Compactifications of configuration spaces

1 Introduction

Let us consider the moduli spaces $M_{0, n+1}$ of $n+1$-pointed curves of genus 0.

Definition 1.1

$$
M_{0, n+1}=\{\left(p_{0}, \ldots, p_{n}\right) \in \underbrace{\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}}_{n+1 \text { times }} \mid p_{i} \neq p_{j} \forall i \neq j\} / S L(2, \mathbb{C})
$$

where $S L(2, \mathbb{C})$ acts componentwise.
Using $S L(2, \mathbb{C})$ we can put $p_{0}=\infty$. Therefore we can represent the elements of $M_{0, n+1}$ in a canonical way as follows:

$$
M_{0, n+1}=\left\{\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{C}^{n} \mid p_{i} \neq p_{j} \forall i \neq j\right\} / G_{0}
$$

where G_{0} is the group of projective transformations which fix ∞, i.e.,

$$
G_{0}=\left\{a z+b \mid a \in \mathbb{C}^{*}, b \in \mathbb{C}\right\}
$$

In these notes we will recall the construction of the Mumford-Deligne compactification $\bar{M}_{0, n+1}$ of $M_{0, n+1}$ using the theory of wonderful models of hyperplane arrangements which De Concini and Procesi developed in [1]. We will focus on the relation between this construction and the compactifications of certain configuration spaces which we find in Section 5 of [5]. The first compactification is constructed assuming the point of view of algebraic geometry, the second concerns differential geometry. In fact, in [5] the following differential manifolds are compactified:

$$
\begin{gathered}
C_{n}=\left\{\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{C}^{n} \mid p_{i} \neq p_{j} \forall i \neq j\right\} / G_{2} \\
C_{n, m}=\left\{\left(p_{1}, \ldots, p_{n} ; q_{1}, \ldots, q_{m}\right) \mid p_{i} \in \mathcal{H}, q_{j} \in \mathbb{R}, p_{i} \neq p_{j} \forall i \neq j, q_{s} \neq q_{t} \forall s \neq t\right\} / G_{1}
\end{gathered}
$$

where G_{2} is the real Lie group of dimension 3

$$
G_{2}=\{a z+b \mid a \in \mathbb{R}, a>0, b \in \mathbb{C}\}
$$

G_{1} is the real Lie group of dimension 2

$$
G_{1}=\{a z+b \mid a \in \mathbb{R}, a>0, b \in \mathbb{R}\}
$$

and \mathcal{H} is the Lobacevsky plane.
Sections from 2 to 5 are devoted to the description of the wonderful model which is isomorphic to $\bar{M}_{0, n+1}$ and of a closed embedding of $\bar{M}_{0, n+1}$ into a product of complex projective spaces of dimension 1. If we look at the explicit coordinates of this embedding we can understand in a deeper way the definition of the differential configuration spaces we deal with.

Nevertheless the reader who is only interested in Kontsevich's construction of differential configuration spaces can skip these sections and start reading from Section 6 .

2 A wonderful model of the braid arrangement

Let us consider \mathbb{C}^{n} and the braid arrangement, that is to say, the hyperplane arrangement given by the hyperplanes $z_{i j}: x_{j}-x_{i}=0$, where $x_{i} \in\left(\mathbb{C}^{n}\right)^{*}$ $(i=1, \ldots, n)$ are the coordinate functions. We note that the intersection of all the hyperplanes is the subspace $N=\mathbb{C}(\underbrace{1, \ldots, 1}_{n \text { times }})$. We can thus consider the quotient $V=\mathbb{C}^{n} / N$ equipped with the arrangement \mathcal{A}_{n-1}^{*} provided by the images of the hyperplanes $z_{i j}$ via the quotient map $\pi: \mathbb{C}^{n} \mapsto V$. We can immediately see that \mathcal{A}_{n-1}^{*} is a root arrangement of type A_{n-1}. We will call by $t_{h k}$ the functionals in V^{*} the zeroes of which form the hyperplane $\pi\left(z_{h k}\right)$ in V and such that $\left(t_{h k}, t_{h k}\right)=2$ (where $($,$) is the scalar product in$ $\left.V^{*}\right)$. Then $\left\{t_{h k} \mid h, k=1, \ldots, n\right\} \cup\left\{-t_{h k} \mid h, k=1, \ldots, n\right\}$ is a root system (which we will denote by $\Phi_{\mathcal{A}_{n-1}}$) of type A_{n-1} and we observe that the set $\left\{t_{12}, t_{23}, \ldots, t_{(n-1) n}\right\}$ can be taken as a basis.

As a matter of notation, the set of the subspaces $A \subset V^{*}$ such that the "perpendicular" subspace A^{\perp} belongs to \mathcal{A}_{n-1}^{*} will be called by \mathcal{A}_{n-1}. Furthermore, we will denote by by $\mathcal{F}_{\mathcal{A}_{n-1}}$ the set of all the subspaces generated by the irreducible root subsystems of $\Phi_{\mathcal{A}_{n-1}}$. These subspaces can be described by means of a collection of subsets of $\{1,2, \ldots, n\}$; in fact, given a subset $\bar{\Delta}=\left\{i_{1}, \ldots, i_{p}\right\} \subset\{1, \ldots, n\}$ with $|\bar{\Delta}| \geq 2$, the subspace $\Delta \subset V^{*}$, generated by all the functionals $t_{i j}$ such that $\{i, j\} \subset \bar{\Delta}$, belongs to $\mathcal{F}_{\mathcal{A}_{n-1}}$ (a basis of $\Delta \cap \Phi_{\mathcal{A}_{n-1}}$ is given by $t_{i_{1} i_{2}}, t_{i_{2} i_{3}}, \ldots, t_{i_{p-1} i_{p}}$). Furthermore, it can be shown that all the elements of $\mathcal{F}_{\mathcal{A}_{n-1}}$ can be obtained in this way.

Let us now call by ψ the projection map $\psi: V \mapsto \mathbb{P}(V)$ and consider the projectivization of \mathcal{A}_{n-1}^{*}. We call by $\widehat{\mathcal{M}}_{\mathcal{A}_{n-1}}$ the complement in $\mathbb{P}(V)$ of the union of the images $\psi(D)\left(D \in \mathcal{A}_{n-1}^{*}\right)$.

By construction, given $A \in \mathcal{F}_{\mathcal{A}_{n-1}}$, the rational map

$$
\pi_{A}: V \mapsto V / A^{\perp}
$$

is defined outside A^{\perp} and thus there is a morphism

$$
\phi_{\mathcal{F}_{\mathcal{A}_{n-1}}}: \widehat{\mathcal{M}}_{\mathcal{A}_{n-1}} \mapsto \prod_{A \in \mathcal{F}_{\mathcal{A}_{n-1}}} \mathbb{P}\left(V / A^{\perp}\right)
$$

The graph of $\phi_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ is a closed subset of

$$
\widehat{\mathcal{M}}_{\mathcal{A}_{n-1}} \times \prod_{A \in \mathcal{F}_{\mathcal{A}_{n-1}}} \mathbb{P}\left(V / A^{\perp}\right)
$$

which embeds as open set into

$$
\mathbb{P}(V) \times \prod_{A \in \mathcal{F}_{\mathcal{A}_{n-1}}} \mathbb{P}\left(V / A^{\perp}\right)
$$

Finally we have an embedding

$$
\widehat{\phi}_{\mathcal{F}_{\mathcal{A}_{n-1}}}: \widehat{\mathcal{M}}_{\mathcal{A}_{n-1}} \mapsto \mathbb{P}(V) \times \prod_{A \in \mathcal{F}_{\mathcal{A}_{n-1}}} \mathbb{P}\left(V / A^{\perp}\right)
$$

as a locally closed subset. This construction allows us to give the definition:

$$
\mathbb{P}(V) \times \prod_{A \in \mathcal{F}_{\mathcal{A}_{n-1}}} \mathbb{P}\left(V / A^{\perp}\right)
$$

Remark. A similar definition can be given starting by any subspace arrangement \mathcal{G}^{*} in V. The corresponding variety will be called by $\widehat{Y}_{\mathcal{G}}$.

