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1. INTRODUCTION

We deal with densities of subsets of the natural numbers.cbnemon point in all
densities is that they are functiorisdefined onZ(N), the power set olN, or on a
part of #(N), such thatf (0) =0, f(N) =1 and ifAC Bandf(A), f(B) are defined,
thenf(A) < f(B). This definition is too general to be useful, thus many spedditsity
concepts are used in Number Theory, Analysis, Combinaarn&ocial Sciences.

We define in this section the most “classical” notions of dgnsVe shall define more
specific density concepts in later sections, when this vélinecessary. Other density
concepts, including axiomatic ones (see [4]), can be foaride survey [9].

In all density concepts that we use hereafter, there is @amati upperdensity and a
notion oflower density. Each density is denoted by a lettefor the asymptotic density,
o for the logarithmic density, and so on (see below). Thedgfteverlined, denotes the
corresponding upper density. The letter, if underlinesades the corresponding lower
density. If the upper and the lower densities are equal, wehed the set has a density.
In this case, the corresponding letter is neither overlmadunderlined.



Some notationsR denotes the set of real numbei$,denotes the set of positive
integers:N = {1,2,3,...}. For a subseA of N and real numberg,y, 1 < x <y, let
A(x,y) = |AN[x,Yy]|, where|X| denotes the cardinality of the finite S€t A(x) = A(1,x)
denotes theounting functiorof the setA.

1.1. Asymptotic(or natural) density.

The upperandlower asymptotic densitiesf a subsef of N are defined, respectively,
as the upper and lower limits &f tA(x) whenx tends to+c. They are denoted by(A)
andd(A), respectively. Ifd(A) = d(A), we say thaA has an asymptotic density and we
write d(A) for the limit of x-1A(x) whenx tends to+o.

1.2. Logarithmic density.

Theupper logarithmic densitis defined as :

-1
= 1 1 1
5(A) = limsup - ~| =limsup | (nx~t
X—00 (aegagx a) (agx a) X—e aegelgxa

Thelower logarithmic densitys defined as :

-1
1 1 1
S(A) = liminf - ]  =liminf —](nx~t
e (aegm a) (agx a) e (aegm a)
1.3. Weighted densities.

The so calledveightedor generalizediensities provide a generalization of both asymp-
totic and logarithmic densities. With respect to a positiveight” sequence = (a,),
thea—weighted densitieare defined, respectively, as the lower and the upper linits o

(2.2)(2%)

asn tends to infinity. Usually one takes a sequefag satisfying
n=1

and



See also [24] for further particular conditions.

The special case, = n%, a > —1, generalizes both the asymptotic dengity= 0)
and the logarithmic densitya = —1). Let us denote by, (A) andd,(A) the lower
and the upper densities, called-densities of the setA, where the weight sequence is
a, =n%, a > —1. See the next section for open problems on these densitiefation
to thea —analytic density.

1.4. Uniform (or Banach) density.

Let AC N. For every real numbes; s> 1, we define

as = Iikminf A(k+1,k+59)

and
a®=limsup A(k+1k+s).
k— o0
Both as and a® are integers belonging #0,1,---,|s|}, as < a®. Each one, divided
by s, tends to a limit, whens tends to infinity. A proof of this fact can be found in [23]
orin [25].

Thelower uniform(or Banacl) densityof A C N is defined as

u(A) = lim s

s—o §
and itsupper uniform(or Banach) densityas

U(A) = lim a—s.

S—o0 §

In [13], in addition to the existence of the above limits,e@l other properties of Banach
density are proved and, in particular, that

u(A) =infE ; U(A) =supF

where

E:={x€[0,1]; V/>0,3¢ > ¢ andk such thatA(kJr t;kJrf’) <x}
and

F:={xe0,1]; V¢ > 0,3¢ > ¢ andk such thatA(k-i_t;k—M/) > X} .



1.5. Exponential density.

Let h be a positive increasing unbounded function define@®an= [0, +-c[. We define
thelower hrdensityof the setA C N by

en(A) = limin h<r/‘*(<nr;>>
and itsupper hdensityby
En(A) = Iirr?_igp h(fﬁfwr;»

The functionh(x) = logx is frequently used and the correspondmdensity is called
exponential densityhere denoted by : €(A) andg(A) denote the upper and the lower
exponential densities @&, respectively.

The exponential density acts as a magnifying glass on sets with asymptotic density
zero. IfA = {1K,2% 3% ...}, theneA = {. Moreover, the preceding example motivates
the name of this density (“exponential”) since the expotkatgterminesA.

