Combinatorics and topology of Toric arrangements

Emanuele Delucchi
(SNSF / Université de Fribourg)

Toblach/Dobbiaco
February 21-24, 2017

The Plan

I. Combinatorics of (TORic) arrangements.

Enumeration and structure theory: posets, polynomials, matroids, semimatroids, and "arithmetic enrichments"
... \& questions.
II. Topology of (toric) arrangements.

Combinatorial models, minimality, cohomology
... \& more questions.
III. Epilogue: "Equivariant matroid theory".
... some answers - hopefully - \& many more questions.

Cutting A CAke

3 "full" cuts.
How many pieces?

Cutting a Cake

6 pieces

VS.
7 pieces

Pattern of intersections

Möbius Functions of posets

Let \mathcal{P} be a locally finite partially ordered set (poset).
The Möbius function of \mathcal{P} is $\mu: \mathcal{P} \times \mathcal{P} \rightarrow \mathbb{Z}$, defined recursively by

$$
\left\{\begin{array}{cl}
\mu(x, y)=0 & \text { if } x \not 又 y \\
\sum_{x \leq z \leq y} \mu(x, z)=\delta_{x, y} & \text { if } x \leq y
\end{array}\right.
$$

If \mathcal{P} has a minimum $\widehat{0}$ and is ranked*, its characteristic polynomial is

$$
\chi_{\mathcal{P}}(t):=\sum_{x \in \mathcal{P}} \mu_{\mathcal{P}}(\widehat{0}, x) t^{\rho(\mathcal{P})-\rho(x)}
$$

*i.e., there is $\rho: \mathcal{P} \rightarrow \mathbb{N}$ s.t. $\rho(x)=$ length of any unrefinable chain from $\widehat{0}$ to x. The rank of \mathcal{P} is then $\rho(\mathcal{P}):=\max \{\rho(x) \mid x \in \mathcal{P}\}$

$$
\begin{aligned}
& \mu(\hat{0}, \hat{0})=1 \\
& \underbrace{\mu(\hat{0}, \hat{0}}_{=1})+\mu\left(\frac{\hat{o}, a)}{-1}=0\right.
\end{aligned}
$$

$$
\frac{\mu(\hat{o}, \hat{0})}{=1}+\frac{\mu(\overrightarrow{0}, a)}{-1}+\mu(\hat{0}, b)+\mu(\hat{o}, c)+\mu(\hat{o}, d)=0
$$

$$
\begin{aligned}
x_{p}(-1) & =\sum \mu(0, x)(-1)^{\cdots} \\
& =\sum|\mu(\overrightarrow{0}, x)|=\frac{\text { nk of }}{\text { negions }}
\end{aligned}
$$

Topological dissections

Let X be a topological space, \mathscr{A} a finite set of (proper) subspaces of X.
The dissection of X by \mathscr{A} gives rise to:
a poset of intersections:

$$
\mathcal{L}(\mathscr{A}):=\{\cap K \mid K \subseteq \mathscr{A}\} \text { ordered by reverse inclusion }
$$

a poset of layers (or connected components of intersections):

$$
\mathcal{C}(\mathscr{A}):=\bigcup_{L \in \mathcal{L}(\mathscr{A})} \pi_{0}(L) \text { ordered by reverse inclusion. }
$$

a collection of regions, i.e., the connected components of $X \backslash \cup \mathscr{A}$:

$$
\mathcal{R}(\mathscr{A}):=\pi_{0}(X \backslash \cup \mathscr{A})
$$

a collection of faces, i.e., regions of dissections induced on intersections.