The variety $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ is a "wonderful model" for $\widehat{\mathcal{M}}_{\mathcal{A}_{n-1}}$, in the sense specified by point (1) of the following
Theorem 2.1 (see [1])
(1) $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ is a smooth irreducible variety equipped with a proper map $\pi: \widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}} \mapsto \mathbb{P}(V)$ which is an isomorphism on the preimage of $\widehat{\mathcal{M}}_{\mathcal{A}_{n-1}}$ and such that the complement of this preimage is a divisor with normal crossings.
(2) The complement \mathcal{D} of $\widehat{\mathcal{M}}_{\mathcal{A}_{n-1}}$ in $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ is the union of smooth irreducible divisors D_{G} indexed by the elements $G \in \mathcal{F}_{\mathcal{A}_{n-1}}-\left\{V^{*}\right\}$ (D_{G} is the
only irreducible divisor such that $\left.\pi\left(D_{G}\right)=G^{\perp}\right)$.
(3) Let G be a minimal (with respect to inclusion) element in $\mathcal{F}_{\mathcal{A}_{n-1}}$. If we put $\mathcal{F}_{\mathcal{A}_{n-1}}^{\prime}=\mathcal{F}_{\mathcal{A}_{n-1}}-\{G\}$, and denote by $\overline{\mathcal{F}}_{\mathcal{A}_{n-1}}$ the family in $(V)^{*} / G$ given by the elements $\left\{A+G / G: A \in \mathcal{F}_{\mathcal{A}_{n-1}}^{\prime}\right\}$, we have that the varieties $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ and $\widehat{Y}_{\overline{\mathcal{F}}_{\mathcal{A}_{n-1}}}$ are wonderful models and that $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ can be obtained from $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}^{\prime}}$ by blowing up a subvariety isomorphic to $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$.

De Concini and Procesi proved this in [1] by using the explicit description of an open affine covering of $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$. We will recall the construction of the above mentioned open charts. Using this construction we will be able to prove in the next section that the model $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ is isomorphic to the moduli space of stable $n+1$ pointed curves of genus 0 . For this purpose we need to introduce the notion of "nested set" (see [1]) by means of the following definitions. This notion is close to the one introduced by Fulton and MacPherson in their paper [3] on models of configuration spaces.

Definition 2.2 A set S of subspaces in $\mathcal{F}_{\mathcal{A}_{n-1}}$ is called nested if it contains V^{*} and, given any its subset $\left\{U_{1}, \ldots, U_{k}\right\}$ of pairwise non comparable elements, one has $U=U_{1} \oplus \cdots \oplus U_{k}$ and $U \notin S$. If we represent $\left\{U_{1}, \ldots, U_{k}\right\}$ by means of subsets of $\{1, \ldots, n\}$ this is equivalent to say that, for every $i \neq j$, the subsets representing U_{i} and U_{j} are either disjoint or one included into the other.

Let now S be a nested set of subspaces in $(V)^{*}$. For every set $A \subset(V)^{*}$, $A \neq\{0\}$, the set

$$
S^{A}=\left\{(V)^{*}\right\} \cup\{B \in S \mid A \subset B\}
$$

is linearly ordered (with respect to inclusion) and non empty. We let $p_{S}(A)$ to be the minimum of S^{A}. We will write $p_{S}(v)$ instead of $p_{S}(\mathbb{C} v)$ if v is a vector in $(V)^{*}$.

Definition 2.3 A basis b of $(V)^{*}$ is called "adapted" to S if, for all $A \in S$, the set

$$
b_{A}:=b \cap A=\left\{v \in b \mid p_{S}(v) \subset A\right\}
$$

is a basis of A. A "marking" of a basis b adapted to S is a choice, for all $A \in S$, of an element $x_{A} \in b$ with $p_{S}\left(x_{A}\right)=A$.

One can easily observe that, given a nested set S, one can always find a basis b adapted to S and a marking for b.

Consider now a space of functions \mathbb{C}^{b} with coordinates u_{x} indexed by the elements of b and, given $A \in S$, set $u_{A}:=u_{x_{A}}$ where $x_{A} \in b$ is the
marked element associated to A. Calling by H^{b} the affine subspace of $\mathbb{P}\left(\mathbb{C}^{b}\right)$ described by $u_{x_{V^{*}}}=1$, we can define a map:

$$
\rho_{S}: H^{b} \mapsto \mathbb{P}\left(\mathbb{C}^{b}\right)
$$

by means of the following relation:

$$
\begin{gather*}
v=u_{v} \prod_{B \supset A} u_{B} \quad \text { if } A=p(v) \text { and } v \text { is not marked } \tag{1}\\
v=\prod_{B \supset A} u_{B} \quad \text { if } v=x_{A} \tag{2}
\end{gather*}
$$

where the elements of b have been chosen as projective coordinates on the target space. Note that the image of ρ_{S} lies in the affine subspace defined by $x_{V^{*}}=1$. This map is easily seen to be birational and, since b is a basis of $(V)^{*}$, we can consider it as a map

$$
\rho_{S}: H^{b} \mapsto \mathbb{P}(V)
$$

Proposition 2.2 The map ρ_{S} restricts to an isomorphism between the open set where all the coordinates $u_{A}\left(A \in S-\left\{V^{*}\right\}\right)$ are different from 0 and the open set where the coordinates $x_{A} \in b$ are different from 0 , and maps the hyperplane defined by $u_{A}=0$ in the projectivized subspace corresponding to A^{\perp}.

If we now consider the variety

$$
\widehat{Y}_{S} \subset \mathbb{P}(V) \times \prod_{A \in S} \mathbb{P}\left(V / A^{\perp}\right)
$$

constructed according to Definition 2.1, we have that
Proposition 2.3 (see [1]) The map ρ_{S} lifts to an open embedding of H^{b} into \widehat{Y}_{S}.

Proof.
This essentially follows from the fact that the composition of ρ_{S} with the rational map

$$
\widehat{\pi}_{A}: \mathbb{P}(V) \mapsto \mathbb{P}\left(V / A^{\perp}\right) \quad(A \in S)
$$

is given by the formulas (1), (2), if we choose on $\mathbb{P}\left(V / A^{\perp}\right)$ the projective coordinates coming from the basis b_{A} of A. Thus as monomials in the u_{x},
these coordinates are all divisible by the monomial expressing x_{A}; we deduce that the map $\pi_{A} \rho_{S}$ is a morphism to the affine part $\mathbb{P}^{0}\left(V / A^{\perp}\right) \subset \mathbb{P}\left(V / A^{\perp}\right)$ where $x_{A}=1$. We can then form a morphism (again denoted by ρ_{S})

$$
\rho_{S}: H^{b} \mapsto \mathbb{P}(V) \times \prod_{A \in S} \mathbb{P}\left(V / A^{\perp}\right)
$$

the image of which is easily seen to be equal to the intersection between \widehat{Y}_{S} and $\mathbb{P}(V) \times \prod_{A \in S} \mathbb{P}^{0}\left(V / A^{\perp}\right)$.

We will denote by \mathcal{U}_{S}^{b} the open set in \widehat{Y}_{S} provided by the previous proposition and identify with ρ_{S} the restriction to \mathcal{U}_{S}^{b} of the projection from \widehat{Y}_{S} to $\mathbb{P}(V)$. Moreover we observe (see [1], page 465), that ρ_{S} depends only on the marked elements of the basis b.

Now, let us describe one possible way to select adapted marked bases for S. Choose for every $B \in S$ a basis $b(B)$ of B made by vectors not contained in any $C \subset B, C \in S$. Choose a vector $x_{B} \in b(B)$ for every $B \in S$. Then these vectors are linearly independent and thus can be completed to a basis b which is adapted to S and in which they are the marked vectors.

If we fix the bases $b(B)(B \in S)$ and perform the above algorithm in all the possible ways (that is to say, if we choose the marked vectors in all the possible ways), we get a family Θ of adapted marked bases. Since the open sets \mathcal{U}_{S}^{b} depend only on the marking of the basis b, this gives rise to a finite family $\mathcal{V}=\left\{\mathcal{U}_{S}^{b^{\prime}} \mid b^{\prime} \in \Theta\right\}$ of open sets.

Proposition 2.4 (see [1])

1. The variety \widehat{Y}_{S} is covered by the open sets \mathcal{U}_{S}^{b} in the family \mathcal{V}.
2. Given a minimal element $A \in S$ and put $S^{\prime}=S-\{A\}, \widehat{Y}_{S}$ is the blowup of $\widehat{Y}_{S^{\prime}}$ along the proper transform Z_{A} of the subspace A^{\perp} which is a smooth subvariety. Furthermore Z_{A} is canonically isomorphic to \widehat{Y}_{Λ} where $\Lambda:=\left\{(B+A) / A \in(V)^{*} / A \mid B \in S^{\prime}\right\}$.

Proof.
We observe that S^{\prime} is still nested and we want to study the two varieties $\widehat{Y}_{S}, \widehat{Y}_{S^{\prime}}$. By their very construction, there is a birational morphism p : $\widehat{Y}_{S} \mapsto \widehat{Y}_{S^{\prime}}$.

Let us consider a basis b adapted to S and marked. Then b is also adapted to S^{\prime} and, up to forget the marking on the element $x_{A} \in b$, is marked for S^{\prime}. It follows that the map ρ_{S} equals the composition of p restricted to \mathcal{U}_{S}^{b} with $\rho_{S^{\prime}}$.

