Asymptotic Euler-Maclaurin formula for semi-rational polyhedra

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Common work with Nicole Berline.

Semi-rational polyhedra

V real vector space of dimension *d*; Λ lattice in *V*, dual lattice $\Lambda^* \subset V^*$; $\eta_1, \eta_2, \dots, \eta_N$ elements of Λ^* ; h_1, h_2, \dots, h_N real numbers. Then the polyhedron

$$\mathfrak{p}(h) = \{x \in V; \langle \eta_i, x \rangle \leq h_i\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

is called semi rational.

Examples :

 $a \le x \le b$: any interval with real end points. $x \ge 0, y \ge 0, x + 2y \le \sqrt{2}$

Riemann Sums over Semi-rational Polyhedra

Let $\mathfrak{p}(h)$ be a semi rational polytope of dimension *d*. Consider the sum of values of a smooth function *test* on the integral points of \mathfrak{p} :

$$\langle F(\mathfrak{p}(h), \Lambda), test \rangle = \sum_{x \in \Lambda \cap \mathfrak{p}(h)} test(x).$$

When *test* is a polynomial, we (Baldoni, Berline, Koeppe, De Loera, Vergne) have given "formulae" for $\langle F(\mathfrak{p}(h), \Lambda), test \rangle$ depending of the real parameter *h* in a "semi-quasi-polynomial" way. Here we show that we can give asymptotic formulae for *test* smooth of the same kind.

Asymptotic Riemann Sums over Semi-rational Polyhedra

Consider a real parameter *t*. Assume p is a semi-rational polyhedron, of dimension *d*, and *test* be a smooth function with compact support. Define the Riemann sum :

$$F(t) = \frac{1}{t^d} \sum_{x \in t \mathfrak{p} \cap \Lambda} test(x/t)$$

It is clear that when $t \to \infty$, F(t) tends to $\int_{\mathfrak{p}} test$. Thus we want to evaluate at what rate the Riemann sum converges to the integral.

The Euler-MacLaurin formula in dimension 1

Let a be a real number. Let

$$\mathfrak{c} = \{ x \in \mathbb{R}; x \ge a \}.$$

Let $\{t\} \in [0, 1[$ be the fractional part of $t \in \mathbb{R}$. Let *test* be a smooth function with compact support, $B_k(x)$ the Bernoulli polynomial, $B_k = B_k(0)$ the Bernoulli number. Then

$$\sum_{x \ge ta, x \in \mathbb{Z}} \frac{1}{t} test(x/t) = \int_{x \ge a} test(x) dx - \sum_{j=1}^{k-1} \frac{B_j(\{-ta\})}{t^j} test^{(j-1)}(a)$$

$$+\frac{1}{t^{k}}(-1)^{k-1}\int_{a}^{\infty}(B_{k}(\{tx\})-B_{k})test^{(k)}(x)dx.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Riemann sum minus the integral

So we obtain an asymptotic formula in the form

 $\sum_{j=1}^{infty} f_j(t) \frac{1}{t^j}$

where $f_j(t)$ are polynomial functions of the function $t \to \{-at\}$. Furthermore, an explicit formula for the rest is given as an integral of a derivative of *test* of order *k* against a bounded and continuous function of *tx* over $c = [a, \infty]$.

If a = p/q is rational, the function $f_j(t)$ is a periodic function of t with period q.

If *a* and *t* are integers, then $f_j(t) = -B_j$ is just the Bernoulli number. So we obtain an asymptotic formula in $\frac{1}{t_i}$.

Semi-quasi polynomials

A function f(t) of $t \in \mathbb{R}$ will be called semi-quasi polynomial if f(t) can be expressed as $P(\{c_1t\}, \{c_2t\}, \dots, \{c_Kt\})$, a polynomial function of a number of functions $t \to \{c_jt\}$ where c_a are real numbers. If the numbers $c_j = p_j/q_j$ are rationals, then $\{c_jt\}$ is a periodic function of period q_j , so a semi-quasi polynomial is a periodic function of t mod some period Q.

Form of the asymptotic for semi-rational polytope

Theorem • Let \mathfrak{p} be a semi-rational polytope, then when $t \to \infty$, *t* real,

$$F(t) = \frac{1}{t^{d}} \sum_{x \in t \mathfrak{p} \cap \Lambda} test(x/t)$$

is equivalent to

$$\int_{\mathfrak{p}} test + \sum_{j=1}^{\infty} rac{f_j(t)}{t^j} \langle D_j, test
angle$$

where $f_j(t)$ are semi-quasi polynomial functions of t and $\langle D_j, test \rangle$ are **integrals of derivatives of test on faces of** \mathfrak{p} . • If \mathfrak{p} is rational, $f_j(t)$ are periodic functions of t

• If p is with integral vertices, $f_j(t)$ are constants.

