The Morse and Maslov indices for periodic and for multidimensional differential operators.

Yuri Latushkin, University of Missouri, USA.

Abstract.

In this talk we discuss some recent results on connections between the Maslov and the Morse indices for Schroedinger differential operators. The Morse index is a spectral quantity defined as the number of negative eigenvalues counting multiplicities while the Maslov index is a geometric characteristic defined as the signed number of intersections of a path in the space of Lagrangian planes with the train of a given plane. The problem of relating these two quantities is rooted in Sturm's Theory and has a long history going back to the classical work by Arnold, Bott, Duistermaat, Smale, and to a more recent paper by Deng and Jones. Two situations will be addressed: First, the case when the differential operator is a one dimensional Schroedinger operator equipped with theta-periodic boundary conditions, and second, when the Schroedinger operators are acting on a family of multidimensional domains obtained by shrinking a star-shaped domain to a point and are equipped with either Dirichlet or quite general Robbin boundary conditions.

This is a joint work with G. Cox, C. Jones, R. Marangell, A. Sukhtayev, and S. Sukhtaiev.