
On Singularity Formation Under Mean Curvature
Flow

I.M.Sigal
Toronto

Joint work with Wenbin Kong, Zhou Gang,
and Dan Knopf

Also related work with
Dimitra Antonopoulou and Georgia Karali

Pisa
May 2014

I.M. Sigal, Pisa May 2014 On Singularity Formation Under Mean Curvature Flow



Mean Curvature Flow

The mean curvature flow is a family of hypersurfaces Mt ⊂ Rd+1

whose smooth immersions ψ(·, t) : N → Mt ⊂ Rd+1 satisfy the
partial differential equation

(∂tψ)N = −H(ψ)

where (∂tψ)N is the normal component of ∂tψ and H(x) is the
mean curvature of Mt at a point x ∈ Mt .
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Applications and Connections

I Material Science (interface motion between different materials
or different phases).

I Image recognition.

I Connection to the Ricci flow.

I Topological classification of surfaces and submanifolds.
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Some Key Works: Existence

I First mathematical treatment (using geometric measure
theory): Brakke [1978];

I Short time existence: Brakke, Huisken, Evans and Spruck,
Ilmanen, Ecker and Huisken [1991];

I Weak solutions: Evans and Spruck, Chen, Giga and Goto
[1991];
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Some Key Works: Singularities

The most interesting problem here is formation of singularities.

I Collapse of convex hypersurfaces: Huisken [1984], extensions:
White [2000, 2003], Huisken and Sinestrari [2007-2009];

I Neckpinching for rotationally symmetric hypersurfaces:
Grayson, Ecker, Huisken, M. Simon, Dziuk and Kawohl,
Smoczyk, Altschuler, Angenent and Giga, Soner and
Souganidis [1990-1995];

I MCF with surgery and topological classification of surfaces
and submanifolds: Huisken and Sinestrari [2007-2009];

I Nature of the singular set: White [2000, 2003], Colding and
Minicozzi [2012].
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Symmetries and Solitons

Tλ is a (generalized) symmetry group of the MCF, if {Tλ} is a
one-parameter group, i.e. T0 = 1, Tt ◦ Ts = Tt+s , and

H(Tλψ) = b(λ)H(ψ) (⇒ b(st) = b(s)b(t)).

Given a (generalized) symmetry group, Tλ of the MCF, the soliton
is defined as

ψ(t) = Tλ(t)ϕ.

MCF is invariant under

I Translations: ψ → ψ + h, ∀h ∈ Rd+1;

I Rotations: ψ → Rψ, ∀R ∈ O(d + 1);

I Scaling: ψ → λψ, t → λ−2t, λ > 0.

Related to these symmetries are three types of solitons:
translational, rotational and scaling solitons.
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Scaling solitons

The solitons corresponding to the scaling symmetry are of the form

M(t) ≡ Mλ(t) := λ(t)M, or ψ(u, t) = λ(t)ϕ(u), where λ(t) > 0.

Plugging this into MCF and using H(λϕ) = λ−1H(ϕ) gives

H(ϕ) = a〈ν, ϕ〉, and λλ̇ = −a. (1)

Since H(ϕ) is independent of t, then so should be λλ̇ = −a.

Solving the last equation, we find λ =
√
λ20 − 2at.

i) a > 0⇒ λ→ 0 as t → T :=
λ20
2a ⇒ Mλ is a shrinker.

ii) a < 0⇒ λ→∞ as t →∞⇒ Mλ is an expander.

For ϕ solving (1), M is called the self-similar surface.
a = 0 ⇒ M is a minimal surface.
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Rescaled MCF

To understand dynamics near scaling soliton, we rescale the MCF:

ϕ(u, τ) := λ−1(t)ψ(u, t), τ :=

∫ t

0

dt ′

λ(t ′)2
.

Important point: we do not fix λ(t) but consider it as free
parameter to be found from MCF. The rescaled surface satisfies

(∂τϕ)N = −H(ϕ) + a〈ϕ, ν(ϕ)〉, a = −λ̇λ .

