Higher topological complexity of Eilenberg-MacLane spaces

Sergey Yuzvinsky

University of Oregon

Cortona, September 2014

Short History

1. Lazar Lusternik-Lev Schnirelmann, 1934; category (cat) of a topological space.

2. Albert Schwarz, 1966: the Schwarz genus of a fibration.

3. Michael Farber, 2002: topological complexity (TC) of a space.

4. Yuli Rudyak, 2010: higher (*s*-th) topological complexity (TC_s) .

Definition of TC_s

Definition

Let X be a path-connected topological space. Then $TC_s(X)$ is the Schwarz category of the fibration

. .[0 1]

$$\phi_{s}: X^{[0,1]} \to X^{s},$$

$$\phi_{s}(\gamma) = \left(\gamma(0), \gamma\left(\frac{1}{s-1}\right), \gamma\left(\frac{2}{s-1}\right), \dots, \gamma\left(\frac{s-2}{s-1}\right), \gamma(1)\right).$$

Remarks

In other words it is the smallest number *n* such that X^s is partitioned into n + 1 not too bad pieces with the property that every *s*-tuple of distinct points determines a path on *X* that passes through those points (in order) and depends on them containuously on each piece.

We use the reduced (or normalized) version of TC, i.e.

 $TC_2 = TC-1$ in Farber's definition of TC.

(1) TC(X) is an invariant of the homotopy type of X.

(2) $TC_s(X) \le s \cdot hdim(X)$ where hdim is the homotopy dimension.

(1) TC(X) is an invariant of the homotopy type of X.

(2) $TC_s(X) \le s \cdot hdim(X)$ where hdim is the homotopy dimension.

(3) $\mathsf{TC}_{s}(X \times Y) \leq \mathsf{TC}_{s}(X) + \mathsf{TC}_{s}(Y)$.

Cohomological lower bound

(4) The cohomological lower bound.

Definition

Let d_s be the diagonal embedding $X \to X^s$. Denote by cl(X, s) the cup length in ker d_s^* , i.e., the largest integer k for which there exist k elements $u_i \in H^*(X^s)$ such that $d_s^* u_i = 0$ and $u_1 u_2 \cdots u_k \neq 0$.

Cohomological lower bound

(4) The cohomological lower bound.

Definition

Let d_s be the diagonal embedding $X \to X^s$. Denote by cl(X, s) the cup length in ker d_s^* , i.e., the largest integer k for which there exist k elements $u_i \in H^*(X^s)$ such that $d_s^* u_i = 0$ and $u_1 u_2 \cdots u_k \neq 0$.

We have then

$$TC_s(X) \ge cl(X, s).$$

In the rest of the talk we will use cohomology with coefficients in $\mathbb C$ omitting coefficients from the notation.

Groups generated by reflections

Definition

Let *V* be a complex linear space of dimension *r*. A (complex) reflection is a finite order invertible linear transformation $\tau: V \to V$ whose fixed point set is a hyperplane H_{τ} . A finite subgroup of GL(V) is a reflection group if it is generated by reflections.

Groups generated by reflections

Definition

Let *V* be a complex linear space of dimension *r*. A (complex) reflection is a finite order invertible linear transformation $\tau: V \to V$ whose fixed point set is a hyperplane H_{τ} . A finite subgroup of GL(V) is a reflection group if it is generated by reflections.

For a reflection group *W* the set $A_W = \{H_\tau\}$ is called the reflection arrangement of *W*.

Groups generated by reflections

Definition

Let *V* be a complex linear space of dimension *r*. A (complex) reflection is a finite order invertible linear transformation $\tau: V \to V$ whose fixed point set is a hyperplane H_{τ} . A finite subgroup of GL(V) is a reflection group if it is generated by reflections.

For a reflection group *W* the set $A_W = \{H_\tau\}$ is called the reflection arrangement of *W*.

A reflection group W is irreducible if its tautological representation to GL(V) is irreducible. Then the rank of W is r.

Eilenberg-MacLane spaces

Theorem (V.Arnold, P.Deligne, D.Bessis)

Let $M_W = V \setminus \bigcup_{H \in A_W} H$ for an arbitrary reflection group W. Then M_W is a $K[\pi, 1]$.

Example

For $\ell > 1$ let the hyperplanes H_{ij} $(1 \le i < j \le \ell)$ are given in \mathbb{C}^{ℓ} by the equations $x_i = x_j$. The set of all H_{ij} is the reflection arrangement of the permutation group $W = \Sigma_{\ell}$. Here $\pi_1(M_W)$ is the pure Braid group on ℓ strings, that is the pure Artin group of type $A_{\ell-1}$.