We want to explicit the relations between the coordinate charts \mathcal{U}_{S}^{b} and $\mathcal{U}_{S^{\prime}}^{b}$; in order to do this we will denote by u_{v} the coordinates in \mathcal{U}_{S}^{b} and by u_{v}^{\prime} the coordinates in $\mathcal{U}_{S^{\prime}}^{b}$. We observe that we have $u_{v}=u_{v}^{\prime}$ if $p_{S}(v) \neq A$ or $v=x_{A}$ and $u_{v}^{\prime}=u_{v} u_{A}$ if $p_{S}(v)=A$ and $v \neq x_{A}$.

These are exactly the explicit maps of the blow up of $\mathcal{U}_{S^{\prime}}^{b}$ along the subvariety $u_{A}^{\prime}=0, u_{v}^{\prime}=0\left(p_{S}(v)=A\right.$ and $\left.v \neq x_{A}\right)$ in the charts

$$
p: \mathcal{U}_{S}^{b} \mapsto \mathcal{U}_{S^{\prime}}^{b}
$$

In particular, in the case of the claim 2), since A is a minimal element in S, if we start from an adapted basis b of S and we mark it for S^{\prime} in such a way that no marked vector belongs to A, we can complete the marking to S in $m=\operatorname{dim} A$ different ways. Let us call $b_{i}(i=1, \ldots, m)$ the marked bases we get; the associated charts $\mathcal{U}_{S}^{b_{i}}$ cover the blow up of $\mathcal{U}_{S^{\prime}}^{b}$ along the subspace defined by the equations $u_{v}^{\prime}=0(v \in A)$, hence the induced map $\cup_{i} \mathcal{U}_{S}^{b_{i}} \mapsto \mathcal{U}_{S^{\prime}}^{b}$ is a proper map.

Now, using the formulas (1) and (2), we can conclude that the variety we blow up in $\mathcal{U}_{S^{\prime}}^{b}$ is exactly the proper transform of the subspace A^{\perp}. In fact we have

$$
v=u_{v}^{\prime} \prod_{B \supsetneq A, B \in S^{\prime}} u_{B}^{\prime}
$$

for $v \in b_{A}$ and thus the claim follows dividing by

$$
\prod_{B \supsetneq A, B \in S^{\prime}} u_{B}^{\prime}
$$

These observations allow us to prove the claims 1) and 2) by induction on the cardinality of S.

Let us now focus on the variety $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$. Let us take a nested set S and a marked basis b adapted to it.

Lemma 2.5 Given any $x \in(V)^{*}-\{0\}$, suppose $A=p_{S}(x) \in S$. Then $x=x_{A} P_{x}(u)$, where $P_{x}(u)$ is a polynomial depending only on the variables u_{v} with v such that $p_{S}(v) \subseteq A$ and $v \neq x_{A}$.

Proof.

Since b_{A} is a basis of A, we have an expression

$$
x=\sum_{v \in b_{A}} a_{v} v=x_{A}\left(a_{x_{A}}+\sum_{\substack{v \in b_{A} \\ v \neq x_{A}}} a_{v} \frac{v}{x_{A}}\right)
$$

If we substitute for the v 's their expression in terms of the u 's provided by the relations (1), (2), we get the requested polynomial $P_{x}(u)$.

Now, given $G \in \mathcal{F}_{\mathcal{A}_{n-1}}$, the previous lemma allows us to define polynomials $P_{x}^{G}(u), x \in G$, by the formula $x=x_{A} P_{x}^{G}(u)$.

Let us denote by Z_{G} the subvariety in H^{b} defined by the vanishing of these polynomials. Then we observe that we have a regular morphism

$$
H^{b}-Z_{G} \mapsto \mathbb{P}\left(V / G^{\perp}\right)
$$

Definition 2.4 Given a nested set S, we define the open $\operatorname{set} \mathcal{U}_{S}^{b}$ or $\mathcal{U}_{S}^{b}\left(\mathcal{F}_{\mathcal{A}_{n-1}}\right)$ as the complement in H^{b} of the union of all the varieties $Z_{G}, G \in \mathcal{F}_{\mathcal{A}_{n-1}}$.

The open set \mathcal{U}_{S}^{b} has been defined in such a way that all the rational morphisms

$$
\mathcal{U}_{S}^{b} \mapsto \mathbb{P}\left(V / G^{\perp}\right)
$$

are well-defined; therefore we obtain an embedding j_{S}^{b} of \mathcal{U}_{S}^{b} in $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$. By construction, and by the formula $x_{A}=\prod_{A \subset B} u_{B}$, we have that the complement in \mathcal{U}_{S}^{b} of the divisors $u_{A}=0(A \in S)$, maps to the open set $\widehat{\mathcal{M}}_{\mathcal{A}_{n-1}}$ injectively, while the divisor $u_{A}=0$ maps to the projectivization of A^{\perp}.

The fact that the maps j_{S}^{b} are open embeddings (as S, b vary) easily follows from the diagram

since i_{S}^{b} is the open embedding of Proposition 2.3 and π^{\prime} is a birational map. From now on we will identify \mathcal{U}_{S}^{b} with its image $j_{S}^{b}\left(\mathcal{U}_{S}^{b}\right)$.
Theorem 2.6 (for the proof see [1], Theorem 3.1.1) We have $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}=$ $\cup_{S} \mathcal{U}_{S}^{b}$, where S ranges over all the maximal nested sets in $\mathcal{F}_{\mathcal{A}_{n-1}}$. In particular $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ is smooth.

3 A reduced construction

The definition of the De Concini-Procesi model $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ which has been given in Section 1 can be extended to any subspace arrangement represented by a collection of subspaces in V^{*} which satisfy some combinatorial properties (the "building" properties, see [1]). In some special cases one can see that it is not necessary to embed the complement of the arrangement in the product of the various $\mathbb{P}\left(V / A^{\perp}\right)$, but it suffices to consider only the $\mathbb{P}\left(V / B^{\perp}\right)$ with $\operatorname{dim} B=2$. In particular this happens when the arrangement we deal with is a root hyperplane arrangement. This includes our case of the braid arrangement.

Theorem 3.1 The restriction to $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ of the projection
induces a closed embedding

Proof.
We can prove the theorem using local coordinates. The following lemma allows us to choose a suitable collection of open charts.

Lemma 3.2 We can choose an open covering \mathcal{U} of $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ made by open charts U_{S}^{b} of the following kind: S is a maximal nested set and b is a marked basis, consisting of roots, adapted to S.

Let us consider $U_{S}^{b} \in \mathcal{U}$: we will prove that ζ restricted to U_{S}^{b} is an open embedding by showing that there is a local inverse

$$
\eta_{S}^{b}: \zeta\left(U_{S}^{b}\right) \mapsto \widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}
$$

For every $E \in S$, let us call by γ_{E} the element of b which belongs to $E-$ $\bigcup_{C \in S_{E}} C$. Moreover, for every $D \in \mathcal{F}_{\mathcal{A}_{n-1}}$, let us call by π_{D} the projection

$$
\pi_{D}: \widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}} \mapsto \mathbb{P}\left(V / D^{\perp}\right)
$$

Therefore we can define η_{S}^{b} by defining, for every $D \in \mathcal{F}_{\mathcal{A}_{n-1}}$, the morphism π_{D} o η_{S}^{b} (note that the case $\operatorname{dim} D=2$ is obvious).

Let us first consider the case $D \in S$. We note that we can find a basis $\gamma_{D}, \gamma_{D}-\mu_{1}, \ldots, \gamma_{D}-\mu_{\operatorname{dim} D-1}$ of D where the μ_{i} and the $\gamma_{D}-\mu_{i}$ are roots and $\left(\gamma_{D}, \mu_{i}\right) \neq 0$ for every $i=1, \ldots, \operatorname{dim} D-1$. This means that the two dimensional subspaces $<\gamma_{D}, \mu_{i}>$ spanned by γ_{D} and $\mu_{i}(i=$ $1, \ldots, \operatorname{dim} D-1)$ belong to $\mathcal{F}_{\mathcal{A}_{n-1}}$.

Furthermore, if we take a point $p \in \zeta\left(U_{S}^{b}\right)$ and denote by $\left[p_{\gamma_{D}}, p_{\mu_{i}}\right]$ its homogeneous coordinates in $\mathbb{P}\left(V /<\gamma_{D}, \mu_{i}>^{\perp}\right)$ with respect to the basis dual to γ_{D}, μ_{i}, we can consider $p_{\gamma_{D}}=1$ by the definition of U_{S}^{b}.

