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Abstract We characterize locally Lipschitz mappings and existence of Lipschitz exten-
sions through a first order nonlinear system of PDEs. We extend this study to graded group-
valued Lipschitz mappings defined on compact Riemannian manifolds. Through a simple
application, we emphasize the connection between these PDEs and the Rumin complex. We
introduce a class of 2-step groups, satisfying some abstract geometric conditions and we show
that Lipschitz mappings taking values in these groups and defined on subsets of the plane
admit Lipschitz extensions. We present several examples of these groups, called Allcock
groups, observing that their horizontal distribution may have any codimesion. Finally, we
show how these Lipschitz extensions theorems lead us to quadratic isoperimetric inequalities
in all Allcock groups.
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1 Introduction

The local Lipschitz property for mappings between Euclidean spaces is characterized by
local L*°-bounds on distributional derivatives. If we replace the target space even with the
simplest sub-Riemannian manifold, as the Heisenberg group, then the previous statement
does not hold. This elementary fact is the starting point of our study.

An important instance is the case of mappings defined on a Riemannian manifold, that
is related to the study of horizontal submanifolds. In this connection, Gromov among other
results has treated various Lipschitz approximation theorems along with Lipschitz extensions
problems, see Sect. 3.5 of [19].
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It is well known that smooth Lipschitz mappings taking values into a contact Carnot-
Carathéodory manifold are horizontal and the converse also holds, [19]. The main concern
of this work is to understand this fact under Lipschitz regularity, where both source and target
spaces have the sub-Riemannian structure of stratified groups. The horizontality condition
for mappings of stratified groups yields the system of nonlinear first order PDEs (1), that
only depends on the Lie algebra and that it can be written in terms of exponential coordi-
nates.

For general sub-Riemannian structures, these equations can be replaced by the pull-back
of forms defining the horizontal distribution, according to Sect. 4.2 of [19]. Recall that in the
case the target of our mappings is Euclidean, then they are all horizontal and their Lipschitz
property is characterized in the usual way by bounds on distributional horizontal derivatives.
This fact holds for general Carnot-Carathéodory source spaces, [16].

Our point of view is that of considering mappings of stratified groups as solutions to
the system of equations (1). Although the main results of this work are Theorems 1.1 and
1.2, a substantial part of the paper is devoted to applications, regarding construction of both
Lipschitz and non-Lipschitz mappings and the relationship between Lipschitz extension the-
orems and isoperimetric inequalities.

The interest in geometric properties of mappings in the sub-Riemannian setting has
recently proved useful in connection with bi-Lipschitz embeddability of sub-Riemannian
metric spaces into different classes of infinite dimensional Banach spaces, according to the
remarkable work by Cheeger and Kleiner [10].

Our framework is that of graded groups, that are real, finite dimensional, connected, sim-
ply connected and nilpotent Lie groups, with graded Lie algebra. Notice that they might
not be connected by rectifiable curves, according to Example 2.1. When the Lie subalgebra
spanned by the first layer of the grading coincides with the whole algebra, we say that the
group is stratified, [15]. The so-called horizontal directions of the group are spanned by the
left invariant vector fields belonging to the first layer of the algebra, see Sect. 2 for more
details. Stratified groups, also called Carnot groups, represent the foremost models of nilpo-
tent and simply connected sub-Riemannian geometries. As we will see below, our techniques
will allow for studying mappings from a stratified group to a graded group.

The above mentioned horizontality for mappings of graded groups is well known as con-
tact property. This property corresponds to preserving horizontal directions. In Remark 2.16,
we derive equations (1) that correspond to this constraint. We will refer to these equations as
contact equations. For instance, every parametrization of a horizontal curve has the contact
property by definition, hence the property of being horizontal can be equivalently stated in
terms of contact equations, that in this case become ODEs (16). More generally, parametri-
zations of either Legendrian submanifolds in Heisenberg groups or horizontal submanifolds
in stratified groups are characterized by being solutions to (1), where horizontal derivatives
X are replaced by usual partial derivatives. Incidentally, these manifolds coincide with
(R¥, M)-regular sets, according to [25]. Quasiconformal mappings of stratified groups have
the contact property, [27], hence they solve the system (1) a.e. For instance, contact equations
have been implicitly used in [8], in relation with smoothness of 1-quasiconformal mappings
between Carnot groups. In connection with mappings with bounded distortion in two step
groups, contact equations explicitly appear in (3.2) of [11]. Certainly, many other interesting
cases could be added from the existing literature.