Example

For $\ell > 1$ let the hyperplanes H_{ij} $(1 \le i < j \le \ell)$ are given in \mathbb{C}^{ℓ} by the equations $x_i = x_j$. The set of all H_{ij} is the reflection arrangement of the permutation group $W = \Sigma_{\ell}$. Here $\pi_1(M_W)$ is the pure Braid group on ℓ strings, that is the pure Artin group of type $A_{\ell-1}$.

Similarly, for any (complexified) finite Coxeter group W the group $\pi_1(M_W)$ is the pure Artin group of the respective type. Because of that $\pi_1(M_W)$ for an arbitrary reflection group W is called the pure Artin-type group for W (or the generalized pure Braid group associated to W). We will always denote by \mathcal{A} a central complex hyperplane arrangement in a linear space V and by M its complement. We assume that the algebra $A = H^*(M; \mathbb{C})$ is known. The set of generators of it, denoted by $\{e_1, \ldots, e_n\} \subset H^1$, is in a fixed one-to-one correspondence with \mathcal{A} . We will always denote by \mathcal{A} a central complex hyperplane arrangement in a linear space V and by M its complement. We assume that the algebra $A = H^*(M; \mathbb{C})$ is known. The set of generators of it, denoted by $\{e_1, \ldots, e_n\} \subset H^1$, is in a fixed one-to-one correspondence with \mathcal{A} .

The 'independent' square-free monomials in e_i linearly generate A but are not linearly independent in general (over \mathbb{C}). Each linear order on A determines a monomial (Gröbner) basis.

Upper bound of $TC_s(M)$

We have

$$\operatorname{TC}_{s}(M) \leq sr - 1.$$

Indeed $M = \overline{M} \times \mathbb{C}^*$ where \overline{M} is the projectivization of M and has homotopy type of a CW-complex of dimension r - 1 whence

 $\operatorname{TC}_{s}(M) \leq \operatorname{TC}_{s}(M_{0}) + \operatorname{TC}_{s}(S^{1}) \leq s(r-1) + s - 1 = sr - 1.$

Upper bound of $TC_s(M)$

We have

$$\operatorname{TC}_{s}(M) \leq sr - 1.$$

Indeed $M = \overline{M} \times \mathbb{C}^*$ where \overline{M} is the projectivization of M and has homotopy type of a CW-complex of dimension r - 1 whence

 $\operatorname{TC}_{s}(M) \leq \operatorname{TC}_{s}(M_{0}) + \operatorname{TC}_{s}(S^{1}) \leq s(r-1) + s - 1 = sr - 1.$

To calculate a lower bound we need some preparation.

Fix an integer $s \ge 2$; for each generator $e_i \in H^1(M)$, and each $j (1 < j \le s)$ put

$$e_i^{(j)} = e_i \otimes 1 \otimes \cdots \otimes 1 - 1 \otimes \cdots \otimes 1 \otimes e_i \otimes 1 \otimes \cdots \otimes 1$$

where e_i in the second summand is in the *j*th position. Clearly each $e_i^{(j)} \in \ker d_s^*$.

Fix an integer $s \ge 2$; for each generator $e_i \in H^1(M)$, and each $j (1 < j \le s)$ put

$$e_i^{(j)} = e_i \otimes 1 \otimes \cdots \otimes 1 - 1 \otimes \cdots \otimes 1 \otimes e_i \otimes 1 \otimes \cdots \otimes 1$$

where e_i in the second summand is in the *j*th position. Clearly each $e_i^{(j)} \in \ker d_s^*$.

For every $I \subset \{e_i^{(J)}\}$ let π_I be the product of all elements from *I*. If π_I does not vanish then |I| is a lower bound for TC_s. In the rest of the talk we will identify subsets of \bar{n} with the respective subarrangements of A. Let Q = (B, C) be an ordered pair of disjoint independent

subsets of \bar{n} . The product over Q is

$$\pi_{Q} = e_{B} \cdot e_{C}'$$

where

$$e_B = \prod_{i \in B} \prod_{j=2}^s e_i^{(j)}, \quad e_C' = \prod_{i \in C} e_i^{(2)}.$$

We put $\bar{Q} = B \cup C$.

Balanced sets and pairs

A subset $S \subset \overline{n}$ is balanced if for every its non-empty subset S' we have $|S'| < 2 \operatorname{rk}(S')$. A pair Q = (B, C) is balanced if |B| = r and \overline{Q} is balanced.

Lower bound

Theorem

Let A be a central arrangement. Then for every integer s, $s \ge 2$, and every balanced pair Q = (B, C) we have $\pi_Q \neq 0$.

Idea of proof

Clearly π_Q is a linear combination of pure *s*-tensors of degree (s-1)r + |C|. Among them there is $\mu = e'_C \otimes e_B \otimes \cdots \otimes e_B$ whose all factors are independent.

