# On the De Concini－Procesi models for reflection groups 

Giovanni Gaiffi

University of Pisa

CIRM Rencontre<br>Tresses et Arithmetique

Luminy，13－17 Octobre 2014

Let $V$ be a finite dimensional vector space over $\mathbb{K}(\mathbb{K}=\mathbb{C}, \mathbb{R})$. Let us consider a finite subspace arrangement $\mathcal{G}$ in $V^{*}$ and, for every $A \in \mathcal{G}$, let us denote by $A^{\perp}$ its annihilator in $V$.
Let $M(\mathcal{G}):=V-\bigcup_{A \in \mathcal{G}} A^{\perp}$ and consider the embedding

$$
\phi_{\mathcal{G}}: M(\mathcal{G}) \longrightarrow V \times \prod_{A \in \mathcal{G}} \mathbb{P}\left(V / A^{\perp}\right)
$$

## Definition (De Concini-Procesi 1995)

The model $Y_{\mathcal{G}}$ associated to $\mathcal{G}$ is the closure of $\phi_{\mathcal{G}}(M(\mathcal{G}))$ in $V \times \prod_{A \in \mathcal{G}} \mathbb{P}\left(V / A^{\perp}\right)$.

If $\mathcal{G}$ is a building set, these wonderful models turn out to be smooth varieties and the complement of $M(\mathcal{G})$ in $Y_{\mathcal{G}}$ is a divisor with normal crossings, described in terms of $\mathcal{G}$-nested sets. These models can be obtained by a series of blow-ups and can be related to other constructions of models of stratified varieties (Fulton-MacPherson 1994, MacPherson-Procesi 1998, Ulyanov 2002, Hu 2003, Li 2009 etc...).

## There is also a compact construction

$$
\phi_{\mathcal{G}}: \mathbb{P}(M(\mathcal{G})) \longrightarrow \mathbb{P}(V) \times \prod_{A \in \mathcal{G}} \mathbb{P}\left(V / A^{\perp}\right)
$$

that gives compact models $\bar{Y}_{\mathcal{G}}$.

Finally, when $\mathbb{K}=\mathbb{R}$, there is a spherical construction (G. 2003):

$$
\phi: \mathcal{M}(\mathcal{G}) \cap S(V) \longrightarrow S(V) \times \prod_{A \in \mathcal{G}} S(A)
$$

We denote by $C Y_{\mathcal{G}}$ the closure of the image of $\phi$. If $\mathcal{G}$ is building this is a smooth manifold with corners with a 'nice' boundary described by nested sets.

## Building sets

If $\mathcal{A}$ is a set of subspaces of $V^{*}$ we denote by $\mathcal{C}_{\mathcal{A}}$ its closure under the sum.

## Definition

A collection $\mathcal{G}$ of subspaces of $V^{*}$ is called building if every element $C \in \mathcal{C}_{\mathcal{G}}$ is the direct sum $G_{1} \oplus \cdots \oplus G_{k}$ of the set of maximal elements $G_{1}, \cdots, G_{k}$ of $\mathcal{G}$ contained in $C$.

For instance let $V=\mathbb{K}^{2}$. An arrangement made by three distinct
lines is described by $\mathcal{G}=\left\{A_{1}, A_{2}, A_{3}\right\}$ where $A_{i}$
This is NOT a building set: $A_{1}+A_{2}+A_{3}$ is equal to $V^{*}$, the $A_{i}$ are maximal, but their sum is not direct.

## Building sets

If $\mathcal{A}$ is a set of subspaces of $V^{*}$ we denote by $\mathcal{C}_{\mathcal{A}}$ its closure under the sum.

## Definition

A collection $\mathcal{G}$ of subspaces of $V^{*}$ is called building if every element $C \in \mathcal{C}_{\mathcal{G}}$ is the direct sum $G_{1} \oplus \cdots \oplus G_{k}$ of the set of maximal elements $G_{1}, \cdots, G_{k}$ of $\mathcal{G}$ contained in $C$.

For instance let $V=\mathbb{K}^{2}$. An arrangement made by three distinct lines is described by $\mathcal{G}=\left\{A_{1}, A_{2}, A_{3}\right\}$ where $A_{i} \subset V^{*}$. This is NOT a building set: $A_{1}+A_{2}+A_{3}$ is equal to $V^{*}$, the $A_{i}$ are maximal, but their sum is not direct.

In general there are several building sets associated to $\mathcal{A}$. In the collection of such sets there is a minimal element, denoted by $\mathcal{F}_{\mathcal{A}}$, and a maximal element, which is $\mathcal{C}_{\mathcal{A}}$.
There are natural projection maps among the associated De Concini-Procesi models: if the building sets satisfy $\mathcal{B}_{1} \subset \mathcal{B}_{2}$ then there is a projection of $Y_{\mathcal{B}_{2}}$ onto $Y_{\mathcal{B}_{1}}$.


## The example of root arrangements

Let us consider a root system $\Phi$ in a euclidean vector space $V$ with finite Coxeter group $W$, and a basis of simple roots $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ for $\Phi$. Let $\mathcal{A}_{\Phi}$ be the corresponding root hyperplane arrangement.
Then

- $\mathcal{C}_{\mathcal{A}_{\Phi}}=\mathcal{C}_{\Phi}$ is the building set of all the subspaces that can
be generated as the span of some of the roots in $\Phi$.
- $\mathcal{F}_{\mathcal{A}_{\Phi}}=\mathcal{F}_{\Phi}$ is the building set made by all the subspaces which are spanned by the irreducible root subsystems of $\Phi$


## The example of root arrangements

Let us consider a root system $\Phi$ in a euclidean vector space $V$ with finite Coxeter group $W$, and a basis of simple roots $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ for $\Phi$. Let $\mathcal{A}_{\Phi}$ be the corresponding root hyperplane arrangement.
Then

- $\mathcal{C}_{\mathcal{A}_{\Phi}}=\mathcal{C}_{\Phi}$ is the building set of all the subspaces that can be generated as the span of some of the roots in $\Phi$.
- $\mathcal{F}_{\mathcal{A}_{\Phi}}=\mathcal{F}_{\Phi}$ is the building set made by all the subspaces which are spanned by the irreducible root subsystems of $\Phi$


## The example of root arrangements

Let us consider a root system $\Phi$ in a euclidean vector space $V$ with finite Coxeter group $W$, and a basis of simple roots $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ for $\Phi$. Let $\mathcal{A}_{\Phi}$ be the corresponding root hyperplane arrangement.
Then

- $\mathcal{C}_{\mathcal{A}_{\Phi}}=\mathcal{C}_{\Phi}$ is the building set of all the subspaces that can be generated as the span of some of the roots in $\Phi$.
- $\mathcal{F}_{\mathcal{A}_{\Phi}}=\mathcal{F}_{\Phi}$ is the building set made by all the subspaces which are spanned by the irreducible root subsystems of $\Phi$.

The example of root arrangements
Nested sets
Information on Cohomology
Bases of the cohomology of complex models

If $\Phi=A_{n-1}$ (the braid arrangement in $V=\mathbb{R}^{n} / \mathbb{R}(1,1, \ldots, 1)$ ), the roots are $x_{i}-x_{j}$.
A subspace $A$ in $V^{*}$ belongs to $\mathcal{F}_{A_{n-1}}$ if and only if $A^{\perp}$ is of type $A^{\perp}=\left\{\mathbf{x} \in V \mid x_{i_{1}}=x_{i_{2}}=\cdots=x_{i_{r}}\right\}$.

Therefore we can represent subspaces in $\mathcal{F}_{A_{n-1}}$ by subsets of $\{1,2, \ldots, n\}$ of cardinality $\geq 2$. For instance:


If $\Phi=A_{n-1}$ (the braid arrangement in $V=\mathbb{R}^{n} / \mathbb{R}(1,1, \ldots, 1)$ ), the roots are $x_{i}-x_{j}$.
A subspace $A$ in $V^{*}$ belongs to $\mathcal{F}_{A_{n-1}}$ if and only if $A^{\perp}$ is of type $A^{\perp}=\left\{\mathbf{x} \in V \mid x_{i_{1}}=x_{i_{2}}=\cdots=x_{i_{r}}\right\}$.