In the present paper, we focus our attention on mappings defined on an open subset €2 of
a stratified group G, with graded group target M. Lie algebras of G and M will be denoted by
G and M, respectively. Turning to the initial question of characterizing the local Lipschitz
property, we state the following
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Theorem 1.1 Let Q C G be an open set and let f : Q@ —> M. Consider the mappings
F =explof and Fj =mjoF, hence f = expz;’:] F; and F; take values in W;. If
F e L}UC(Q, M), then the following statements are equivalent:

e [ islocally Lipschitz,

e all the distributional derivatives Vx, F belong to LS (2, M) and the system

loc

- (=1
ViFj =2 = 7 (F, Vi Fly1) M
n=2
u-a.e. holds in Q for every j =2,..., v,
e fisa.e. P-differentiable and VyF = (Vx, F, ..., Vx, F) € LS (2, M)™,

loc
where (X1, ..., Xy,) is a basis of Vi and . is the Haar measure of G. The mappings 7 :
M — W; indicate the canonical projection onto the jth layer of the graded algebra M
of ML

Under the stronger assumption that M is stratified, results of [27] imply that the local
Lipschitz property yields both the second and the third condition of Theorem 1.1. Since a
graded group need not be connected by rectifiable curves, then the previously mentioned
implications are obtained employing some technical tools developed in [25].

However, in this work we are interested in the converse to these implications, since we
aim to achieve the Lipschitz property starting from the contact property. Clearly, the stan-
dard smoothing argument used in Euclidean spaces to get the Lipschitz property cannot be
applied here. In fact, the mapping F is a weak solution to (1), but its mollification might
no longer be a solution of these equations, due to their nonlinearity. The direct use of Pansu
differentiability does not seem to be of help, since this notion has no corresponding distri-
butional version. Here our point is that Theorem 1.1 allows us to think of (1) somehow as a
distributional counterpart of Pansu differentiability. Our approach boils down to making the
problem a.e. one dimensional. In fact, due to the distributional validity of (1) and a Fubini’s
decomposition, one shows that for a.e. horizontal line in the domain, the restriction of the map-
ping to this line is horizontal. Then these restrictions are Lipschitz continuous with uniform
Lipschitz constant with respect to the homogeneous distance of the target. This argument can
be iterated for a basis of horizontal directions. Since points are locally connected by piece-
wise horizontal lines and any horizontal curve can be approximated by piecewise horizontal
lines, the local Lipschitz property follows. Constructing globally Lipschitz functions on a
domain 2 of a stratified group clearly depends on the geometry of 2. In this respect, if we
assume that this set is a John domain, then every mapping satisfying one of the equivalent
conditions in Theorem 1.1 and also Vg F € L°° (2, M)™ is Lipschitz in .

The approach adopted to get Theorem 1.1 also works replacing the open set of a stratified
group with a complete Riemannian manifold, since one replaces horizontal lines with Rie-
mannian geodesics, that are more manageable than sub-Riemannian’s. By Theorem 4.5 and
taking into account Remark 4.6, we are lead to the following

Theorem 1.2 Let N be a compact connected Riemannian manifold and let v be the canonical
Riemannian measure of N. Let F : N —> M be a Lipschitz mapping that v-a.e. satisfies

v

—1 n
VF; =Z%nj ([F,VFlu_1) foreveryj=2, ..., v. )
n=2 !

Then f : N —> M, where f = expoF, is Lipschitz and there exists a geometric constant
C > 0 such that Lip(f) < C Lip(F1).
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A special instance of this theorem will be used in the proof of Theorem 1.3, about the exis-
tence of Lipschitz extension. Next, we discuss some applications of Theorem 1.1. In fact,
this theorem provides a general PDEs approach to construct either Lipschitz or non-Lipschitz
mappings. For instance, it is easy to construct smooth mappings in the Heisenberg group that
are nowhere locally Lipschitz: it suffices to consider the parametrization of the vertical line
in the first Heisenberg group. In Subsect. 5.1, through contact equations, we provide another
case for a mapping of Heisenberg groups. To construct examples of Lipschitz mappings, we
use the natural relationship between contact equations and the Rumin complex, [31]. In fact,
an elementary computation only relying on contact equations and using the complex property
of Rumin differential allows us to determine all smooth Lipschitz mappings of the Heisenberg
group, whose horizontal components are affine functions, see Subsect. 5.2. Our point here
clearly is in the method, that rests on the solution of the simple contact equations specialized
to this case. It is also clear how our approach could be extended to either higher dimensional
Heisenberg groups or other variants. Recall that affine Lipschitz mappings of the first Heisen-
berg group have been characterized in [5] through the explicit use of the Lipschitz condition.

