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Introduction

Ingredients

W – a Coxeter group, generated by a finite set S with relations
(st)mst = 1 for s, t ∈ S (mss = 1, and mst ∈ {2, 3, . . . ,∞} if s 6= t).

A – the Artin group generated by {σs | s ∈ S} with relations

σsσtσs · · ·︸ ︷︷ ︸
mst times

= σtσsσt · · ·︸ ︷︷ ︸
mst times

for s, t ∈ S .

A+ – the Artin monoid with the same presentation of A.
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Introduction

Ingredients (2)

M(W ) – the complement in the Tits cone I ⊆ Cn of the hyperplane
arrangement associated to W .

M(W ) = M(W )/W .

Sal(W ) – the Salvetti complex, a finite CW model for M(W ) with
n-cells in one-to-one correspondence with the elements of size n in
S f = {T ⊆ S |WT is finite}.
BA+ – the classifying space of A+ (the geometric realization of the
nerve of the monoid, seen as a category with one object).
It has the structure of a CW complex having as n-cells the n-tuples
[x1|x2| . . . |xn] of elements x1, . . . , xn ∈ A+ \ {1}.
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Introduction

Example

W = 〈s, t | s2 = t2 = (st)3 = 1〉 ∼= S3.

A = 〈σs , σt | σsσtσs = σtσsσt〉 (group presentation).

A+ = 〈σs , σt | σsσtσs = σtσsσt〉 (monoid presentation).

M(W ) = {(z1, z2, z3) ∈ C3 | zi 6= zj for i 6= j} /S3.

S f = {∅, {s}, {t}, {s, t}}.

Sal(W ) =

e{s}

e{s} e{s}

e{t}

e{t}

e{t}

e{s,t}
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Introduction

Relations

Theorem (Salvetti 1994)

Sal(W ) ' M(W ).

Theorem (Dobrinskaya 2006)

BA+ ' M(W ).

So it turns out that the three spaces M(W ), Sal(W ) and BA+ have all the
same homotopy type.

Moreover their fundamental group is isomorphic to A.

Conjecture (K (π, 1) conjecture)

These three spaces are classifying spaces for the Artin group A.
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Introduction

Discrete Morse theory on BA+

Theorem (Ozornova 2013)

Let C∗ be the algebraic complex which computes the cellular homology of
BA+. There is an acyclic matching M on C∗ such that the (algebraic)
Morse complex CM

∗ has n-dimensional generators in one-to-one
correspondence with the elements of size n in S f .

The Salvetti complex also gives rise to an algebraic complex which
computes the same homology, and with the same number of generators.
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Introduction

Discrete Morse theory on BA+ (2)

It turns out that the matching on C∗ is induced by a topological matching
M on BA+. Moreover, the corresponding Morse complex can be related to
the Salvetti complex in the following way.

Theorem (P. 2015)

There exists an acyclic matching M on BA+ for which the Morse complex
X (W ) has one n-cell eT for each element T ∈ S f of size n.
Moreover there exists a homotopy equivalence ψ : X (W )→ Sal(W ) such
that, for each subcomplex X (W )F of X (W ) (where F ⊆ S f ), the image of
ψ|X (W )F is contained in Sal(W )F and

ψ|X (W )F : X (W )F → Sal(W )F

is also a homotopy equivalence.
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Introduction

Discrete Morse theory on BA+ (3)

This gives a new proof of Dobrinskaya’s theorem:

Corollary

BA+ ' Sal(W ).

Moreover it clarifies the relation between Ozornova’s Morse complex and
the Salvetti complex:

Corollary

Ozornova’s algebraic Morse complex coincides with the algebraic complex
which computes the cellular homology of the Salvetti complex.
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Sketch of the matching

Critical cells

Recall that the n-cells of BA+ are of the form [x1| . . . |xn] with
xi ∈ A+ \ {1}. The faces of [x1| . . . |xn] are given by:

[x2| . . . |xn];

[x1| . . . |xixi+1| . . . |xn] for i = 1, . . . , n − 1;

[x1| . . . |xn−1].