Now, given $C \in S_{D}$, we can write

$$
\gamma_{C}=\sum_{r=1}^{\operatorname{dim} D-1} a_{r}(C) \mu_{r}
$$

for certain scalars $a_{r}(C)$. Therefore we can define π_{D} o $\eta_{S}^{b}(p)$ giving its projective coordinates in terms of the basis dual to $\gamma_{D}, \gamma_{C}\left(C \in S_{D}\right)$: we put

$$
\gamma_{D}\left(\pi_{D} o \eta_{S}^{b}(p)\right)=1
$$

and

$$
\gamma_{C}\left(\pi_{D} \circ \eta_{S}^{b}(p)\right)=\sum_{r=1}^{\operatorname{dim} D-1} a_{r}(C) p_{\mu_{r}}
$$

Now it remains the case when $D \notin S$. Keeping the notation of Section 1, we call by $p_{S}(D)$ the minimal (with respect to inclusion) subspace in S which includes D. As before, we find a basis $\gamma_{p_{S}(D)}, \mu_{1}, \ldots, \mu_{\operatorname{dim} p_{S}(D)-1}$, consisting of roots, of $p_{S}(D)$ such that $\left(\gamma_{p_{S}(D)}, \mu_{l}\right) \neq 0$ for every $l=1, \ldots, \operatorname{dim} p_{S}(D)-$ 1. After choosing a basis $e_{1}, \ldots, e_{\operatorname{dim} D}$ of D, we can write, for every $j=$ $1, \ldots, \operatorname{dim} D$

$$
e_{j}=a_{0}(j) \gamma_{p_{S}(D)}+\sum_{r=1}^{\operatorname{dim} p_{S}(D)-1} a_{r}(j) \mu_{r}
$$

Therefore we can define the projective coordinates of $\pi_{D} o \eta_{S}^{b}(p)$ (in terms of the basis dual to $e_{1}, \ldots, e_{\operatorname{dim} D}$) in the following way:

$$
e_{j}\left(\pi_{D} \text { o } \eta_{S}^{b}(p)\right)=a_{0}(j)+\sum_{r=1}^{\operatorname{dim} p_{S}(D)-1} a_{r}(j) p_{\mu_{r}}
$$

(here $\left[p_{\gamma_{p_{S}(D)}}, p_{\mu_{r}}\right]$ are the homogeneous coordinates in $\mathbb{P}\left(V /<\gamma_{p_{S}(D)}, \mu_{r}>^{\perp}\right)$ with respect to the basis dual to $\gamma_{p_{S}(D)}, \mu_{r}$, and we take $\left.p_{\gamma_{p_{S}(D)}}=1\right)$. By
construction, the above defined map η_{S}^{b} is a morphism and it is the inverse of ζ restricted to U_{S}^{b}. It follows that ζ restricted to any U_{S}^{b} is an isomorphism with its image; therefore $\zeta\left(\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}\right)$ is smooth and ζ is an open embedding unless it has an exceptional subvariety, i.e. a subvariety $Z \subset \widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ such that $\operatorname{codim} Z=1$ but $\operatorname{codim} \zeta(Z) \geq 2$. But since $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ is covered by a finite number of coordinate charts such a subvariety cannot exist.

In the next section we will focus on the consequences of Theorem 3.1, showing that, for every integer $n \geq 3, \widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ and the moduli space $\bar{M}_{0, n+1}$ of $n+1$-pointed stable curves of genus 0 are isomorphic.

4 The braid arrangement and the moduli space of pointed curves of genus 0

Let us start from a realization of the moduli space $M_{0, n+1}$ of $n+1$-pointed curves of genus 0 .

Definition 4.1

$$
M_{0, n+1}=\{\left(p_{0}, \ldots, p_{n}\right) \in \underbrace{\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}}_{n+1 \text { times }} \mid p_{i} \neq p_{j} \forall i \neq j\} / S L(2, \mathbb{C})
$$

where $S L(2, \mathbb{C})$ acts componentwise.
Given an element $p \in M_{0, n+1}$, after making $S L(2)$ to act, we can canonically write

$$
p=\left[(0,1),(1,0),(1,1),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-2}, y_{n-2}\right)\right]
$$

As a matter of notation, here, and everywhere we deal with orbits, the brackets mean:"equivalence class of".

It follows that $M_{0, n+1}$ is in bijective correspondence with the set

$$
\widehat{M}_{0, n+1}=\{\left(q_{1}, \ldots, q_{n-2}\right) \in \underbrace{\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}}_{n-2 \text { times }} \mid q_{i} \neq q_{j}, q_{i} \neq 1,0, \infty\}
$$

Theorem 4.1 There is a bijective map between $\widehat{\mathcal{M}}_{\mathcal{A}_{n-1}}$ and $\widehat{M}_{0, n+1}$ that gives rise to an isomorphism between $\widehat{\mathcal{M}}_{\mathcal{A}_{n-1}}$ and $M_{0, n+1}$.

Proof.

Let us choose in V the basis $\left\{v_{2}, \ldots, v_{n}\right\}$ dual to the basis $\left\{t_{12}, t_{13}, \ldots, t_{1 n}\right\}$ of V^{*}. We note that a set of representatives for the v_{j} 's can be chosen as follows: $v_{j}=\pi((0, \ldots, 0,1,0, \ldots, 0))$ where the only non zero entry is the j-th.

Then we can define a map $\phi: \widehat{\mathcal{M}}_{\mathcal{A}_{n-1}} \mapsto \widehat{M}_{0, n+1}$:

$$
\phi\left(\gamma_{1}, \ldots, \gamma_{n-1}\right)=\left(\left(\gamma_{1}, \gamma_{2}\right),\left(\gamma_{1}, \gamma_{3}\right), \ldots,\left(\gamma_{1}, \gamma_{n-1}\right)\right)
$$

Note that if $\gamma_{j}=0$ for a certain j, then $\left(\gamma_{1}, \ldots, \gamma_{n-1}\right) \in H_{1(j+1)}$ and if $\gamma_{i}=\gamma_{j}(i<j)$ then $\left(\gamma_{1}, \ldots, \gamma_{n-1}\right) \in H_{(i+1)(j+1)}$. This implies that ϕ is well defined. The injectivity is trivial, while the surjectivity is a consequence of the above remarks, a right inverse being given by the map θ such that $\theta\left(\left(1, r_{1}\right), \ldots,\left(1, r_{n-2}\right)\right)=\left(1, r_{1}, \ldots, r_{n-2}\right)$.

The above theorem is the reason of the connections between the theory of hyperplane arrangements and the theory of moduli spaces of pointed curves of genus 0 . In fact, consider the compactification $\bar{M}_{0, n+1}$ of $M_{0, n+1}$, that is to say, the moduli spaces of stable $n+1$-pointed curves of genus 0 . What we want to point out is that the isomorphism of Theorem 4.1 between the open subvarieties $\widehat{\mathcal{M}}_{\mathcal{A}_{n-1}} \subset \widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ and $M_{0, n+1} \subset \bar{M}_{0, n+1}$ can be extended to the boundary, i.e., we have an isomorphism between $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ and $\bar{M}_{0, n+1}$.

To prove this, we start by giving a description of the elements of $\bar{M}_{0, n+1}$ as connected tree-like stable $n+1$-pointed curves. This means that we are considering elements of this kind

Here each line represents an irreducible curve of genus 0 (i.e, \mathbb{P}^{1}), every double point represents a point of transversal intersection between the irreducible curves, the other special points, i.e. the punctures, are numbered from 0 to n and the stability is given by the request that the special points (punctures or double points) on each irreducible component are at least 3.

It is well known that there is a morphism

$$
\mu_{n+1}: \bar{M}_{0, n+1} \mapsto \bar{M}_{0, n}
$$

obtained by forgetting the point labeled with n and, if it is the case, collapsing some irreducible components. At the same way we can construct the maps μ_{i} which "forget" the point labeled with $i(i=1, \ldots, n-1)$.

Let us then call $\bar{M}_{0, i j k}(1 \leq i<j<k \leq n)$ the moduli space $\bar{M}_{0,4}$ in which the points are labeled using the numbers i, j, k. A composition of some of the maps μ_{i} gives a morphism

$$
\bar{M}_{0, n+1} \mapsto \bar{M}_{0, i j k}
$$

Now the morphism we are interested in is

$$
\nu: \bar{M}_{0, n+1} \mapsto \prod_{\substack{i, j, k \in\{1, \ldots, n\} \\ i<j<k}} \bar{M}_{0, i j k}
$$

which is given by the above described projections to each component.
Proposition 4.2 The morphism ν is injective.
Proof.
First we note that we can reduce ourselves to prove that, for every n, the map

$$
\prod_{i=1}^{n} \mu_{i}: \bar{M}_{0, n+1} \mapsto \prod_{1 \leq i \leq n} \bar{M}_{0, n}
$$

is injective. Therefore we have to check that an element $p \in \bar{M}_{0, n+1}$ is uniquely determined by its image $\prod_{i} \mu_{i}(p)$. For this we notice that if there is an irreducible component of p which has at least two marked points (say " i " and " j ") different from " 0 " and at least four special points, p can be determined by knowing $\mu_{i}(p)$ and $\mu_{j}(p)$.

