Weighted discrete Morse theory

Giovanni Paolini

Scuola Normale Superiore, Pisa

giovanni.paolini@sns.it

February 22, 2017

Giovanni Paolini (SNS)

Weighted discrete Morse theory

February 22, 2017 1 / 12

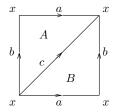
3

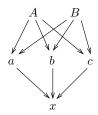
-

X - a (finite) CW complex.

 G_X – the incidence graph of the cells of X.

Idea: collapse pairs of cells in order to make the complex smaller (preserving homotopy type).



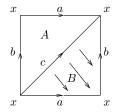


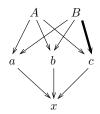
Weighted discrete Morse theory

X - a (finite) CW complex.

 G_X – the incidence graph of the cells of X.

Idea: collapse pairs of cells in order to make the complex smaller (preserving homotopy type).



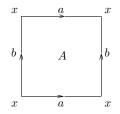


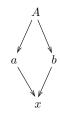
Weighted discrete Morse theory

X - a (finite) CW complex.

 G_X – the incidence graph of the cells of X.

Idea: collapse pairs of cells in order to make the complex smaller (preserving homotopy type).





X - a (finite) CW complex.

 G_X – the incidence graph of the cells of X.

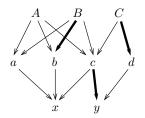
Idea: collapse pairs of cells in order to make the complex smaller (preserving homotopy type).



X - a (finite) CW complex.

 G_X – the incidence graph of the cells of X.

Idea: collapse pairs of cells in order to make the complex smaller (preserving homotopy type).



X - a (finite) CW complex.

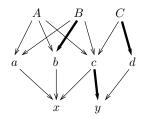
 G_X – the incidence graph of the cells of X.

Idea: collapse pairs of cells in order to make the complex smaller (preserving homotopy type).

In general you can choose any matching $\ensuremath{\mathcal{M}}$ such that:

- if $(c_1
 ightarrow c_2) \in \mathcal{M}$, then c_2 is a regular face of c_1 ;
- \mathcal{M} is *acyclic*, i.e. the graph $G_X^{\mathcal{M}}$ obtained from G_X by reversing the arrows in \mathcal{M} is acyclic.

Beware: boundaries usually become more complicated.



February 22, 2017

Theorem (Forman '98)

Let X be a (finite) CW complex, and let \mathcal{M} be a matching on the incidence graph G_X such that:

- if $(c_1 \rightarrow c_2) \in M$, then c_2 is a regular face of c_1 ;
- *M* is **acyclic**, i.e. the graph obtained from *G*_X by reversing the arrows in *M* is acyclic.

Then there exists a CW complex $X^{\mathcal{M}} \simeq X$ with cells in one-to-one correspondence with unmatched cells of X.

- 4 週 ト - 4 三 ト - 4 三 ト

Algebraic discrete Morse theory

R – a commutative ring with unity.

 C_* – a (finitely generated) chain complex of free *R*-modules:

$$\ldots \xrightarrow{\partial_{n+2}} C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots$$

 Ω_* – a fixed basis for C_* (elements of Ω_* replace cells).

For
$$b\in\Omega_n$$
, write $\partial b=\sum_{{\sf a}\in\Omega_{n-1}}r_{{\sf a},{\sf b}}\cdot{\sf a}$.

The incidence graph G has Ω_* as vertex set, and weighted edges $b \xrightarrow{r_{a,b}} a$ whenever $r_{a,b} \neq 0$.

Idea: "collapse" pairs of elements of the basis so that C_* is chain homotopy equivalent to some $C_*^{\mathcal{M}}$, a chain complex of free *R*-modules with less generators.

Theorem (Jöllenbeck-Welker '05, Kozlov '05, Skjöldberg '06)

Let C_* be a (finitely generated) chain complex of free R-modules, and let \mathcal{M} be a matching on the incidence graph G such that:

- if $(b \rightarrow a) \in \mathcal{M}$, then $r_{a,b}$ is invertible (regularity);
- \mathcal{M} is acyclic.

Then there exists a chain complex $C_*^{\mathcal{M}} \simeq C_*$ of free *R*-modules with a basis in one-to-one correspondence with unmatched elements of the basis of C_* .