ZASLAVSKY'S THEOREM

[Combinatorial analysis of topological dissections, Adv. Math. ‘77]

Consider the dissection of a topological space X
(connected, Hausdorff, locally compact)
by a family \mathscr{A} of proper subspaces, with $\mathcal{R}(\mathscr{A})=\left\{R_{1}, \ldots, R_{m}\right\}$ (finite).
Let \mathcal{P} stand for either $\mathcal{L}(\mathscr{A})$ or $\mathcal{C}(\mathscr{A})$, also assumed to be finite. If all faces of this dissection are finite disjoint unions of open balls,

$$
\sum_{i=1}^{m} \kappa\left(R_{i}\right)=\sum_{T \in \mathcal{P}} \mu_{\mathcal{P}}(X, T) \kappa(T)
$$

where κ denotes the "combinatorial Euler number": $\kappa(T)=\chi(T)$ if T is compact, otherwise $\kappa(T)=\chi(\widehat{T})-1$.

This gives rise to many "region-count formulas".

$\mathcal{L}(A)$

$$
A=\{\infty, Y, 1\}
$$

$$
\begin{aligned}
& R(A)=\{I, I, \ldots, \bar{V}\} \\
& \forall R \in B(A): K(R)=t 1
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{R \in(A R)} K(R)=+\left(\begin{array}{cc}
* & \text { of } \\
\text { regions }
\end{array}\right) \\
& x(x)=n_{0}-n_{1}+n_{2} \cdots
\end{aligned}
$$

$$
\begin{array}{lc}
=\mu(0,0) k(0) & 1 \\
\mu(0, \infty) k(\infty) & -1 \cdot 0
\end{array}
$$

$$
\mu\left(\hat{6}, x^{2}\right) \kappa\left(x^{2}\right)(-1)(-1)
$$

$$
\begin{array}{cc}
\mu(\hat{o}, 1) & k(1) \\
3 K(x) & 3 \\
2 K(6) & 2 \\
& 6
\end{array}
$$

Hyperplane Arrangements

A hyperplane arrangement in a \mathbb{K}-vectorspace V is a locally finite set

$$
\mathscr{A}:=\left\{H_{i}\right\}_{i \in S}
$$

of hyperplanes $H_{i}=\left\{v \in V \mid \alpha_{i}(v)=b_{i}\right\}$, where $\alpha_{i} \in V^{*}$ and $b_{i} \in \mathbb{K}$.
The arrangement is called central if $b_{i}=0$ for all i.

Combinatorial objects
Poset of intersections. $\mathcal{L}(\mathscr{A})(=\mathcal{C}(\mathscr{A}))$

- "Geometry"

Rank function. rk : $2^{S} \rightarrow \mathbb{N}, \operatorname{rk}(I):=\operatorname{dim}_{\mathbb{K}}\left(\operatorname{span}\left\{\alpha_{i} \mid i \in I\right\}\right)$

Hyperplane arrangements

Central example $($ SAy $\mathbb{K}=\mathbb{R})$
$A:=\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]=\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & -1 & 0\end{array}\right], \quad \operatorname{rk}(\emptyset)=0, \operatorname{rk}(I)=\left\{\begin{array}{l}1 \text { if }|I|=1, \\ 2 \text { if }|I|>1 .\end{array}\right.$
(R) $\left\{\begin{array}{l}-I \subseteq J \text { implies } \operatorname{rk}(I) \leq \operatorname{rk}(J) \\ -\operatorname{rk}(I \cap J)+\operatorname{rk}(I \cup J) \leq \operatorname{rk}(I)+\operatorname{rk}(J) \\ - \\ 0 \leq \operatorname{rk}(I) \leq|I|\end{array}\right.$

- For every $I \subseteq S$ there is a finite $J \subseteq I$ with $\operatorname{rk}(J)=\operatorname{rk}(I)$

A matroid is any function rk: $2^{S} \rightarrow \mathbb{N}$ satisfying (R).
Its characteristic "polynomial" is $\chi_{\mathrm{rk}}(t)=\sum_{I \subseteq S}(-1)^{|T|} t^{\mathrm{rk}(S)-\mathrm{rk}(I)}$

Hyperplane arrangements

Central example $($ SAy $\mathbb{K}=\mathbb{R})$

$$
A:=\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]=\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right], \quad \operatorname{rk}(\emptyset)=0, \operatorname{rk}(I)=\left\{\begin{array}{l}
1 \text { if }|I|=1, \\
2 \text { if }|I|>1 .
\end{array}\right.
$$