Another application of Theorem 1.1 concerns existence of Lipschitz extensions that can
be interpreted as existence of solutions to (1) with assigned boundary datum, see Subsect. 5.3.
Treating this problem is certainly very hard, even in the case of couple of spaces involving
Euclidean spaces and Heisenberg groups. This leads us to two possible methods to approach
Lipschitz extension problems in sub-Riemannian geometry: the geometric approach and the
PDEs approach.

These two demanding projects cannot be treated here in depth, then we will limit our-
selves to show first elementary examples of how one can apply both Theorems 1.1 and 1.2
to obtain Lipschitz extensions, showing how this issue is essentially equivalent to find-
ing isoperimetric inequalities. We concentrate our attention on the geometric approach,
following the method by Allcock to get quadratic isoperimetric inequalities in higher
dimensional Heisenberg groups, [1]. Essentially, contact equations permit us to rephrase
Allcock construction in a larger class of two step groups that must satisfy some abstract
geometric properties. We call these groups Allcock groups. This leads us to a disk extension
theorem in this class of groups, see Theorem 1.3. Notice that Gromov pointed out how his
disk extension theorem for contact simply connected compact Carnot-Carathéodory target
gives a quadratic isoperimetric inequality, see p. 218 of [19]. As further application of the
tools developed in this work, we will also prove this implication for all Allcock groups, see
Theorem 1.5.

In Sect. 6, we introduce this family of groups and present several examples, that include
higher dimensional quaternionic H-type groups, the complexified Heisenberg group and other
classes of two step groups. It is easy to show that Heisenberg groups are a special instance
of Allcock groups, see Remark 6.7. Next, we state the following

Theorem 1.3 (Disk extension theorem) Let Al" be an Allcock group, with n > 2. Then there
exists a geometric constant ¢ > 0 such that for every Lipschitz mapping f : S ! — Al" there
exists a Lipschitz extension on the closed disk f : D — Al" such that Lip(f) < ¢ Lip(f).

Itis arather general fact that Lipschitz extension theorems from spheres to the correspond-
ing higher dimensional disks imply full Lipschitz extension theorems, from an Euclidean
source space. The argument of the proof essentially relies on Whitney cube decomposition,
according for instance to Theorem 1.2 of [2]. A different statement of this fact can be found
for mappings taking values in a compact Carnot-Carathéodory manifold, see p. 219 of [19].
In the recent work by Lang and Schlichenmaier [21], using Nagata dimension, more general
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source spaces are considered. In Sect. 7, we use both terminology and results of this paper
to show how Theorem 1.3 yields the following

Corollary 1.4 Let AI" be an Alicock group, with n > 2. Then the couple (R?, A") has the
Lipschitz extension property.

Itis worth to mention that not all stratified group-valued mappings admit Lipschitz extensions,
[4,30]. On the other hand, other interesting targets can be considered for establishing Lipschitz
extension theorems, [33].

To complete the study of the relationship between Lipschitz extension theorems and isoperi-
metric inequalities, in Sect. 8 we establish quadratic isoperimetric inequalities for all Allcock
groups.

Theorem 1.5 (Quadratic isoperimetric inequality) Let Al"* be an Allcock group, withn > 2.
Then there exists a geometric constant K > 0 such that for every Lipschitz loop T : S' —
A" there exists a Lipschitzmap f : D —> Al" such that fig1 =T and the “spanning disk”
(D, f) satisfies the quadratic isoperimetric inequality

M2, (f(D)) < K length, (I)?, 3)
where py is a fixed Carnot-Carathéodory distance.

Recall that quadratic isoperimetric inequalities impose quadratic behaviour to the cor-
responding “geometric Dehn functions”. It is interesting to point out that there is also a
combinatorial notion of Dehn function, that is shown to be equivalent to the geometric one,
[6,7]. This represents a fascinating connection between Combinatorial Group Theory and
Geometric Group Theory. To have a glimpse of this vast research area, we mention just a few
references, [6,12,17,18].

In fact, quadratic isoperimetric inequalities in Heisenberg groups have also a combinato-
rial proof, [26]. More recently, R. Young have found various estimates for Dehn functions
in some specials classes of stratified groups, [34,35]. In particular, for some central powers
of two step groups he establishes quadratic isoperimetric inequalities using combinatorial
methods, [34]. It is interesting to compare his results with our Theorem 1.5, since the con-
struction of central powers is somehow similar to the construction of an Allcock group A[%,
starting from its model algebra n, see Sect. 6.

