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Short History

1. Lazar Lusternik-Lev Schnirelmann, 1934; category (cat) of a
topological space.

2. Albert Schwarz, 1966: the Schwarz genus of a fibration.

3. Michael Farber, 2002: topological complexity (TC) of a
space.

4. Yuli Rudyak, 2010: higher (s-th) topological complexity
(TCs).
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Definition of TCs

Definition

Let X be a path-connected topological space. Then TCs(X ) is
the Schwarz category of the fibration

φs : X [0,1] → X s,

φs(γ) =

(
γ(0), γ

(
1

s − 1

)
, γ

(
2

s − 1

)
, . . . , γ

(
s − 2
s − 1

)
, γ(1)

)
.
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Remarks

In other words it is the smallest number n such that X s is
partitioned into n + 1 not too bad pieces with the property that
every s-tuple of distinct points determines a path on X that
passes through those points (in order) and depends on them
containuously on each piece.
We use the reduced (or normalized) version of TC, i.e.
TC2 =TC-1 in Farber’s definition of TC.
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Properties of TC we will use

(1) TC(X ) is an invariant of the homotopy type of X .

(2) TCs(X ) ≤ s · hdim(X) where hdim is the homotopy
dimension.

(3) TCs(X × Y ) ≤TCs(X ) + TCs(Y).
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Cohomological lower bound

(4) The cohomological lower bound.

Definition

Let ds be the diagonal embedding X → X s. Denote by cl(X , s)
the cup length in ker d∗s , i.e., the largest integer k for which
there exist k elements ui ∈ H∗(X s) such that d∗s ui = 0 and
u1u2 · · · uk 6= 0.

We have then
TCs(X) ≥ cl(X, s).

In the rest of the talk we will use cohomology with coefficients
in C omitting coefficients from the notation.
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Groups generated by reflections

Definition

Let V be a complex linear space of dimension r . A (complex)
reflection is a finite order invertible linear transformation
τ : V → V whose fixed point set is a hyperplane Hτ . A finite
subgroup of GL(V ) is a reflection group if it is generated by
reflections.

For a reflection group W the set AW = {Hτ} is called the
reflection arrangement of W .

A reflection group W is irreducible if its tautological
representation to GL(V ) is irreducible. Then the rank of W is r .
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Eilenberg-MacLane spaces

Theorem (V.Arnold, P.Deligne, D.Bessis)

Let MW = V \
⋃

H∈AW
H for an arbitrary reflection group W.

Then MW is a K [π,1].
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Example

For ` > 1 let the hyperplanes Hij (1 ≤ i < j ≤ `) are given in C`
by the equations xi = xj . The set of all Hij is the reflection
arrangement of the permutation group W = Σ`. Here π1(MW )
is the pure Braid group on ` strings, that is the pure Artin group
of type A`−1.

Similarly, for any (complexified) finite Coxeter group W the
group π1(MW ) is the pure Artin group of the respective type.
Because of that π1(MW ) for an arbitrary reflection group W is
called the pure Artin-type group for W (or the generalized pure
Braid group associated to W).
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The algebra H∗(M;C)

We will always denote by A a central complex hyperplane
arrangement in a linear space V and by M its complement.
We assume that the algebra A = H∗(M;C) is known. The set of
generators of it, denoted by {e1, . . . ,en} ⊂ H1, is in a fixed
one-to-one correspondence with A.

The ‘independent’ square-free monomials in ei linearly
generate A but are not linearly independent in general (over C).
Each linear order on A determines a monomial (Gröbner) basis.
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Upper bound of TCs(M)

We have
TCs(M) ≤ sr − 1.

Indeed M = M̄ × C∗ where M̄ is the projectivization of M and
has homotopy type of a CW-complex of dimension r − 1
whence
TCs(M) ≤ TCs(M0) + TCs(S1) ≤ s(r − 1) + s − 1 = sr − 1.

To calculate a lower bound we need some preparation.
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Degree one elements in ker d∗s

Fix an integer s ≥ 2; for each generator ei ∈ H1(M), and each
j (1 < j ≤ s) put

e(j)
i = ei ⊗ 1⊗ · · · ⊗ 1− 1⊗ · · · ⊗ 1⊗ ei ⊗ 1⊗ · · · ⊗ 1

where ei in the second summand is in the j th position. Clearly
each e(j)

i ∈ ker d∗s .

For every I ⊂ {e(j)
i } let πI be the product of all elements from I.

If πI does not vanish then |I| is a lower bound for TCs.
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Products over pairs

In the rest of the talk we will identify subsets of n̄ with the
respective subarrangements of A.
Let Q = (B,C) be an ordered pair of disjoint independent
subsets of n̄. The product over Q is

πQ = eB · e′C

where

eB =
∏
i∈B

s∏
j=2

e(j)
i , e′C =

∏
i∈C

e(2)
i .

We put Q̄ = B ∪ C.

13



Balanced sets and pairs

A subset S ⊂ n̄ is balanced if for every its non-empty subset S′

we have |S′| < 2 rk(S′). A pair Q = (B,C) is balanced if |B| = r
and Q̄ is balanced.
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Lower bound

Theorem

Let A be a central arrangement. Then for every integer s,
s ≥ 2, and every balanced pair Q = (B,C) we have πQ 6= 0.
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Idea of proof

Clearly πQ is a linear combination of pure s-tensors of degree
(s − 1)r + |C|. Among them there is µ = e′C ⊗ eB ⊗ · · · ⊗ eB
whose all factors are independent.