- 4 同 6 4 日 6 4 日 6

Algebraic discrete Morse theory (example)

$$0 \longrightarrow \mathbb{Z}^{2} \xrightarrow{\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}} \mathbb{Z}^{3} \xrightarrow{(0 \ 0 \ 0)} \mathbb{Z} \longrightarrow 0$$
$$0 \longrightarrow \mathbb{Z} \xrightarrow{\begin{pmatrix} 0 \\ 0 \end{pmatrix}} \mathbb{Z}^{2} \xrightarrow{(0 \ 0)} \mathbb{Z} \longrightarrow 0$$

Weighted algebraic discrete Morse theory

R – now a PID. C_* and Ω_* – as before.

Assign a weight $w_a \in R$ to every $a \in \Omega_*$, in such a way that

$$(b \rightarrow a) \implies w_a \mid w_b$$
.

Then there is a natural projection $R/(w_b) \rightarrow R/(w_a)$.

Consider the torsion complex L_* with $L_n = \bigoplus_{\dim a=n} R/(w_a)$ and boundary induced by the boundary of C_* .

Idea (as usual): "collapse" pairs of elements of the basis so that L_* is chain homotopy equivalent to some $L_*^{\mathcal{M}}$, a torsion complex with less generators.

Theorem (Salvetti-Villa '13)

Let L_* be a torsion complex as before, and let \mathcal{M} be a matching on the incidence graph G such that:

- if $(b \rightarrow a) \in \mathcal{M}$, then $r_{a,b}$ is invertible (regularity);
- *M* is acyclic;
- \mathcal{M} is weighted, i.e. if $(b \rightarrow a) \in \mathcal{M}$ then $(w_b) = (w_a)$.

Then there exists a torsion complex $L_*^{\mathcal{M}} \simeq L_*$ with a basis in one-to-one correspondence with unmatched elements of the basis of L_* , and with the same weights.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Application: local homology of Artin groups

(W, S) – a Coxeter system. A_W – the associated Artin group. Sal_W – the associated Salvetti complex. X_W – the quotient complex Sal_W /W, having fundamental group A_W .

Let $R = \mathbb{Q}[q, q^{-1}]$. Consider the representation $\lambda \colon A_W \to \operatorname{Aut}(R)$ sending each standard generator of A_W to the multiplication by -q. This determines a local system \mathcal{L}_{λ} on X_W .

The computation of the homology $H_*(X_W; \mathcal{L}_\lambda)$ can be reduced to the computation of the homology of the torsion complex

$$L_* = \bigoplus_{\sigma \in S^f} \frac{R}{(W_{\sigma}(q))} \cdot e_{\sigma} = \bigoplus_{d \ge 2} \underbrace{\left(\bigoplus_{\sigma \in S^f} \frac{R}{\left(\varphi_d^{w_d(\sigma)}\right)} \cdot e_{\sigma}\right)}_{(L_{\varphi_d})_*}.$$

In the case of braid groups (Artin groups of type A_n), suitable matchings allow to find a connection between homology of braid groups and homology of independence complexes of graphs.

Given a graph $\mathcal{G} = (V, E)$, the independence complex $\operatorname{Ind}_k(\mathcal{G})$ is the simplicial complex on the set V containing all simplices $\sigma \subseteq \mathcal{G}$ such that every connected component of $\mathcal{G}|_{\sigma}$ has at most k vertices.

Theorem (Salvetti '15)

$$H_*(\operatorname{Br}_{n+1};\mathcal{L}_{\lambda}) = \bigoplus_{d\geq 2} \widetilde{H}_{*-d+1}\left(\operatorname{Ind}_{d-2}(A_{n-d});\frac{R}{(\varphi_d)}\right).$$

Giovanni Paolini (SNS)

Homology of groups of finite and affine type

For finite and affine W, we could construct matchings satisfying the following combinatorial property.

Definition

A matching on $(L_{\varphi_d})_*$ is *precise* if, for any edge $\sigma \to \tau$ of $G^{\mathcal{M}}$, we have that $w_{\varphi}(\sigma) = w_{\varphi}(\tau) + 1$.

The existence of such matchings has the following interesting theoretical consequence.

Theorem (P.-Salvetti)

For finite and affine W, each $H_k(X_W; \mathcal{L}_{\lambda})$ is a direct sum of terms of the form R or $R/(\varphi_d)$ (φ_d^k -torsion for $k \ge 2$ does not occur).

The End

Giovanni Paolini (SNS)

Weighted discrete Morse theory

February 22, 2017 12 / 12

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト