A tropical approach to a generalized Hodge conjecture for positive currents

Farhad Babaee

SNSF/Université de Fribourg

February 20, 2017 - Toblach

Are all positive currents with Hodge classes approximable by positive sums of integration currents? (Demailly 1982)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Are all positive currents with Hodge classes approximable by positive sums of integration currents? (Demailly 1982)

No! (Joint work with June Huh)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Currents

X complex smooth manifold of complex dimension n.

- *D^k(X)* := Space of smooth differential forms of degree k, with compact support = test forms
- \$\mathcal{D}_k'(X)\$ = Space of currents of dimension \$k\$:= Topological dual to \$\mathcal{D}^k(X)\$

- $\langle \mathcal{T}, \varphi
 angle \in \mathbb{C}$ (linear continuous action)
- $T \in \mathcal{D}'_k(X)$ current is **closed** (= *d*-closed), $\langle dT, \varphi \rangle := (-1)^{k+1} \langle T, d\varphi \rangle = 0, \forall \varphi \in \mathcal{D}^{k-1}(X)$

- $\mathcal{D}^{p,q}(X)$: Smooth (p,q)-forms with compact support
- $\mathcal{D}'_{p,q}(X) := \left(\mathcal{D}^{p,q}(X)\right)'$
- For currents (p, q)-bidimension = (n p, n q)-bidegree

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $\mathcal{D}^{p,q}(X)$: Smooth (p,q)-forms with compact support
- $\mathcal{D}'_{p,q}(X) := \left(\mathcal{D}^{p,q}(X)\right)'$
- For currents (p, q)-bidimension = (n p, n q)-bidegree

• $T_j \to T$ in weak limit, if $\langle T_j, \varphi \rangle \to \langle T, \varphi \rangle \in \mathbb{C}$

Integration currents

Example

Let $Z \subset X$ a smooth submanifold of dimension p, define the *integration current along* Z, denoted by $[Z] \in D'_{p,p}(X)$

$$\langle [Z], \varphi \rangle := \int_{Z} \varphi, \quad \varphi \in \mathcal{D}^{p,p}(X).$$

This definition extends to analytic subsets Z, by integrating over the smooth locus.

Positivity

Definition

A smooth differential (p, p)-form φ is *positive* if $\varphi(x)|_S$ is a nonnegative volume form for all *p*-planes $S \subset T_x X$ and $x \in X$.

Definition

A current $T \in \mathcal{D}'_{p,p}(X)$ is called *positive* if

 $\langle T, \varphi \rangle \geq 0$

for every positive test form $\varphi \in \mathcal{D}_{p,p}(X)$.

Examples of positive currents

• An integration current on an analytic subset is a positive current, with support equal to Z

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Convex sum of positive currents

The generalized Hodge conjecture for positive currents (HC^+)

Question/Conjecture: Are all the positive closed currents approximable by a convex sum of integration currents along analytic cycles?

$$\mathscr{T}^+ \xleftarrow{i}{j} \sum_j \lambda_{ij}^+ [Z_{ij}],$$

The generalized Hodge conjecture for positive currents (HC^+)

Question/Conjecture: Are all the positive closed currents approximable by a convex sum of integration currents along analytic cycles?

$$\mathscr{T}^+ \xleftarrow{i}{i} \sum_j \lambda^+_{ij} [Z_{ij}],$$

On a smooth projective variety X, and

$$\{\mathscr{T}^+\}\in\mathbb{R}\otimes_{\mathbb{Z}} \big(H^{2q}(X,\mathbb{Z})/\mathrm{tors}\ \cap H^{q,q}(X)\big),$$

where q = n - p.

The generalized Hodge conjecture for positive currents (HC^+)

Question/Conjecture: Are all the positive closed currents approximable by a convex sum of integration currents along analytic cycles?

$$\mathscr{T}^+ \xleftarrow{i}{i} \sum_j \lambda^+_{ij} [Z_{ij}],$$

On a smooth projective variety X, and

$$\{\mathscr{T}^+\}\in\mathbb{R}\otimes_{\mathbb{Z}} \big(H^{2q}(X,\mathbb{Z})/\mathrm{tors}\ \cap H^{q,q}(X)\big),$$

where q = n - p.

Demailly, the superhero, 1982: True for p = 0, n - 1, n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

The Hodge conjecture (HC)

The Hodge conjecture: The group

$\mathbb{Q}\otimes_{\mathbb{Z}} \left(H^{2q}(X,\mathbb{Z})/\mathrm{tors}\ \cap H^{q,q}(X)\right),$

consists of classes of p-dimensional algebraic cycles with rational coefficients.

Demailly 1982: $HC^+ \implies HC$.