Comments

We have explicit forms of the D_j , but unfortunately no nice formula for the rest, meaning as a distribution supported on p. For the standard simplex, there are some formulae with rest obtained in numerical analysis (clearly an important problem in numerical analysis).

Arrangement of hyperplanes

In the case where p is a polytope with integral vertices, two asymptotic formulae were previously obtained : one by Guillemin-Sternberg (extending Khovanskii-Pukhlikov formula for polynomials), one by Tatsuya Tate (extending Berline-Vergne local Euler-MacLaurin formula for polynomials). Our work was motivated by a recent question of Le Floch-Pelayo : How to see directly that these two formulae are the same ?.

Easy to do via renormalization of rational functions with poles on an arrangement of hyperplanes.

Guillemin-Sternberg formula

Let $\mathfrak{p}(h)$ be a semi-rational polytope. Assume that $\mathfrak{p}_0 = \mathfrak{p}(h_0)$ is a Delzant polytope with integral vertices (corresponding to a smooth toric variety *M* with ample line bundle *L*). Consider

$$F(t) = \frac{1}{t^d} \sum_{x \in t \mathfrak{p}_0 \cap \Lambda} test(x/t).$$

Define $Todd(z) = \frac{z}{1-e^{-z}} = \sum_{j=0}^{\infty} (-1)^j B_j z^j / j!$. We can consider the series of differential operators

$$\mathit{Todd}(\partial_h/k) := \prod_{i=1}^N \mathit{Todd}(\partial_{h_i}/k)$$

Then : For *k* integer, $k \to \infty$, we have

$$F(k) \equiv \left(\operatorname{Todd}(\partial_h/k) \int_{\mathfrak{p}(h)} \operatorname{test} \right)|_{h=h_0}$$

But we want a "Concrete formula"

Pretty clear that $F(k) \equiv \sum_{i} \frac{1}{ki} \langle D_i, test \rangle$ where $\langle D_i, f \rangle$ are integrals of derivatives of test on faces of the polytope p. We had obtained (Berline-Vergne) exact formulae with explicit operators D_i when test was a polynomial. Tatsuya Tate showed (directly) that these formulae hold in the asymptotic sense. It is in fact easy to deduce any of these asymptotic formulae from Euler-MacLaurin formula in dimension one, and we can formulate a result for any semi-rational polytope. Our method is as usual the Brianchon-Gram decomposition. and "renormalization" in the space of rational functions with poles on an arrangement of hyperplanes.

Integrals and Sums over a cone

V real vector space of dimension *d*, with a lattice Λ . \mathfrak{c} a cone, dual cone \mathfrak{c}^* with non empty interior.

$$egin{aligned} & I(\mathfrak{c})(\xi) = \int_{x\in\mathfrak{c}} e^{\langle\xi,x
angle} dx, \ & S(\mathfrak{c})(\xi) = \sum_{x\in\mathfrak{c}\cap\Lambda} e^{\langle\xi,x
angle}. \end{aligned}$$

These functions are defined when ξ is the opposite of the dual cone \mathfrak{c}^* to \mathfrak{c} . For example if $\mathfrak{c} = \mathbb{R}_{\geq 0}$, and $\xi < 0$, then

$$I(\mathfrak{c})(\xi) = \int_{x \ge 0} e^{\xi x} dx = -\frac{1}{\xi}.$$
$$S(\mathfrak{c})(\xi) = \sum_{n \ge 0} e^{n\xi} = \frac{1}{1 - e^{\xi}}.$$

Laurent series of S(c)

 $I(\mathfrak{c})$ is a rational function of degree -d. Define $[S(\mathfrak{c})] = \sum_{j=-d} S(\mathfrak{c})_{[\ell]}$ the decomposition of $S(\mathfrak{c})$ in sum of rational functions of homogenous degree ℓ .