I The rescaled MCF is a gradient flow for the Huisken functional

Va(ϕ) :=

∫
Mλ

e−
a
2
|x |2 ,

where Mλ = λ−1(t)M is the rescaled surface M.

(MCF is a gradient flow for the area functional V (ψ) = Va=0(ψ).)
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Self-similar Surfaces

Static solutions of the rescaled MCF

(∂τϕ)N = −H(ϕ) + a〈ϕ, ν(ϕ)〉, a = −λ̇λ.

I are self-similar surfaces,

H(ϕ)− a〈ν(ϕ), ϕ〉 = 0, a ∈ R.

We expect that as τ →∞, solutions to the rescaled MCF converge
to self-similar surfaces.

Hence one wants to classify self-similar surfaces and determine
which ones of them are stable.

Theorem. (Huisken, Colding-Minicozzi) Under certain conditions,
the only self-similar surfaces are planes, spheres and cylinders.

For a = 0, ϕ is a minimal surface ⇒ cf. Bernstein conjecture.
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Linearized Stability

ϕ = a self-similar surface =⇒

ϕλ,z,g := T rot
g T transl

z T scal
λ ϕ

is also a self-similar surface. Consider the manifold

Mself−sim := {ϕλ,z,g :(λ, z , g) ∈ R+ × Rd+1 × SO(d + 1)}.

Definition (Linearized stability of self-similar surfaces)

We say that a self-similar surface ϕ, with a > 0, is linearly stable
iff

HessN Va(ϕ) > 0 on {scaling, transl., rot. modes}⊥.

(I.e. the only unstable motions allowed are scaling, transl., rot..)
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Symmetries and Spectrum of Hessian

Theorem. The hessian HessN Va(ϕ) of Va(ϕ) in the normal
direction at a self-similar d−dimensional surface ϕ has

1. (Colding-Minicozzi) the simple eigenvalue −2a,

2. (Colding-Minicozzi) the eigenvalue −a of multiplicity d + 1,

3. the eigenvalue 0 of multiplicity 1
2(d − 1)d (unless ϕ is a

sphere).

These eigenvalues are due to rescaling, translations and rotations
of the surface. The eigenvalue 0 distinguishes between a sphere, a
cylinder and a generic surface.

Proof. Let Ha(ϕ) := H(ϕ)− aϕ · ν(ϕ). To prove say the first
statement, we observe that, since Hλ−2a(λϕ) = λ−1Ha(ϕ),

Hλ−2a(λϕ) = 0, ∀λ ∈ R+.

Differentiating this equation w.r.to λ at λ = 1, and reparametrizing
the result, we arrive at the desired eigenvalue equation. 2
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Spectrum and Stability

The spectral theorem above gives unstable and central manifolds
corresponding to the eigenvalues −2a, −a and 0.

Hence, if these are the only non-positive eigenvalues, then we
expect the stability in the transverse direction to Mself−sim.
Otherwise, we expect instability.
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Spectral Picture of Collapse: Sphere and Cylinder

For the d−sphere of the radius
√

a
d , the normal hessian > 0 on

(scaling and translational modes)⊥ ⇒ by the definition above,
it is linearly stable.

For the (d + 1)−cylinder of the radius
√

a
d , the normal hessian

has, in addition to the eigenvalues above,

1. the eigenvalue −a of multiplicity 1, due to translations along
the axis of the cylinder,

2. the eigenvalue 0 of multiplicity d + 1, which originates in a
”shape instability”.

Hence the (d + 1)−cylinder is linearly unstable.

Using the eigenfunction corresponding to the shape instability
eigenvalue, we find the approximate neck profile

νab :=

√
d + by2

a
, b > 0.
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Spectrum and Mean convexity

The spectral information tells us about the geometry of ϕ. In
particular, we have the following result

Theorem
Let ϕ be a self-similar surface. Then:
(a) (Colding-Minicozzi) For a > 0 (shrinker),

HessN Va(ϕ) ≥ −2a iff H(ϕ) > 0.

(b) For a < 0 (expander), H(ϕ) changes the sign.

