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Are all positive currents with Hodge classes approximable by
positive sums of integration currents? (Demailly 1982)

No! (Joint work with June Huh)
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Currents

X complex smooth manifold of complex dimension n.

• Dk(X ) := Space of smooth differential forms of degree k ,
with compact support = test forms

• D′k(X ) = Space of currents of dimension k := Topological
dual to Dk(X )

• 〈T , ϕ〉 ∈ C (linear continuous action)

• T ∈ D′k(X ) current is closed (= d-closed),
〈dT , ϕ〉 := (−1)k+1〈T , dϕ〉 = 0, ∀ϕ ∈ Dk−1(X )



• Dp,q(X ) : Smooth (p, q)-forms with compact support

• D′p,q(X ) :=
(
Dp,q(X )

)′
• For currents (p, q)-bidimension = (n − p, n − q)-bidegree

• Tj → T in weak limit, if 〈Tj , ϕ〉 → 〈T , ϕ〉 ∈ C
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Integration currents

Example

Let Z ⊂ X a smooth submanifold of dimension p, define the
integration current along Z , denoted by [Z ] ∈ D ′p,p(X )

〈[Z ], ϕ〉 :=

∫
Z
ϕ, ϕ ∈ Dp,p(X ).

This definition extends to analytic subsets Z , by integrating over
the smooth locus.



Positivity

Definition
A smooth differential (p, p)-form ϕ is positive if ϕ(x)|S is a
nonnegative volume form for all p-planes S ⊂ TxX and x ∈ X .

Definition
A current T ∈ D′p,p(X ) is called positive if

〈T , ϕ〉 ≥ 0

for every positive test form ϕ ∈ Dp,p(X ).



Examples of positive currents

• An integration current on an analytic subset is a positive
current, with support equal to Z

• Convex sum of positive currents



The generalized Hodge conjecture for positive currents
(HC+)

Question/Conjecture: Are all the positive closed currents
approximable by a convex sum of integration currents along
analytic cycles?

T + ←−
i

∑
j

λ+
ij [Zij ],

On a smooth projective variety X , and

{T +} ∈ R⊗Z
(
H2q(X ,Z)/tors ∩ Hq,q(X )

)
,

where q = n − p.

Demailly, the superhero, 1982: True for p = 0, n − 1, n.
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The Hodge conjecture (HC)

The Hodge conjecture: The group

Q⊗Z
(
H2q(X ,Z)/tors ∩ Hq,q(X )

)
,

consists of classes of p-dimensional algebraic cycles with
rational coefficients.

Demailly 1982: HC+ =⇒ HC.



Hodge conjecture for real currents (HC′)

If T is a (p, p)-dimensional real closed current on X with
cohomology class

{T } ∈ R⊗Z
(
H2q(X ,Z)/tors ∩ Hq,q(X )

)
,

then T is a weak limit of the form

T ←−
i

∑
j

λij [Zij ],

where λij are real numbers and Zij are p-dimensional
subvarieties of X .

Demailly 2012: HC′ ⇐⇒ HC



HC+ not true in general!

Theorem (B - Huh)

There is a 4-dimensional smooth projective toric variety X and a
(2, 2)-dimensional positive closed current T + on X with the
following properties:

(1) The cohomology class of T + satisfies

{T +} ∈ H4(X ,Z)/tors ∩ H2,2(X ).

(2) The current T + is not a weak limit of the form

T + ←−
i

∑
j

λ+
ij [Zij ],

where λ+
ij > 0, Zij are algebraic surfaces in X .
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Extremality in the cone of closed positive currents

Definition
A (p, p)-closed positive current T is called extremal if for any
decomposition T = T1 + T2 , there exist λ1, λ2 ≥ 0 such that
T = λ1T1 and T = λ2T2. (Ti closed, positive and same
bidimension).