Let us now assume that $n \geq 6$ and that p has not irreducible components with the above mentioned properties. Then in every irreducible component of p there are at most two marked points and thus, being $n+1 \geq 7$, there are at least four irreducible components. In particular there are two irreducible components c_{1}, c_{2} of p, which some marked points different from " 0 " belong to, and such that $c_{1} \cap c_{2}=\emptyset$. Now, if the point " i " belongs to c_{1} and the point " j " belongs to $c_{2}(i, j \neq 0), p$ is determined by $\mu_{i}(p)$ and $\mu_{j}(p)$. Then our claim is proved after a case-by-case check for $3 \leq n \leq 5$.

Now we note that in the theory of De Concini - Procesi models we came across a map similar to $\prod_{i} \mu_{i}$, namely the map ζ of Theorem 3.1. In fact, given

$$
\zeta: \widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}} \mapsto \prod_{\substack{A \in \mathcal{F}_{\mathcal{A}_{n-1}} \\ \operatorname{dim} A=2}} \mathbb{P}\left(V / A^{\perp}\right)
$$

we observe that the irreducible two dimensional subspaces $A \in \mathcal{F}_{\mathcal{A}_{n-1}}$ can be parametrized, according to the conventions established above, by the triples of integers i, j, k with $1 \leq i<j<k \leq n$. As a matter of notation, we will call $\mathbb{P}_{i j k}$ the projective space $\mathbb{P}\left(V / A^{\perp}\right)$ when $\bar{A}=\{i, j, k\} \subset\{1, \ldots, n\}$.

Then we want to define in a suitable way an isomorphism

$$
\gamma: \prod_{\substack{i, j, k \in\{1, \ldots, n\} \\ i<j<k}} \bar{M}_{0, i j k} \mapsto \prod_{\substack{i, j, k \in\{1, \ldots, n\} \\ i<j<k}} \mathbb{P}_{i j k}
$$

Our request is that γ should be compatible with the isomorphism between the subvarieties $\zeta\left(\widehat{\mathcal{M}}_{\mathcal{A}_{n-1}}\right)$ and $M_{0, n+1}$. Such a γ can be obtained by identifying $\mathbb{P}_{i j k}$ with $\bar{M}_{0, i j k}$ in the following way. Let $p=\left[(0,1),(1,0),(1,1),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n}, y_{n}\right)\right]$ be a point of $M_{0, n+1}$ and let us put, for convenience of notation, $\left(x_{2}, y_{2}\right)=$ $(1,1)$ and $\left(x_{1}, y_{1}\right)=(1,0)$.

Then the projection of p to $\bar{M}_{0, i j k}$ is given by $\left[(0,1),\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right),\left(x_{k}, y_{k}\right)\right]$ and it can be written in canonical way if we use $S L(2)$ to send $\left(x_{i}, y_{i}\right)$ to $(1,0)$ and $\left(x_{j}, y_{j}\right)$ to $(1,1)$ (keeping fixed $(0,1)$). The matrix of $S L(2)$ we use is (up to scalar)

$$
\left(\begin{array}{cc}
\frac{y_{j}}{x_{j}}-\frac{y_{i}}{x_{i}} & 0 \\
-\frac{y_{i}}{x_{i}} & 1
\end{array}\right)
$$

(note that, for every $i=1, \ldots, n, x_{i} \neq 0$).
Thus we obtain $\left[(0,1),(1,0),(1,1),\left(\frac{y_{j}}{x_{j}}-\frac{y_{i}}{x_{i}}, \frac{y_{k}}{x_{k}}-\frac{y_{i}}{x_{i}}\right)\right]$. If we consider the isomorphism ϕ of Theorem 4.1 between $\widehat{\mathcal{M}}_{\mathcal{A}_{n-1}}$ and $M_{0, n+1}$, we have that $\phi^{-1}(p)=\left(1, \frac{y_{3}}{x_{3}}, \ldots, \frac{y_{n}}{x_{n}}\right)$.

Let us now study the projection of $\phi^{-1}(p)$ to $\mathbb{P}_{i j k}$. We recall that if $\bar{A}=\{i, j, k\} \subset\{1, \ldots, n\}$ then A^{\perp} is the $n-3$-dimensional subspace the elements of which have the i-th, j-th and k-th components equal. This means that the projection of $\phi^{-1}(p)$ to $\mathbb{P}_{i j k}$ is $\left(\frac{y_{j}}{x_{j}}-\frac{y_{i}}{x_{i}}, \frac{y_{k}}{x_{k}}-\frac{y_{i}}{x_{i}}\right)$ in the projective coordinates given by the vectors v_{j} and v_{k} (note that $k>j \geq 2$).

As a consequence, we can identify $\mathbb{P}_{i j k}$ with $\bar{M}_{0, i j k}$ via γ by choosing in $\mathbb{P}_{i j k}$ the projective coordinates given by v_{j} and v_{k}.

Now let us consider the diagram

$$
\prod_{\substack{i, j, k \in\{1, \ldots, n\} \\ i<j<k}}^{\substack{\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}} \\ \mathbb{P}_{i j k} \underset{\gamma}{\approx} \underset{\sim}{\approx} \prod_{i, j, k \in\{1, \ldots, n\}} \\ i<j<k}} \bar{M}_{0, i j k}
$$

Theorem 4.3 The above diagram can be completed with an isomorphism $\Gamma: \bar{M}_{0, n+1} \mapsto \widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$.

Proof
First we note that $\gamma\left(\nu\left(M_{0, n+1}\right)\right)=\zeta\left(\widehat{\mathcal{M}}_{\mathcal{A}_{n-1}}\right)$ and then, since $\gamma\left(\nu\left(\bar{M}_{0, n+1}\right)\right)$ is closed, the closure of $\zeta\left(\widehat{\mathcal{M}}_{\mathcal{A}_{n-1}}\right)$ is included in $\gamma\left(\nu\left(\bar{M}_{0, n+1}\right)\right)$. But this closure is equal to $\zeta\left(\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}\right)$. Since $\zeta\left(\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}\right)$ and $\gamma\left(\nu\left(\bar{M}_{0, n+1}\right)\right)$ are closed and contain the same open dense subvariety, they must coincide. Then we observe that the map $\zeta^{-1} \circ \gamma \circ \nu$ is a well defined birational morphism between $\bar{M}_{0, n+1}$ and $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ which is also bijective, since we have proven that it is onto and furthermore ν is injective, γ is bijective and ζ is injective. Since the two varieties are smooth, this implies that $\zeta^{-1} \circ \gamma \circ \nu$ is an isomorphism.

5 Divisors in $\bar{M}_{0, n+1}$.

Let us now focus on the map Γ and in particular on the image of the subvarieties in the boundary of $\bar{M}_{0, n+1}$. Recall that an irreducible divisor D in the boundary of $\bar{M}_{0, n+1}$ can be represented (see [4]) by the picture

where $\bar{A} \subset\{0, \ldots, n\}$ and $\bar{B}=\{0, \ldots, n\}-\bar{A}$ satisfy $|\bar{A}| \geq 2,|\bar{B}| \geq 2$. The divisor D is the one which contains as an open set the set of all the elements
δ of $\bar{M}_{0, n+1}$ which satisfy the following property: δ has two irreducible components such that the labels of the special points of each component are the elements of \bar{A} and \bar{B} respectively.

Now, given the model $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$, let us call by $\hat{\pi}$ its projection to $\mathbb{P}(V)$.
Proposition 5.1 Given D, \bar{A} and \bar{B} as before, let us suppose that $0 \in \bar{B}$. Furthermore, keeping the notation of Section 2, let us indicate by A the irreducible subspace in V^{*} associated to \bar{A}. Then we have that $\Gamma(D)=D_{A}$.

Proof.
Let us consider a chart U_{S}^{b} in $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$, where S is a nested set not containing V^{*} and $A \in S$. The intersection between D_{A} and U_{S}^{b} is given by the equation $u_{A}=0$ (recall that if $A \notin S$ the intersection is empty). Therefore, given an element p in $D_{A} \cap U_{S}^{b}$, it satisfies the following property:

1. Given any triple (i, j, k) with $1 \leq i<j<k \leq n$ and $|\{i, j, k\} \cap \bar{A}|=2$, the projection $p_{i j k}$ of $\zeta(p)$ to $\mathbb{P}_{i j k}$ is $1,0, \infty$ when respectively $i \notin \bar{A}$, $j \notin \bar{A}, k \notin \bar{A}$.

