Phasing Classes of Matroids

Elia Saini (Fribourg)

Phased matroids $\quad \mathcal{R}_{\mathbb{C}}(M)$
Let $E=\{1, \ldots, m\}$ be a finite ground set. A nonzero alternating func tion $\varphi: E^{d} \longrightarrow S^{1} \cup\{0\}$ is called a rank d phirotope [AD12] if $0 \in \operatorname{pconv}\left(\left\{(-1)^{k} \varphi\left(x_{1}, x_{2}, \ldots, \hat{x}_{k}, \ldots, x_{d+1}\right) \varphi\left(x_{k}, y_{1}, \ldots, y_{d-1}\right)\right\}\right)$
for any two subsets $\left\{x_{1}, \ldots, x_{d+1}\right\}$ and $\left\{y_{1}, \ldots, y_{d-1}\right\}$ of E. Two phi rotopes φ_{1}, φ_{2} are called equivalent if $\varphi_{1}=\alpha \varphi_{2}$ for some $\alpha \in S^{1}$.

A phased matroid is defined in [AD12] to be a pair $(E, \bar{\varphi})$, where $\bar{\varphi}$ is an equivalence class of phirotopes. The support of any representative of $\bar{\varphi}$ is the set of bases of a matroid M which is called the underlyin matroid of $(E, \bar{\varphi})$.

Two phased matroids $\left(E, \overline{\varphi_{1}}\right),\left(E, \overline{\varphi_{2}}\right)$ with same underlying matroid M are in the same phasing class if there exist $\alpha, \eta(1), \ldots, \eta(m) \in S^{1}$ such that

$$
\varphi_{1}\left(z_{1}, \ldots, z_{d}\right)=\alpha\left(\prod_{j=1}^{d} \eta\left(z_{j}\right)\right) \varphi_{2}\left(z_{1}, \ldots, z_{d}\right) .
$$

Definition. $\mathcal{R}_{\mathbb{C}}(M)$ is the set of phasing classes of phased matroids wit underlying matroid M

Problem 1. Characterize the set $\mathcal{R}_{\mathbb{C}}(M)$ of phasing classes of phased matroids with underlying matroid M, as a phased counterpart to the results of [GRS95].

Review of basic definitions

The phase ph(x) of $x \in \mathbb{C}$ is defined to be 0 if $x=0$ and $\frac{x}{|x|}$ otherwise.
Let $E=\{1, \ldots, m\}$. For $v \in \mathbb{C}^{E}, \operatorname{ph}(v)$ is defined componentwise. A phased vector is any $X \in\left(S^{1} \cup\{0\}\right)^{E}$.

Let X be a phased vector. The support of X is the set

$$
\operatorname{supp}(X)=\{e \in E \mid X(e) \neq 0\} .
$$

Let $S \subseteq\left(S^{1} \cup\{0\}\right)$ be a finite set. The phase convex hull pconv (S) is the set of all phases of (real) strictly positive linear combinations of S We set pconv $(\emptyset)=\{0\}$.
Two phased vectors X and Y are orthogonal if

Figure 1: the orthogonality relations between the phased vector $X=(i, 1,-1,0), Y=(1, i, i, 1)$ and $Z=\left(1,1, e^{-i \pi / 4}\right.$. $\left.e^{i \pi / 4}\right)$. The phase convex hulls are coloured in blue.

Projective phasings
 $\mathcal{P}_{\mathbb{C}}(M)$

ase, we define a projective phasing $\mathbb{P}_{\mathbb{C}}$ of a matroid M with set of ircuits \mathfrak{C}, set of cocircuits \mathbb{C}^{*} and finite ground set E to be a function

$$
\mathbb{P}_{\mathbb{C}}:\left\{(C, D, x, y) \in \mathfrak{C} \times \mathfrak{C}^{*} \times E \times E \left\lvert\, \begin{array}{c}
C \cap D \neq \emptyset \\
x, y \in C \cap D
\end{array}\right.\right\} \longrightarrow S^{1}
$$

whose values, denoted by $\left(\begin{array}{cc}C & D \\ x & y\end{array}\right)$, satisfy condition

$$
\left(\begin{array}{ll}
C & D \\
x & x
\end{array}\right)=1,
$$

$$
\left(\begin{array}{ll}
C & D \\
x & y
\end{array}\right)\left(\begin{array}{ll}
C & D \\
y & z
\end{array}\right)\left(\begin{array}{ll}
C & D \\
z & x
\end{array}\right)=1,
$$

$$
\left(\begin{array}{cc}
C_{1} & D_{1} \\
x & y
\end{array}\right)\left(\begin{array}{cc}
C_{2} & D_{2} \\
x & y
\end{array}\right)=\left(\begin{array}{cc}
C_{1} & D_{2} \\
x & y
\end{array}\right)\left(\begin{array}{cc}
C_{2} & D_{1} \\
x & y
\end{array}\right),
$$

$$
\forall y \in C \cap D, \quad 0 \in \operatorname{pconv}\left(\left\{\left.\left(\begin{array}{cc}
C & D \\
x & y
\end{array}\right) \right\rvert\, x \in C \cap D\right\}\right)
$$