Setting $X_{I}:=\bigcap_{i \in I} H_{i}$,

$$
\operatorname{rk}(I)=\operatorname{codim}\left(X_{I}\right)=\rho\left(X_{I}\right), \text { the rank function on } \mathcal{L}(\mathscr{A})
$$

Hyperplane arrangements

Central example (say $\mathbb{K}=\mathbb{R})$

$\mathcal{L}(\mathscr{A}):$

$\mathcal{L}(\mathscr{A})$ is a lattice with $\widehat{0}=V$. Moreover,
(G) $x \lessdot y$ if and only if there is an atom p with $p \not \leq x$ and $y=x \vee p$.

A geometric lattice is a chain-finite lattice satisfying (G).

Posed $P, x, y \in P$

$$
x_{\wedge y}:=\max \left\{\begin{array}{l|l}
z \in\} & \begin{array}{l}
z \leq x \\
z \leq y
\end{array}
\end{array}\right\}
$$

"exists" if \mid xay $=1$

$$
x \vee y:=\min \left\{\begin{array}{l}
z \in P
\end{array} \left\lvert\, \begin{array}{l}
z \geqslant x \\
z \geqslant y
\end{array}\right.\right\}
$$

"entity" if $|x v y|$
If both exist, for all $x, y:$ "P lattice

Cryptomorphisms

$$
\begin{aligned}
& \chi_{\mathrm{rk}}(t) \stackrel{\mathrm{thm} .}{=} \chi_{\mathcal{L}}(t) \\
& (S \text { finite, rk }>0)
\end{aligned}
$$

Finite matroids

Rank functions / intersection posets
... of central hyperplane arrangements
Representable m.
...of pseudosphere arrangements

matroids / geometric lattices
(tropical linear spaces, matroids over the hyperfield \mathbb{K})
Infinite example: set of all subspaces of V.

$$
\begin{aligned}
& A \backslash H_{s} \\
& A / M_{s}=\left\{H_{n} H_{s} \mid H_{c t}\right\} \\
& |R(A)|=\left|2\left(A \mid H_{s}\right)\right|+\left|R\left(A / H_{s}\right)\right|
\end{aligned}
$$

NEW MATROIDS FROM OLD

Let (S, rk) be a matroid and let $s \in S$
Notice: it could be that $\operatorname{rk}(s)=0$ - in this case s is called a loop.
An isthmus is any $s \in S$ with $\operatorname{rk}(I \cup s)=\operatorname{rk}(I \backslash s)+1$ for all $I \subseteq S$.

The contraction of s is the matroid defined by the rank function

$$
\mathrm{rk}_{/ s}: 2^{S \backslash s} \rightarrow \mathbb{N}, \quad \mathrm{rk}_{/ s}(I):=\mathrm{rk}(I \cup s)-\operatorname{rk}(s)
$$

The deletion of s is the matroid defined by the rank function

$$
\mathrm{rk}_{\backslash s}: 2^{S \backslash s} \rightarrow \mathbb{N}, \quad \mathrm{rk}_{\backslash s}(I):=\operatorname{rk}(I)
$$

The restriction to s is the one-element matroid given by

$$
\mathrm{rk}_{[s]}: 2^{\{s\}} \rightarrow \mathbb{N}, \quad \operatorname{rk}_{[s]}(I)=\operatorname{rk}(I)
$$

Matroids

The Tutte polynomial

The Tutte polynomial of a finite matroid (S, rk) is

$$
T_{\mathrm{rk}}(x, y):=\sum_{I \subseteq S}(x-1)^{\mathrm{rk}(S)-\mathrm{rk}(I)}(y-1)^{|I|-\mathrm{rk}(I)}
$$

(first introduced by W. T. Tutte as the "dichromate" of a graph).