This follows by construction of the chart U_{S}^{b}; let us consider for example the case $i \notin \bar{A}$. The projective coordinates on $\mathbb{P}_{i j k}$ are the ones provided by the basis v_{j}, v_{k} of V / B^{\perp}, where $\bar{B}=\{i, j, k\}$. Thus the projection to V / B^{\perp} of an element $v=x_{2} v_{2}+\cdots+x_{n} v_{n}$ in V is given in coordinates by $\left(x_{j}-x_{i}, x_{k}-x_{i}\right)$ (here we put $x_{1}=0$) and the corresponding projective coordinates in $\mathbb{P}_{i j k}$ are $\left[x_{j}-x_{i}, x_{k}-x_{i}\right]$. But $t_{j k} \in B$ and its expression in terms of the coordinates of U_{S}^{b} is a multiple of u_{A}. Since $B \notin S$ and $D_{A} \cap U_{S}^{b}=\left\{u_{A}=0\right\}$, given a point $p \in D_{A} \cap U_{S}^{b}$, the projective coordinates $\left[x_{2}, \ldots, x_{n}\right]$ of $\hat{\pi}(p)$ satisfy $t_{j k}\left(\left(x_{2}, \ldots, x_{n}\right)\right)=0$, that is to say, $x_{j}=x_{k}$.

Therefore, since $p_{i j k}=\left[x_{j}-x_{i}, x_{k}-x_{i}\right] \neq[0,0]$ by construction of U_{S}^{b}, we have $p_{i j k}=[1,1]$. At the same way we can treat the cases $j \notin \bar{A}, k \notin \bar{A}$.

Let us now consider the points of the divisor

Let $q \in D$ and let us take a triple (i, j, k) with $1 \leq i<j<k \leq n$, $i \notin \bar{A}$ and $\{j, k\} \subset \bar{A}$. Then the projection $\gamma o \nu(q)_{i j k}$ of $\gamma o \nu(q)$ to $\mathbb{P}_{i j k}$ is
provided by the cross-ratio ($p_{0}, p_{i}, p_{j}, p_{k}$) of the special points $p_{0}, p_{i}, p_{j}, p_{k}$ where we have collapsed the points p_{j}, p_{k} to the double point of D. Then this cross ratio is equal to 1 . Reasoning in the same way when $j \notin \bar{A}$ and $k \notin \bar{A}$ we can conclude that $\Gamma(q)$ satisfies the property 1 .

Furthermore, looking at the tree like representation of an element $z \in$ $\bar{M}_{0, n+1}$ and at the cross ratios $\left(p_{0}, p_{i}, p_{j}, p_{k}\right)$ we immediately see that $\Gamma(z)$ satisfies the property 1 if and only if $z \in D$. Since Γ is an isomorphism this means that the set of elements in $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$ which satisfy property 1 is exactly $\Gamma(D)$. Therefore $D_{A} \cap U_{S}^{b} \subset \Gamma(D)$ and, since D_{A} and $\Gamma(D)$ are irreducible divisors in $\widehat{Y}_{\mathcal{F}_{\mathcal{A}_{n-1}}}$, it follows that $\Gamma(D)=D_{A}$.

6 A definition of differential compact configuration spaces

In this section we are going to describe a construction of the differential compactified configuration spaces which appear in [5]. Given two non negative integers n, m satisfying $2 n+m \geq 2$ we can consider the quotient space
$C_{n, m}=\left\{\left(p_{1}, \ldots, p_{n} ; q_{1}, \ldots, q_{m}\right) \mid p_{i} \in \mathcal{H}, q_{j} \in \mathbb{R}, p_{i} \neq p_{j} \forall i \neq j, q_{s} \neq q_{t} \forall s \neq t\right\} / G_{1}$
where G_{1} is the real Lie group of holomorphic transformations which preserve the half-plane and the point ∞ :

$$
G_{1}=\{a z+b \mid a \in \mathbb{R}, a>0, b \in \mathbb{R}\}
$$

and \mathcal{H} is the Lobacevsky plane. Note that $C_{n, m}$ is a C^{∞} manifold of dimension $2 n+m-2$. At the same way, given $n \geq 2$, we can introduce the C^{∞} manifold

$$
C_{n}=\left\{\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{C}^{n} \mid p_{i} \neq p_{j} \forall i \neq j\right\} / G_{2}
$$

where G_{2} is the real Lie group of dimension 3:

$$
G_{2}=\{a z+b \mid a \in \mathbb{R}, a>0, b \in \mathbb{C}\} .
$$

Let us now consider the map

$$
\phi_{n, m}: C_{n, m} \mapsto \mathcal{L}_{n, m}=\left(S^{1}\right)^{n(n-1)+n m} \times\left(\mathbb{P}_{\mathbb{C}}\binom{n+m}{3}^{3} \times\left(\mathbb{P}_{\mathbb{C}}\right)^{n(n+m-1)}\right.
$$

defined by

$$
\phi_{n, m}\left(\left[\left(p_{1}, \ldots, p_{n} ; q_{1}, \ldots, q_{m}\right)\right]\right)=
$$

$$
=\left(\operatorname{Arg}\left(p_{i}-p_{j}\right), \operatorname{Arg}\left(p_{i}-\bar{p}_{j}\right), \operatorname{Arg}\left(p_{r}-q_{k}\right), \frac{\tau_{s}-\tau_{l}}{\tau_{t}-\tau_{l}}, \frac{\gamma_{s}-p_{l}}{\gamma_{s}-\bar{p}_{l}}\right)
$$

where in the formula $i>j, s>t, \tau_{s}, \tau_{l}, \tau_{t}$ are three distinct points among $\tau_{1}=p_{1}, \ldots, \tau_{n}=p_{n}, \tau_{n+1}=q_{1}, \ldots, \tau_{n+m}=q_{m}$ and γ_{s} is a point among $p_{1}, \ldots, \widehat{p}_{l}, \ldots, p_{n}, q_{1}, \ldots, q_{m}$. Of course, in the cases when n, m are small, in the above definiton we use only the coordinates which are well defined (for example, if $n \leq 2$ the quotients $\frac{p_{s}-p_{l}}{p_{t}-p_{l}}$ do not appear). In particular when $n=1, m=0$ the target space is a point. Analogously, we define the map

$$
\begin{gathered}
\phi_{n}: C_{n} \mapsto \mathcal{L}_{n}=\left(S^{1}\right)\binom{n}{2} \times\left(\mathbb{P}_{\mathbb{C}}\right)\binom{n}{3}^{3} \\
\phi_{n}\left(\left[\left(p_{1}, \ldots, p_{n}\right)\right]\right)=\left(\operatorname{Arg}\left(p_{r}-p_{k}\right), \frac{p_{k}-p_{i}}{p_{j}-p_{i}}\right)
\end{gathered}
$$

where $r>k$ and $k>j$.
Proposition 6.1 The maps $\phi_{n, m}$ and ϕ_{n} are embeddings.
Proof.
The proof in the two cases is similar: we will focus on $\phi=\phi_{n}$ for simplicity of notation. Let us call by $S^{1}(i j)$ the one dimensional torus in \mathcal{L}_{n} such that the projection of $\phi_{n}\left(\left[\left(p_{1}, \ldots, p_{n}\right)\right]\right)$ to $S^{1}(i j)$ is $\operatorname{Arg}\left(p_{i}-p_{j}\right)$; at the same way, we denote by $\mathbb{P}_{\mathbb{C}}(i j k)$ the one dimensional complex projective space in \mathcal{L}_{n} such that the projection of $\phi_{n}\left(\left[\left(p_{1}, \ldots, p_{n}\right)\right]\right)$ to $\mathbb{P}_{\mathbb{C}}(i j k)$ is $\frac{p_{k}-p_{i}}{p_{j}-p_{i}}$. Let then $x_{i j}$ denote the coordinate in $S^{1}(i j)$ and $x_{i j k}$ the coordinate in $\mathbb{P}_{\mathbb{C}}(i j k)$. First we will show that ϕ is injective. Secondly we will prove that there exists an open set U containing $\phi\left(C_{n}\right)$ in \mathcal{L}_{n} and a \mathbb{C}^{∞} map $\psi: U \mapsto C_{n}$ such that ψ o ϕ is the identity on C_{n}. This will imply that $d \phi$ is injective on $C_{n}: \phi$ is therefore an imbedding.

Furthermore, given an open set $V \subset C_{n}$, we have that $\phi(V)=\psi^{-1}(V) \cap$ $\phi\left(C_{n}\right)$, that is to say, $\phi(V)$ is an open subset of $\phi\left(C_{n}\right)$ when $\phi\left(C_{n}\right)$ is given the topology induced by \mathcal{L}_{n}. This implies that ϕ is a homeomorphism between C_{n} and $\phi\left(C_{n}\right)$ with the above mentioned topology, hence an embedding.