Idea of proof

Clearly π_Q is a linear combination of pure *s*-tensors of degree (s-1)r + |C|. Among them there is $\mu = e'_C \otimes e_B \otimes \cdots \otimes e_B$ whose all factors are independent.

It follows from the property of being balanced that all the monomials in μ belong to a monomial basis for some order on \mathcal{A} . This implies that μ cannot be canceled whence π_Q does not vanish.

Lower bound

Theorem

For the complement M of a complex central arrangement of hyperplanes, every integer s $(2 \le s)$, and every basic pair (B, C) we have

$$\operatorname{TC}_{s}(M) \geq (s-1)r + |C|.$$

There is a substantial class of arrangements for which the lower bound coincides with the upper bound.

Definition

We call an arrangement large if there exists a balanced pair (B, C) with |C| = r - 1 whence for every *s* we have $TC_s(M) = sr - 1$.

There is a substantial class of arrangements for which the lower bound coincides with the upper bound.

Definition

We call an arrangement large if there exists a balanced pair (B, C) with |C| = r - 1 whence for every *s* we have $TC_s(M) = sr - 1$.

Example. A simple subclass of large arrangements is formed by the irreducible arrangements of rank 2 (i.e., all non-Boolean rank 2 arrangements).

Sufficient condition

Large arrangements are easy to find due to the following sufficient condition.

Definition

A pair (B, C) is well-balanced if *B* is a base, |C| = r - 1, and no $b \in B$ is dependent on *C*.

Sufficient condition

Large arrangements are easy to find due to the following sufficient condition.

Definition

A pair (B, C) is well-balanced if *B* is a base, |C| = r - 1, and no $b \in B$ is dependent on *C*.

Theorem

Every well-balanced pair is balanced.

Sufficient condition

Large arrangements are easy to find due to the following sufficient condition.

Definition

A pair (B, C) is well-balanced if *B* is a base, |C| = r - 1, and no $b \in B$ is dependent on *C*.

Theorem

Every well-balanced pair is balanced.

Indeed suppose (B, C) is well-balanced but there is a non-empty $D \subset B \cup C$ with $|D| \ge 2 \operatorname{rk} D$. Then $D \cap B$ and $D \cap C$ are independent whence both are bases of D. Hence every $b \in D \cap B$ depends of $D \cap C$ which contradicts the condition. Let $L(\mathcal{A})$ be the lattice of all intersections of hyperplanes from \mathcal{A} ordered opposite to inclusion. For $X \in L(\mathcal{A})$ we put $\mathcal{A}_X = \{H \in \mathcal{A} | H \ge X\}.$

Let $L(\mathcal{A})$ be the lattice of all intersections of hyperplanes from \mathcal{A} ordered opposite to inclusion. For $X \in L(\mathcal{A})$ we put $\mathcal{A}_X = \{H \in \mathcal{A} | H \ge X\}.$

Definition

 $L(\mathcal{A})$ is well-balanced if there exists $X \in L(\mathcal{A})$, rk X = r - 1such that for no $Y \in L(\mathcal{A}) \setminus \{0\}$ we have $\mathcal{A} = \mathcal{A}_X \cup \mathcal{A}_Y$.

This definition makes sense for an arbitrary finite geometric lattice.

Another sufficient condition

Theorem

If L(A) is well-balanced then there exists a well-balanced pair in A.

Another sufficient condition

Theorem

If $L(\mathcal{A})$ is well-balanced then there exists a well-balanced pair in \mathcal{A} .

Proof.

Let *C* be a base of A_X from the definition. Then |C| = r - 1. Put $A' = A \setminus A_X$. By definition rk A' = r. Let *B* be a base of A' whence also a base of A. Since *B* is disjoint with A_X no $b \in B$ depends on *C*.

Corollary

Corollary

Suppose for all $X \in L(\mathcal{A}) \setminus \{0\}$ we have

$$|\mathcal{A}(X)| < \frac{n}{2}.$$
 (1)

Then \mathcal{A} is large.

Clearly it suffices to check the inequality (1) for X of rank r - 1 only.

Here is the main theorem of the talk.

Theorem

For every irreducible reflection group W of rank r and every s > 1 the arrangement A_W is well-balanced whence $TC_s(M_W) = sr - 1$.

Here is the main theorem of the talk.

Theorem

For every irreducible reflection group W of rank r and every s > 1 the arrangement A_W is well-balanced whence $TC_s(M_W) = sr - 1$.

Our proof consists of four parts.

- 1. *W* of rank 2; this case is immediate since r = 2.
- 2. Infinite series.
- 3. The exceptional groups different from Coxeter types E_m .
- 4. Types E_m .