Hodge conjecture for real currents (HC')

If \mathcal{T} is a (p, p)-dimensional real closed current on X with cohomology class

$$\{\mathscr{T}\} \in \mathbb{R} \otimes_{\mathbb{Z}} (H^{2q}(X,\mathbb{Z})/\mathrm{tors} \cap H^{q,q}(X)),$$

then ${\mathscr T}$ is a weak limit of the form

$$\mathscr{T} \xleftarrow{i}{} \sum_{j} \lambda_{ij} [Z_{ij}],$$

where λ_{ij} are real numbers and Z_{ij} are *p*-dimensional subvarieties of *X*.

Demailly 2012: $HC' \iff HC$

HC⁺ not true in general!

Theorem (B - Huh)

There is a 4-dimensional smooth projective toric variety X and a (2,2)-dimensional positive closed current \mathscr{T}^+ on X with the following properties:

(1) The cohomology class of \mathcal{T}^+ satisfies

 $\{\mathscr{T}^+\} \in H^4(X,\mathbb{Z})/tors \cap H^{2,2}(X).$

(2) The current \mathcal{T}^+ is not a weak limit of the form

$$\mathscr{T}^+ \xleftarrow{i} \sum_j \lambda_{ij}^+ [Z_{ij}],$$

where $\lambda_{ii}^+ > 0$, Z_{ij} are algebraic surfaces in X.

HC⁺ not true in general!

Theorem (B - Huh)

There is a 4-dimensional smooth projective toric variety X and a (2,2)-dimensional positive closed current \mathscr{T}^+ on X with the following properties:

(1) The cohomology class of \mathcal{T}^+ satisfies

$$\{\mathscr{T}^+\} \in H^4(X,\mathbb{Z})/tors \cap H^{2,2}(X).$$
 OK!

(2) The current \mathcal{T}^+ is not a weak limit of the form

$$\mathscr{T}^+ \xleftarrow{i}{j} \sum_j \lambda_{ij}^+ [Z_{ij}],$$

where $\lambda_{ii}^+ > 0$, Z_{ij} are algebraic surfaces in X.

Extremality in the cone of closed positive currents

Definition

A (p, p)-closed positive current T is called extremal if for any decomposition $T = T_1 + T_2$, there exist $\lambda_1, \lambda_2 \ge 0$ such that $T = \lambda_1 T_1$ and $T = \lambda_2 T_2$. (T_i closed, positive and same bidimension).

Extremality reduces the problem to sequences

Lemma

X an algebraic variety, \mathcal{T}^+ be a (p, p)-dimensional current on X of the form

$$\mathscr{T}^+ \xleftarrow{i}{i} \sum_j \lambda^+_{ij} [Z_{ij}],$$

where $\lambda_{ij}^+ > 0$, Z_{ij} are p-dimensional irreducible analytic subsets of X. If \mathscr{T} is extremal then

$$\mathscr{T}^+ \xleftarrow{i} \lambda_i^+ [Z_i].$$

for some $\lambda_i^+ > 0$ and Z_i irreducible analytic sets.

Obstruction by the Hodge index theorem in dimension 4

Proposition

Let $\{\mathscr{T}\}\$ be a (2,2) cohomology class on the 4 dimensional smooth projective toric variety X. If there are nonnegative real numbers λ_i and 2-dimensional irreducible subvarieties $Z_i \subset X$ such that

$$\{\mathscr{T}\} = \lim_{i \to \infty} \{\lambda_i[Z_i]\},\$$

then the matrix

$$[L_{ij}]_{\{\mathscr{T}\}} = -\{\mathscr{T}\}.D_{\rho_i}.D_{\rho_j},$$

has at most one negative eigenvalue.

Our goal

A (2,2)-current on a 4-dimensional smooth projective toric variety which is

- Closed
- Positive
- Extremal, and
- Its intersection form has more than one negative eigenvalues

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tropical currents

$$\begin{array}{rcl} \mathrm{Log} : (\mathbb{C}^*)^n & \to & \mathbb{R}^n \\ (z_1, \ldots, z_n) & \mapsto & (-\log |z_1|, \ldots, -\log |z_n|) \end{array}$$

•
$$\text{Log}^{-1}(\{pt\}) \simeq (S^1)^n$$
,

- dim_{\mathbb{R}} Log ⁻¹(rational *p*-plane) = *n* + *p*
- Log^{-1} (rational *p*-plane) has a natural fiberation over $(S^1)^{n-p}$ with fibers of complex dimension *p*
- Similarly for any *p*-cell σ, Log⁻¹(σ) has a natural fiberation over (S¹)^{n-p}

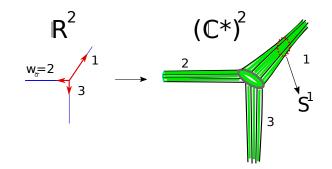
Tropical currents

$$\begin{array}{rcl} \mathrm{Log} : (\mathbb{C}^*)^n & \to & \mathbb{R}^n \\ (z_1, \ldots, z_n) & \mapsto & (-\log |z_1|, \ldots, -\log |z_n|) \end{array}$$

