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1. INTRODUCTION

We deal with densities of subsets of the natural numbers. Thecommon point in all
densities is that they are functionsf defined onP(N), the power set ofN, or on a
part ofP(N), such thatf ( /0) = 0, f (N) = 1 and ifA ⊆ B and f (A), f (B) are defined,
then f (A) ≤ f (B). This definition is too general to be useful, thus many specificdensity
concepts are used in Number Theory, Analysis, Combinatorics or Social Sciences.
We define in this section the most “classical” notions of density. We shall define more
specific density concepts in later sections, when this will be necessary. Other density
concepts, including axiomatic ones (see [4]), can be found in the survey [9].

In all density concepts that we use hereafter, there is a notion of upperdensity and a
notion oflowerdensity. Each density is denoted by a letter:d for the asymptotic density,
δ for the logarithmic density, and so on (see below). The letter, if overlined, denotes the
corresponding upper density. The letter, if underlined, denotes the corresponding lower
density. If the upper and the lower densities are equal, we say that the set has a density.
In this case, the corresponding letter is neither overlinednor underlined.



Some notations:R denotes the set of real numbers,N denotes the set of positive
integers:N = {1,2,3, . . .}. For a subsetA of N and real numbersx,y, 1 ≤ x ≤ y, let
A(x,y) = |A∩ [x,y]|, where|X| denotes the cardinality of the finite setX. A(x) = A(1,x)
denotes thecounting functionof the setA.

1.1. Asymptotic(or natural ) density.

Theupperand lower asymptotic densitiesof a subsetA of N are defined, respectively,
as the upper and lower limits ofx−1A(x) whenx tends to+∞. They are denoted byd(A)
andd(A), respectively. Ifd(A) = d(A), we say thatA has an asymptotic density and we
write d(A) for the limit of x−1A(x) whenx tends to+∞.

1.2. Logarithmic density.

Theupper logarithmic densityis defined as :

δ (A) = limsup
x→∞

(

∑
a∈A,a≤x

1
a

)(

∑
a≤x

1
a

)−1

= limsup
x→∞

(

∑
a∈A,a≤x

1
a

)

(ln x)−1.

The lower logarithmic densityis defined as :

δ (A) = lim inf
x→∞

(

∑
a∈A,a≤x

1
a

)(

∑
a≤x

1
a

)−1

= lim inf
x→∞

(

∑
a∈A,a≤x

1
a

)

(ln x)−1.

1.3. Weighted densities.

The so calledweightedor generalizeddensities provide a generalization of both asymp-
totic and logarithmic densities. With respect to a positive“weight” sequencea = (an),
thea−weighted densitiesare defined, respectively, as the lower and the upper limits of

(

∑
i∈A, i≤n

ai

)(

∑
k≤n

ak

)−1

asn tends to infinity. Usually one takes a sequence(an) satisfying

∞

∑
n=1

an = +∞

and

lim
n→∞

an

(

∑
k≤n

ak

)−1

= 0.



See also [24] for further particular conditions.

The special casean = nα , α ≥ −1, generalizes both the asymptotic density(α = 0)
and the logarithmic density(α = −1). Let us denote bydα(A) anddα(A) the lower
and the upper densities, calledα−densities, of the setA, where the weight sequence is
an = nα , α ≥ −1. See the next section for open problems on these densities in relation
to theα−analytic density.

1.4. Uniform (or Banach) density.

Let A⊆ N. For every real numbers, s≥ 1, we define

αs = lim inf
k→∞

A(k+1,k+s)

and
αs = limsup

k→∞
A(k+1,k+s).

Both αs andαs are integers belonging to{0,1, · · · ,⌊s⌋}, αs ≤ αs. Each one, divided
by s, tends to a limit, whens tends to infinity. A proof of this fact can be found in [23]
or in [25].

The lower uniform(or Banach) densityof A⊆ N is defined as

u(A) = lim
s→∞

αs

s

and itsupper uniform(or Banach) densityas

u(A) = lim
s→∞

αs

s
.

In [13], in addition to the existence of the above limits, several other properties of Banach
density are proved and, in particular, that

u(A) = inf E ; u(A) = supF

where

E := {x∈ [0,1] ; ∀ℓ > 0,∃ℓ′ > ℓ andk such that
A(k+1,k+ ℓ′)

ℓ′
≤ x}

and

F := {x∈ [0,1] ; ∀ℓ > 0,∃ℓ′ > ℓ andk such that
A(k+1,k+ ℓ′)

ℓ′
≥ x} .