The functionh(x) = x* with o > 0 is not so interesting as it giveg(A) = (dA)? and
similarly for upper densities.

1.6. Comparable and non comparable densities.

The densityd is calledweakerthan the density’ if, for any setA C N,

d'(A) <d(A) <d(A) <d(A);

the densityd’ is calledstrongerthan the densitg.

Two densities are callecomparableaf one of them is stronger than the other.

The uniform density is stronger than thre-density for anya > —1. It is well known
(see for instance [15]) that the asymptotic density is gfeothan the logarithmic one.
For further examples and for open problems on comparalfitiensities, see sections
2,4, 6 and 7 below. The exponential density is hot comparabilee uniform density,
nor to the asymptotic density. An example is given in [9].

2. COMPARISON BETWEEN a—DENSITY AND a—ANALYTIC
DENSITY

Let a be areal number greater than or equalth andA C N a set of integers. We shall
denote by A thecharacteristic functiorof A. Put

Aa(n)= 3 K1a(K)

k<n



and

DA,a(”) = AA,a(t) =t Z kae_tNa(k)lA(k)-

k>1

Notice thatdy (A) = rI]im00 Da.«(n) and define ther—analytic density oA\ as
tin& Daa(t) = 0a(A),

of course if these limits exist. Notice thdt 1(A) and d_1(A) are, respectively, the
classical logarithmic and analytic densitiesfof

The following theorem (established in [5] in a more genemhtext) links the two
concepts of density introduced above (the aase —1 is well known, see for instance
[21], p. 274).

Theorem 1. Let AC N be a set of integers. For every real numides [0, 1], the two
following conditions are equivalent:

(a) A hasa—density ¢ (A) =¢.
(b) A hasa—analytic density, (A) = ¢.

When thea —density (resp. the—analytic density) oA doesn’t exist, one can consider
the upper and lower densities.

Definition 1. The lower and uppexr—analytic densities of A are defined respectively as

Oq(A) =liminfAag(t),  Oq(A)=limsuplaq(t).

t—0* t—0+

In the paper [6], Prop. (2.1), it is proved that, in genettad, ippera —analytic density
of A is not greater than the uppear—density ofA (concerning the lower densities, the
inequality is obviously reversed).

A natural question is whether the same kind of result as T@mdr can be stated also
for lower and uppeo —densities and lower and upp@ranalytic densities,e. whether
the upper and the lowar—densities and the lower and upmeranalytic densities oA
coincide. In Th. (3.1) of [6] it is shown that the answer is aidge in general. On the
other hand, in Section 4 of the same paper a class of subssts adentified for which
the question can be answered affirmativelg i —1.

Open problem 1. (a) Check the existence of such a class in the case—1.
(b) In the papef22] it is proved that, fo—1 < a < f3

dg(A) < dg(A) < da(A) < dg(A).

Is it true that also B B
0p(A) < 6q(A) < da(A) < 6p(A)?



3. PERMUTATIONS AND THE LEVY GROUP

We focus our attention on the following situation. L@) be a sequence of positive
numbers andt: N — N be an injective functiongan) and rt will be fixed throughout.
In the paper [8] a comparison is established betweedtheéensities (upper and lower)
of a given setA C N and those of the transformed sgtA) in terms of some suitable
features of an) and . Put

(k)
& = ) k€N7 =0
ax

and

, 1
delimspl S Ses.
n—o i(k+1) <n< (k)

n
whereS, = Z ax,
K=1

1
/BT
op=limsups S Sac—eal .
N—oo n(k)<n
m(k+1)<n
- "
O'nzan—l—O'n.

Let 1(N) be the image ofrand put

(=da(m(N));  £=da(m(N)).
In the paper [8] the following result is proved
Theorem 2. (i) Assume that; < +. Then

On(da(A) —da(A) +£da(A) < da(TI(A)) < da(TT(A)) < On(da(A) —da(A)) +Eda(A).
(i) Assume that the sequen(®,) is non—increasing, and that
oy =lim supi > S< e
N—oo n(k+1)<n<m(k)

Thenoy, < + and

On(da(A) —da(A)) +L£d,(A) < da(TI(A)) < da(71(A)) < Op(da(A) —da(A)) +Lda(A).

The following Corollary is an immediate consequence:

Corollary 1. In addition to the assumptions of Theorem 2 (i) or those ob¥éra 2 (ii),
suppose thatt(N) has a ¢-density equal td. Then, if ¢(A) exists, then alsofdr(A))
exists and

da(7T(A)) = £da(A).