Notice that the core of Allcock isoperimetric inequality is establishing this result in the
“symplectic part” (R*", w) of the Heisenberg group H" using the Euclidean Hausdorff mea-
sure in R?". In this respect, he raises the question on the proper notion of area to read
isoperimetric inequalities in the Heisenberg group equipped with its Carnot-Carathéodory
distance, see at p. 230 of [1]. Theorem 1.5 answers this question showing that the 2-dimen-
sional Hausdorff measure with respect to the Carnot-Carathéodory distance works. This is a
simple consequence of the sub-Riemannian area formula, [22], that shows how the Euclidean
surface measure of the projected surface in R*" corresponds to its Hausdorff measure with
respect to the Carnot-Carathéodory distance in H". This works more generally for Allcock
groups, see Proposition 8.5.

In this case, we first obtain an Euclidean isoperimetric inequality in the “multi-symplec-
tic space” (R™", w), where the multi-symplectic form w is defined in (48). In fact, Al" can
be identified with R™" x R* with respect to suitable graded coordinates and the horizontal
subspace given by R™" inherits w from the Lie algebra of Al". The quadratic isoperimet-
ric inequality in (R™", w) is then the main point, corresponding to Theorem 8.6. Then the
sub-Riemannian area formula leads us to Theorem 1.5.

@ Springer



V. Magnani

Since the Riemannian Heisenberg group is quasi-isometric to the sub-Riemannian one, it
is natural to expect the same isoperimetric inequality with respect to both distances, accord-
ing to the case of finitely presented groups, [3]. In fact, under the same assumptions of
Theorem 1.5 we have

H; (f(D)) < K length,(I')?, )

where o is the Riemannian distance obtained by the fixed left invariant Riemannian metric
defining the Carnot-Carathéodory distance pg, see Sect. 8. In fact, since pg is greater than
or equal to o and Proposition 8.2 show that Riemannian and sub-Riemannian lengths of a
horizontal curve coincide, it follows that (3) implies (4). Finally, we wish to point out how
the use of Euclidean Hausdorff measure to find quadratic isoperimetric inequalities directly
inside H" does not seem to work, according to Example 8.8 that considers the case of H?.

2 Preliminaries and known results
2.1 Some elementary facts on graded groups

A graded group is a real, finite dimensional, connected and simply connected Lie group M,
whose Lie algebra M can be written as the direct sum of subspaces W;, called layers, such
that

(Wi, W;]1 C Wiy 5

and M = W1 & --® W,. The integer v is the step of nilpotence of M. A graded group M is
stratified if its layers satisfy the stronger condition [W;, W;] = W, ;, see for instance [15].
The horizontal tangent spaces

HM={Z(x) | Z e W} C T\M, xeM

define all horizontal directions of the group, that are collected into the so-called horizontal
subbundle HM. We also define subbundles of higher order H/ M, setting

HIM={Z(x)|ZeW;,} CTaM, xeM
We fix a norm || - || in M, then the bilinearity of Lie brackets gives
10X, Y1l < BIXI Y]l forevery X,Y € M (6)

for some constant 8 > 0, depending on the norm and on the algebra. The grading of M
allows us to introduce a one-parameter group of Lie algebra automorphisms §, : M —> M,
defined as 8,(X) = r' X if X € V;, where r > 0. These mappings are called dilations. Taking
into account that the exponential mapping exp : M — M is a diffeomorphism for simply
connected nilpotent Lie groups, we can read dilations in the group M through the mapping
exp and maintain the same notation. We fix a homogeneous distance p on M, namely, a left
invariant continuous distance that is 1-homogeneous with respect to dilations §,. We will use
the convention p(x) = p(x, e¢), where e denotes here the unit element of M.

Example 2.1 Let M = R" x R be equipped with the sum of vectors as commutative group
operation and define the parabolic distance |(x, t)| = |x| + +/]f] and dilations 8, (x, ) =
(rx, rzt). Here we have the grading V| @ V,, where V| and V; can be identified with R" x {0}
and {0} x R, respectively. Clearly, M is a 2-step graded group, but it is not stratified.
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Following the notation of [27], Sect. 4.5, in the next definition we introduce the iterated
Lie bracket.