1.5. Exponential density.

Let h be a positive increasing unbounded function defined onR+ = [0,+∞[. We define
the lower h-densityof the setA⊆ N by

εh(A) = lim inf
n→∞

h(A(n))

h(n)

and itsupper h-densityby

εh(A) = limsup
n→∞

h(A(n))

h(n)
.

The functionh(x) = logx is frequently used and the correspondingh-density is called
exponential density, here denoted byε : ε(A) andε(A) denote the upper and the lower
exponential densities ofA, respectively.

The exponential densityε acts as a magnifying glass on sets with asymptotic density
zero. If A = {1k,2k,3k, ...}, thenεA = 1

k . Moreover, the preceding example motivates
the name of this density (“exponential”) since the exponentk determinesεA.

The functionh(x) = xα with α > 0 is not so interesting as it givesεh(A) = (dA)α and
similarly for upper densities.
1.6. Comparable and non comparable densities.
The densityd is calledweakerthan the densityd′ if, for any setA⊆ N,

d′(A) ≤ d(A) ≤ d(A) ≤ d′(A) ;

the densityd′ is calledstrongerthan the densityd.
Two densities are calledcomparableif one of them is stronger than the other.
The uniform density is stronger than theα−density for anyα ≥ −1. It is well known
(see for instance [15]) that the asymptotic density is stronger than the logarithmic one.
For further examples and for open problems on comparabilityof densities, see sections
2, 4, 6 and 7 below. The exponential density is not comparableto the uniform density,
nor to the asymptotic density. An example is given in [9].

2. COMPARISON BETWEEN α−DENSITY AND α−ANALYTIC
DENSITY

Let α be a real number greater than or equal to−1, andA⊆N a set of integers. We shall
denote by 1A thecharacteristic functionof A. Put

Aα(n) = ∑
k≤n

kα1A(k)



and

DA,α(n)
.
=

Aα(n)

Nα(n)
, ∆A,α(t)

.
= t ∑

k≥1

kαe−tNα (k)1A(k).

Notice thatdα(A) = lim
n→∞

DA,α(n) and define theα−analytic density ofA as

lim
t→0+

∆A,α(t)
.
= δα(A),

of course if these limits exist. Notice thatd−1(A) and δ−1(A) are, respectively, the
classical logarithmic and analytic densities ofA.
The following theorem (established in [5] in a more general context) links the two
concepts of density introduced above (the caseα = −1 is well known, see for instance
[21], p. 274).

Theorem 1. Let A⊆ N be a set of integers. For every real numberℓ ∈ [0,1], the two
following conditions are equivalent:

(a) A hasα–density dα(A) = ℓ.

(b) A hasα–analytic densityδα(A) = ℓ.

When theα−density (resp. theα−analytic density) ofA doesn’t exist, one can consider
the upper and lower densities.

Definition 1. The lower and upperα–analytic densities of A are defined respectively as

δ α(A)
.
= lim inf

t→0+
∆A,α(t), δ α(A)

.
= limsup

t→0+
∆A,α(t).

In the paper [6], Prop. (2.1), it is proved that, in general, the upperα−analytic density
of A is not greater than the upperα−density ofA (concerning the lower densities, the
inequality is obviously reversed).
A natural question is whether the same kind of result as Theorem 1 can be stated also
for lower and upperα−densities and lower and upperα−analytic densities,i.e.whether
the upper and the lowerα–densities and the lower and upperα–analytic densities ofA
coincide. In Th. (3.1) of [6] it is shown that the answer is negative in general. On the
other hand, in Section 4 of the same paper a class of subsets ofN is identified for which
the question can be answered affirmatively ifα > −1.

Open problem 1. (a) Check the existence of such a class in the caseα = −1.
(b) In the paper[22] it is proved that, for−1≤ α ≤ β

dβ (A) ≤ dα(A) ≤ dα(A) ≤ dβ (A).

Is it true that also
δ β (A) ≤ δ α(A) ≤ δ α(A) ≤ δ β (A)?



3. PERMUTATIONS AND THE LÉVY GROUP

We focus our attention on the following situation. Let(an) be a sequence of positive
numbers andπ : N → N be an injective function;(an) andπ will be fixed throughout.
In the paper [8] a comparison is established between theda–densities (upper and lower)
of a given setA ⊆ N and those of the transformed setπ(A) in terms of some suitable
features of(an) andπ . Put

ek =
aπ(k)

ak
, k∈ N, e0 = 0

and

σ ′
π

.
= limsup

n→∞

1
Sn

∑
π(k+1)≤n<π(k)

Skek+1 ,

whereSn =
n

∑
k=1

ak,

σ ′′
π

.
= limsup

n→∞

1
Sn

∑
π(k)≤n

π(k+1)≤n

Sk
∣

∣ek−ek+1
∣

∣ ,

σπ
.
= σ ′

π +σ ′′
π .

Let π(N) be the image ofπ and put

ℓ = da(π(N)); ℓ = da(π(N)).

In the paper [8] the following result is proved

Theorem 2. (i) Assume thatσπ < +∞. Then

σπ(da(A)−da(A))+ℓda(A)≤da(π(A))≤da(π(A))≤σπ(da(A)−da(A))+ℓda(A).

(ii) Assume that the sequence(en) is non–increasing, and that

σ ′′′
π

.
= limsup

n→∞

1
Sn

∑
π(k+1)≤n<π(k)

Sk < +∞.

Thenσ ′
π < +∞ and

σ ′
π(da(A)−da(A))+ℓda(A)≤da(π(A))≤da(π(A))≤σ ′

π(da(A)−da(A))+ℓda(A).

The following Corollary is an immediate consequence:

Corollary 1. In addition to the assumptions of Theorem 2 (i) or those of Theorem 2 (ii),
suppose thatπ(N) has a da-density equal toℓ. Then, if da(A) exists, then also da(π(A))
exists and

da(π(A)) = ℓda(A).



We point out the following particular case of Corollary 1, concerning the case of the
classical asymptotic densityd:

Corollary 2. Let π be a permutation of the integers such that d
(

π(N)
)

exists and is
equal to 1 and

(∗) limsup
n→+∞

1
n ∑

π(k+1)≤n<π(k)

k < +∞.

Thenπ preserves the asymptotic density.

TheLévy groupG is defined as the group of all permutationsπ of N satisfying

lim
n→∞

|k : k≤ n < π(k)|
n

= 0.

A lemma from [2] says that a permutationπ belongs toG if and only if it preserves the
asymptotic density.

Open problem 2. Establish
1) whether the setS of permutations verifying(∗) is a subgroup ofG ;
2) what is the relation betweenS andG .

4. THE DIRICHLET’S WEIGHTED DENSITIES

Let a = (an) andS= (Sn) be two sequences of positive numbers, and letα ∈ R; put

w(α)
n = aneαSn.

We make first some remarks (see [16] for details):
(a) The series

(1) ∑
n

w(α)
n = ∑

n
aneαSn

is called aDirichlet’s Series(shortened D.S.).
(b) Put

α0
.
= − limsup

n→∞

log(∑n
k=1ak)

Sn
.

The numberα0 is called theabscissa of convergenceof the series (1): by a classical
result, the series (1) converges forα < α0 and diverges forα > α0. Nothing can be said,
in principle, forα = α0, in the following sense: there are examples of D.S. which are
divergent forα = α0, and also examples of D.S. which are convergent forα = α0. Also,
it can happen thatα0 = +∞ or α0 = −∞.

Example 1. (i) The series



∑
n

nα

has abscissa of convergence equal to−1, and is divergent forα = −1.

(ii) The series

∑
n

nα/ log2n

has again abscissa of convergence equal to−1, but is convergent forα = −1.

(iii) Let a be a number, with0 < a < 1. The series

∑
n

annα

is convergent for all real numbersα.

(iv) Let a be a number, with a> 1. The series

∑
n

annα

is divergent for all real numbersα.

Assume thatα0 > −∞. It is clear from the above remarks that, forα > α0 (i. e. when
the D.S. is divergent) it is possible to consider the weighted upper and lower densities

defined by the weightsw(α)
n , which we callDirichlet’s weighted densities, i. e. for every

subsetA⊆ N we put

Aα(n) = ∑
k∈A,k≤n

w(α)
k

and define

da,S,α(A) = lim inf
n→∞

Aα(n)

Nα(n)
, da,S,α(A) = limsup

n→∞

Aα(n)

Nα(n)
.

Notice that foran = 1 andSn = logn we recover the classicalα−densities.
By a Theorem of [22], it is easy to see that the following result holds:

Proposition 1. Let w(α)
n = aneαSn be fixed, and letα0 be the abscissa of convergence of

the associated D.S. Assume thatα0 > −∞. Then, forβ > α > α0, we have

da,S,β (A) ≤ da,S,α(A) ≤ da,S,α(A) ≤ da,S,β (A).

In the paper [7] it is proved that the functionsα 7→ da,S,α(A) andα 7→ da,S,α(A) with
an = 1 andSn = logn are continuous in(α0,+∞) = (−1,+∞) and may be discontinuous
at α0 = −1.

Open problem 3. 1) What can be said about the continuity of the Dirichlet’s densities
with respect to the parameterα? In particular, in which cases, if any, the continuity
holds also forα = α0?



2) In which cases, if any, is it possible to define the associated Dirichlet analytic densities
exactly as in the classical case (see the definition in [6]), i.e. to put

∆A,α(t)
.
= t ∑

k≥1
aneα Sne−tNa,S,α (k)1A(k),

lim inf
t→0+

∆A,α(t)
.
= δ α(A), limsup

t→0+
∆A,α(t)

.
= δ α(A)

and to compare them with the weighted Dirichlet’s densities?

5. DENSITY SETS

ForA⊆ N define
S(A) = {(d(B),d(B)); B⊆ A},

thedensity setof A. Denote byTg the triangle(0,0),(d(A),0),(d(A),d(A)) and byTz
the trapezium(0,0),(d(A),0),(d(A),d(A)),(d(A),d(A)).

Theorem 3. [12] For each A⊆N the set S(A) is convex and closed with Tg⊆S(A)⊆Tz.
On the other hand, for each convex closed set S with Tg⊆ S⊆ Tz, there exists A⊆ N

such that S= S(A).

In order to identifyS(A) it suffices to know its upper bound:

f : [0,d(A)] → [0,d(A)]; f (x) = max{y; (x,y) ∈ S(A)}.

Gaps inA force S(A) to be smaller but the opposite does not hold. To see this, for
A = {a1 < a2 < .. .} ⊆ N define the value

λ (A) = limsup
n→∞

an+1

an
,

the gap densityof A [14]. Its reciprocal value provides the upper bound for the right
derivative of f at 0.

Theorem 4. [14] f ′r (0) ≤ 1
λ (A) ≤ 1.

As a corollary we obtain that the whole setS(A) lies below the liney = 1
λ (A) x.

We have seen that the occurrence of big gaps supplies partialinformation onS(A). Gaps
are extremal case of low local frequency of distribution of elements ofA. What can be
said in the case when no large gaps inA occur, i.e.λ (A) = 1? The following remark
shows that nothing can be said.

Remark 1. For each A⊆ N there exists a B⊆ N with S(A) = S(B) andλ (B) = 1.

In general, sudden decrease of the “local density”, i.e. thevalue n
an

, pushes down the
upper bound ofS(A), the function f . How to measure decrease of the local density?
There is no chance to do it by means of additive models like in uniform density, i.e.
decrease ofA(n,n+m) w.r.t. A(n−m,n) for fixedm andn→ ∞.



Perhaps there is some chance using

γ(A,ε) = lim inf
n→∞

A(n,(1+ ε)n)

A((1− ε)n,n)
, γ(A) = lim

ε→0+
γ(A,ε)

where the liminf is taken through all values ofn for which the denominator is positive.
Notice thatλ (A) > 1 impliesγ(A) = 0.

Conjecture 1. Perhaps γ(A) = 1 ⇔ S(A) = Tz.

Open problem 4. Prove or disprove the conjecture. Notice that the opposite implication
γ(A) = 0 ⇔ S(A) = Tg does not hold.

6. DENSITIES AND DISTRIBUTION FUNCTIONS

A non-decreasing functiong : [0,1] → [0,1], g(0) = 0, g(1) = 1 is called adistribution
function. We shall identify any two distribution functions coinciding at common points
of continuity. It is well known that the setD of all distribution functions endowed with
theL2 metric is a compact space. The following application of the theory of distribution
functions, in order to study distribution properties of sets of positive integers, was started
by Strauch and Tóth in [27].
Let X = {x1 < x2 < .. .} ⊆ N. We can form theratio block sequence(Xn) where

Xn =

(

x1

xn
,
x2

xn
, . . . ,

xn

xn

)

.

