Phased matroids Re(M)

Let E = {1,...,m} be a finite ground set. A nonzero alternating func-
tion ¢ : EY — SYU {0} is called a rank d phirotope [AD12] if

0 € pcony ({(—1)k¢($1,$27 By T )P TR Y - - >yd—1)})

for any two subsets {z1,...,x4.1} and {y1,...,yg—1} of E. Two phi-
rotopes 1, @9 are called equivalent if 1 = awy for some a € S L

A phased matroid is defined in [AD12] to be a pair (£, ), where P is
an equivalence class of phirotopes. The support of any representative ¢
of © 1s the set of bases of a matroid M which 1s called the underlying

matroid of (E, ).

Two phased matroids (£, 97), (E, py) with same underlying matroid M
are in the same phasing class if there exist o, n(1), ..., n(m) € S such
that

d
o1(z1,- - zg) = a | [ [ n(z) | walz1s - 2a)
j=1

Definition. R (M) is the set of phasing classes of phased matroids with
underlying matroid M.

Problem 1. Characterize the set R (M) of phasing classes of phased
matroids with underlying matroid M, as a phased counterpart to the re-
sults of [GRS93].

Review of basic definitions

The phase ph(z) of x € C is defined to be 0 if x = 0 and = otherwise.

]
Let E = {1,...,m}. Forv € C¥ ph(v) is defined componentwise.
A phased vector is any X € (ST U {0})F.

Let X be a phased vector. The support of X is the set

supp(X) = {e € E' | X(e) # 0}

Let S C (S'U{0}) be a finite set. The phase convex hull pconv(S) is
the set of all phases of (real) strictly positive linear combinations of S.
We set pconv()) = {0}.

Two phased vectors X and Y are orthogonal it

X
0 € pconv ({ Y((;) e € supp(X) N SUpp(Y)}) .
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Figure 1: the orthogonality relations between the phased vectors
X =(i,1,-1,0), Y = (1,i,i,1) and Z = (1,1, e~ "/4 ¢im/4),
The phase convex hulls are coloured in blue.

Phasing Classes of Matroids

Elia Sainmi (Fribourg)

Pc(M)

Extending and generalizing a construction of [GRS95] in the oriented
case, we define a projective phasing Pc of a matroid M with set of
circuits €, set of cocircuits €* and finite ground set £ to be a function

CND#J( 1
x,yEC’ﬂD}HS

Projective phasings

P@:{(C,D,x,y) cECXC"XEXE

whose values, denoted by (g ly) ) , satisfy conditions
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Definition. P¢ (M) is the set of projective phasings of M.

He(M)

The extended Tutte group T% of a matroid M 1s defined in [DW&9] to
be the finitely generated abelian group with formal generators € and a

symbol C/(x) for every C' € € and all z € C. The relations are ¢ = 1

Tutte groups

and

C1(29)Co(x3)C3(w1)

C1(x3)Cao(x1)C5(x2)
forC; € €, L =C1UCUC3 =C;UC, (¢ # 7),x; € L\ C; and
L] = rk(L) + 2.

The inner Tutte group T%O} of M 1s the subgroup of TJQW generated by €

and all products of the form

C1(z)Ch(y)
C1(y)Ca(x)
for circuits C, Co with z,y € C;NCy and |C U Cy| = rk(C1UCy) + 2.

Dress and Wenzel [DW89] computed the groups TE\O}

for M uniform.

Problem 2. Compute the group T%O} for M non uniform.

Definition. Hc (M) is the set of homomorphisms ¢ Tg\(})

which satisty e — —1 and

oeven ({10 (Gcis) — (Gieseon) )

where L and all (), x; are as above with C); pairwise distinct circuits.

s gl

Main result

Let M be a matroid without minors of Fano or dual-Fano type. There exist one-to-one correspondences

Re(M) «— Pe(M) «— He(M) <— Ge(M)

Example: Us(4)

We denote by Us(4) the uniform rank 2 matroid with 4 elements.

The set R (Us(4)) is in bijection with the topological subspace of the
torus given by {(f,g) € St x S| 0 € peonv{l, f,g}}, which corre-
sponds to the two coloured (i.e., not gray) part in the picture. Topologi-
cally, this space 1s homotopy equivalent to a wedge of two circles.

0,1) (3.1) (1,1)
e 0

Application

Theorem. Let M be a matroid without minors of Fano or dual-Fano
type and let A be the matrix associated to the lift of the system of “green
equations” (box on the right hand side).

If by s denotes the rank of the free part of Tg\(}), then
by = dimker(A).

The same result holds with a reduced matrix B. This, together with
[Wen89], allows us a computationally tractable solution to Problem 2
for matroids with up to 7 elements. The following are some samples.

Matroid Inner Tutte Group

F 7./27 % 7.
o7 7,127 x 7
P6 7./27 x 7
P7 7,127 x 7
Q6 7,127 x 7
R6 7./27 x 7

Ge(M)

Let M be a matroid without minors of Fano or dual-Fano type. Let £
be the finite ground set of M and let € be the set of circuits of M. A flat
of M is any set of the the form F' = C; U --- U} with C; € € for all 3.
For brevity, we define the dimension of a flat F’ as

Generalized cross-ratios

dim(F) = |F| — tk(F) — 1.

The generalized cross-ratios of M are the values
P(C1C|C5CY)

defined for C', Cy, C3, Cy € € with dim(C; U Co U C5U Cy) = 1 and
{C1,Co} N {C5,Cy} = 0, ranging in S, satisfying

o 0 €& peonv({l, —(C1C|C3Cy), —p(C1C3|C4Ch) })
for pairwise distinct circuits, dim(C7 U Co U C3 U Cy) =1

and conditions:

. W(C1C2|C3C3) =1
. p(C1C|C3C) = ¥(C3C|C1CY)
o H(C1CC5CYY(C1C4|CoC3)Y(C1C3]C4Cr) = —1
for pairwise distinct circuits, dim(C7 U Co U C3 U Cy) =1

o Y(C1Co|C3C )Y (C1C|CuCs)(C1Cs|C5C3) = 1

o Y(C10|CsCy)h(CoC3|C4C7)Y(C3CH|C5Cs) = 1
for any family of circuits C', ..., Cq € € such that
odim(L;) = 1for L; = C; U Cy, where {1, j, k} = {1, 2,3}
o dim(P) =2 where P = C] U CyU C5
0 Cyrg,Cig C Lifori=1,2,3
odim(Ly) = 1for Ly, = Cs p, UCy p, U5y, h € {1,4}

o {C1,Cr,C3 N{Cy,...,Co} =10

Definition. G (M) is the set of generalized cross-ratios of M.
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