Definition 2.2 Let X, Y € M. The kth bracket is defined by

(X, Yl =[X, [X,[---,[X,Y],],....] and [X,Y]o=Y. (N
—_—
k times

Notice that [X, Y]x = ad*(Y).

We can express the group operation in the Lie algebra by the Baker—Campbell-Hausdorff
formula, that we present in the following form

v
XoY=> alX7Y), ®)
j=1
where c1(X,Y) = X + Y, c2(X,Y) = [X, Y]/2 and the subsequent terms can be defined
inductively, [32]. Notice that the sum (8) has v addends, since X, Y belong to M that has
step of nilpotence v. The addends ¢, in general are given by induction through the following
Baker—Campbell-Hausdorff-Dynkin formula

1
(n+ D enpt (X, V) = 2 X =Y, en(X, V)] ©)
+ D Ky D (XY, L len, (X V), X + Y1,
p>1 ki, k2p>0
2p<n ky+---kop=n

see Lemma 2.15.3 of [32].

Lemma 2.3 Letv > Oandletn =2, ..., 1 Then there exists a constant a,,(v) only depend-
ing on n and v such that

llen (X, V| < o () ILX, Y1 (10
whenever | X||, |Y] < v.

Proof Our statement is trivial for n = 2, being c2 (X, Y) = [X, Y']/2. Assume that it is true
forevery j =2, ...,n,withn > 2. We observe that [cky, (X, Y), X+ Y] #0in (9) implies
kyp > 1, then inductive hypothesis yields

lle, (X, V)| < axg, ) 11X, Y1

Using this estimate in (9) and observing that ||y, (X, Y)|| < 2v, whenever k; = 1, our claim
follows. O

Definition 2.4 A homogeneous subgroup H of G is a Lie subgroup that is closed under
dilations. Analogously, for subalgebras the same terminology is adopted.

Definition 2.5 Let N and H be homogeneous subgroups of G, where N isnormal, NN H =
{e}and NH = G. Then G is an inner semidirect productof N and H and we write G = N x H.

We denote by Hx the one-dimensional subgroup of G, spanned by exp X, where X € G.
Next, we recall a standard fact concerning direct sums of homogeneous subalgebras, whose
proof can be found for instance in [25]. Recall that a homogeneous algebra p satisfies §,p C p
for every r > 0.
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Proposition 2.6 Let p and b be homogeneous subalgebras of G and let P and H denote
their corresponding homogeneous subgroups, respectively. Then the conditionp @ h) = G is
equivalent to require that PN H = {e} and PH = G. Furthermore, if one of these conditions
hold, then the mapping

¢:pxh— G, d(W,Y)=expW expY (11)
is a diffeomorphism.
Another elementary fact is the following

Lemma 2.7 Let X € V) \ {0}. Then there exists a normal homogeneous subgroup N C G
such that G = N x Hy.

2.2 Haar measure and Fubini’s theorem

We consider a graded group G with grading G = V1 @ - -- @ V, and we fix a left invariant
Riemannian metric g on G. Then the associated volume measure volg is clearly left invariant
and defines the Haar measure of G. We will denote by w this measure. Let X € V| and N
be a homogeneous normal subgroup N such that G = N x Hy. Then we have the following
Fubini’s theorem with respect to this factorization.

Proposition 2.8 Let 1 be the Haar measure of G. Then for every measurable set A C G,
we have

wn(A) :/VX (An) dpn(n), 12)
N

where A, = {h € Hx | nh € A}. We have denoted by vy and vy the Haar measure of N
and of Hy, respectively,

Proof We fix an orthonormal basis (X1, ..., X,) of G with respect to the metric g. In addi-
tion we assume that this basis is adapted to the grading of M, such that X is proportional
to X. By Proposition 2.6, the mapping

g—1
¥R x RITN — M, (t,&) —> exp Z;,-XJ-H exp (r X1)

j=1

is a diffeomorphism. Our fixed basis also introduces the special system of coordinates
F:R? — G, F(x) = exp ( ?:1 xiXi) on G. Now we observe that

F:L7 = p, (F\{()}qufl)nﬁqfl =pun, and (FRX\{O})]:I['l = vx,
see for instance Proposition 2.3.47 of [23]. Thus, the fact that X; € V| implies that the

mapping F~! o ¢ has jacobian equal to one. Combining these facts with classical Fubini’s
theorem, we get our claim. ]
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2.3 Differentiability

In the present subsection, we recall the notion of Pansu differentiability. G and M denote two
stratified groups and €2 is an open subset of G.