We point out the following particular case of Corollary 1ncerning the case of the
classical asymptotic density

Corollary 2. Let 11 be a permutation of the integers such thé(WdN)) exists and is
equalto 1 and

(%) Iimsup} > K < o0,
n—-+teo N n(k+1)<n< (k)

Thenrt preserves the asymptotic density.

TheLévy group? is defined as the group of all permutatiomsf N satisfying
k<

im k:k<n<mk)]

Nn—oo n

=0.

A lemma from [2] says that a permutatierbelongs ta¢ if and only if it preserves the
asymptotic density.

Open problem 2. Establish
1) whether the set” of permutations verifyingx) is a subgroup of;
2) what is the relation betwee#f and¥.

4. THE DIRICHLET'S WEIGHTED DENSITIES
Leta= (a,) andS= (S,) be two sequences of positive numbers, andrletR; put

wi) = a,eS.

We make first some remarks (see [16] for details):
(@) The series

(1) W(O’) _ aneaSn
is called aDirichlet’'s Seriegshortened D.S.).
(b) Put
I n
ao = —|lim Supm_
Nn—oo 31

The numberqg is called theabscissa of convergenad the series (1): by a classical
result, the series (1) converges tok ap and diverges foa > ap. Nothing can be said,

in principle, fora = aop, in the following sense: there are examples of D.S. which are
divergent fora = agp, and also examples of D.S. which are convergentrfer ag. Also,

it can happen thatg = 4 or ag = —.

Example 1. (i) The series



a
;n

has abscissa of convergence equakth and is divergent foo = —1.
(i) The series

S n?/log?n
n

has again abscissa of convergence equalt 1o but is convergent foor = —1.
(i) Let a be a number, witld < a < 1. The series

a"n?
2

is convergent for all real numbers.
(iv) Let a be a number, with & 1. The series

> a'n?
n
is divergent for all real numbera.
Assume thatiy > —oo. It is clear from the above remarks that, @r> ag (i. €. when
the D.S. is divergent) it is possible to consider the weidhipper and lower densities

defined by the weightw(a), which we callDirichlet’s weighted densities. e. for every
subsetA C N we put

Aam)= 5w

keAk<n
and define
o Aa(n) _ . Aa(”)
d. <. (A) = liminf dasa(A) =1 :
Gase W =IMTN,qp Tese® =TSP, (0

Notice that fora, = 1 andS, = logn we recover the classical—densities.
By a Theorem of [22], it is easy to see that the following rebolds:

Proposition 1. Let V\fqa) = a,e" be fixed, and letry be the abscissa of convergence of
the associated D.S. Assume thigt> —o. Then, for > a > ap, we have

ga,SB (A) < ga,&a(A) < aa,SCr (A) < aa,SB (A)

In the paper [7] it is proved that the functions— d, s, (A) anda +— dasa(A) with
an = 1 andS, = logn are continuous ifiagp, +) = (—1,+) and may be discontinuous
atag=—1.

Open problem 3. 1) What can be said about the continuity of the Dirichlet'sisiges
with respect to the parameter? In particular, in which cases, if any, the continuity
holds also fora = ap?



2) Inwhich cases, if any, is it possible to define the assediBirichlet analytic densities
exactly as in the classical case (see the definition in [6§),t0 put

AA7C{ (t) ~t Z aneaS]eitNa"S’a(k) 1A<k)7
k>1

liminfAa o (t) = 04(A), limsupAa o (t) = dq(A)

t—0t t—0+

and to compare them with the weighted Dirichlet’s denshies

5. DENSITY SETS

ForA C N define B
S(A)={(d(B).d(B)); BC A},
the density sebf A. Denote byT g the triangle(0,0), (d(A),0), (d(A),d(A)) and byTz
the trapeziun{0,0), (d(A),0), (A(A), d(A)), (d(A), d(A)).
Theorem 3.[12] For each AC N the set $A) is convex and closed with TgS(A) C Tz.

On the other hand, for each convex closed set S witlcTSC T z, there exists A N
such that S= S(A).

In order to identifyS(A) it suffices to know its upper bound:
f:10,d(A)] — [0,d(A)]; f(x) =max{y; (x.y) € S(A)}.

Gaps inA force S(A) to be smaller but the opposite does not hold. To see this, for
A={a <ay<...} CNdefine the value
. an+1
A(A) =limsup——=,
(A) = limsup—_-
the gap densityof A [14]. Its reciprocal value provides the upper bound for tigdtr
derivative off at 0.

Theorem 4. [14] f/(0) < TlA) <1.