Example $\mathfrak{c} = \mathbb{R}_{\geq 0} e_1 \oplus \mathbb{R}_{\geq 0} (e_1 + e_2)$

$$S(\mathfrak{c})(z_1, z_2) = \frac{1}{(1 - e^{z_1})} \frac{1}{(1 - e^{z_1 + z_2})}$$
$$= \frac{1}{z_1(z_1 + z_2)}$$
$$-\frac{1}{2z_1} - \frac{1}{2(z_1 + z_2)}$$
$$+\frac{1}{3} + \frac{1}{12} \frac{z_1}{z_2} + \frac{1}{12} \frac{z_1}{(z_1 + z_2)}$$
$$+ \cdots$$

Boundary values

If λ is an interior point in $-c^*$ (-interior of the dual cone), define

$$\lim_{\lambda} S(\mathfrak{c})(i\xi) = \lim_{\epsilon \to 0} S(\mathfrak{c})(i\xi + \epsilon\lambda)$$

$$\lim_{\lambda} S(\mathfrak{c})_{\ell}(i\xi) = \lim_{\epsilon \to 0} S(\mathfrak{c})_{\ell}(i\xi + \epsilon\lambda)$$

Define tempered distributions on V^* .

The Fourier transform of $\lim_{\lambda} S(c)_{\ell}(i\xi)$ is a derivative of a locally polynomial function supported on c.

For example $\mathfrak{c} = [0,\infty]$; $\epsilon < 0$,

$$\lim_{\epsilon} \frac{1}{-(i\xi+\epsilon)} = \int_0^\infty e^{i\xi x} dx.$$

The distribution F(t) and its Fourier transform

We consider the cone $\mathfrak c$ and the tempered distribution on ${\it V}$ defined by

$$\langle F(\mathfrak{c})(t), test \rangle = \frac{1}{t^d} \sum_{x \in \Lambda \cap \mathfrak{c}} test(x/t).$$

It is easy to compute the Fourier transform of this distribution This is

$$\lim_{\lambda} S(\mathfrak{c})(i\xi/t)$$

If $t \to \infty$, ξ/t tends to 0, and it is tempting to use the Laurent series of the function $S(c)(\xi)$.

Theorem When $t \to \infty$,

$$\lim_{\lambda} S(\mathfrak{c})(i\xi/t) \equiv \sum_{j\geq 0} t^{-j} \lim_{\lambda} S(\mathfrak{c})_j(i\xi).$$

Explicit formula

The proof of this theorem is obvious. It is clearly additive over cones, we decompose the cone c in unimodular cones and then we are reduced to dimension 1 and we use *EML* formula. Obvious then to deduce Guillemin-Sternberg formula from computing this, and using Brianchon-Gram decomposition. We want to be more explicit.

Renormalization

We consider the arrangement of hyperplanes H = H(G) in V^* with equations $g_a(\xi) = 0$ with $g_a \in G \subset V$ the set of generators of the cone c. We denote by $R_G(V^*)$ the space of rational functions on V^* with poles contained in H(G). Then the homogeneous components of S(c) are rational functions with poles on this arrangement of hyperplanes.

Let S be the set of subspaces L of V generated by elements of G. If $[g_1, g_2, \ldots, g_N]$ is a sequence of elements of G, the function $\frac{1}{\prod_{i=1}^N g_i(\xi)}$ is a function in $R_G(V^*)$. For a subspace L, consider the space B_L consisting of the linear span of these functions $\frac{1}{\prod_{a \in A} g_a(\xi)}$ where the sequence g_a in the denominator generates the rational subspace $L : L = \bigoplus \mathbb{R}g_j$. Then B_L is a subspace of $R_G(V^*)$.

Substracting the polar part

Let us choose a scalar product on *V*. Consider $\mathbb{C}[L^{\perp}]$ the space of polynomial functions on L^{\perp} . Using our scalar product, we can embedd $\mathbb{C}[L^{\perp}]$ in $\mathbb{C}[V^*]$, the space of polynomial functions on V^* .

Proposition(De Concini+Procesi) We have the direct sum decomposition

$$R_G(V^*) = \oplus_{L \in \mathcal{S}}(\mathbb{C}[L^{\perp}] \otimes B_L)$$

(日) (日) (日) (日) (日) (日) (日)

Thus we write $\phi \in R_G(V^*)$ uniquely as $\phi = \sum_L T_L(\phi)$ where $T_L(\phi) \in (\mathbb{C}[L^{\perp}] \otimes B_L)$.

The holomorphic part

For $L = \{0\}$, the corresponding term $T_L(\phi)$ is thus a polynomial function on V^* . We denote the corresponding term by *Renorm*(ϕ) and we call the polynomial *Renorm*(ϕ) the renormalisation of the rational function ϕ . It depends of the choice of a scalar product. In one variable $f(z) = \sum a_i z^i$, and *Renorm*(f) = $\sum_{i\geq 0} a_i z^i$. In several variables, we need a scalar product to suppress the polar part (all B_L for $L \neq 0$).