It follows from the property of being balanced that all the
monomials in µ belong to a monomial basis for some order on
A. This implies that µ cannot be canceled whence πQ does not
vanish.
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Lower bound

Theorem

For the complement M of a complex central arrangement of
hyperplanes, every integer s (2 ≤ s), and every basic pair
(B,C) we have

TCs(M) ≥ (s − 1)r + |C|.
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Large arrangements

There is a substantial class of arrangements for which the lower
bound coincides with the upper bound.

Definition

We call an arrangement large if there exists a balanced pair
(B,C) with |C| = r − 1 whence for every s we have
TCs(M) = sr − 1.

Example. A simple subclass of large arrangements is formed
by the irreducible arrangements of rank 2 (i.e., all non-Boolean
rank 2 arrangements).
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Sufficient condition

Large arrangements are easy to find due to the following
sufficient condition.

Definition

A pair (B,C) is well-balanced if B is a base, |C| = r − 1, and no
b ∈ B is dependent on C.

Theorem

Every well-balanced pair is balanced.

Indeed suppose (B,C) is well-balanced but there is a
non-empty D ⊂ B ∪ C with |D| ≥ 2 rk D. Then D ∩ B and D ∩ C
are independent whence both are bases of D. Hence every
b ∈ D ∩ B depends of D ∩ C which contradicts the condition.
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Another sufficient condition

Let L(A) be the lattice of all intersections of hyperplanes from
A ordered opposite to inclusion. For X ∈ L(A) we put
AX = {H ∈ A|H ≥ X}.

Definition

L(A) is well-balanced if there exists X ∈ L(A), rk X = r − 1
such that for no Y ∈ L(A) \ {0} we have A = AX ∪ AY .

This definition makes sense for an arbitrary finite geometric
lattice.
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Another sufficient condition

Theorem

If L(A) is well-balanced then there exists a well-balanced pair in
A.

Proof.

Let C be a base of AX from the definition. Then |C| = r − 1.
Put A′ = A \ AX . By definition rkA′ = r . Let B be a base of A′
whence also a base of A. Since B is disjoint with AX no b ∈ B
depends on C.
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Corollary

Corollary

Suppose for all X ∈ L(A) \ {0} we have

|A(X )| < n
2
. (1)

Then A is large.

Clearly it suffices to check the inequality (1) for X of rank r − 1
only.
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TCs(MW )

Here is the main theorem of the talk.

Theorem

For every irreducible reflection group W of rank r and every
s > 1 the arrangement AW is well-balanced whence
TCs(MW ) = sr − 1.

Our proof consists of four parts.

1. W of rank 2; this case is immediate since r = 2.

2. Infinite series.

3. The exceptional groups different from Coxeter types Em.

4. Types Em.
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Case (2)

For the infinite series well-balanced pairs can be exhibited
explicitly. Here we identify hyperplanes with their defining linear
forms and A with the product of them.

(a) Types Ar (m = 1) and full monomial types G(m,1, r)
(m > 1) : Q =

∏r
i=1 xi

∏
1≤i<j≤r (xm

i − xm
j ). Put B = {x1, . . . , xr}

and C = {x1 − x2, . . . , x1 − xr}.

(b) Special monomial types G(m,m, r) m ≥ 2:
Q =

∏
1≤i<j≤r (xm

i − xm
j ). Put

B = {x1 − ζx2, . . . , x1 − ζxr , x2 − ζx3} and
C = {x1 − x2, . . . , x1 − xr} where ζ is a primitive root of 1 of
order m.
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Proof of case (2)

In (a), the result is clear. In (b), B is independent since it
generates the basis {x1, . . . , xr} of V ∗. Besides C lies in the
kernel of the index (the linear map ind : V ∗ → C, ind(xi) = 1)
while no b ∈ B does.
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Case (3)

In this case, we check case-by-case that L(AW ) is
well-balanced using Tables C.1-C.23 from the book: Orlik and
Terao, Arrangements of Hyperplanes.

We use Corollary 6.28 from this book that AX is the reflection
arrangement for a reflection subgroup WX of W . The numbers
nX = |AX | can be found from Table B.1 as the sums of
covariants for WX .
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Table

The table below is organized as follows. The first row consists
of the Shephard-Todd classification numbers (23-34) of
exceptional groups of ranks greater than 2 (no types Em). The
second row consists of the cardinalities n of the respective
arrangements. The third row consists of the maximal
cardinalities of AX . It suffices to check inequality (1): |AX | < n

2 .

23 24 25 26 27 28 29 30 31 32 33 34
15 21 12 21 45 24 40 60 60 40 45 126
5 4 4 5 5 9 12 15 15 12 12 45
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Case (4)

For the types Em, the inequality (1) does not hold but it is easy
to check that L(A) is well-balanced by definition. The needed
information is in the table below.

E6 E7 E8
36 63 120

(20,15) (36,21) (63,42)

The second row has the same meaning as in the previous
table.The last row consists of pairs combining the maximal
cardinality of AY with rk Y = r − 1 and the cardinality of another
AX also with rk X = r − 1. One needs to check that the sum in
each pair is less than the entry of the second row. This shows
that L(AW ) is well-balanced.
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Examples

There are other classes of examples of large arrangements.
The most significant consists of all generic arrangements with
|A| ≥ 2r − 1.

Generic arrangements with n < 2r − 1 are not-large (‘small’?).
The general formula for generic arrangements is

TCs(M) = min{sr − 1, (s − 1)n}.

For instance, if r = 3, n = 4, s = 2 then TC2(M) = 4 < 2r − 1.
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Conjecture

Conjecture
For every complex hyperplane arrangement the topological
complexity of its complement equals the cohomological lower
bound (for every s).
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THANK YOU FOR YOUR ATTENTION!
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