Therefore we can represent subspaces in $\mathcal{F}_{A_{n-1}}$ by subsets of $\{1,2, \ldots, n\}$ of cardinality $\geq 2$. For instance:

$$
A^{\perp}=\left\{\mathbf{x} \in V \mid x_{2}=x_{4}=x_{5}\right\} \longleftrightarrow\{2,4,5\}
$$

The example of root arrangements
Nested sets
Information on Cohomology
Bases of the cohomology of complex models


Case $A_{3}$, building set of irreducibles $\mathcal{F}_{A_{3}}$.

The original construction
Actions in the braid case The inertia around divisors

The example of root arrangements
Nested sets
Information on Cohomology
Bases of the cohomology of complex models


Case $A_{3}$, maximal building set $\mathcal{C}_{A_{3}}$.

## Nested sets

## Definition

Let $\mathcal{G}$ be a building set of subspaces of $V^{*}$. A subset $\mathcal{S} \subset \mathcal{G}$ is called $\mathcal{G}$-nested if and only if for every subset $\left\{A_{1}, \cdots, A_{k}\right\} \subset \mathcal{S}$ ( $k \geq 2$ ) of pairwise non comparable elements of $\mathcal{S}$ the subspace $A=A_{1}+\cdots+A_{k}$ does not belong to $\mathcal{G}$.

For instance in the case of the building set $\mathcal{F}_{A_{n-1}}$ this means that the subsets of $\{1,2, \ldots, n\}$ that represent the elements of $\mathcal{S}$ are pairwise disjoint or one included into the other.

The example of root arrangements
Nested sets
Information on Cohomology
Bases of the cohomology of complex models

## Nested sets

## Definition

Let $\mathcal{G}$ be a building set of subspaces of $V^{*}$. A subset $\mathcal{S} \subset \mathcal{G}$ is called $\mathcal{G}$-nested if and only if for every subset $\left\{A_{1}, \cdots, A_{k}\right\} \subset \mathcal{S}$ ( $k \geq 2$ ) of pairwise non comparable elements of $\mathcal{S}$ the subspace $A=A_{1}+\cdots+A_{k}$ does not belong to $\mathcal{G}$.

For instance in the case of the building set $\mathcal{F}_{A_{n-1}}$ this means that the subsets of $\{1,2, \ldots, n\}$ that represent the elements of $\mathcal{S}$ are pairwise disjoint or one included into the other.

## Example of a nested set for the minimal model, case $\mathrm{A}_{13}$.



Nested set: $\{A, B, D, E\}$

In $Y_{\mathcal{G}}$ one "adds" to the complement $M(\mathcal{G})$ of the subspace arrangement the union $\mathcal{D}$ of smooth irreducible divisors $D_{A}$ indexed by the elements $A \in \mathcal{G}$.
Given some divisors $D_{A_{1}}, \ldots, D_{A_{n}}\left(A_{j} \in \mathcal{G}\right)$, their intersection is non empty if and only if $\mathcal{S}=\left\{A_{1}, \ldots, A_{n}\right\}$ is $\mathcal{G}$-nested. In this case their intersection is transversal and gives rise to a smooth irreducible variety $\mathcal{D}_{\mathcal{S}}=\bigcap_{i} D_{A_{i}}$.

## Information on Cohomology

- a presentation for the integer cohomology ring of complex models of subspace arrangements $Y_{\mathcal{G}}$ was provided by De Concini and Procesi (1995), then a basis was given by Yuzvinski (1997), G. (1997).
- cohomology of real models of subspace arrangements was computed by Rains (2010) (in the braid case by Etingof, Henriques, Kamnitzer, Rains 2010)
- in the case of complex reflection groups $G(r, 1, n)$ a formula for the character of action on the cohomology of the minimal models was computed by Henderson (2004).


## Bases of the cohomology of complex models

The integer cohomology rings of complex De Concini-Procesi models are torsion free. They can be presented as

$$
\frac{\mathbb{Z}\left[c_{A}\right]_{A \in \mathcal{G}}}{I}
$$

where $c_{A}$ is the Chern class of the divisor $D_{A}$.