Extremality reduces the problem to sequences

Lemma
X an algebraic variety, T + be a (p, p)-dimensional current on X
of the form

T + ←−
i

∑
j

λ+
ij [Zij ],

where λ+
ij > 0, Zij are p-dimensional irreducible analytic subsets of

X . If T is extremal then

T + ←−
i
λ+
i [Zi ].

for some λ+
i > 0 and Zi irreducible analytic sets.



Obstruction by the Hodge index theorem in dimension 4

Proposition

Let {T } be a (2, 2) cohomology class on the 4 dimensional smooth
projective toric variety X . If there are nonnegative real numbers λi
and 2-dimensional irreducible subvarieties Zi ⊂ X such that

{T } = lim
i→∞
{λi [Zi ]},

then the matrix
[Lij ]{T } = −{T }.Dρi .Dρj ,

has at most one negative eigenvalue.



Our goal

A (2, 2)-current on a 4-dimensional smooth projective toric variety
which is

• Closed

• Positive

• Extremal, and

• Its intersection form has more than one negative eigenvalues



Tropical currents

Log : (C∗)n → Rn

(z1, . . . , zn) 7→ (− log |z1|, . . . ,− log |zn|)

• Log−1({pt}) ' (S1)n,

• dimR Log−1(rationalp-plane) = n + p

• Log−1(rational p-plane) has a natural fiberation over (S1)n−p

with fibers of complex dimension p

• Similarly for any p-cell σ, Log−1(σ) has a natural fiberation
over (S1)n−p
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Support TC = Log−1(C ), TC =
∑
σ wσ

∫
Sn−p [fibers of Log−1(σ)] dµ



Dimension n

1 2 1 2

C ⊂ Rn, dim(C ) = p TC ∈ D′p,p((C∗)n), Support TC = Log−1(C )

1 21+2

{T C } = rec(C ) ∈ Hn−p,n−p(XΣ) T C ∈ D′p,p(XΣ)
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A (2, 2)-current on a 4-dimensional smooth projective toric variety
which is

• Closed

Balanced complex

• Positive

Positive weights

• Extremal

?

• Its intersection form has more than one negative eigenvalues

?



Extremality of tropical currents in any
dimension/codimension

Weights unique up to a multiple + Not contained in any proper affine
subspace



Examples of extremal currents

Lelong 1973: Integration currents along irreducible analytic subsets
are extremal. Is that all?
Demailly 1982: i

π∂∂̄ log max{|z0|, |z1|, |z2|} is extremal on P2, and
its support has real dimension 3, thus cannot be an integration
current along any analytic set.

Dynamical systems (usually with fractal supports, thus
non-analytic):
Codimension 1: Bedford and Smillie 1992, Fornaess and Sibony
1992, Sibony 1999, Cantat 2001, Diller and Favre 2001, Guedj
2002...
Higher Codimension: Dinh and Sibony 2005, Guedj 2005, Dinh
and Sibony 2013

Complicated structures, easily seen to be approximable!



Extremal if: weights unique up to a multiple + Not contained in any
proper affine subspace



Manipulation of signatures for 2-cells in dimension 4

The operation F 7−→ F−ij produces one new positive and one new
negative eigenvalue for its intersection matrix



A (2, 2)-current on a 4-dimensional smooth projective toric variety
which is

• Closed

Balanced complex

• Positive

Positive weights

• Extremal

Non-degenerate + weights unique up to a multiple

• Its intersection form has more than one negative eigenvalues

The operation on two cells provides one new negative
and one new positive eigenvalue



A concrete example

Consider G ⊆ R4 \ {0}

e1 e2 e3 e4

f1 f2 f3 f4,

where e1, e2, e3, e4 are the standard basis vectors of R4 and
f1, f2, f3, f4 the rows of

M :=


0 1 1 1
1 0 −1 1
1 1 0 −1
1 −1 1 0

 .

The weights of solid (resp. dashed) edges are +1 (resp. −1).



Thank you for your attention, indeed!