Back to Example : $\mathfrak{c} = \mathbb{R}_{\geq 0} e_1 \oplus \mathbb{R}_{\geq 0} (e_1 + e_2)$

$$S(\mathfrak{c})(z_1, z_2) = \frac{1}{(1 - e^{z_1})} \frac{1}{(1 - e^{z_1 + z_2})}$$
$$= \frac{1}{z_1(z_1 + z_2)}$$
$$-\frac{1}{2z_1} - \frac{1}{2(z_1 + z_2)}$$
$$+\frac{1}{3} + \frac{1}{12} \frac{z_1}{z_2} + \frac{1}{12} \frac{z_1}{(z_1 + z_2)}$$
$$+ \cdots$$

BUT WE REWRITE

$$\frac{1}{3} + \frac{1}{12}\frac{z_1}{z_2} + \frac{1}{12}\frac{z_1}{(z_1 + z_2)}$$

as

$$\frac{1}{3} + \frac{1}{12}\frac{z_1}{z_2} + \frac{1}{24}\frac{z_1 - z_2}{(z_1 + z_2)} + \frac{1}{24}$$

and the holomorphic part of S(c) is

$$renorm(S(c)(z_1, z_2)) = 1/3 + 1/24 + \cdots = 3/8 + \cdots$$

Normal cones and Renormalization

f face of the cone \mathfrak{c} ; $\langle f \rangle$ linear span of p - q, p, q in f. Normal cone $T(f, \mathfrak{c})$ in $\langle f \rangle^{\perp}$ with lattice $\langle f \rangle^{\perp} \cap \langle f \rangle + \Lambda$ **Definition** $\mu(f, \mathfrak{c})(\xi) = Renorm(S(T(f, \mathfrak{c})))(\xi)$. This is a holomorphic function of the variable $\xi \in \langle f \rangle^{\perp}$.

MAIN THEOREM (Berline-Vergne, Paycha)

$$S(\mathfrak{c})(\xi) = \sum_{faces} \mu(T(f,\mathfrak{c}))(\xi)I(f)(\xi)$$

As a corollary

$$egin{aligned} \mathcal{F}(t) &= rac{1}{t^d} \sum_{x \in t \mathfrak{c} \cap \Lambda} test(x/t) \ &< \mathcal{F}(t), test
angle &\equiv \sum_{faces} rac{1}{t^{codimf}} \sum_f \int_f \mu(f, \mathfrak{c})(D/k) * test \end{aligned}$$

Here *D* are the normal derivatives to the face *f*.

Example : Cone based on a square EXAMPLE : let c with generators $e_3 + e_1, e_3 - e_1, e_3 + e_2, e_3 - e_2$. Then

$$\langle F(t), test \rangle \equiv \int_{c} Test$$

$$+ \frac{1}{t} \frac{1}{2} \int_{boundary(c)} Test$$

$$+ \frac{1}{t^{2}} (\frac{2}{9} \int_{edges} Test - \frac{1}{36} \int_{boundary} N \cdot Test)$$

where $N \cdot test$ is the normal derivative. N here is the primitive vector pointing inward.

$$+rac{1}{t^3}((1/6)\text{Test}(0)-rac{1}{24}\int_{edges}U*test) +O(1/t^4).$$

with $U = e_3 - e_1$ for the edge $e_3 + e_1$, etc...

For a polytope p with integral vertices

The formulae add up nicely using Brianchom-Gram decomposition.

If h is a smooth function on p then :

$$t^{-d}\sum_{x\in\mathfrak{p}\cap\Lambda/t}h(x)\equiv\sum_{f}t^{-\operatorname{codim}(f)}\int_{f}(\mu(f,\mathfrak{p})(1/t\partial_{x})h)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

when t is an integer going to ∞ . This is the formula of Tatsuya Tate.

Asymptotic EML for a semi-rational polytope

Quite clear that if we use EML in dimension 1 with cones $[a, \infty]$ and *a* real, we obtain also an asymptotic formula with coefficients $f_j(t)/t^j \langle D_j, h \rangle$ and f_j semi-quasi polynomial and D_j explicit via the renoramization procedure.

Example : simplex dimension 2

For example, for the standard simple $\mathfrak{p} = \{x_1 \ge 0, x_2 \ge 0, x_1 + x_2 \le 1\}$ Here is the asymptotic series for

$$\langle S(t), test \rangle = \frac{1}{t^2} \sum_{t p \cap \mathbb{Z}^2} test(x/t)$$

and t real.

In contrast to the 1-dimensional case, we dont know how to write a nice remainder in general.