They are all regular faces for n ≥ 2.

Let ∆T = lcm {σs | s ∈ T} ∈ A+, for T ∈ S f . For instance:

∆∅ = 1

∆{s} = σs

∆{s,t} = σsσtσs · · ·︸ ︷︷ ︸
mst factors

= σtσsσt · · ·︸ ︷︷ ︸
mst factors

(∆T is well defined for T ∈ S f ).
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Sketch of the matching

Critical cells (2)

Fix a total order s1 < s2 < · · · < sk on S .

The critical n-cells are of the form [x1| . . . |xn] with

xi = ∆{ti ,...,tn}∆
−1
{ti+1,...,tn}

for some T = {t1 < · · · < tn} ∈ S f .

For example:

the only (critical) 0-cell is [ ];

the critical 1-cells are [σs ] for s ∈ S ;

the critical 2-cells are [ · · ·σtσsσt︸ ︷︷ ︸
mst−1 factors

|σs ] for t < s such that mst 6=∞.
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Sketch of the matching

Boundary of the 2-dimensional critical cells

The 2-skeleton of the Morse complex can be determined explicitly.

Let t < s be elements of S with mst = 3 (the general case is similar), and
consider the critical cell corresponding to T = {s, t} ∈ S f .

[σs]
[σs]

[σt]

[σs|σt]
[σsσt]

[σt]

[σs]

[σt]

[σsσtσs]

[σsσt|σs]

[σtσs]

[σtσs|σt]

[σt|σs] [σt]

[σt] [σt]

[σs]

[σs]

[σs]

[σsσt|σs]
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Proof of the main theorem

The Morse complex of BA+ and the Salvetti complex

By the previous argument, the 2-skeleton of the Morse complex X (W ) of
BA+ coincides with the 2-skeleton of the Salvetti complex Sal(W ).

To prove the main theorem, we start from the 2-skeleton and argue by
induction, extending the homotopy equivalence one cell at a time.

Suppose to have constructed a homotopy equivalence ψ up to a certain
subcomplex:

ψ : X (W )F → Sal(W )F ,

where F ⊆ S f . We want to extend ψ to a new cell eT , for some T ∈ S f .
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Proof of the main theorem

The Morse complex of BA+ and the Salvetti complex (2)

Let T ∈ S f . Call eT and e ′T the corresponding cells in X (W ) and Sal(W ),
respectively.

The boundaries of eT and e ′T lie in subcomplexes isomorphic to
X (WT ) and Sal(WT ), where WT is the (finite) standard parabolic
subgroup of W generated by T .

eT

X(WT )

X(W )

e′T

Sal(WT )

Sal(W )
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Proof of the main theorem

The Morse complex of BA+ and the Salvetti complex (3)

eT

X(WT )

X(W )

e′T

Sal(WT )

Sal(W )

When WT is finite, both the spaces BA+
T ' X (WT ) and Sal(WT ) can

be proved to be classifying spaces for the Artin group AT .

For Sal(WT ), this is the K (π, 1) conjecture (proved by Deligne in 1972
for finite Coxeter groups).

For BA+
T we proceed as follows: when WT is finite, the universal cover

EA+
T of BA+

T is an increasing union of subspaces isomorphic to a
certain “positive” contractible subspace E+A+

T .
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Proof of the main theorem

The Morse complex of BA+ and the Salvetti complex (4)

eT

X(WT )

X(W )

e′T

Sal(WT )

Sal(W )

Since X (WT ) and Sal(WT ) are both classifying spaces for the Artin
group AT , the homotopy equivalence

ψ|X (WT )n−1
: X (WT )n−1 → Sal(WT )n−1

can be extended to a homotopy equivalence X (WT )→ Sal(WT )
(n = dim eT = |T |).

Finally we extend ψ to the new cell eT as above, obtaining a homotopy
equivalence.
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