We can explicitly describe $\mathbb{Z}$-bases of the cohomology made by monomials. Example: how to obtain a monomial of the basis of $H^{*}\left(Y_{\mathcal{F}_{A_{13}}}, \mathbb{Z}\right)$. Start with a nested set $\{A, B, D, E\}$.


Basis monomial:

$$
C_{A}^{1 \text { or } 2} C_{B}^{1} \quad C_{D}^{1} \quad C_{E}^{1 \text { or } 2 \text { or } 3 \text { or } 4}
$$

## The geometric extended action on the compact model

 $\bar{Y}_{\mathcal{A}_{A_{n-1}}}$There is a well know $S_{n+1}$ action on the De Concini-Procesi minimal compact model $\bar{Y}_{\mathcal{F}_{A_{n-1}}}$ : it comes from the isomorphism with the moduli space $\bar{M}_{0, n+1}$.

The geometric extended action on the compact model The combinatorial symmetric group action on the strata A problem of lacking symmetry

## Example of the correspondence between two representations of the boundary of $\bar{M}_{0,8}=\bar{Y}_{\mathcal{F}_{A_{6}}}$ :



## The combinatorial $S_{n+k}$ action on the strata of $\bar{Y}_{\mathcal{F}_{A_{n-1}}}$

Let us denote by $F^{k}$ the set of $k$-codimensional irreducible strata of $\bar{Y}_{\mathcal{F}_{A_{n-1}}} \cong \bar{M}_{0, n+1}$. These are indexed by nested sets with $k+1$ elements (including $V^{*}$ ).
There is a $S_{n+k}$ action on $F^{k}$.
This comes from an explicit bijection between $F^{k}$ and the set of unordered partitions of $\{1,2, \ldots, n+k\}$ into $k+1$ parts of cardinality greater than or equal to 2 .

The geometric extended action on the compact model The combinatorial symmetric group action on the strata A problem of lacking symmetry

For instance, when $n=9, k=5$ :

$$
\begin{aligned}
S=\{ & \{2,3,4\},\{1,6\},\{5,7\},\{2,3,4,8\}, \\
& \{1,5,6,7\},\{1,2,3,4,5,6,7,8,9\}\}
\end{aligned}
$$



The geometric extended action on the compact model The combinatorial symmetric group action on the strata A problem of lacking symmetry

For instance, when $n=9, k=5$ :

$$
\begin{aligned}
S=\{ & \{2,3,4\},\{1,6\},\{5,7\},\{2,3,4,8\}, \\
& \{1,5,6,7\},\{1,2,3,4,5,6,7,8,9\}\}
\end{aligned}
$$



The geometric extended action on the compact model
The combinatorial symmetric group action on the strata A problem of lacking symmetry

For instance, when $n=9, k=5$ :

$$
\begin{aligned}
S=\{ & \{2,3,4\},\{1,6\},\{5,7\},\{2,3,4,8\}, \\
& \{1,5,6,7\},\{1,2,3,4,5,6,7,8,9\}\}
\end{aligned}
$$


$\{1,6\}\{2,3,4\}\{5,7\}\{8,11\}\{10,12\}\{9,13,14\}$

This $S_{n+k}$ action on $F^{k}$ is not geometric, i.e. it is not compatible with the natural $S_{n}$ action on $\bar{Y}_{\mathcal{F}_{A_{n-1}}}$ (neither with the extended $S_{n+1}$ ).
Nevertheless it induces an action that permutes the monomials of the basis of the integer cohomology.
The restriction to $S_{n}$ of the resulting representation on the cohomology module is not isomorphic to the natural $S_{n}$ representation.