Immediately: $\chi_{\mathrm{rk}}(t)=(-1)^{\mathrm{rk}(S)} T_{\mathrm{rk}}(1-t, 0)$

Deletion - contraction recursion: there are numbers σ, τ s.t.
(DC)

$$
T_{\mathrm{rk}}(x, y)= \begin{cases}T_{\mathrm{r} \mathrm{k}_{[s]}}(x, y) T_{\mathrm{rk} \backslash s}(x, y) & \text { if } s \text { isthmus or loop } \\ \sigma T_{\mathrm{rk} / s}(x, y)+\tau T_{\mathrm{rk} \backslash s}(x, y) & \text { otherwise }\end{cases}
$$

(in fact, $\sigma=\tau=1$).

Matroids

The Tutte polynomial - universality

Let \mathscr{M} be the class of all isomorphism classes of nonempty finite matroids, and R be a commutative ring.

Every function $f: \mathscr{M} \rightarrow R$ for which there are $\sigma, \tau \in R$ such that, for every matroid rk on the set $|S| \geq 2$

$$
(\mathrm{DC}) \quad f(\mathrm{rk})= \begin{cases}f\left(\mathrm{rk}_{[s]}\right) f\left(\mathrm{rk}_{\backslash s}\right) & \text { if } s \text { isthmus or loop } \\ \sigma f(\mathrm{rk} / s)+\tau f(\mathrm{rk} \backslash s) & \text { otherwise }\end{cases}
$$

is an evaluation of the Tutte polynomial.
[Brylawski '72]
(More precisely, if you really want to know: $f(\mathrm{rk})=T_{\mathrm{rk}}(f(\mathbf{i}), f(\mathbf{l})$), where
\mathbf{i}, resp. \mathbf{l} is the single-isthmus, resp. single-loop, one-element matroid.

Affine example $(\mathbb{K}=\mathbb{R})$

$$
\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right]=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 0 & 0
\end{array}\right],\left(b_{1}, b_{2}, b_{3}, b_{4}\right)=(0,0,0,1)
$$

$$
\begin{gathered}
I \text { such that } \cap_{i \in I} H_{i} \neq \emptyset \\
\},\{1\},\{2\},\{3\},\{4\} \\
\{1,2\},\{1,3\},\{2,3\},\{1,4\},\{2,4\} \\
\{1,2,3\}
\end{gathered}
$$

These are the central sets.

The family \mathcal{K} is an abstract simplicial complex on the set of vertices S.
The function rk: $\mathcal{K} \rightarrow \mathbb{N}, \operatorname{rk}(I):=\operatorname{dim} \operatorname{span}_{\mathbb{K}}\left\{\alpha_{i} \mid i \in I\right\}$ satisfies [...]
Any such triple (S, \mathcal{K}, rk) is called a semimatroid.

Affine Example $(\mathbb{K}=\mathbb{R})$

The poset of intersections $\mathcal{L}(\mathscr{A})$

- is not a lattice; it is a meet-semilattice (i.e., only $x \wedge y$ exists)
- every interval satisfies (G), thus it is ranked by codimension
... what kind of posets are these?

Hyperplane arrangements

Coning

Hyperplane arrangements

Geometric semilattices

A geometric semilattice is any poset of the form $\mathcal{L}_{\searrow x x}$, where \mathcal{L} is a geometric lattice and $\widehat{0} \lessdot x$.

Cryptomorphism

[Wachs-Walker '86, Ardila ‘06, D.-Riedel '15]

Hyperplane arrangements

Abstract Theory

Semimatroid (S, \mathcal{K}, rk) / intersection posets \mathcal{L} of affine hyperplane arrangements

semimatroids / geometric semilattices (Q: abstract tropical manifolds?)

Tutte polynomials

If $(S, \mathcal{K}, \mathrm{rk})$ is a finite semimatroid, the associated Tutte polynomial is

$$
T_{\mathrm{rk}}(x, y)=\sum_{I \in \mathcal{K}}(x-1)^{\mathrm{rk}(S)-\mathrm{rk}(I)}(y-1)^{|I|-\mathrm{rk}(I)}
$$

Exercise: Define contraction and deletion for semimatroids (analogously as for matroids) and prove that $T_{\mathrm{rk}}(x, y)$ satisfies (DC) with $\sigma=\tau=1$.