Proof.
First, one shows that the normal hessian, HessN Va(ϕ), has a
positivity improving property. Therefore the Perron-Frobenius
theory applies and gives the result.
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On Singularity Formation Under Mean Curvature Flow II

We continue with the mean curvature flow, which is defined by the
initial value problem

(∂tψ)N = −H(ψ)

for the family of hypersurfaces Mt ⊂ Rd+1 defined by smooth
immersions

ψ(·, t) : N → Mt ⊂ Rd+1.

Here (∂tψ)N is the normal component of ∂tψ and H(x) is the
mean curvature of Mt at a point x ∈ Mt .

We are interested in understanding how the singularities form
under this flow.
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Huisken’s Conjecture

Under MCF, the vol(Mt)→ 0 as t → t∗ =⇒ closed surfaces
collapse. How this collapse takes place?
There are three explicit solutions of MCF:

I Collapsing Euclidean spheres with radii decreasing as√
2d(t∗ − t);

I Collapsing Euclidean cylinders with radii decreasing as√
2(d − 1)(t∗ − t);

Conjecture [Huisken]: Generic singularities are spheres and
cylinders.
Partial results: Huisken, White, Colding and Minicozzi

Results:

I The spherical collapse is asymptotically stable.

I The cylindrical collapse is unstable.
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Stability of Spherical Collapse

Theorem. (W. Kong-I.M.S.) Let a surface M0 be close to Sd in
Hs , s > d

2 + 1. Then ∃t∗ <∞, s.t. MCF has a solution Mt for
0 ≤ t < t∗ and

I Mt → z∗, for some z∗, as t → t∗;

I Mt are defined by immersions of Sd ,

ψ(ω, t) = z(t) + u(ω, t)ω,

ρ(t) =
√
τ
(

1 + OHs (τβ)
)
,

with τ := 2d(t∗− t), α := 1
2(d + 1

2 −
1
2d ) and β := 1

2(1− 1
2d ).
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Graphs over Cylinders

Our next result deals with initial conditions M0, which are graphs
over (d + 1)−dimensional cylinders Cd+1 along the xd+2−axis in
Rd+2,

ψ0(ω, x) = (u0(ω, x)ω, x).

It combines two results, one with Zhou Gang on equivariant graphs
(surfaces of revolution), i.e.

u0(ω, x) is independent of ω,

and one in general case with Zhou Gang and Dan Knopf.
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Neckpinching

Theorem. (Zhou Gang-S, Zhou Gang-Knopf-S) Let d ≥ 1 and
(informally for brevity)

M0 be a surface close to a cylinder, Cd+1,

M0 has an arbitrary shallow waist and is even w.r.to the waist.

Then Mt is defined by an immersion

ψ(ω, x , t) = (u(ω, x , t)ω, x)

of Cd+1, where (ω, x) ∈ Cd+1 and u(ω, x , t) satisfies

(i) There exists a finite time t∗ such that u(·, t) > 0 for t < t∗

and limt→t∗ inf u(·, t)→ 0;

(ii) If u0∂
2
xu0 ≥ −1 then there exists a function u∗(ω, x) > 0 such

that u(ω, x , t) ≥ u∗(ω, x) for R\{0} and t ≤ t∗.
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Dynamics of Scaling Parameter

Theorem. (Zhou Gang-S, Zhou Gang-Knopf-S)

(iii) There exist C 1 functions ζ(ω, x , t), λ(t) and b(t) such that

u(ω, x , t) = λ(t)[

√
d + b(t)y2

a(t)
+ ζ(ω, y , t)]

with y := x/λ(t), a(t) = −λ(t)∂tλ(t) and

‖〈y〉−m∂ny ζ(ω, y , t)‖∞ ≤ cb2(t), m + n = 3.

(iv) The parameters λ(t) and b(t) satisfy (with τ := 2d(t∗ − t))

λ(t) = τ
1
2 (1 + o(1)) (scaling eigenvalue)

b(t) = − d
ln τ (1 + O( 1

| ln τ |3/4 )) (shape eigenvalue).
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Comparison with Previous Results

A result similar to (ii) ( axi-symmetric surfaces) but for a different
set of initial conditions was proven by H.M.Soner and
P.E.Souganidis.