Let $n=7$ and let us consider the monomial $c_{A_{1}}^{2} c_{A_{2}} c_{A_{3}}$ in the basis of $H^{8}\left(\bar{Y}_{\mathcal{F}_{A_{7}}}, \mathbb{Z}\right)$, where

$$
A_{1}=\{1,2,3,4,5,6,7,8\}, A_{2}=\{1,2,3\}, A_{3}=\{4,6,7\} .
$$

We associate to the nested set $\left\{A_{1}, A_{2}, A_{3}\right\}$ the following partition of the set $\{1,2, . ., 10\}$ :

$$
\{1,2,3\}\{4,6,7\}\{5,8,9,10\}
$$

Finally we associate to $c_{A_{1}}^{2} c_{A_{2}} c_{A_{3}}$ the following labelled partition of $\{1,2, . ., 10\}$ :

$$
\{1,2,3\}^{1}\{4,6,7\}^{1}\{5,8,9,10\}^{2}
$$

Let us denote by $\Psi(q, t, z)$ the following exponential generating series:

$$
\Psi(q, t, z)=1+\sum_{\substack{n \geq 2, \mathcal{S} \text { nested set of } \mathcal{F}_{A_{n-1}}}} P(S) z^{|\mathcal{S}|} \frac{t^{n+|\mathcal{S}|-1}}{(n+|\mathcal{S}|-1)!}
$$

where, for every $n \geq 2$,

- $\mathcal{S}$ ranges over all the nested sets of the building set $\mathcal{F}_{A_{n-1}}$;
$P(S)$ is the polynomial, in the variable $q$, that expresses the contribution to the Poincaré polynomial of $\bar{Y}_{\mathcal{F}_{A_{n-1}}}$ provided by all the monomials $m_{f}$ in the basis whose support is $\mathcal{S}$.

Let us denote by $\Psi(q, t, z)$ the following exponential generating series:

$$
\Psi(q, t, z)=1+\sum_{\substack{n \geq 2, \mathcal{S} \\ \text { nested set of } \mathcal{F}_{A_{n-1}}}} P(S) z^{|\mathcal{S}|} \frac{t^{n+|\mathcal{S}|-1}}{(n+|\mathcal{S}|-1)!}
$$

where, for every $n \geq 2$,

- $\mathcal{S}$ ranges over all the nested sets of the building set $\mathcal{F}_{A_{n-1}}$;
- $P(\mathcal{S})$ is the polynomial, in the variable $q$, that expresses the contribution to the Poincaré polynomial of $\bar{Y}_{\mathcal{F}_{A_{n-1}}}$ provided by all the monomials $m_{f}$ in the basis whose support is $\mathcal{S}$.

We observe that the series $\Psi(q, t, z)$ encodes the same information that is encoded by the Poincaré series. In particular, for a fixed $n$, the Poincaré polynomial of the model $\bar{Y}_{\mathcal{F}_{A_{n-1}}}$ can be read from the coefficients of the monomials whose $z, t$ component is $t^{k} z^{s}$ with $k-s=n-1$.

## Proposition (Callegaro-G. 2014)

We have the following formula for the series $\Psi(q, t, z)$ :

$$
\Psi(q, t, z)=e^{t} \prod_{i \geq 3} e^{z q[i-2] q_{i}^{i}}
$$

where $[j]_{q}$ denotes the $q$-analog of $j:[j]_{q}=1+q+\cdots+q^{j-1}$.

## Example

If one wants to compute the Poincaré polynomial of $\bar{Y}_{\mathcal{F}_{A_{4}}}$ one has to single out all the monomials in $\Psi$ whose $z, t$ component is $t^{k} z^{s}$ with $k-s=4$. A product of the exponential functions that appear in the formula gives:

$$
\frac{t^{4}}{4!}[1]+\frac{t^{5}}{5!} z\left[16 q+6 q^{2}+q^{3}\right]+\frac{t^{6}}{6!} z^{2}\left[10 q^{2}\right]
$$

Therefore the Poincaré polynomial of $\bar{Y}_{\mathcal{F}_{A_{4}}} \cong \bar{M}_{0,6}$ is $1+16 q+16 q^{2}+q^{3}$.

## This extends to the case of complex reflection groups $G(r, r, n)$ :

## Corollary

We have the following formula for the series $\Psi(q, t, z)$ of the models $Y_{G(r, r, n)}$ :

$$
\Psi(q, t, z)=e^{t r} \prod_{i \geq 3} e^{\frac{z}{r} q[i-2]_{q} \frac{(r r)^{i}}{i!}}
$$

where $[j]_{q}$ denotes the $q$-analog of $j:[j]_{q}=1+q+\cdots+q^{j-1}$.

