Higher topological complexity of Eilenberg-MacLane spaces

Sergey Yuzvinsky

University of Oregon
Cortona, September 2014

Short History

1. Lazar Lusternik-Lev Schnirelmann, 1934; category (cat) of a topological space.
2. Albert Schwarz, 1966: the Schwarz genus of a fibration.
3. Michael Farber, 2002: topological complexity (TC) of a space.
4. Yuli Rudyak, 2010: higher (s-th) topological complexity (TC_{s}).

Definition of TCs

Definition

Let X be a path-connected topological space. Then $\mathrm{TC}_{s}(X)$ is the Schwarz category of the fibration

$$
\begin{gathered}
\phi_{s}: X^{[0,1]} \rightarrow X^{s} \\
\phi_{s}(\gamma)=\left(\gamma(0), \gamma\left(\frac{1}{s-1}\right), \gamma\left(\frac{2}{s-1}\right), \ldots, \gamma\left(\frac{s-2}{s-1}\right), \gamma(1)\right)
\end{gathered}
$$

Remarks

In other words it is the smallest number n such that X^{s} is partitioned into $n+1$ not too bad pieces with the property that every s-tuple of distinct points determines a path on X that passes through those points (in order) and depends on them containuously on each piece. We use the reduced (or normalized) version of TC, i.e. $\mathrm{TC}_{2}=\mathrm{TC}-1$ in Farber's definition of TC.

Properties of TC we will use

(1) $\mathrm{TC}(X)$ is an invariant of the homotopy type of X.
(2) $\mathrm{TC}_{s}(X) \leq s \cdot \operatorname{hdim}(\mathrm{X})$ where hdim is the homotopy dimension.

Properties of TC we will use

(1) $\mathrm{TC}(X)$ is an invariant of the homotopy type of X.
(2) $\mathrm{TC}_{s}(X) \leq s \cdot \operatorname{hdim}(\mathrm{X})$ where hdim is the homotopy dimension.
(3) $\mathrm{TC}_{s}(X \times Y) \leq \mathrm{TC}_{s}(X)+\mathrm{TC}_{s}(\mathrm{Y})$.

Cohomological lower bound

(4) The cohomological lower bound.

Definition

Let d_{s} be the diagonal embedding $X \rightarrow X^{s}$. Denote by $c l(X, s)$ the cup length in ker d_{s}^{*}, i.e., the largest integer k for which there exist k elements $u_{i} \in H^{*}\left(X^{s}\right)$ such that $d_{s}^{*} u_{i}=0$ and $u_{1} u_{2} \cdots u_{k} \neq 0$.

Cohomological lower bound

(4) The cohomological lower bound.

Definition

Let d_{s} be the diagonal embedding $X \rightarrow X^{s}$. Denote by $c l(X, s)$ the cup length in ker d_{s}^{*}, i.e., the largest integer k for which there exist k elements $u_{i} \in H^{*}\left(X^{s}\right)$ such that $d_{s}^{*} u_{i}=0$ and $u_{1} u_{2} \cdots u_{k} \neq 0$.

We have then

$$
\mathrm{TC}_{\mathrm{s}}(\mathrm{X}) \geq \operatorname{cl}(\mathrm{X}, \mathrm{~s})
$$

In the rest of the talk we will use cohomology with coefficients in \mathbb{C} omitting coefficients from the notation.

Groups generated by reflections

Definition

Let V be a complex linear space of dimension r. A (complex) reflection is a finite order invertible linear transformation $\tau: V \rightarrow V$ whose fixed point set is a hyperplane H_{τ}. A finite subgroup of $G L(V)$ is a reflection group if it is generated by reflections.

Groups generated by reflections

Definition

Let V be a complex linear space of dimension r. A (complex) reflection is a finite order invertible linear transformation $\tau: V \rightarrow V$ whose fixed point set is a hyperplane H_{τ}. A finite subgroup of $G L(V)$ is a reflection group if it is generated by reflections.

For a reflection group W the set $\mathcal{A}_{W}=\left\{H_{\tau}\right\}$ is called the reflection arrangement of W.

Groups generated by reflections

Definition

Let V be a complex linear space of dimension r. A (complex) reflection is a finite order invertible linear transformation $\tau: V \rightarrow V$ whose fixed point set is a hyperplane H_{τ}. A finite subgroup of $G L(V)$ is a reflection group if it is generated by reflections.