As a corollary we obtain that the whole S#\) lies below the ling/ = TlA) X.
We have seen that the occurrence of big gaps supplies paftiehation onS(A). Gaps
are extremal case of low local frequency of distribution leheents ofA. What can be

said in the case when no large gapsAimccur, i.e.A (A) = 1? The following remark
shows that nothing can be said.

Remark 1. For each AC N there exists a B- N with SA) = S(B) andA (B) = 1.

In general, sudden decrease of the “local density”, i.e.vttlae%, pushes down the
upper bound ofS5(A), the functionf. How to measure decrease of the local density?
There is no chance to do it by means of additive models likenifoum density, i.e.
decrease oA(n,n+m) w.r.t. A(n—m, n) for fixedmandn — co.



Perhaps there is some chance using

V(A.£) = liminf % A = i y(Ae)

where the liminf is taken through all valuesmfor which the denominator is positive.
Notice thatA (A) > 1 impliesy(A) = 0.
Conjecture 1. Perhaps y(A)=1 < SA)=Tz

Open problem 4. Prove or disprove the conjecture. Notice that the oppositgication
y(A)=0 <« S(A)=Tgdoes not hold.

6. DENSITIES AND DISTRIBUTION FUNCTIONS

A non-decreasing functiog: [0,1] — [0,1], g(0) = 0, g(1) = 1 is called adistribution
function We shall identify any two distribution functions coinaidj at common points
of continuity. It is well known that the se¥ of all distribution functions endowed with
the % metric is a compact space. The following application of tieoty of distribution
functions, in order to study distribution properties ofseftpositive integers, was started
by Strauch and Toth in [27].

LetX = {x1 <Xz < ...} € N. We can form theatio block sequencéX) where

Xn Xn Xn

For eachn € N consider thestep distribution function

- -Xi
#{i <n; JL <x}
n

F (Xnv X) =
and define thaeet of distribution functions of the ratio block sequence
G(%n) = { lim F (X, x)}.

By compactness o/, the setG(X,) is always nonempty and closed. The ratio block
sequencegXn) is uniformly distributed ifG(Xn) = {idjg 1/ }.

There are results showing that informationaiX) andd(X) can substantially reduce
the possible range @(Xy).

Theorem 5. [27] Let X C N be such that @X) > 0. Then for every & G(X,) and
x e [0,1]

d(X) d(x)

=X < g(X) < X

ax) =9 = gx;

In particular, if d(X) > 0 exists, then the ratio block sequen¢&,) is uniformly dis-
tributed.



The lower bound in the previous theorem can be slightly imgdo

Theorem 6. [1] Let X C N be such that d= d(X) > 0 and denotal = d(X). Then for
every ge G(Xn)

where

olla

X if x € [o, %ﬂ] ,

M) =9 "a otherwise
) ¢

and these bounds cannot be improved.

Notice that there is no information dB(X,) if d(X) = 0.

Open problem 5. In the case @X) = 0 try to find bounds for GX,) in terms of the
exponential density.

The following kind of density was studied in a bit more gehsgdting by Polya [20]

e AN -AGON) = A(n) —A(6n)
d(A) = fim limint =7 gy + 4 = Jim limsup=7 =g
who calls themminimal and maximaldensities ofA C N, respectively. It can be seen
that _
d(A) = sup{d(B), BC A}, d(A) = inf{d(B), B2 A}.

Evidently d(A) < d(A) < d(A) < E(A). There are examples of sets for which strict
inequalities take place.

Example 2. Let A= |J [22",2°™1)NN. Then

Open problem 6. Find bounds of GXy) in terms of densities dndd.

In general, intervals with decreasing frequency of elesi@nthe seX produce func-
tionsg € G(Xn) with g > id|g 3 and intervals with increasing frequency of elements in
X produce functiong € G(Xa) with g < idg 1. Both bigS(X) and smallG(Xn) indicate
regularity of distribution, buG(X,) is more sensitive to non-regularity th&iX). A
decreaseof S(X) is caused by a suddetecreaseof frequency of elements of while
theincreaseof G(X,) is caused by sudderhanges(i.e. not necessary decrease) of fre-
quency of elements oX. If G(X,) indicates regularity of distribution then al&)X)
does. On the other hand, it may happen tB&X,,) indicates non-regularity whilg§(X)
indicates regularity.

Conjecture 2. If d(X) > 0then
SX)=Tz & Vg e G(Xn) 1 g<idpy.



Open problem 7. Prove or disprove the conjecture.

