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Piet Hein (1905 - 1996), John Nash (1928- )
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Hex Hex: game

From the Danish newspaper Politiken, 1942:
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Hex Hex: game

A simple example: the 3× 3 case.
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Hex Hex: game

Relevant facts:
1 The game cannot end in a draw;
2 the first player (white) has a winning strategy;
3 the game is actually fun to play since for big boards it doesn’t exist

a concrete description of the winning strategy.
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Hex Hex: topology

Hex: the topology

The topological interest of Hex comes from the "no-draw theorem":

Theorem (The Hex theorem)
Let us consider a n× n Hex board.
If all the tiles of the board are either black or white, then there is either
a white path that meets the white boundaries or a black path that
meets the black boundaries.
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Hex Hex: topology

Sketch of a proof:

V4

V3

V2

V1

Giovanni Gaiffi (Università di Pisa) 28-06-2013 9 / 37
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Hex Hex: topology

The Hex theorem turns out to be equivalent to the following celebrated
theorem:

Theorem (The Brouwer fixed-point theorem)
A continuous mapping f : Q→ Q from the closed unit square into itself
has a fixed point,. i.e. there exists a point x ∈ Q such that f (x) = x.
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Hex Hex: topology

Sketch of a proof that Hex Theorem =⇒ Brouwer Theorem:
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Hex Hex: topology

Theorem (equivalent version of the Brouwer fixed-point theorem)
Given a continuous mapping f from the closed unit square into itself,
for any real number ε > 0 there exists at least a point x in the square
such that |f (x)− x| < ε.
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Hex Hex: topology

Given ε > 0, we can put on the unit square a very thin Hex board so
that in particular if x and y are two adjacent vertices then |x− y| < ε

4
and moreover, by uniform continuity, |f (x)− f (y)| < ε

4 .
Now we look at the vertices of the board:
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Hex Hex: topology

If there is a vertex x such that |f (x)− x| < ε our proof is finished.
Otherwise, for every vertex x of the board we have that f (x) “moves
away” from x of at least ε/2 horizontally or vertically.
We put a white stone on the vertex if the first case happens, otherwise
we put a black stone.
So we have filled all the vertices of the board with stones. By the Hex
Theorem there is a winning path in the board, say a white path.
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Hex Hex: topology

Following the winning path, we must find two adjacent vertices x and y
such that f (x) moves away from x horizontally to the right of more than
ε
2 , while f (y) moves away from y horizontally to the left of more than ε

2 .

x
y
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f(y)
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.

It is then immediate to check that |f (x)− f (y)| > ε
4 which contradicts

uniform continuity and the initial choice of the very thin board.
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Hex Hex: topology

Theorem (The Hex Theorem)
Let us consider a n× n Hex board.
If all the tiles of the board are either black or white, then there is either
a white path that meets the white boundaries or a black path that
meets the black boundaries but not both.
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Hex Hex: topology

The claim but not both is a consequence of another important
topological result, the Jordan Curve Theorem.

Theorem (The Jordan Curve Theorem, C. Jordan 1887, O. Veblen
1905.)

Let C be a simple, continuous closed curve in the plane R2. Then its
complement, R2 − C, consists of exactly two connected components.
One of these components is bounded (the interior) and the other is
unbounded (the exterior), and the curve C is the boundary of each
component. Every path that connects a point P in the interior and a
point Q in the exterior intersects C, while if two points are both in the
interior (or both in the exterior) there is a path that connects them and
does not intersect C.
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Hex Hex: topology

Good news for game lovers: "Misere" Hex is fun to play, too!
Which player has a winning strategy?
Good news for topology lovers: the Hex Theorem holds also in its
n-dimensional version (played on a hypercube, there are n
players/colors), and it is equivalent to the n-dimensional Brouwer
Fixed Point Theorem.

Remark: in the n-dimensional version there can be winning paths
of two or more colors in the same board.

Giovanni Gaiffi (Università di Pisa) 28-06-2013 21 / 37



A game inspired by Hex: the Milnor or Y

A game inspired by Hex: the Milnor or Y

John Milnor (1931- )
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A game inspired by Hex: the Milnor or Y

Relevant facts:
1 The game cannot end in a draw (and in a fulfilled board only one

of the two colors has a winning “Y”);
2 the first player has a winning strategy.
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Another game inspired by Hex: the Gale, or Bridge It

Another game inspired by Hex: the Gale, or Bridge It

David Gale (1921 - 2008)
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Brussels Sprouts: the game

John Conway (1937 - ) and Mike Paterson
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(1) (2)

Giovanni Gaiffi (Università di Pisa) 28-06-2013 27 / 37



Brussels Sprouts Brussels Sprouts: the game

Main question: does this game end in a finite number of moves?

Giovanni Gaiffi (Università di Pisa) 28-06-2013 28 / 37



Brussels Sprouts Brussels Sprouts: the game

Let r be the number of regions that we see in the picture.
Let i be the number of “islands”, i.e., connected components, that we
see in the picture.
What happens to r − i after each move?

(a) (b)
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Brussels Sprouts Brussels Sprouts: the game

One can prove (using the Jordan Curve Theorem!) that r − i increases
by 1 after each move. Therefore, after m moves, we have

r − i = 1− n + m

Then, taking into account that one always has i ≥ 1 and r ≤ 4n one
finds

r − i ≤ 4n− 1

and therefore
m ≤ 4n− 1 + n− 1 = 5n− 2

The game ends in at most 5n− 2 moves!

Giovanni Gaiffi (Università di Pisa) 28-06-2013 30 / 37



Brussels Sprouts Brussels Sprouts: the game

1 Bad news for game lovers: the game ends in exactly 5n− 2 moves!
2 For topology lovers...
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Brussels Sprouts Brussels Sprouts: the topology

Brussels Sprouts: the topology

The formula
r − i = 1− n + m

can be translated into
r − i = 1 + s− p

where s and p are respectively the arcs and the points that we see in
the picture.

This follows from the equalities p = n + m and s = 2m.
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Brussels Sprouts Brussels Sprouts: the topology

In conclusion:
r − s + p = 1 + i

that is the Euler formula for planar graphs, “hidden” in the game.

Giovanni Gaiffi (Università di Pisa) 28-06-2013 33 / 37



A variant of Brussels Sprouts: Sprouts

A variant of Brussels Sprouts: Sprouts

Again invented by Conway and Paterson:
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A variant of Brussels Sprouts: Sprouts

Some facts:
This game is fun to play: if there are n spots at the beginning, the
game ends in m moves, where

2n ≤ m ≤ 3n− 1

There is a conjecture: the first player has a winning strategy if and
only if the number n of initial spots divided by 6 leaves a remainder
of 3,4, or 5.
Also the “misere” version of the game is conjectured to have a
pattern of length 6...with some initial exceptions.
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