For a reflection group W the set $\mathcal{A}_{W}=\left\{H_{\tau}\right\}$ is called the reflection arrangement of W.

A reflection group W is irreducible if its tautological representation to $G L(V)$ is irreducible. Then the rank of W is r.

Eilenberg-MacLane spaces

Theorem (V.Arnold, P.Deligne, D.Bessis)
Let $M_{W}=V \backslash \bigcup_{H \in \mathcal{A}_{W}} H$ for an arbitrary reflection group W. Then M_{W} is a $K[\pi, 1]$.

Example

For $\ell>1$ let the hyperplanes $H_{i j}(1 \leq i<j \leq \ell)$ are given in \mathbb{C}^{ℓ} by the equations $x_{i}=x_{j}$. The set of all $H_{i j}$ is the reflection arrangement of the permutation group $W=\Sigma_{\ell}$. Here $\pi_{1}\left(M_{W}\right)$ is the pure Braid group on ℓ strings, that is the pure Artin group of type $\mathrm{A}_{\ell-1}$.

Example

For $\ell>1$ let the hyperplanes $H_{i j}(1 \leq i<j \leq \ell)$ are given in \mathbb{C}^{ℓ} by the equations $x_{i}=x_{j}$. The set of all $H_{i j}$ is the reflection arrangement of the permutation group $W=\Sigma_{\ell}$. Here $\pi_{1}\left(M_{W}\right)$ is the pure Braid group on ℓ strings, that is the pure Artin group of type $\mathrm{A}_{\ell-1}$.

Similarly, for any (complexified) finite Coxeter group W the group $\pi_{1}\left(M_{W}\right)$ is the pure Artin group of the respective type. Because of that $\pi_{1}\left(M_{W}\right)$ for an arbitrary reflection group W is called the pure Artin-type group for W (or the generalized pure Braid group associated to W).

The algebra $H^{*}(M ; \mathbb{C})$

We will always denote by \mathcal{A} a central complex hyperplane arrangement in a linear space V and by M its complement. We assume that the algebra $A=H^{*}(M ; \mathbb{C})$ is known. The set of generators of it, denoted by $\left\{e_{1}, \ldots, e_{n}\right\} \subset H^{1}$, is in a fixed one-to-one correspondence with \mathcal{A}.

The algebra $H^{*}(M ; \mathbb{C})$

We will always denote by \mathcal{A} a central complex hyperplane arrangement in a linear space V and by M its complement. We assume that the algebra $A=H^{*}(M ; \mathbb{C})$ is known. The set of generators of it, denoted by $\left\{e_{1}, \ldots, e_{n}\right\} \subset H^{1}$, is in a fixed one-to-one correspondence with \mathcal{A}.

The 'independent' square-free monomials in e_{i} linearly generate A but are not linearly independent in general (over \mathbb{C}). Each linear order on \mathcal{A} determines a monomial (Gröbner) basis.

Upper bound of $\mathrm{TC}_{s}(M)$

We have

$$
\mathrm{TC}_{s}(M) \leq s r-1
$$

Indeed $M=\bar{M} \times \mathbb{C}^{*}$ where \bar{M} is the projectivization of M and has homotopy type of a CW-complex of dimension $r-1$ whence

$$
\mathrm{TC}_{s}(M) \leq \mathrm{TC}_{s}\left(M_{0}\right)+\mathrm{TC}_{s}\left(S^{1}\right) \leq s(r-1)+s-1=s r-1
$$

Upper bound of $\mathrm{TC}_{s}(M)$

We have

$$
\mathrm{TC}_{s}(M) \leq s r-1
$$

Indeed $M=\bar{M} \times \mathbb{C}^{*}$ where \bar{M} is the projectivization of M and has homotopy type of a CW-complex of dimension $r-1$ whence

$$
\mathrm{TC}_{s}(M) \leq \mathrm{TC}_{s}\left(M_{0}\right)+\mathrm{TC}_{s}\left(S^{1}\right) \leq s(r-1)+s-1=s r-1
$$

To calculate a lower bound we need some preparation.

Degree one elements in ker d_{s}^{*}

Fix an integer $s \geq 2$; for each generator $e_{i} \in H^{1}(M)$, and each $j(1<j \leq s)$ put

$$
e_{i}^{(j)}=e_{i} \otimes 1 \otimes \cdots \otimes 1-1 \otimes \cdots \otimes 1 \otimes e_{i} \otimes 1 \otimes \cdots \otimes 1
$$

where e_{i} in the second summand is in the j th position. Clearly each $e_{i}^{(j)} \in \operatorname{ker} d_{s}^{*}$.

Degree one elements in ker d_{s}^{*}

Fix an integer $s \geq 2$; for each generator $e_{i} \in H^{1}(M)$, and each $j(1<j \leq s)$ put

$$
e_{i}^{(j)}=e_{i} \otimes 1 \otimes \cdots \otimes 1-1 \otimes \cdots \otimes 1 \otimes e_{i} \otimes 1 \otimes \cdots \otimes 1
$$

where e_{i} in the second summand is in the j th position. Clearly each $e_{i}^{(j)} \in \operatorname{ker} d_{s}^{*}$.

For every $I \subset\left\{e_{i}^{(j)}\right\}$ let π I be the product of all elements from I. If π_{l} does not vanish then $|I|$ is a lower bound for TC_{s}.

Products over pairs

In the rest of the talk we will identify subsets of \bar{n} with the respective subarrangements of \mathcal{A}.
Let $Q=(B, C)$ be an ordered pair of disjoint independent subsets of \bar{n}. The product over Q is

$$
\pi_{Q}=e_{B} \cdot e_{C}^{\prime}
$$

where

$$
e_{B}=\prod_{i \in B} \prod_{j=2}^{s} e_{i}^{(j)}, \quad e_{C}^{\prime}=\prod_{i \in C} e_{i}^{(2)}
$$

We put $\bar{Q}=B \cup C$.

Balanced sets and pairs

A subset $S \subset \bar{n}$ is balanced if for every its non-empty subset S^{\prime} we have $\left|S^{\prime}\right|<2 \mathrm{rk}\left(S^{\prime}\right)$. A pair $Q=(B, C)$ is balanced if $|B|=r$ and \bar{Q} is balanced.

Lower bound

Theorem

Let \mathcal{A} be a central arrangement. Then for every integer s, $s \geq 2$, and every balanced pair $Q=(B, C)$ we have $\pi_{Q} \neq 0$.

Idea of proof

Clearly π_{Q} is a linear combination of pure s-tensors of degree $(s-1) r+|C|$. Among them there is $\mu=e_{C}^{\prime} \otimes e_{B} \otimes \cdots \otimes e_{B}$ whose all factors are independent.

Idea of proof

Clearly π_{Q} is a linear combination of pure s-tensors of degree $(s-1) r+|C|$. Among them there is $\mu=e_{C}^{\prime} \otimes e_{B} \otimes \cdots \otimes e_{B}$ whose all factors are independent.

It follows from the property of being balanced that all the monomials in μ belong to a monomial basis for some order on \mathcal{A}. This implies that μ cannot be canceled whence π_{Q} does not vanish.

Lower bound

Theorem

For the complement M of a complex central arrangement of hyperplanes, every integer $s(2 \leq s)$, and every basic pair (B, C) we have

$$
\operatorname{TC}_{s}(M) \geq(s-1) r+|C|
$$

Large arrangements

There is a substantial class of arrangements for which the lower bound coincides with the upper bound.

Definition

We call an arrangement large if there exists a balanced pair
(B, C) with $|C|=r-1$ whence for every s we have $\mathrm{TC}_{s}(M)=s r-1$.

Large arrangements

There is a substantial class of arrangements for which the lower bound coincides with the upper bound.

Definition

We call an arrangement large if there exists a balanced pair
(B, C) with $|C|=r-1$ whence for every s we have $\mathrm{TC}_{s}(M)=s r-1$.

Example. A simple subclass of large arrangements is formed by the irreducible arrangements of rank 2 (i.e., all non-Boolean rank 2 arrangements).

Sufficient condition

Large arrangements are easy to find due to the following sufficient condition.

Definition
A pair (B, C) is well-balanced if B is a base, $|C|=r-1$, and no $b \in B$ is dependent on C.

Sufficient condition

Large arrangements are easy to find due to the following sufficient condition.

Definition
A pair (B, C) is well-balanced if B is a base, $|C|=r-1$, and no $b \in B$ is dependent on C.

Theorem
Every well-balanced pair is balanced.

Sufficient condition

Large arrangements are easy to find due to the following sufficient condition.

Definition
A pair (B, C) is well-balanced if B is a base, $|C|=r-1$, and no $b \in B$ is dependent on C.

Theorem

Every well-balanced pair is balanced.
Indeed suppose (B, C) is well-balanced but there is a non-empty $D \subset B \cup C$ with $|D| \geq 2 \mathrm{rk} D$. Then $D \cap B$ and $D \cap C$ are independent whence both are bases of D. Hence every $b \in D \cap B$ depends of $D \cap C$ which contradicts the condition.

Another sufficient condition

Let $L(\mathcal{A})$ be the lattice of all intersections of hyperplanes from \mathcal{A} ordered opposite to inclusion. For $X \in L(\mathcal{A})$ we put $\mathcal{A}_{X}=\{H \in \mathcal{A} \mid H \geq X\}$.

Another sufficient condition

Let $L(\mathcal{A})$ be the lattice of all intersections of hyperplanes from \mathcal{A} ordered opposite to inclusion. For $X \in L(\mathcal{A})$ we put $\mathcal{A}_{X}=\{H \in \mathcal{A} \mid H \geq X\}$.

Definition

$L(\mathcal{A})$ is well-balanced if there exists $X \in L(\mathcal{A})$, rk $X=r-1$ such that for no $Y \in L(\mathcal{A}) \backslash\{0\}$ we have $\mathcal{A}=\mathcal{A}_{X} \cup \mathcal{A}_{Y}$.

This definition makes sense for an arbitrary finite geometric lattice.

Another sufficient condition

Theorem

If $L(\mathcal{A})$ is well-balanced then there exists a well-balanced pair in \mathcal{A}.

Another sufficient condition

Theorem

If $L(\mathcal{A})$ is well-balanced then there exists a well-balanced pair in \mathcal{A}.

Proof.

Let C be a base of \mathcal{A}_{X} from the definition. Then $|C|=r-1$. Put $\mathcal{A}^{\prime}=\mathcal{A} \backslash \mathcal{A}_{X}$. By definition rk $\mathcal{A}^{\prime}=r$. Let B be a base of \mathcal{A}^{\prime} whence also a base of \mathcal{A}. Since B is disjoint with \mathcal{A}_{X} no $b \in B$ depends on C.

Corollary

Corollary

Suppose for all $X \in L(\mathcal{A}) \backslash\{0\}$ we have

$$
\begin{equation*}
|\mathcal{A}(X)|<\frac{n}{2} \tag{1}
\end{equation*}
$$

Then \mathcal{A} is large.

Clearly it suffices to check the inequality (1) for X of rank $r-1$ only.

$\mathrm{TC}_{s}\left(M_{w}\right)$

Here is the main theorem of the talk.
Theorem
For every irreducible reflection group W of rank r and every $s>1$ the arrangement \mathcal{A}_{W} is well-balanced whence $T C_{s}\left(M_{W}\right)=s r-1$.

$\mathrm{TC}_{s}\left(M_{w}\right)$

Here is the main theorem of the talk.
Theorem
For every irreducible reflection group W of rank r and every $s>1$ the arrangement \mathcal{A}_{W} is well-balanced whence $T C_{s}\left(M_{W}\right)=s r-1$.

Our proof consists of four parts.

1. W of rank 2; this case is immediate since $r=2$.
2. Infinite series.
3. The exceptional groups different from Coxeter types E_{m}.
4. Types E_{m}.

Case (2)

For the infinite series well-balanced pairs can be exhibited explicitly. Here we identify hyperplanes with their defining linear forms and \mathcal{A} with the product of them.
(a) Types $\mathbf{A}_{r}(m=1)$ and full monomial types $G(m, 1, r)$
$(m>1): Q=\prod_{i=1}^{r} x_{i} \prod_{1 \leq i<j \leq r}\left(x_{i}^{m}-x_{j}^{m}\right)$. Put $B=\left\{x_{1}, \ldots, x_{r}\right\}$ and $C=\left\{x_{1}-x_{2}, \ldots, x_{1}-x_{r}\right\}$.