If the above conjecture holds then f{X) > 0 we have
G(Xn) = {idp} = SX)=Tz

On the other hand, there existsC N such thatS(X) = Tz and the graphs o&(Xy)
cover the whole triangl€0,0), (1,0), (1,1).

We will conclude this section with two possible measuresmoéularity” of distribution
of elements oKX C N.

Denoteg = inf G(X,) andg = supG(Xn). Then

1
5(X) = [ (83 - gx)) dx
0

can be a measure of “irregularity” of distribution of elertseaf X.
Conjecture 3. If d(X) > 0then &(X) =0« G(Xn) = {idjp 1}
Open problem 8. Prove or disprove the conjecture.

Define

X(k) _ X({)
|

B(X) =inf{6 € (0,1); Inp(8) Vn > ng Vk,l € (6n,n): ‘ — —‘ < 6}.

Conjecture 4. If d(X) >0then 6(X)=0 & G(Xy) = {id 1}
Open problem 9. Prove or disprove the conjecture and find relations betw®ef) and
6(X).

7. DENSITY MEASURES

By a density measurere mean every additive measyreon #(N) extending density,
i.e. u(A) =d(A) if d(A) exists. Perhaps the simplest examples of density measeres a
measures of the kind,, , where% is a free ultrafilter orN, defined by

Uy (A) = —lim @, ACN.

Question 1.[3] Doesp(A) < d(A) hold for every density measugeand AC N?
In [17] it is claimed that each density measyrés of the form

B . A(n)
Ho (A) = . % —Ilim e

do (%),



for some probability Borel measurg on BN*, the remainder in th€ech - Stone
compactification ofN. In this case the answer to van Douwen’s question would be
evidently YES. Unfortunately, as we will see below, the abolaim is not correct.

Theorem 7. [26] For every fixed set A N
{1(A); p is a density measufe= [g(A),a(A)].

By this theorem and Example 2 we have the following.
Corollary 3. The answer to van Douwen'’s question is NO.
Open problem 10. Characterize the sets & N for which dA) = d(A) and d(A) =
d(A).
A possible measure of “irregularity” of distribution of elents ofA:
N(A) = d(A) —d(A) +d(A) — d(A).
Conjecture 5.
G(An) ={idpy} = n(A)=0.
Notice that the opposite implication does not hold.

Open problem 11. Big 8(A) implies bign (A). Find more precise relations.

8. VARIOUS PROBLEMS
8.1. More rapid convergence to a density, I.

The problem4.1in [10] has an easy negative answer : the set of positive extegers
does not fulfil the requirements.

Actually, we propose the following new formulation. Suppdbat the seA C N has
asymptotic densityl > 0. Let f(n) = |A(n)n~1 —d| which tends to zero as tends to
+oo. It can be proved that if (n) is not O for alln > ng (this is the case wheA =N),
then there i€ > 0 such that for infinitely mang, we havef (n) > Cn1.

Open problem 12. Suppose, in addition, that

limsupnf(n) = 4.

n—-o
Is there d €]0,d] and BC A such that, if we put(@) = |B(n)n~t —d’|, then
1) g(n) tends to O, as n tends tpe ; and

.9
2) imint <y =©7



8.2. More rapid convergence to a density, 1.
Suppose that the s&tC N has asymptotic density. Let f(n) = |A(n)n~1 —d| which
tends to zero as tends to+. The setA has logarithmic density also equaldoLet

1 1
g(n) = (Y )X -) —d.
kgn K agr%eAa
Is it true thatg(n) tends to zerogn the meamore rapidly tharf (n) ? For instance, does
Zkgn g(k>
ZKSn f(k)

tend to O as tends to+o ?

8.3. Three cubes(Proposed by Francois Hennecart.)

LetC be the set of three cubes
C={neN:n=a+b>+c(ab,c)c (NU0)3}}.
Doesd(C) exist? Is so, evaluatC.

8.4. Sets with prescribed densities.

In [19], see also [18], itis proved that given any quadryief, y, ) of numbers such
that
0<a<B<y<o<]

there exists a s&& C N so that
d(A) = a, 5(A) = B, 5(A) =y, d(A) = 3.
Open problem 13. Characterize the set of a-tuples(as, . .., ag) with
O<m<ar<---<ag<l1
for which there exists A N such that
U(A) = a1, d(A) = az, d(A) = a3, 0(A) =04

and

5(A) = as, d(A) = ag, d(A) = a7, U(A) = as.

Notice thatd(A) =d(A) = d(A) =d(A), thusin this case the solution is a proper subset
of the set of all nondecreasing 8-tuples fr@onl].
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