•
$$\text{Log}^{-1}(\{pt\}) \simeq (S^1)^n$$
,

- dim_{\mathbb{R}} Log ⁻¹(rational *p*-plane) = *n* + *p*
- Log^{-1} (rational *p*-plane) has a natural fiberation over $(S^1)^{n-p}$ with fibers of complex dimension *p*
- Similarly for any *p*-cell σ, Log⁻¹(σ) has a natural fiberation over (S¹)^{n-p}

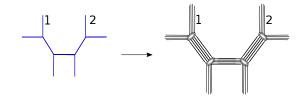
$$n = 2, p = 1$$



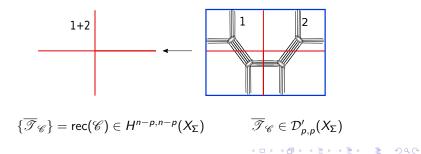
Support $\mathscr{T}_{\mathscr{C}} = \mathrm{Log}^{-1}(\mathscr{C}), \ \mathscr{T}_{\mathscr{C}} = \sum_{\sigma} w_{\sigma} \int_{S^{n-p}} [\text{fibers of } \mathrm{Log}^{-1}(\sigma)] \ d\mu$

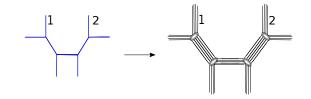
イロト 不得下 イヨト イヨト

Dimension n

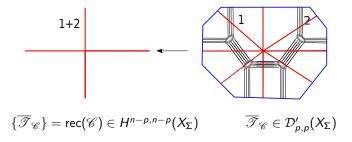


 $\mathscr{C} \subset \mathbb{R}^n, \dim(\mathscr{C}) = p$ $\mathscr{T}_{\mathscr{C}} \in \mathcal{D}'_{\rho,\rho}((\mathbb{C}^*)^n), \text{ Support } \mathscr{T}_{\mathscr{C}} = \mathrm{Log}^{-1}(\mathscr{C})$





 $\mathscr{C} \subset \mathbb{R}^n, \dim(\mathscr{C}) = p \qquad \mathscr{T}_{\mathscr{C}} \in \mathcal{D}'_{p,p}((\mathbb{C}^*)^n), \text{ Support } \mathscr{T}_{\mathscr{C}} = \mathrm{Log}^{-1}(\mathscr{C})$



◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

A (2,2)-current on a 4-dimensional smooth projective toric variety which is

• Closed

Balanced complex

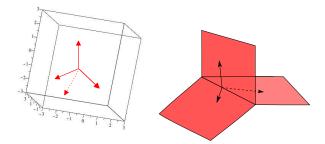
Positive

Positive weights

- Extremal
 - ?
- Its intersection form has more than one negative eigenvalues
 ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Extremality of tropical currents in any dimension/codimension



Weights unique up to a multiple + Not contained in any proper affine subspace

Examples of extremal currents

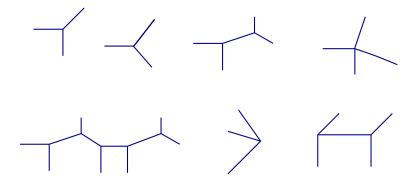
Lelong 1973: Integration currents along irreducible analytic subsets are extremal. Is that all? Demailly 1982: $\frac{i}{\pi}\partial\bar{\partial}\log\max\{|z_0|,|z_1|,|z_2|\}$ is extremal on \mathbb{P}^2 , and its support has real dimension 3, thus cannot be an integration current along any analytic set.

Dynamical systems (usually with fractal supports, thus non-analytic):

Codimension 1: Bedford and Smillie 1992, Fornaess and Sibony 1992, Sibony 1999, Cantat 2001, Diller and Favre 2001, Guedj 2002...

Higher Codimension: Dinh and Sibony 2005, Guedj 2005, Dinh and Sibony 2013

Complicated structures, easily seen to be approximable!

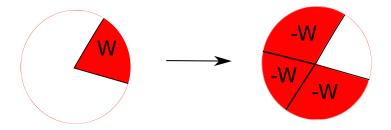


Extremal if: weights unique up to a multiple $+\ Not$ contained in any proper affine subspace

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Manipulation of signatures for 2-cells in dimension 4



The operation $F\longmapsto F_{ij}^-$ produces one new positive and one new negative eigenvalue for its intersection matrix

A (2,2)-current on a 4-dimensional smooth projective toric variety which is

Closed

Balanced complex

Positive

Positive weights

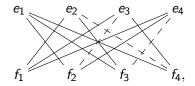
• Extremal

Non-degenerate + weights unique up to a multiple

 Its intersection form has more than one negative eigenvalues
 The operation on two cells provides one new negative and one new positive eigenvalue

A concrete example

Consider $G \subseteq \mathbb{R}^4 \setminus \{0\}$



where e_1, e_2, e_3, e_4 are the standard basis vectors of \mathbb{R}^4 and f_1, f_2, f_3, f_4 the rows of

$$M := \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & -1 & 1 & 0 \end{pmatrix}$$

The weights of solid (resp. dashed) edges are +1 (resp. -1).

Thank you for your attention, indeed!