Case (2)

For the infinite series well-balanced pairs can be exhibited explicitly. Here we identify hyperplanes with their defining linear forms and \mathcal{A} with the product of them.
(a) Types $\mathbf{A}_{r}(m=1)$ and full monomial types $G(m, 1, r)$
$(m>1): Q=\prod_{i=1}^{r} x_{i} \prod_{1 \leq i<j \leq r}\left(x_{i}^{m}-x_{j}^{m}\right)$. Put $B=\left\{x_{1}, \ldots, x_{r}\right\}$ and $C=\left\{x_{1}-x_{2}, \ldots, x_{1}-x_{r}\right\}$.
(b) Special monomial types $G(m, m, r) m \geq 2$:
$Q=\prod_{1 \leq i<j \leq r}\left(x_{i}^{m}-x_{j}^{m}\right)$. Put
$B=\left\{x_{1}-\zeta x_{2}, \ldots, x_{1}-\zeta x_{r}, x_{2}-\zeta x_{3}\right\}$ and
$C=\left\{x_{1}-x_{2}, \ldots, x_{1}-x_{r}\right\}$ where ζ is a primitive root of 1 of order m.

Proof of case (2)

In (a), the result is clear. In (b), B is independent since it generates the basis $\left\{x_{1}, \ldots, x_{r}\right\}$ of V^{*}. Besides C lies in the kernel of the index (the linear map ind : $V^{*} \rightarrow \mathbb{C}$, ind $\left(x_{i}\right)=1$) while no $b \in B$ does.

Case (3)

In this case, we check case-by-case that $L\left(\mathcal{A}_{W}\right)$ is well-balanced using Tables C.1-C. 23 from the book: Orlik and Terao, Arrangements of Hyperplanes.

Case (3)

In this case, we check case-by-case that $L\left(\mathcal{A}_{W}\right)$ is well-balanced using Tables C.1-C. 23 from the book: Orlik and Terao, Arrangements of Hyperplanes.

We use Corollary 6.28 from this book that \mathcal{A}_{X} is the reflection arrangement for a reflection subgroup W_{X} of W. The numbers $n_{X}=\left|\mathcal{A}_{X}\right|$ can be found from Table B. 1 as the sums of covariants for W_{X}.

Table

The table below is organized as follows. The first row consists of the Shephard-Todd classification numbers (23-34) of exceptional groups of ranks greater than 2 (no types E_{m}). The second row consists of the cardinalities n of the respective arrangements. The third row consists of the maximal cardinalities of \mathcal{A}_{X}. It suffices to check inequality (1): $\left|\mathcal{A}_{X}\right|<\frac{n}{2}$.

23	24	25	26	27	28	29	30	31	32	33	34
15	21	12	21	45	24	40	60	60	40	45	126
5	4	4	5	5	9	12	15	15	12	12	45

Case (4)

For the types E_{m}, the inequality (1) does not hold but it is easy to check that $L(\mathcal{A})$ is well-balanced by definition. The needed information is in the table below.

Case (4)

For the types E_{m}, the inequality (1) does not hold but it is easy to check that $L(\mathcal{A})$ is well-balanced by definition. The needed information is in the table below.

E_{6}	E_{7}	E_{8}
36	63	120
$(20,15)$	$(36,21)$	$(63,42)$

The second row has the same meaning as in the previous table. The last row consists of pairs combining the maximal cardinality of \mathcal{A}_{Y} with rk $Y=r-1$ and the cardinality of another \mathcal{A}_{X} also with rk $X=r-1$. One needs to check that the sum in each pair is less than the entry of the second row. This shows that $L\left(\mathcal{A}_{W}\right)$ is well-balanced.

Examples

There are other classes of examples of large arrangements. The most significant consists of all generic arrangements with $|\mathcal{A}| \geq 2 r-1$.

Examples

There are other classes of examples of large arrangements. The most significant consists of all generic arrangements with $|\mathcal{A}| \geq 2 r-1$.

Generic arrangements with $n<2 r-1$ are not-large ('small'?). The general formula for generic arrangements is

$$
\mathrm{TC}_{s}(M)=\min \{s r-1,(s-1) n\}
$$

Examples

There are other classes of examples of large arrangements. The most significant consists of all generic arrangements with $|\mathcal{A}| \geq 2 r-1$.

Generic arrangements with $n<2 r-1$ are not-large ('small'?). The general formula for generic arrangements is

$$
\mathrm{TC}_{s}(M)=\min \{s r-1,(s-1) n\}
$$

For instance, if $r=3, n=4, s=2$ then $\mathrm{TC}_{2}(M)=4<2 r-1$.

Conjecture

Conjecture

For every complex hyperplane arrangement the topological complexity of its complement equals the cohomological lower bound (for every s).

THANK YOU FOR YOUR ATTENTION!