Let us now prove the injectivity of ϕ. We use the following description of the moduli space $M_{0, n+1}$:

$$
M_{0, n+1}=\left\{\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{C}^{n} \mid p_{i} \neq p_{j} \forall i \neq j\right\} / G_{0}
$$

where G_{0} is the group of projective transformations which fix ∞, i.e.,

$$
G_{0}=\left\{a z+b \mid a \in \mathbb{C}^{*}, b \in \mathbb{C}\right\} .
$$

Then we have shown (see Section 4) that the map

$$
\gamma \mathrm{o} \mathrm{\nu}: M_{0, n+1} \mapsto \prod_{\substack{i, j, k \in\{1, \ldots, n\} \\ i<j<k}} \mathbb{P}_{i j k}
$$

given by

$$
\left[\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right] \mapsto\left(\frac{p_{k}-p_{i}}{p_{j}-p_{i}}\right)
$$

is an open embedding.
This means that the composite map

$$
\pi_{\mathbb{P} O} \phi: C_{n} \mapsto \prod_{\substack{i, j, k \in\{1, \ldots, n\} \\ i<j<k}} \mathbb{P}_{\mathbb{C}}(i j k)
$$

where $\pi_{\mathbb{P}}$ is the projection onto $\quad \prod \quad \mathbb{P}_{\mathbb{C}}(i j k)$, is not injective

$$
\begin{gathered}
i, j, k \in\{1, \ldots, n\} \\
i<j<k
\end{gathered}
$$

(since $\left.G_{2} \subset G_{0}\right)$ and the fiber of a point $\pi_{\mathbb{P}} \mathrm{O} \phi\left(\left[\left(p_{1}, \ldots, p_{n}\right)\right]\right)$ is given by $e^{i \theta}\left(p_{1}, \ldots, p_{n}\right)$. Now θ can be determined taking into account the coordinates $\operatorname{Arg}\left(p_{i}-p_{j}\right)$ of the map ϕ, which therefore is proven to be injective.

Let us now construct the inverse to ϕ. We start by considering the open set $U \subset \mathcal{L}_{n}$,

$$
U=\left\{\left(x_{i j}, x_{l k r}\right) \mid x_{12 k} \neq 0, x_{12 k} \neq 1, x_{12 j} \neq x_{12 s} \forall k, j, s\right\}
$$

Note that $\phi\left(C_{n}\right) \subset U$; then we define the \mathbb{C}^{∞} function $\psi: U \mapsto C_{n}$ in the following way:

$$
\psi\left(\left(x_{i j}, x_{l k r}\right)\right)=\left[\left(q_{1}, q_{2}, \ldots, q_{n}\right)\right]
$$

where

- $q_{1}=i$
- $q_{2}=i+\cos x_{12}+i \sin x_{12}$
- $q_{3}=i+\left(\cos x_{12}+i \sin x_{12}\right) x_{123}$
-
- $q_{n}=i+\left(\cos x_{12}+i \sin x_{12}\right) x_{12 n}$

It is immediate to check that ψ is well defined and that ψ, restricted to $\phi\left(C_{n}\right)$, is the inverse to ϕ.

Definition 6.1 The space $\bar{C}_{n, m}\left(\right.$ resp. $\left.\bar{C}_{n}\right)$ is the closure of the image of $\phi_{n, m}\left(\right.$ resp. $\left.\phi_{n}\right)$ in the target space.

In the next section, following [5], we will show how to give to the compactifications \bar{C}_{n} and $\bar{C}_{n, m}$ the structure of smooth manifolds with corners (a manifold with corners of dimension d is defined analogously to a manifold with boundary with the only difference that the manifold is covered locally by open parts of a simplicial cone $\left.\left(\mathbb{R}_{\geq 0}\right)^{d}\right)$.

7 Trees and open charts

Let us first describe a continuous section $s^{\text {cont }}$ of the natural projection map

$$
\operatorname{Conf}_{n}=\left\{\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{C}^{n} \mid p_{i} \neq p_{j} \forall i \neq j\right\} \mapsto C_{n}
$$

Given a point $p=\left[\left(p_{1}, \ldots, p_{n}\right)\right] \in C_{n}$ we put $s^{\operatorname{cont}}(p)=\left(q_{1}, \ldots, q_{n}\right)$, where $\left(q_{1}, \ldots, q_{n}\right)$ is in the fiber of p and

1. the diameter of the set $\left\{q_{1}, \ldots, q_{n}\right\}$ is equal to 1
2. the center of the minimal circle in \mathbb{C} containing $\left\{q_{1}, \ldots, q_{n}\right\}$ is 0 .

We will say that $\left\{q_{1}, \ldots, q_{n}\right\}$ is a configuration of points "in standard position". In every G_{2}-orbit in $\operatorname{Con} f_{n}$ there is one and only one point which gives rise to a configuration in standard position.

Let us now introduce a family of open charts in C_{n} which are parametrized by a family of rooted oriented trees. The trees we are dealing with are all the rooted oriented trees with n leaves labeled with the numbers from 1 to n and such that the number of edges which stem from each vertex (which is not a leaf) is greater than or equal to two. For instance:

Let us call by T such a tree and denote by $\operatorname{Star}(v)$ the set of edges which start from a given vertex v. We can then parametrize an open set U_{T} in C_{n} in the following way:

1. for every vertex v of T (except leaves) we provide a configuration c_{v} of points in standard position labeled by the set $\operatorname{Star}(v)$;
2. for every vertex v except leaves and the root of the tree, we provide the scale $s_{v}>0$ with which we should put in c_{u} a copy of c_{v} instead of the corresponding point $p_{u v}$ (here u is a vertex of T which precedes v in the orientation and $u v$ is the edge which stems from u and ends in v).
Then we have a continuous atlas $\mathcal{U}=\bigcup_{T} U_{T}$ which covers C_{n}. The compactification \bar{C}_{n} is achieved by formally allowing some of the scales s_{v} to be equal to 0 . Then \bar{C}_{n} turns out to be a topological manifold with corners, with strata C_{T} labeled by the admissible trees T. According to the construction, C_{T} is isomorphic to the product $\prod_{v} C_{\operatorname{Star}(v)}$, where v ranges over all the vertices of T except leaves.

In order to introduce a smooth structure on \bar{C}_{n} it is now sufficient to choose, for every $m \leq n$, a smooth section $s^{\text {smooth }}$ of the projection $C o n f_{m} \mapsto C_{m}$ instead of $s^{\text {cont }}$. Then the coordinates near a point in a stratum C_{T} are given by the scales $s_{v} \in \mathbb{R}_{\geq 0}$ close to 0 and by the local coordinates in the manifolds $C_{S t a r(v)}$. Let us show with an example that what we obtain is a compatible family of C^{∞} open charts which cover \bar{C}_{n}. Looking at the trees which parametrize the open charts, we note that it is sufficient to prove the compatibility between two charts U_{T} and U_{S} when the trees T and S differ only for an elementary ramification. Let us consider for instance:

Let us choose, for every m, the section $s^{\text {smooth }}$ which associates to a point $\left[\left(p_{1}, \ldots, p_{m}\right)\right] \in C_{m}$ the point $\left(i, i+e^{i \theta}, p_{3}^{\prime}, \ldots, p_{m}^{\prime}\right)$ in its fiber, that is to say, one uses the group G_{2} to put $p_{1}=1$ and $\left|p_{2}-p_{1}\right|=1$. Then we have the following open charts:

$$
U_{T} \subset C_{2} \times \mathbb{R}_{\geq 0} \times \quad C_{4} \quad \times \mathbb{R}_{\geq 0} \times C_{2} \subset \mathbb{R}^{9}
$$

which can be written, using the sections $s^{\text {smooth }}$, in this way:

$$
U_{T} \subset([-\pi, \pi]) \times \mathbb{R}_{\geq 0} \times([-\pi, \pi] \times \mathbb{C} \times \mathbb{C}) \times \mathbb{R}_{\geq 0} \times([-\pi, \pi]) \subset \mathbb{R}^{9}
$$

and

$$
U_{S} \subset C_{2} \times \mathbb{R}_{\geq 0} \times \quad C_{5} \quad \subset \mathbb{R}^{9}
$$

which can be written as

$$
U_{S} \subset([-\pi, \pi]) \times \mathbb{R}_{\geq 0} \times([-\pi, \pi] \times \mathbb{C} \times \mathbb{C} \times \mathbb{C}) \subset \mathbb{R}^{9}
$$