## A problem of lacking symmetry

Let us consider again the $S_{n+1}$ action on the De Concini-Procesi compact model $\bar{Y}_{\mathcal{F}_{A_{n-1}}}$ induced from the isomorphism with $\bar{M}_{0, n+1}$.
This action does not extend to the other models (non minimal) of type $A_{n-1}$, in particular, it does not extend to the maximal model. Why?

## A picture of the $S_{6}$-invariant building sets associated to the arrangement of type $A_{5}$.



Let us denote by $\mathcal{B}(n-1)$ the set of strata of $\bar{Y}_{\mathcal{A}_{A_{n-1}}}$. It is indexed by the nested sets of $\mathcal{F}_{A_{n-1}}$ that contain $V^{*}$. We can construct the model $\bar{Y}_{\mathcal{B}(n-1)}$ starting from $\bar{Y}_{\mathcal{F}_{A_{n-1}}}$ and blowing up all the strata.

We notice that $\mathcal{B}(n-1) \cup \emptyset$ is a simplicial complex. There is a combinatorial notion of building set of a simplicial complex, due to Feichtner and Kozlov (2004).
Let us consider the family $\mathcal{T}_{n-1}$ of all the combinatorial building subsets of $\mathcal{B}(n-1)$. The maximum element in $\mathcal{T}_{n-1}$ is $\mathcal{B}(n-1)$ itself.
For every $K \in \mathcal{T}_{n-1}$ we can construct the model $\bar{Y}_{K}$ starting from $\bar{Y}_{\mathcal{F}_{A_{n-1}}}$ and blowing up all the strata that appear in $K$ (see for instance MacPherson-Procesi (1998) or Li (2009)).

It turns out that the maximal De Concini-Procesi models is "too small" to admit the $S_{n+1}$ action:

## Theorem (Callegaro-G. 2014)

The model $\bar{Y}_{\mathcal{B}(n-1)}$ is the only one model in $\left\{\bar{Y}_{K} \mid K \in \mathcal{T}_{n-1}\right\}$ that admits the extended $S_{n+1}$ action and also admits a birational projection onto the maximal De Concini-Procesi model $\bar{Y}_{\mathcal{C}_{A_{n-1}}}$.

## Theorem (Callegaro-G. 2014)

A basis of the integer cohomology of the complex model $\bar{Y}_{\mathcal{B}(n-1)}$ :

$$
\eta c_{\mathcal{S}_{1}}^{\delta_{1}} c_{\mathcal{S}_{2}}^{\delta_{2}} \cdots c_{\mathcal{S}_{k}}^{\delta_{k}}
$$

(1) $\mathcal{S}_{1} \subsetneq \mathcal{S}_{2} \subsetneq \cdots \subsetneq \mathcal{S}_{k}$ is a chain of $\mathcal{F}_{A_{n-1}}$-nested sets (possibly empty, i.e. $k=0$ );
(2) the element $c_{\mathcal{S}_{i}}$ is the Chern class of the normal bundle of $L_{\mathcal{S}_{i}}$ (the proper transform of $D_{\mathcal{S}_{i}}$ ) in $\bar{Y}_{\mathcal{B}(n-1)}$;
(3) the exponents $\delta_{i}$ satisfy the inequalities:
$1 \leq \delta_{i} \leq\left|\mathcal{S}_{i}\right|-\left|\mathcal{S}_{i-1}\right|-1 ;$
(4) $\eta$ is a monomial in a basis of $H^{*}\left(D_{\mathcal{S}_{1}}\right)$ (if $k \geq 1$ ) or to $H^{*}\left(\bar{Y}_{\mathcal{F}}\right)$ (if $k=0$ ).

## The inertia around divisors

Let $W$ be an irreducible complex reflection group. Let $\mathcal{A}_{W}$ be the corresponding arrangement, in the complex vector space $V$. and let $M\left(\mathcal{A}_{W}\right)$ be its complement. We write $P_{W}$ for the fundamental group $\pi_{1}\left(M\left(\mathcal{A}_{W}\right)\right)$, which is the pure braid group of $W$.
We call $Y_{\mathcal{F}_{W}}$ the minimal (not compact) wonderful model associated with the arrangement $\mathcal{A}_{W}$.