For eachn∈ N consider thestep distribution function

F(Xn,x) =
#{i ≤ n; xi

xn
< x}

n

and define theset of distribution functions of the ratio block sequence

G(Xn) = { lim
k→∞

F(Xnk,x)}.

By compactness ofD , the setG(Xn) is always nonempty and closed. The ratio block
sequence(Xn) is uniformly distributed ifG(Xn) = {id[0,1]}.
There are results showing that information ond(X) andd(X) can substantially reduce
the possible range ofG(Xn).

Theorem 5. [27] Let X ⊆ N be such that d(X) > 0. Then for every g∈ G(Xn) and
x∈ [0,1]

d(X)

d(X)
x≤ g(x) ≤

d(X)

d(X)
x.

In particular, if d(X) > 0 exists, then the ratio block sequence(Xn) is uniformly dis-
tributed.



The lower bound in the previous theorem can be slightly improved.

Theorem 6. [1] Let X⊆ N be such that d= d(X) > 0 and denoted = d(X). Then for
every g∈ G(Xn)

h1(x) ≤ g(x) ≤
d(X)

d(X)
x

where

h1(x) =







x d
d

if x ∈
[

0, 1−d
1−d

]

,
d

1
x−(1−d)

otherwise,

and these bounds cannot be improved.

Notice that there is no information onG(Xn) if d(X) = 0.

Open problem 5. In the case d(X) = 0 try to find bounds for G(Xn) in terms of the
exponential density.

The following kind of density was studied in a bit more general setting by Pólya [20]

d(A) = lim
θ→1−

lim inf
n→∞

A(n)−A(θn)

(1−θ)n
, d(A) = lim

θ→1−
limsup

n→∞

A(n)−A(θn)

(1−θ)n

who calls themminimal andmaximaldensities ofA ⊆ N, respectively. It can be seen
that

d(A) = sup{d(B), B⊆ A}, d(A) = inf{d(B), B⊇ A}.

Evidently d(A) ≤ d(A) ≤ d(A) ≤ d(A). There are examples of sets for which strict
inequalities take place.

Example 2. Let A=
∞
⋃

n=0
[22n,22n+1)∩N. Then

0 = d(A) <
1
3

= d(A) <
2
3

= d(A) < 1 = d(A).

Open problem 6. Find bounds of G(Xn) in terms of densities dandd.

In general, intervals with decreasing frequency of elements in the setX produce func-
tionsg∈ G(Xn) with g > id[0,1] and intervals with increasing frequency of elements in
X produce functionsg∈ G(Xn) with g < id[0,1]. Both bigS(X) and smallG(Xn) indicate
regularity of distribution, butG(Xn) is more sensitive to non-regularity thanS(X). A
decreaseof S(X) is caused by a suddendecreaseof frequency of elements ofX while
the increaseof G(Xn) is caused by suddenchanges(i.e. not necessary decrease) of fre-
quency of elements ofX. If G(Xn) indicates regularity of distribution then alsoS(X)
does. On the other hand, it may happen thatG(Xn) indicates non-regularity whileS(X)
indicates regularity.

Conjecture 2. If d(X) > 0 then

S(X) = Tz ⇔ ∀g∈ G(Xn) : g≤ id[0,1].



Open problem 7. Prove or disprove the conjecture.

If the above conjecture holds then ford(X) > 0 we have

G(Xn) = {id[0,1]} ⇒ S(X) = Tz.

On the other hand, there existsX ⊆ N such thatS(X) = Tz and the graphs ofG(Xn)
cover the whole triangle(0,0),(1,0),(1,1).
We will conclude this section with two possible measures of “irregularity” of distribution
of elements ofX ⊆ N.
Denoteg = inf G(Xn) andg = supG(Xn). Then

δ (X) =

1
∫

0

(g(x)−g(x))dx

can be a measure of “irregularity” of distribution of elements ofX.

Conjecture 3. If d(X) > 0 then δ (X) = 0⇔ G(Xn) = {id[0,1]}.

Open problem 8. Prove or disprove the conjecture.

Define

θ(X) = inf{θ ∈ (0,1); ∃n0(θ) ∀n > n0 ∀k, l ∈ (θn,n) :

∣

∣

∣

∣

X(k)
k

−
X(l)

l

∣

∣

∣

∣

< θ}.