Definition. $\mathcal{P}_{\mathbb{C}}(M)$ is the set of projective phasings of M.

Main result

Let M be a matroid without minors of Fano or dual-Fano type. There exist one-to-one correspondences

$$
\mathcal{R}_{\mathbb{C}}(M) \longleftrightarrow \mathcal{P}_{\mathbb{C}}(M) \longleftrightarrow \mathcal{H}_{\mathbb{C}}(M) \longleftrightarrow \mathcal{G}_{\mathbb{C}}(M)
$$

Example: $U_{2}(4)$

We denote by $U_{2}(4)$ the uniform rank 2 matroid with 4 elements. The set $\mathcal{R}_{\mathbb{C}}\left(U_{2}(4)\right)$ is in bijection with the topological subspace of the orus given by $\left\{(f, g) \in S^{1} \times S^{1} \mid 0 \in \operatorname{pconv}\{1, f, g\}\right\}$, which correponds to the two coloured (i.e., not gray) part in the picture. Topologically, this space is homotopy equivalent to a wedge of two circles.

Application

Theorem. Let M be a matroid without minors of Fano or dual-Fan type and let A be the matrix associated to the lift of the system of "gree equations" (box on the right hand side).
If b_{M} denotes the rank of the free part of $\mathbb{T}^{(0)}$, then

$$
b_{M}=\operatorname{dim} \operatorname{ker}(A)
$$

The same result holds with a reduced matrix B. This, together with [Wen89], allows us a computationally tractable solution to Problem for matroids with up to 7 elements. The following are some samples.

Matroid	Inner Tutte Group
F_{7}^{-}	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}$
$O 7$	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}^{2}$
$P 6$	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}^{9}$
$P 7$	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}^{2}$
$Q 6$	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}^{5}$
$R 6$	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}^{4}$

Generalized cross-ratios
$\mathcal{G}_{\mathbb{C}}(M)$
The extended Tutte group $\mathbb{T}^{\mathfrak{C}}$ of a matroid M is defined in [DW89] to be the finitely generated abelian group with formal generators ϵ and sym
and

$$
\frac{C_{1}\left(x_{2}\right) C_{2}\left(x_{3}\right) C_{3}\left(x_{1}\right)}{C_{1}\left(x_{3}\right) C_{2}\left(x_{1}\right) C_{3}\left(x_{2}\right)}
$$

for $C_{i} \in \mathfrak{C}, L=C_{1} \cup C_{2} \cup C_{3}=C_{i} \cup C_{j}(i \neq j), x_{i} \in L \backslash C_{i}$ an $|L|=\operatorname{rk}(L)+2$.
The inner Tutte group $\mathbb{T}_{M}^{(0)}$ of M is the subgroup of $\mathbb{T}_{M}^{\mathfrak{C}}$ generated by and all products of the form

$$
\frac{C_{1}(x) C_{2}(y)}{C_{1}(y) C_{2}(x)}
$$

for circuits C_{1}, C_{2} with $x, y \in C_{1} \cap C_{2}$ and $\left|C_{1} \cup C_{2}\right|=\operatorname{rk}\left(C_{1} \cup C_{2}\right)+2$ Dress and Wenzel [DW89] computed the groups $\mathbb{T}_{M}^{(0)}$ for M uniform.

Problem 2. Compute the group $\mathbb{T}_{M}^{(0)}$ for M non uniform.
Definition. $\mathcal{H}_{C}(M)$ is the set of homomorphisms $\Phi: \mathbb{T}_{\mathcal{M}}^{(0)} \longrightarrow S$ which satisfy $\epsilon \mapsto-1$ and
$0 \in \operatorname{pconv}\left(\left\{1,-\Phi\left(\frac{C_{1}\left(x_{3}\right) C_{2}\left(x_{4}\right)}{C_{1}\left(x_{4}\right) C_{2}\left(x_{3}\right)}\right),-\Phi\left(\frac{C_{4}\left(x_{3}\right) C_{2}\left(x_{1}\right)}{C_{4}\left(x_{1}\right) C_{2}\left(x_{3}\right)}\right)\right\}\right)$
where L and all C_{i}, x_{i} are as above with C_{i} pairwise distinct circuits.
Let M be a matroid without minors of Fano or dual-Fano type. Let E be the finite ground set of M and let \mathfrak{C} be the set of circuits of M. A flat of M is any set of the the form $F=C_{1} \cup \cdots \cup C_{k}$ with $C_{i} \in \mathfrak{C}$ for all i For brevity, we define the dimension of a flat F as

$$
\operatorname{dim}(F)=|F|-\operatorname{rk}(F)-1 .
$$

The generalized cross-ratios of M are the values

$\psi\left(C_{1} C_{2} \mid C_{3} C_{4}\right)$

efined for $C_{1}, C_{2} C_{3} C_{4} \in \mathfrak{C}$ with $\operatorname{dim}\left(C_{1} \cup C_{2} \cup C_{3} \cup C_{4}\right)=1$ and $\left\{C_{1}, C_{2}\right\} \cap\left\{C_{3}, C_{4}\right\}=\emptyset$, ranging in S^{1}, satisfying

- $0 \in \operatorname{pconv}\left(\left\{1,-\psi\left(C_{1} C_{2} \mid C_{3} C_{4}\right),-\psi\left(C_{1} C_{3} \mid C_{4} C_{2}\right)\right\}\right)$
for pairwise distinct circuits, $\operatorname{dim}\left(C_{1} \cup C_{2} \cup C_{3} \cup C_{4}\right)=$

nd conditions:

- $\quad \psi\left(C_{1} C_{2} \mid C_{3} C_{3}\right)=1$
- $\quad \psi\left(C_{1} C_{2} \mid C_{3} C_{4}\right)=\psi\left(C_{3} C_{4} \mid C_{1} C_{2}\right)$
- $\psi\left(C_{1} C_{2} \mid C_{3} C_{4}\right) \psi\left(C_{1} C_{4} \mid C_{2} C_{3}\right) \psi\left(C_{1} C_{3} \mid C_{4} C_{2}\right)=-1$
for pairwise distinct circuits, $\operatorname{dim}\left(C_{1} \cup C_{2} \cup C_{3} \cup C_{4}\right)=$
- $\psi\left(C_{1} C_{2} \mid C_{3} C_{4}\right) \psi\left(C_{1} C_{2} \mid C_{4} C_{5}\right) \psi\left(C_{1} C_{2} \mid C_{5} C_{3}\right)=1$
- $\psi\left(C_{1} C_{2} \mid C_{6} C_{9}\right) \psi\left(C_{2} C_{3} \mid C_{4} C_{7}\right) \psi\left(C_{3} C_{1} \mid C_{5} C_{8}\right)=1$ for any family of circuits $C_{1}, \ldots, C_{9} \in \mathfrak{C}$ such that $\diamond \operatorname{dim}\left(L_{i}\right)=1$ for $L_{i}=C_{j} \cup C_{k}$, where $\{i, j, k\}=\{1,2,3\}$ $\diamond \operatorname{dim}(P)=2$ where $P=C_{1} \cup C_{2} \cup C_{3}$
$\diamond C_{i+3}, C_{i+6} \subseteq L_{i}$ for $i=1,2,3$
$\diamond \operatorname{dim}\left(L_{h}\right)=1$ for $L_{h}=C_{3+h} \cup C_{4+h} \cup C_{5+h}, h \in\{1,4\}$ $\diamond\left\{C_{1}, C_{2}, C_{3}\right\} \cap\left\{C_{4}, \ldots, C_{9}\right\}=\emptyset$

Definition. $\mathcal{G}_{C}(M)$ is the set of generalized cross-ratios of M

References

AD12] Laura Anderson and Emanuele Delucchi, Foundations for a theory of complex matroids, Discrete Comput. Geom. 48 (2012), no. 4, 807-846.

DW89] Andreas W. M. Dress and Walter Wenzel, Geometric algebra for co
[GRS95] Isral M. Gel fand Grigori L. Rybnikov, and David A Stone, Projective orientations of matroids, Adv. Math. 113 (1995), no. 1, 118-150.
[Wen89] Walter Wenzel, A group-theoretic interpretation of Tutte's homotopy theory, Adv. Math. 77 (1989), no. 1, 37-75