The previous result closest to ours is that by S. Angenent and D.
Knopf on the axi-symmetric neckpinching for the Ricci flow.

Some ideas of the proof are close to those of Bricmont and
Kupiainen on NLH.

All works mentioned above deal with surfaces of revolution of
barbell shapes (far from cylinders) which are either compact
(Dirichlet b.c.) or periodic (Neumann b.c.).

These works rely on parabolic maximum principle going back to
Hamilton and monotonicity formulae for an entropy functional∫
Mt

backward heat kernel(x , t)dµt , due to Huisken and Giga and
Kohn.
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Key Steps in Proof

Rescaling

Spectrum

Collar lemma

Estimates of the linear evolution

Bootstrap
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Rescaled MCF

At the first step, we rescale the MCF:

ϕ(u, τ) := λ−1(t)ψ(u, t), τ :=

∫ t

0

dt ′

λ(t ′)2
.

Important point: we do not fix λ(t) but consider it as free
parameter to be found from MCF. The rescaled surface satisfies

(∂τϕ)N = −H(ϕ) + a〈ϕ, ν(ϕ)〉, a = −λ̇λ .

Next, we look for solutions which are graphs over the cylinder
(Cd+1),

ϕ(ω, y , τ) = (v(ω, y , τ)ω, y)

where (ω, y) ∈ Cd+1.

I.M. Sigal, Pisa May 2014 On Singularity Formation Under Mean Curvature Flow



Collar Lemma (Fixed Cylinder)

Let ϕ = graphCd+1 ρ and introduce the manifold of necks
Mneck := {νab : a, b ∈ R+, b ≤ ε}.

Lemma
There exist a small neigbourhood Upath of Mneck in
C 1([0,T ], 〈y〉3L∞), such that

v(y , ω, τ) = νa(τ),b(τ)(y) + φ(y , ω, τ),

with

φ(·, τ) ⊥ 1, a(τ)y2 − 1 in L2(R× Sd , e−
a(τ)
2

y2
dydω).

The vectors 1 and (1− ay2) which are almost tangent vectors to
the manifold, Mneck , provided b is sufficiently small.
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Effective Equations

Substitute ϕ(ω, y , τ) = (v(ω, y , τ)ω, y), where v is given by
v(y , τ) = νa(τ),b(τ)(y) + φ(y , τ), into the rescaled MCF to obtain

∂τφ = −Labφ+ Fab + Nab(φ)

where Lab is the Hessian of the Huisken entropy on the neck νab,

Lab := −∂2y + ay∂y − 2a− a

d
∆Sd + Vab(y),

Fab ≈ a sum of generators of broken symmetries (the source term)
and Nab(φ) is a nonlinearity. Remember that

φ(·, τ) ⊥ 1, a(τ)y2 − 1 in L2(R× Sd , e−
a(τ)
2

y2
dydω).

Project the above equation on 1, a(τ)y2 − 1 =⇒ the equations
for the parameters a, b =⇒ need to estimate φ.
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Key Propagation Estimate

Key propagation estimate: The propagator U(τ, σ) generated by
−Lab satisfies (τ ≥ σ ≥ 0)

‖〈z〉−3U(τ, σ)g‖∞ . e−c(τ−σ)‖〈z〉−3g‖∞,

where g ⊥ 1, a(τ)y2 − 1 in L2(R, e−
a(τ)
2

y2
dy).

By Duhamel principle we rewrite the differential equation for
φ(y , τ) as

φ(τ) = U(τ, 0)φ(0) +

∫ τ

0
U(τ, σ)(F + N)(σ)dσ.

Using this and the key propagation estimate, we estimate the
functions

Mm,n(τ) := max
σ≤τ

b−
m+n+1

2 (σ)‖〈y〉−m∂nyφ(·, σ)‖∞,

where b(t) ≈ − d
ln τ and (m, n) = (3, 0), (1110 , 0), (2, 1), (1, 2).
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Bootstrap

For the estimating functions Mm,n(τ), (m, n) = (3, 0), (1110 , 0),
(2, 1), (1, 2), we let

M := (Mi ,j) and |M| :=
∑
i ,j

Mi ,j .