Case (2)

For the infinite series well-balanced pairs can be exhibited explicitly. Here we identify hyperplanes with their defining linear forms and A with the product of them.

(a) **Types A**_{*r*} (*m* = 1) and **full monomial types** *G*(*m*, 1, *r*) (*m* > 1) : $Q = \prod_{i=1}^{r} x_i \prod_{1 \le i < j \le r} (x_i^m - x_j^m)$. Put $B = \{x_1, ..., x_r\}$ and $C = \{x_1 - x_2, ..., x_1 - x_r\}$.

Case (2)

For the infinite series well-balanced pairs can be exhibited explicitly. Here we identify hyperplanes with their defining linear forms and A with the product of them.

(a) **Types A**_{*r*} (*m* = 1) and **full monomial types** *G*(*m*, 1, *r*) (*m* > 1) : $Q = \prod_{i=1}^{r} x_i \prod_{1 \le i < j \le r} (x_i^m - x_j^m)$. Put $B = \{x_1, ..., x_r\}$ and $C = \{x_1 - x_2, ..., x_1 - x_r\}$.

(b) **Special monomial types** $G(m, m, r) \ m \ge 2$: $Q = \prod_{1 \le i < j \le r} (x_i^m - x_j^m)$. Put $B = \{x_1 - \zeta x_2, \dots, x_1 - \zeta x_r, x_2 - \zeta x_3\}$ and $C = \{x_1 - x_2, \dots, x_1 - x_r\}$ where ζ is a primitive root of 1 of order *m*.

In (a), the result is clear. In (b), *B* is independent since it generates the basis $\{x_1, \ldots, x_r\}$ of *V*^{*}. Besides *C* lies in the kernel of the index (the linear map *ind* : *V*^{*} $\rightarrow \mathbb{C}$, *ind*(x_i) = 1) while no $b \in B$ does.

In this case, we check case-by-case that $L(A_W)$ is well-balanced using Tables C.1-C.23 from the book: Orlik and Terao, Arrangements of Hyperplanes.

In this case, we check case-by-case that $L(A_W)$ is well-balanced using Tables C.1-C.23 from the book: Orlik and Terao, Arrangements of Hyperplanes.

We use Corollary 6.28 from this book that A_X is the reflection arrangement for a reflection subgroup W_X of W. The numbers $n_X = |A_X|$ can be found from Table B.1 as the sums of covariants for W_X .

Table

The table below is organized as follows. The first row consists of the Shephard-Todd classification numbers (23-34) of exceptional groups of ranks greater than 2 (no types E_m). The second row consists of the cardinalities *n* of the respective arrangements. The third row consists of the maximal cardinalities of A_X . It suffices to check inequality (1): $|A_X| < \frac{n}{2}$.

23	24	25	26	27	28	29	30	31	32	33	34
15	21	12	21	45	24	40	60	60	40	45	126
5	4	4	5	5	9	12	15	15	12	12	45

For the types E_m , the inequality (1) does not hold but it is easy to check that L(A) is well-balanced by definition. The needed information is in the table below.

Case (4)

For the types E_m , the inequality (1) does not hold but it is easy to check that L(A) is well-balanced by definition. The needed information is in the table below.

E ₆	E ₇	E ₈
36	63	120
(20,15)	(36,21)	(63,42)

The second row has the same meaning as in the previous table. The last row consists of pairs combining the maximal cardinality of A_Y with rk Y = r - 1 and the cardinality of another A_X also with rk X = r - 1. One needs to check that the sum in each pair is less than the entry of the second row. This shows that $L(A_W)$ is well-balanced.

Examples

There are other classes of examples of large arrangements. The most significant consists of all generic arrangements with $|A| \ge 2r - 1$.

Examples

There are other classes of examples of large arrangements. The most significant consists of all generic arrangements with $|A| \ge 2r - 1$.

Generic arrangements with n < 2r - 1 are not-large ('small'?). The general formula for generic arrangements is

$$TC_{s}(M) = \min\{sr - 1, (s - 1)n\}.$$

Examples

There are other classes of examples of large arrangements. The most significant consists of all generic arrangements with $|A| \ge 2r - 1$.

Generic arrangements with n < 2r - 1 are not-large ('small'?). The general formula for generic arrangements is

$$TC_{s}(M) = \min\{sr - 1, (s - 1)n\}.$$

For instance, if r = 3, n = 4, s = 2 then $TC_2(M) = 4 < 2r - 1$.

Conjecture

Conjecture

For every complex hyperplane arrangement the topological complexity of its complement equals the cohomological lower bound (for every s).

THANK YOU FOR YOUR ATTENTION!