Toric arrangements

A toric arrangement in the complex torus $T:=\left(\mathbb{C}^{*}\right)^{d}$ is a set

$$
\mathscr{A}:=\left\{K_{1}, \ldots, K_{n}\right\}
$$

of 'hypertori' $K_{i}=\left\{z \in T \mid z^{a_{i}}=b_{i}\right\}$ with $a_{i} \in \mathbb{Z}^{d} \backslash\{0\}, b_{i} \in \mathbb{C}^{*} /=1 / \in S^{1}$
The arrangement is called centered if all $b_{i}=0$, complexified if all $b_{i} \in S^{1}$.
For simplicity assume that the matrix $\left[a_{1}, \ldots, a_{n}\right]$ has rank d.
Note: Arrangements in the discrete torus $\left(\mathbb{Z}_{q}\right)^{d}$ or in the compact torus $\left(S^{1}\right)^{d}$ are defined accordingly, by suitably restricting the b_{i} s.

Example: Identify \mathbb{Z}^{d} with the coroot lattice of a crystallographic Weyl system, and let the a_{i} S denote the vectors corresponding to positive roots.

Toric arrangements

Example - CENTERED, IN $\left(S^{1}\right)^{2}$

$$
A:=\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]=\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right], \quad \operatorname{rk}(\emptyset)=0, \operatorname{rk}(I)=\left\{\begin{array}{l}
1 \text { if }|I|=1, \\
2 \text { if }|I|>1 .
\end{array}\right.
$$

$\mathcal{C}(\mathscr{A})$:

$\mathcal{L}\left(\mathscr{A}_{0}\right):$

Example - Centered, in $\left(S^{1}\right)^{2}$

$\mathcal{C}(\mathscr{A})$:

Since A has maximal rank, every region is an open d-ball. Thus

$$
\sum_{j} \kappa\left(R_{j}\right)=\sum_{j}(-1)^{d}=(-1)^{d}|\mathcal{R}(\mathscr{A})|
$$

Since $\kappa\left(\left(S^{1}\right)^{d}\right)=0$ for $d>0, \kappa(*)=1$, and $\mathcal{C}(\mathscr{A})$ is ranked,

$$
|\mathcal{R}(\mathscr{A})|=(-1)^{d} \chi_{\mathcal{C}(\mathscr{A})}(0)
$$

Example - CEntered, in $\left(S^{1}\right)^{2}$

$\mathcal{C}(\mathscr{A})$:

What kind of posets are these?
What structural properties do they have?
What natural class of abstract posets do these belong to?

Example - Centered, in $\left(S^{1}\right)^{2}$

$$
A:=\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]=\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right], \quad \operatorname{rk}(\emptyset)=0, \operatorname{rk}(I)=\left\{\begin{array}{l}
1 \text { if }|I|=1 \\
2 \text { if }|I|>1 .
\end{array}\right.
$$

For $I \subseteq[n]$ let $m(I):=$ product of the invariant factors of the matrix $A(I)=\left[\alpha_{i}: i \in I\right]$,

$$
\chi_{\mathrm{rk}, m}(t):=\sum_{I \subseteq[n]} m(I)(-1)^{|I|} t^{d-\mathrm{rk}(I)}
$$

Then,

$$
m(I)=\left|\pi_{0}\left(\bigcap_{i \in I} K_{i}\right)\right|, \quad \chi_{\mathrm{rk}, m}(t)=\chi_{\mathcal{C}(\mathscr{A})}(t)
$$

[Ehrenborg-Readdy-Slone '09, Lawrence '11, Moci '12]
The triple ($[n], \mathrm{rk}, m$) satisfies the axioms of an arithmetic matroid

