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Semi-rational polyhedra

V real vector space of dimension d ;
Λ lattice in V , dual lattice Λ∗ ⊂ V ∗ ;
η1, η2, . . . , ηN elements of Λ∗ ;
h1,h2, . . . ,hN real numbers.
Then the polyhedron

p(h) = {x ∈ V ; 〈ηi , x〉 ≤ hi}

is called semi rational.
Examples :
a ≤ x ≤ b : any interval with real end points.
x ≥ 0, y ≥ 0, x + 2y ≤

√
2



Riemann Sums over Semi-rational Polyhedra

Let p(h) be a semi rational polytope of dimension d . Consider
the sum of values of a smooth function test on the integral
points of p :

〈F (p(h),Λ), test〉 =
∑

x∈Λ∩p(h)

test(x).

When test is a polynomial, we (Baldoni, Berline, Koeppe, De
Loera, Vergne) have given ”formulae” for 〈F (p(h),Λ), test〉
depending of the real parameter h in a ”semi-quasi-polynomial”
way. Here we show that we can give asymptotic formulae for
test smooth of the same kind.



Asymptotic Riemann Sums over Semi-rational
Polyhedra

Consider a real parameter t . Assume p is a semi-rational
polyhedron, of dimension d , and test be a smooth function with
compact support. Define the Riemann sum :

F (t) =
1
td

∑
x∈tp∩Λ

test(x/t)

It is clear that when t →∞, F (t) tends to
∫
p test . Thus we want

to evaluate at what rate the Riemann sum converges to the
integral.



The Euler-MacLaurin formula in dimension 1

Let a be a real number. Let

c = {x ∈ R; x ≥ a}.

Let {t} ∈ [0,1[ be the fractional part of t ∈ R. Let test be a
smooth function with compact support, Bk (x) the Bernoulli
polynomial, Bk = Bk (0) the Bernoulli number.
Then

∑
x≥ta,x∈Z

1
t

test(x/t) =

∫
x≥a

test(x)dx−
k−1∑
j=1

Bj({−ta})
t j test(j−1)(a)

+
1
tk (−1)k−1

∫ ∞
a

(Bk ({tx})− Bk )test(k)(x)dx .



Riemann sum minus the integral

So we obtain an asymptotic formula in the form

infty∑
j=1

fj(t)
1
t j

where fj(t) are polynomial functions of the function t → {−at}.
Furthermore, an explicit formula for the rest is given as an
integral of a derivative of test of order k against a bounded and
continuous function of tx over c = [a,∞[.
If a = p/q is rational, the function fj(t) is a periodic function of t
with period q.
If a and t are integers, then fj(t) = −Bj is just the Bernoulli
number. So we obtain an asymptotic formula in 1

t j .



Semi-quasi polynomials

A function f (t) of t ∈ R will be called semi-quasi polynomial if
f (t) can be expressed as P({c1t}, {c2t}, . . . , {cK t}), a
polynomial function of a number of functions t → {cj t} where ca
are real numbers. If the numbers cj = pj/qj are rationals, then
{cj t} is a periodic function of period qj , so a semi-quasi
polynomial is a periodic function of t mod some period Q.



Form of the asymptotic for semi-rational polytope

Theorem • Let p be a semi-rational polytope, then when
t →∞, t real,

F (t) =
1
td

∑
x∈tp∩Λ

test(x/t)

is equivalent to ∫
p

test +
∞∑

j=1

fj(t)
t j 〈Dj , test〉

where fj(t) are semi-quasi polynomial functions of t and
〈Dj , test〉 are integrals of derivatives of test on faces of p.
• If p is rational, fj(t) are periodic functions of t
• If p is with integral vertices, fj(t) are constants.



Comments

We have explicit forms of the Dj , but unfortunately no nice
formula for the rest, meaning as a distribution supported on p.
For the standard simplex, there are some formulae with rest
obtained in numerical analysis (clearly an important problem in
numerical analysis).



Arrangement of hyperplanes

In the case where p is a polytope with integral vertices, two
asymptotic formulae were previously obtained : one by
Guillemin-Sternberg (extending Khovanskii-Pukhlikov formula
for polynomials), one by Tatsuya Tate (extending
Berline-Vergne local Euler-MacLaurin formula for polynomials).
Our work was motivated by a recent question of Le
Floch-Pelayo : How to see directly that these two formulae are
the same ?.
Easy to do via renormalization of rational functions with
poles on an arrangement of hyperplanes.



Guillemin-Sternberg formula
Let p(h) be a semi-rational polytope. Assume that p0 = p(h0) is
a Delzant polytope with integral vertices (corresponding to a
smooth toric variety M with ample line bundle L). Consider

F (t) =
1
td

∑
x∈tp0∩Λ

test(x/t).