The coordinates in the case of U_{T} are given by
$\left(\gamma_{2}, s, \gamma_{4}, q_{5}, q_{6}, \nu, \gamma_{8}\right) \in([-\pi, \pi]) \times \mathbb{R}_{\geq 0} \times([-\pi, \pi] \times \mathbb{C} \times \mathbb{C}) \times \mathbb{R}_{\geq 0} \times([-\pi, \pi])$
If the corresponding point does not belong to the boundary (i.e., if $s>$ $0, \nu>0)$, it is the following point in C_{n} :
$\left[\left(i, i+e^{i \gamma_{2}}+s i, i+e^{i \gamma_{2}}+s i+s e^{i \gamma_{4}}, i+e^{i \gamma_{4}}+s q_{5}, i+e^{i \gamma_{4}}+s q_{6}+s \nu i, i+e^{i \gamma_{4}}+s q_{6}+s \nu i+s \nu e^{i \gamma_{8}}\right)\right]$
Analogously, the coordinates in the case of U_{S} are

$$
\left(\theta_{2}, t, \theta_{4}, u_{5}, u_{6}, u_{7}\right) \in([-\pi, \pi]) \times \mathbb{R}_{\geq 0} \times([-\pi, \pi] \times \mathbb{C} \times \mathbb{C} \times \mathbb{C})
$$

and, if $t>0$, the corresponding point in C_{n} is
$\left[\left(i, i+e^{i \theta_{2}}+t i, i+e^{i \theta_{2}}+t i+t e^{i \theta_{4}}, i+e^{i \theta_{4}}+t u_{5}, i+e^{i \theta_{4}}+t u_{6}, i+e^{i \theta_{4}}+t u_{7}\right)\right]$
Therefore we have the following \mathbb{C}^{∞} transition function from U_{T} to U_{S} :

$$
\left(\gamma_{2}, s, \gamma_{4}, q_{5}, q_{6}, \nu, \gamma_{8}\right) \mapsto\left(\gamma_{2}, s, \gamma_{4}, q_{5}, q_{6}+\nu i, q_{6}+\nu i+\nu e^{i \gamma_{8}}\right)
$$

and from U_{S} to U_{T}

$$
\left(\theta_{2}, t, \theta_{4}, u_{5}, u_{6}, u_{7}\right) \mapsto\left(\theta_{2}, t, \theta_{4}, u_{5}, u_{6}-\left|u_{7}-u_{6}\right| i,\left|u_{7}-u_{6}\right|, \operatorname{Arg}\left(u_{7}-u_{6}\right)\right)
$$

Remark. This transition function is smooth since $\left(\theta_{4}, u_{5}, u_{6}, u_{7}\right)$ is a parametrization of a manifold C_{5}, hence we have $u_{6} \neq u_{7}$.

The case of the manifold $C_{n, m}$ can be treated in a similar way. In [5] the following appropriate new definition of "standard position" for the points belonging to a finite subset S of $\mathcal{H} \cup \mathbb{R}$ is given.

Definition 7.1 Let S be as above. Then the elements of S are said to be in "standard position" if

1. the projection of the convex hull of S to the horizontal line \mathbb{R} is either 0 or an interval with center 0,
2. the maximum of the diameter of S and of the distance from S to \mathbb{R} is equal to 1 .

Note that any configuration of n points in \mathcal{H} and m points in \mathbb{R} can be put uniquely in standard position using the group G_{1}. The trees associated to the strata of $C_{n, m}$ have now two different types of leaves (n leaves corresponding to points in \mathcal{H} and m leaves corresponding to points in \mathbb{R}). As a consequence, the strata are isomorphic to the product of manifolds of type C_{j} and $C_{r, s}$. Then $C_{n, m}$ is given the structure of \mathbb{C}^{∞} manifold in the same way explained for C_{n}.

We can now pass to describe low dimensional spaces $\bar{C}_{n, m}$ and \bar{C}_{n}. It is immediate to check that, by construction, $C_{1,0}=\bar{C}_{1,0}$ is a single point.

The space $C_{0,2}=\bar{C}_{0,2}$ is a two element set (it corresponds to the configuration in standard position provided by the points $+\frac{1}{2}$ and $-\frac{1}{2}$).

The space $C_{1,1}$ is an open interval. In fact, it can be viewed as the subset $(0, \pi)$ of S^{1} described by the angle formed with the real line by a rigid edge of lenght 1 which has one vertex on the real line and the other on the half-line $\{\lambda i \mid \lambda>0\}$. As a consequence, $\bar{C}_{1,1}$ is isomorphic to the segment $[0, \pi] \subset S^{1}$.

The space $C_{2,0}$ is isomorphich to $\mathcal{H}-\{i\}$ since we can put the first point of the configuration to be equal to i, while C_{2} is isomorphic to S^{1} (the embedding $\phi_{2}: C_{2} \mapsto S^{1}$ is easily seen to be surjective).

Then the manifold $\bar{C}_{2,0}$ can be identified with $\mathcal{H}-\{i\}$ plus two distinct boundary components. The first one is isomorphic to C_{2} (hence to S^{1}) and corresponds to the case when the points p_{1} and p_{2} of the configuration come close to each other in the half-plane \mathcal{H}. The other one is isomorphic to two copies of $\bar{C}_{1,1}$ with the boundary points pairwise identified:

It corresponds to the case when one or both of the points of the configuration come close to the real line. Hence we have the following picture ("The Eye") for $\bar{C}_{2,0}$:

8 Angle maps

In this short section we will give the definition of angle maps and a relevant example. Such maps in [5] constitute an essential ingredient for the construction of the explicit universal formula which gives the star product for arbitrary Poisson structure in an open domain of \mathbb{R}^{n}.

Definition 8.1 An angle map is a smooth map $\phi: \bar{C}_{2,0} \mapsto S^{1}$ such that the restriction of ϕ to $C_{2} \cong S^{1}$ is the angle measured in the anti-clockwise direction from the vertical line, and ϕ maps the whole upper interval $\bar{C}_{1,1}$ of $\bar{C}_{2,0}$ to a point in S^{1}.

Let us consider a point $[(p, q)] \in C_{2,0}$ and call by $\phi^{h}: C_{2,0} \mapsto S^{1}$ the function which associates to $[(p, q)]$ the angle at p formed by the two lines (in the Lobacevsky metric) $l(p, q)$ (passing through p and q) and $l(p, \infty)$ (passing through p and ∞). The angle is measured anti-clockwise from $l(p, \infty)$ to $l(p, q)$. Note that the map is well defind since the value $\phi^{h}([(p, q)])$ is independent from the representative element in the fiber.

If we consider $C_{2,0}$ immersed in $S^{1} \times S^{1}$ via $\phi_{2,0}$, which sends $[(p, q)]$ in $(\operatorname{Arg}(q-p), \operatorname{Arg}(q-\bar{p}))$, we see that the map ϕ^{h} can be written in the following way: $\phi^{h}(\theta, \mu)=\theta-\mu$. In fact, looking at the picture
we have that the angles $\operatorname{Arg}(q-\bar{p})-\frac{\pi}{2}=\widehat{\bar{p}} p$ and $q \widehat{p} a$ are equal since they determine the same arc on the circumference. Therefore $\operatorname{Arg}(q-p)-\operatorname{Arg}(q-$ $\bar{p})=b \widehat{p} q-q \widehat{p} a$ which is equal by definition to $\phi^{h}([p, q])$.

It follows that the function $\phi^{h}: C_{2,0} \subset S^{1} \times S^{1} \mapsto S^{1}, \phi^{h}(\theta, \mu)=\theta-\mu$, can be defined by continuity also on the whole space $S^{1} \times S^{1}$. In particular, ϕ^{h} is defined and smooth on $\bar{C}_{2,0}$: if we read the upper interval $\bar{C}_{1,1} \subset \bar{C}_{2,0}$ as the interval where $p \in \mathbb{R}$, it follows that ϕ^{h} restricted to this upper interval is constant (in fact, in this upper interval we have $(\operatorname{Arg}(q-p)=\operatorname{Arg}(q-\bar{p}))$.

Reading C_{2} as the boundary component in $\bar{C}_{2,0}$ where $q \rightarrow p=i$ we note that ϕ^{h} restricted to $C_{2} \cong S^{1}$ measures the angle in the anticlockwise direction from the vertical line; in fact

$$
\phi_{\mid C_{2}}^{h}([p, q])=\phi_{\mid C_{2}}^{h}\left(\operatorname{Arg}(q-p), \frac{\pi}{2}\right)=\operatorname{Arg}(q-p)-\frac{\pi}{2}
$$

Therefore ϕ^{h} is an angle map: in Section 2 of [5] ϕ^{h} is used to write explicitely the universal formula in the case \mathbb{R}^{2}.

References

[1] C. De Concini, C. Procesi, Wonderful models of subspace arrangements. Selecta Mathematica, New series, 1 (1995), 459-494.
[2] C. De Concini, C. Procesi, Hyperplane arrangements and holonomy equations. Ibid, 495-536.
[3] W. Fulton, R. MacPherson, A compactification of configuration space. Annals of Math., 139 (1994), 183-225.
[4] S. Keel, Intersection theory of moduli space of stable N-pointed curves of genus 0. T.A.M.S. 330 (1992), 545-574.
[5] M. Kontsevich, Deformation quantization of Poisson manifolds, I. qalg/9709040.
[6] S. Yuzvinsky, Cohomology bases for De Concini - Procesi models of hyperplane arrangements and sums over trees. Invent. Math. 127 (1997), 319-335.