Arithmetic Tutte polynomial

The "arithmetic tutte polynomial" associated to a toric arrangement is

$$
T_{\mathrm{rk} . m}(x, y):=\sum_{I \subseteq S} m(I)(x-1)^{\mathrm{rk}(S)-\mathrm{rk}(I)}(y-1)^{|I|-\mathrm{rk}(I)}
$$

[Moci '12]
Immediately: $\chi_{\mathrm{rk}, m}(t)=(-1)^{\mathrm{rk}(S)} T_{\mathrm{rk}, m}(1-t, 0)$. Also:
$(\mathrm{NRDC}) \quad T_{\mathrm{rk}}(x, y)= \begin{cases}(x-1) T_{\mathrm{rk}_{\backslash s}, m_{\backslash s}}(x, y)+T_{\mathrm{rk}_{/ s}, m_{/ s}}(x, y) & s \text { isthmus } \\ T_{\mathrm{rk}_{\backslash s}, m_{\backslash s}}(x, y)+(y-1) T_{\mathrm{rk}_{\backslash s}}(x, y) & s \text { loop } \\ T_{\mathrm{rk}_{/ s}, m_{/ s}}(x, y)+T_{\mathrm{rk}_{\backslash s}, m_{\backslash s}}(x, y) & \text { otherwise } .\end{cases}$ [d'Adderio-Moci '13]
(NRDC) holds whenever ([n], rk, m) is an arithmetic matroid

Abstract Theory?

- Arithmetic matroids axioms for (S, rk, m) with
- a duality theory,
- a "Tutte" polynomial $T_{A}(x, y)$ satisfying NRDC
- No cryptomorphisms
- No natural nonrealizable examples
- Matroids over rings [Fink-Moci '15] Axioms for $\left\{\mathbb{Z}^{d} /\left\langle\alpha_{i}\right\rangle_{i \in I}\right\}_{I \subseteq[n]}$
("even more algebraic")
- $\chi_{\mathcal{C}(\mathscr{A})}(t)$ enumerates points/faces in the compact and discrete torus. [Lawrence '08 ans '11, E-R-S ‘09]
- "ab/cd index" for $\mathcal{C}(\mathscr{A})$
[Ehrenborg-Readdy-Slone '09]
- $\mathcal{C}(\mathscr{A})$ via "marked" partitions for
- \mathscr{A} "graphical" [Aguiar-Chan]
- \mathscr{A} from root system [Bibby '16], shellable in type $A B C$ [Girard '17+]
- No abstract characterization
(More about arithmetic matroids on Friday)

Towards a comprehensive abstract theory

Ansatz: "periodic arrangements"

Characterize axiomatically the involved posets and the group actions.

Let $A=\left[a_{1}, \ldots, a_{n}\right] \in M_{d \times n}(\mathbb{Z})$
(Central) hyperplane arrangement

$$
\begin{aligned}
\lambda_{i}: & \mathbb{C}^{d} \rightarrow \mathbb{C} \\
& \underline{z} \mapsto \sum_{j} a_{j i} z_{j}
\end{aligned}
$$

$H_{i}:=\operatorname{ker} \lambda_{i}$
$K_{i}:=\operatorname{ker} \lambda_{i}$
$\mathscr{A}=\left\{H_{1}, \ldots, H_{n}\right\} \quad \mathscr{A}=\left\{K_{1}, \ldots, K_{n}\right\} \quad \mathscr{A}=\left\{L_{1}, \ldots, L_{n}\right\}$
$M(\mathscr{A}):=\mathbb{C}^{d} \backslash \cup \mathscr{A} \quad M(\mathscr{A}):=\left(\mathbb{C}^{*}\right)^{d} \backslash \cup \mathscr{A} \quad M(\mathscr{A}):=\mathbb{E}^{d} \backslash \cup \mathscr{A}$
(Centered) elliptic arrangement
$\lambda_{i}: \mathbb{E}^{d} \rightarrow \mathbb{E}$

$$
\underline{z} \mapsto \sum_{j} a_{j i} z_{j}
$$

$L_{i}:=\operatorname{ker} \lambda_{i}$