Define Todd(z) = z
1−e−z =

∑∞
j=0(−1)jBjz j/j!.

We can consider the series of differential operators

Todd(∂h/k) :=
N∏

i=1

Todd(∂hi/k)

Then : For k integer, k →∞, we have

F (k) ≡

(
Todd(∂h/k)

∫
p(h)

test

)
|h=h0



But we want a ”Concrete formula”

Pretty clear that F (k) ≡
∑

j
1
k j 〈Dj , test〉 where 〈Dj , f 〉 are

integrals of derivatives of test on faces of the polytope p.
We had obtained (Berline-Vergne) exact formulae with explicit
operators Dj when test was a polynomial. Tatsuya Tate showed
(directly) that these formulae hold in the asymptotic sense. It is
in fact easy to deduce any of these asymptotic formulae from
Euler-MacLaurin formula in dimension one, and we can
formulate a result for any semi-rational polytope. Our method
is as usual the Brianchon-Gram decomposition. and
”renormalization” in the space of rational functions with
poles on an arrangement of hyperplanes.



Integrals and Sums over a cone
V real vector space of dimension d , with a lattice Λ.
c a cone, dual cone c∗ with non empty interior.

I(c)(ξ) =

∫
x∈c

e〈ξ,x〉dx ,

S(c)(ξ) =
∑

x∈c∩Λ

e〈ξ,x〉.

These functions are defined when ξ is the opposite of the dual
cone c∗ to c. For example if c = R≥0, and ξ < 0, then

I(c)(ξ) =

∫
x≥0

eξxdx = −1
ξ
.

S(c)(ξ) =
∑
n≥0

enξ =
1

1− eξ
.



Laurent series of S(c)

I(c) is a rational function of degree −d .
Define [S(c)] =

∑
j=−d S(c)[`] the decomposition of S(c) in sum

of rational functions of homogenous degree `.
Example c = R≥0e1 ⊕ R≥0(e1 + e2)

S(c)(z1, z2) =
1

(1− ez1)

1
(1− ez1+z2)

=
1

z1(z1 + z2)

− 1
2z1
− 1

2(z1 + z2)

+
1
3

+
1
12

z1

z2
+

1
12

z1

(z1 + z2)

+ · · ·



Boundary values

If λ is an interior point in −c∗ (-interior of the dual cone), define

lim
λ

S(c)(iξ) = lim
ε→0

S(c)(iξ + ελ)

lim
λ

S(c)`(iξ) = lim
ε→0

S(c)`(iξ + ελ)

Define tempered distributions on V ∗.
The Fourier transform of limλ S(c)`(iξ) is a derivative of a locally
polynomial function supported on c.
For example c = [0,∞] ; ε < 0,

lim
ε

1
−(iξ + ε)

=

∫ ∞
0

eiξxdx .



The distribution F (t) and its Fourier transform
We consider the cone c and the tempered distribution on V
defined by

〈F (c)(t), test〉 =
1
td

∑
x∈Λ∩c

test(x/t).

It is easy to compute the Fourier transform of this distribution
This is

lim
λ

S(c)(iξ/t)

If t →∞, ξ/t tends to 0, and it is tempting to use the Laurent
series of the function S(c)(ξ).
Theorem When t →∞,

lim
λ

S(c)(iξ/t) ≡
∑
j≥0

t−j lim
λ

S(c)j(iξ).



Explicit formula

The proof of this theorem is obvious. It is clearly additive over
cones, we decompose the cone c in unimodular cones and then
we are reduced to dimension 1 and we use EML formula.
Obvious then to deduce Guillemin-Sternberg formula from
computing this, and using Brianchon-Gram decomposition.
We want to be more explicit.



Renormalization

We consider the arrangement of hyperplanes H = H(G) in V ∗

with equations ga(ξ) = 0 with ga ∈ G ⊂ V the set of generators
of the cone c. We denote by RG(V ∗) the space of rational
functions on V ∗ with poles contained in H(G). Then the
homogeneous components of S(c) are rational functions with
poles on this arrangement of hyperplanes.
Let S be the set of subspaces L of V generated by elements of
G. If [g1,g2, . . . ,gN ] is a sequence of elements of G, the
function 1∏N

i=1 gj (ξ)
is a function in RG(V ∗). For a subspace L,

consider the space BL consisting of the linear span of these
functions 1∏

a∈A ga(ξ) where the sequence ga in the denominator
generates the rational subspace L : L = ⊕Rgj . Then BL is a
subspace of RG(V ∗).



