C2, C3, C4 ∈ C with dim(C1 ∪ C2 ∪ C3 ∪ C4) = 1 and
{C1, C2} ∩ {C3, C4} = ∅, ranging in S1, satisfying

• 0 ∈ pconv({1,−ψ(C1C2|C3C4),−ψ(C1C3|C4C2)})

for pairwise distinct circuits, dim(C1 ∪ C2 ∪ C3 ∪ C4) = 1

and conditions:

• ψ(C1C2|C3C3) = 1

• ψ(C1C2|C3C4) = ψ(C3C4|C1C2)

• ψ(C1C2|C3C4)ψ(C1C4|C2C3)ψ(C1C3|C4C2) = −1

for pairwise distinct circuits, dim(C1 ∪ C2 ∪ C3 ∪ C4) = 1

• ψ(C1C2|C3C4)ψ(C1C2|C4C5)ψ(C1C2|C5C3) = 1

• ψ(C1C2|C6C9)ψ(C2C3|C4C7)ψ(C3C1|C5C8) = 1

for any family of circuits C1, . . . , C9 ∈ C such that

� dim(Li) = 1 for Li = Cj ∪ Ck, where {i, j, k} = {1, 2, 3}

� dim(P ) = 2 where P = C1 ∪ C2 ∪ C3

� Ci+3, Ci+6 ⊆ Li for i = 1, 2, 3

� dim(Lh) = 1 for Lh = C3+h ∪ C4+h ∪ C5+h, h ∈ {1, 4}

� {C1, C2, C3} ∩ {C4, . . . , C9} = ∅

Definition. GC(M) is the set of generalized cross-ratios of M.

Main result

Let M be a matroid without minors of Fano or dual-Fano type. There exist one-to-one correspondences

RC(M)←→ PC(M)←→ HC(M)←→ GC(M)

Example: U2(4)

We denote by U2(4) the uniform rank 2 matroid with 4 elements.
The set RC(U2(4)) is in bijection with the topological subspace of the
torus given by

{
(f, g) ∈ S1 × S1 | 0 ∈ pconv{1, f, g}

}
, which corre-

sponds to the two coloured (i.e., not gray) part in the picture. Topologi-
cally, this space is homotopy equivalent to a wedge of two circles.
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Application
Theorem. Let M be a matroid without minors of Fano or dual-Fano
type and let A be the matrix associated to the lift of the system of “green
equations” (box on the right hand side).
If bM denotes the rank of the free part of T(0)

M , then

bM = dim ker(A).

The same result holds with a reduced matrix B. This, together with
[Wen89], allows us a computationally tractable solution to Problem 2
for matroids with up to 7 elements. The following are some samples.

Matroid Inner Tutte Group

F−7 Z/2Z× Z

O7 Z/2Z× Z2

P6 Z/2Z× Z9

P7 Z/2Z× Z2

Q6 Z/2Z× Z5

R6 Z/2Z× Z4
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