Conjecture 4. If d(X) > 0 then θ(X) = 0 ⇔ G(Xn) = {id[0,1]}.

Open problem 9. Prove or disprove the conjecture and find relations betweenδ (X) and
θ(X).

7. DENSITY MEASURES

By a density measurewe mean every additive measureµ on P(N) extending density,
i.e. µ(A) = d(A) if d(A) exists. Perhaps the simplest examples of density measures are
measures of the kindµU , whereU is a free ultrafilter onN, defined by

µU (A) = U − lim
A(n)

n
, A⊆ N.

Question 1. [3] Doesµ(A) ≤ d(A) hold for every density measureµ and A⊆ N?

In [17] it is claimed that each density measureµ is of the form

µϕ (A) =
∫

βN∗
U − lim

A(n)

n
dϕ(U ),



for some probability Borel measureϕ on βN
∗, the remainder in thěCech - Stone

compactification ofN. In this case the answer to van Douwen’s question would be
evidently YES. Unfortunately, as we will see below, the above claim is not correct.

Theorem 7. [26] For every fixed set A⊆ N

{µ(A); µ is a density measure} = [d(A),d(A)].

By this theorem and Example 2 we have the following.

Corollary 3. The answer to van Douwen’s question is NO.

Open problem 10. Characterize the sets A⊆ N for which d(A) = d(A) and d(A) =

d(A).

A possible measure of “irregularity” of distribution of elements ofA:

η(A) = d(A)−d(A)+d(A)−d(A).

Conjecture 5.
G(An) = {id[0,1]} ⇒ η(A) = 0.

Notice that the opposite implication does not hold.

Open problem 11. Big δ (A) implies bigη(A). Find more precise relations.

8. VARIOUS PROBLEMS

8.1. More rapid convergence to a density, I.

The problem4.1 in [10] has an easy negative answer : the set of positive even integers
does not fulfil the requirements.
Actually, we propose the following new formulation. Suppose that the setA ⊆ N has
asymptotic densityd > 0. Let f (n) = |A(n)n−1−d| which tends to zero asn tends to
+∞. It can be proved that iff (n) is not 0 for alln≥ n0 (this is the case whenA = N),
then there isC > 0 such that for infinitely manyn, we havef (n) ≥Cn−1.

Open problem 12. Suppose, in addition, that

limsup
n→+∞

n f(n) = +∞ .

Is there d′ ∈]0,d] and B⊆ A such that, if we put g(n) = |B(n)n−1−d′|, then

1) g(n) tends to 0 , as n tends to+∞ ; and

2) lim inf
n→+∞

g(n)

f (n)
= 0 ?



8.2. More rapid convergence to a density, II.
Suppose that the setA⊆ N has asymptotic densityd. Let f (n) = |A(n)n−1−d| which
tends to zero asn tends to+∞. The setA has logarithmic density also equal tod. Let

g(n) := |(∑
k≤n

1
k
)−1( ∑

a≤n,a∈A

1
a
) − d| .

Is it true thatg(n) tends to zero,on the meanmore rapidly thanf (n) ? For instance, does

∑k≤n g(k)

∑k≤n f (k)

tend to 0 asn tends to+∞ ?

8.3. Three cubes.(Proposed by François Hennecart.)

LetC be the set of three cubes

C = {n∈ N : n = a3+b3+c3,(a,b,c) ∈ (N∪0)3} .

Doesd(C) exist? Is so, evaluatedC.

8.4. Sets with prescribed densities.

In [19], see also [18], it is proved that given any quadruple(α,β ,γ,δ ) of numbers such
that

0≤ α ≤ β ≤ γ ≤ δ ≤ 1,

there exists a setA⊆ N so that

d(A) = α, δ (A) = β , δ (A) = γ, d(A) = δ .

Open problem 13. Characterize the set of all8-tuples(α1, . . . ,α8) with

0≤ α1 ≤ α2 < · · · < α8 ≤ 1

for which there exists A⊆ N such that

u(A) = α1, d(A) = α2, d(A) = α3, δ (A) = α4

and
δ (A) = α5, d(A) = α6, d(A) = α7, u(A) = α8.

Notice thatd(A) = d(A) ⇒ d(A) = d(A), thus in this case the solution is a proper subset
of the set of all nondecreasing 8-tuples from[0,1].
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