The minimal building set is made by the subspaces $A \in \mathcal{C}_{\mathcal{A}_{W}}$ such that the parabolic subgroup

$$
W_{A}:=\left\{w \in W \mid w \text { fixes } A^{\perp} \text { pointwise }\right\} .
$$

is irreducible.

## Definition

We denote by $j_{D_{A}} \in P_{W}$ the inertia around the divisor $D_{A}$. This is the homotopy class of a counterclockwise loop in the big open part $Y_{\mathcal{F}_{W}} \backslash\left(\bigcup_{B \in \mathcal{F}_{W}} D_{B}\right)$ around $D_{A}$, that is identified with a loop in $M\left(\mathcal{A}_{W}\right)$.

## Proposition

The inertia $j_{D_{V}}$ generates the center of $P_{W}$. When $A \neq V$, the inertia $j_{D_{A}}$ around the divisor $D_{A}$ in $Y_{\mathcal{F}_{W}}$ is a generator of the center of the corresponding parabolic subgroup $P_{W_{A}}$ of $P_{W}$.

The model $Y_{\mathcal{F}_{W}}$ can be constructed by a suitable series of blowups of strata of non-decreasing dimension.
In particular, let $Y_{0}$ be the first step in this blowup process, that is the blowup of the space $V$ in the origin $O$ and let $D_{V}^{0} \subset Y_{0}$ be the corresponding exceptional divisor.

We identify the complement in $Y_{0}$ of the proper transforms of the hyperplanes in $\mathcal{A}_{W}$ and of $D_{V}^{0}$ with the space $M\left(\mathcal{A}_{W}\right)$ :

$$
M\left(\mathcal{A}_{W}\right) \simeq Y_{0} \backslash\left(D_{V}^{0} \cup \bigcup_{H \in \mathcal{A}_{W}} \widetilde{H}\right) .
$$

## Definition

We denote by $j_{D_{V}^{0}} \in P_{W}$ (or simply $j$ ) the inertia around the divisor $D_{V}^{0}$. This is represented by a counterclockwise loop in $Y_{0} \backslash\left(\bigcup_{H \in \mathcal{A}_{W}} \widetilde{H}\right)$ around $D_{V}^{0}$, that is identified with a loop in $M\left(\mathcal{A}_{W}\right)$.

We notice that $j$ is also the inertia around the divisor $D_{V}$ in $Y_{\mathcal{F}_{W}}$ : in fact we are looking at the homotopy class of a loop in the big open part of $Y_{0}$, which is identified with the big open part of $Y_{\mathcal{J}_{W}}$ (and both are identified with $M\left(\mathcal{A}_{W}\right)$ ).

Since $Y_{0}$ is the closure of the image of the map

$$
V \backslash\{O\} \rightarrow V \times \mathbb{P}(V)
$$

there is a well defined projection $\pi$ of $Y_{0}$ onto $\mathbb{P}(V)$ and hence we can consider the fibration

where the 0-section is the divisor $D_{V}^{0}$. This fibration is the normal bundle of $D_{V}^{0}$ in $Y_{0}$ and hence we can choose a representative of $j$ as a loop avoiding 0 in the fiber of a generic point.

We now consider the restriction of the previous fibration to $\mathbb{P}\left(M\left(\mathcal{A}_{W}\right)\right)$ :


We can fix an hyperplane $H_{0} \in \mathcal{A}_{W}$. We can identify the fiber over any point with a line in $V$ and a translation of $H_{0}$ in $V$ will intersect in a point the line that is identified with the fiber over any $[v] \in \mathbb{P}(V) \backslash \mathbb{P}\left(H_{0}\right)$. Hence there exists a non-zero section and we have the trivial sub-fibration


We can factor $M\left(\mathcal{A}_{W}\right)$ as a product $\mathbb{C}^{*} \times \mathbb{P}\left(M\left(\mathcal{A}_{W}\right)\right)$ where the inertia $j$ is represented by a loop along the factor $\mathbb{C}^{*}$.