Substracting the polar part

Let us choose a scalar product on V . Consider C[L⊥] the space
of polynomial functions on L⊥. Using our scalar product, we can
embedd C[L⊥] in C[V ∗], the space of polynomial functions on
V ∗.
Proposition(De Concini+Procesi) We have the direct sum
decomposition

RG(V ∗) = ⊕L∈S(C[L⊥]⊗ BL)

Thus we write φ ∈ RG(V ∗) uniquely as φ =
∑

L TL(φ) where
TL(φ) ∈ (C[L⊥]⊗ BL).



The holomorphic part

For L = {0}, the corresponding term TL(φ) is thus a polynomial
function on V ∗. We denote the corresponding term by
Renorm(φ) and we call the polynomial Renorm(φ) the
renormalisation of the rational function φ. It depends of the
choice of a scalar product. In one variable f (z) =

∑
aiz i , and

Renorm(f ) =
∑

i≥0 aiz i . In several variables, we need a scalar
product to suppress the polar part (all BL for L 6= 0).



Back to Example : c = R≥0e1 ⊕ R≥0(e1 + e2)

S(c)(z1, z2) =
1

(1− ez1)

1
(1− ez1+z2)

=
1

z1(z1 + z2)

− 1
2z1
− 1

2(z1 + z2)

+
1
3

+
1
12

z1

z2
+

1
12

z1

(z1 + z2)

+ · · ·



BUT WE REWRITE

1
3

+
1

12
z1

z2
+

1
12

z1

(z1 + z2)

as

1
3

+
1
12

z1

z2
+

1
24

z1 − z2

(z1 + z2)
+

1
24

and the holomorphic part of S(c) is

renorm(S(c)(z1, z2)) = 1/3 + 1/24 + · · · = 3/8 + · · ·



Normal cones and Renormalization

f face of the cone c ; < f > linear span of p − q, p,q in f .
Normal cone T (f , c) in < f >⊥ with lattice < f >⊥ ∩ < f > +Λ
Definition µ(f , c)(ξ) = Renorm(S(T (f , c)))(ξ). This is a
holomorphic function of the variable ξ ∈< f >⊥.

MAIN THEOREM (Berline-Vergne, Paycha)

S(c)(ξ) =
∑
faces

µ(T (f , c))(ξ)I(f )(ξ)



As a corollary

F (t) =
1
td

∑
x∈tc∩Λ

test(x/t)

< F (t), test〉 ≡
∑
faces

1
tcodimf

∑
f

∫
f
µ(f , c)(D/k) ∗ test

Here D are the normal derivatives to the face f .



Example : Cone based on a square
EXAMPLE : let c with generators
e3 + e1,e3 − e1,e3 + e2,e3 − e2.
Then

〈F (t), test〉 ≡
∫

c
Test

+
1
t

1
2

∫
boundary(c)

Test

+
1
t2 (

2
9

∫
edges

Test − 1
36

∫
boundary

N · Test)

where N · test is the normal derivative. N here is the primitive
vector pointing inward.

+
1
t3 ((1/6)Test(0)− 1

24

∫
edges

U ∗ test)

+O(1/t4).

with U = e3 − e1 for the edge e3 + e1, etc...



For a polytope p with integral vertices

The formulae add up nicely using Brianchom-Gram
decomposition.
If h is a smooth function on p then :

t−d
∑

x∈p∩Λ/t

h(x) ≡
∑

f

t−codim(f )

∫
f
(µ(f , p)(1/t∂x )h)

when t is an integer going to∞.
This is the formula of Tatsuya Tate.



Asymptotic EML for a semi-rational polytope

Quite clear that if we use EML in dimension 1 with cones [a,∞]
and a real, we obtain also an asymptotic formula with
coefficients fj(t)/t j〈Dj ,h〉 and fj semi-quasi polynomial and Dj
explicit via the renoramization procedure.



Example : simplex dimension 2

For example, for the standard simple
p = {x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}
Here is the asymptotic series for

〈S(t), test〉 =
1
t2

∑
tp∩Z2

test(x/t)

and t real.



〈S(t), test〉 −
∫
p test ≡

=
1
t

(
1
2

∫
f1

test +
1
2

∫
f2

test + (
1− 2 ∗ {t}

2

∫
f3

test))

+
1
t2 (
−1
12

∫
f1
∂y test +

−1
12

∫
f2
∂x test)

+ +
1
t2 (
−1
12

+
1
2
{t} − 1

2
{t}2)

∫
f3

(−(∂x + ∂y )/2)) ∗ test

+
1
t2 (

1
4

test(0,0) + (3/8− (3/4){t}+ (1/4){t}2)test(1,0))

1
t2 (3/8− (3/4){t}+ (1/4){t}2)test(0,1)

+O(1/t3)

In contrast to the 1-dimensional case, we dont know how to
write a nice remainder in general.