Lemma. Assume that for τ ∈ [0,T ] and

|M(τ)| ≤ b−
1
4 (τ), v(y , τ) ≥ 1

4

√
2(d − 1), and ∂ny v(·, τ) ∈ L∞,

for n = 0, 1, 2. Then there exists a nondecreasing polynomial P(M)
s.t. on the same time interval,

Mm,n(τ) ≤ Mm,n(0) + b
1
2 (0)P(M(τ)),

Corollary. Assume |M(0)| � 1. On any interval [0,T ],

|M(τ)| ≤ b−
1
4 (τ) =⇒ |M(τ)| . 1.
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Hessian on the Neck

Consider the Hessian of the Huisken entropy on the neck
ϕab = graphCd+1 νab:

Lab := −∂2y + ay∂y − 2a− a

d
∆Sd︸ ︷︷ ︸

normal hess on cyl

+Vab(y , ω).

By the collar lemma it acts on functions in

X⊥ := {φ(·, τ) ∈ L2(R× Sd , e−
a(τ)
2

y2
dydω) :

φ(·, τ) ⊥ 1, a(τ)y2 − 1}.

Let U(τ, σ), τ ≥ σ ≥ 0, be the propagator generated by −Lab.
The main step in the proof involves showing the key propagation
estimate: ∀g ∈ X⊥,

‖〈z〉−3U(τ, σ)g‖∞ . e−c(τ−σ)‖〈z〉−3g‖∞.
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Estimating the Linear Propagator. I

Write Lab = La0 + V , with La0 := −∂2y + ay∂y − 2a (the normal
hessian at the cylinder), and use that V is slowly varying in y to
do a multiplicativ perturbation (adiabatic) theory.
For the integral kernel K (x , y) of U(τ, σ) (for simplicity, we do not
display the variables of Sd), we have the representation

K (x , y) = K0(x , y)〈eV 〉(x , y),

where K0(x , y) is the integral kernel of the operator e−(τ−σ)La0 and

〈eV 〉(x , y) =

∫
e
∫ τ
σ V (ω(s)+ω0(s),s)dsdµ(ω).

Here dµ(ω) is a harmonic oscillator (Ornstein-Uhlenbeck)
probability measure on the continuous paths ω : [σ, τ ]→ R with
the boundary condition ω(σ) = ω(τ) = 0 and

(−∂2s + a2)ω0 = 0 with ω(σ) = y and ω(τ) = x .
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Estimating the Linear Propagator. II

To estimate U(x , y) for ea(τ−σ) ≤ b−1/32(τ) we use the explicit
formula

K0(x , y) = 4π(1− e−2ar )−
1
2
√

ae2are
−a (x−e−ary )2

2(1−e−2ar ) ,

where r := τ − σ, and the bound

|∂y 〈eV 〉(x , y)| ≤ b
1
2 r ,

which follows from the definition of 〈eV 〉 and the properties

V (y , τ) ≥ 0 and |∂yV (y , τ)| . b
1
2 (τ).

Then we iterate using the semi-group property ⇒ estimate of the
remainder φ. 2
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Extensions

We do not fix the cylinder and look for surfaces of the form

ψ(x , ω, t) = λ(t)g(t)ϕ(y , ω, τ) + z(t),

where (λ, z , g) : [0,T )→ R× Rd+2 × SO(d + 2),
to be determined later,

y = λ−1(t)(x − x0(t)), τ = τ(t) :=

∫ t

0
λ−2(s)ds,

and ϕ(·, τ) : Cd+1 → Rd+2 is a normal graph over the fixed
cylinder.

The time dependent parameters λ(t), z(t), g(t) are chosen so
that ϕ(·, τ) is orthogonal to the non-positive (scaling, translation
and rotation) modes of the normal hessian on the cylinder.

Then we proceed as before.
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Thank-you for your attention.
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