Definition 2.9 (h-homomorphism) A group homomorphism L : G — M such that
L((S(rc’x) = (S;WL(x) for every x € G and r > 0 is called homogeneous homomorphism,
in short h-homomorphism.

Analogous terminology will be used for the corresponding Lie algebra homomorphisms of
graded algebras that commute with dilations.

Definition 2.10 (P-differentiability) Let d and p be homogeneous distances of G and M,
respectively. We consider the mapping f : 2 —> M. We say that f is P-differentiable at
x €  if there exists an h-homomorphism L : G — M such that

p (f)~Lf(xh), L(h))
d(h)

—> 0 as h—e.

The h-homomorphism L satisfying this limit is unique and it is called P-differential of f at
x. We denote L by Df (x), when we read the P-differential between the corresponding Lie
algebras, we will denote it by df (x).

Theorem 2.11 Every Lipschitz mapping [ : Q —> M is u-a.e. P-differentiable.

This theorem is an important result due to Pansu, [27]. Here have presented a slightly more
general version where M is graded, but it might not be stratified, [25].

Definition 2.12 (Distributional derivatives) Let 2 be an open subset of a stratified group G,
let X be a left invariant vector field of G and let E be a finite dimensional normed space.
Then for every F € L}OL_(Q, E) we say that G € L}OC(Q, E) is the distributional derivative
of F with respect to X if

/FX(pd;L:—/G(pdu

Q Q

for every ¢ € CZ°(2). Uniqueness of G allows us to use the notation Vx F. In the case Q
is an open subset of R" and X = d,; we will use the notation V;, where ¢; belongs to the
canonical basis of R".

Remark 2.13 To avoid confusion, we stress that the symbol Vy will always denote a distri-
butional derivative, since we will never consider connections in this work.

Definition 2.14 (Horizontal gradient) Under the conditions of Definition 2.12 if we have
equipped V| with a scalar product and (X1, ..., X,,) is an orthonormal basis of V|, then we
introduce the notation

VuF = (Vx,F,...,Vx,F)

m

to denote the distributional horizontal gradient of F : Q@ — E.
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2.4 Some auxiliary results
In this subsection M denotes a graded group equipped with Lie algebra M. The next lemma
easily follows from the scaling property of the homogeneous distance in a graded group.

Lemma2.15 Let M = W, &---® Wy andletwl : M —> W; ®---® W, be the canonical
projection. Let U be a bounded open neighbourhood of the unit element e € M. Then there
exists a constant Ky > 0, depending on U, such that

I’ (exp™ () I| < Ky d(x)' (13)
holds for every x € U and everyi =1, ..., v.

Remark 2.16 (Contact property) We wish to point out how the contact property of a mapping
f : Q2 — M at some point x € €2, namely,

df (x)(H,G) C HpyM

is equivalent to the differential constraint

v
="
X F; —27::,- (IFj=1. XiFj—1la—1) =0, (14)
n=2
foreveryi = 1,...,m and every j = 2,...,v, where (X1,..., X;;) is a basis of Vi,

f =expoF and F; = 7 o F. The exponential mapping exp : M — M satisfies

(="
dexp (X) =1d—ziad(X)"_l, (15)
n!
n=2
see Theorem 2.14.3 of [32]. Identifying for every y € M the tangent space 7,M with M and
applying formula (15), we have

v —Dr
4f @ X) = X, Fo = 3 ¢ n,)

n=2
Then df (x)(X;) € HyyMif and only if

ad (F(x)" ' (X; F(x)).

7 (XiF(x) ->. U ), XiF(x)]nl) =0 forall j>2.

n!
n=2

This proves the characterizing property of equations (14). We also notice that this char-
acterization holds even if the mapping is differentiable along horizontal directions, see [25]
for the precise definition of horizontal differentiability.

The following result corresponds to Corollary 5.4 of [25].

Theorem 2.17 Let T" : [a,b] —> M be a curve and define y = exp*l ol = Zle Vi,
where y; takes values in W;. Then the following statements are equivalent:

(1) T is Lipschitz continuous,
(2) vy is Lipschitz continuous and the differential equation

v n

—1
i =3¢ n,) 7 (ly (1), 7 O la—1) (16)

n=2

is a.e. satisfied for every i > 2.
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If one of the previous conditions holds, then there exists a constant C > 0 only depending
on p and || - ||, such that for any t; < 13, we have

2

p (T(r), () =C / i@l dr. a7

Tl

Remark 2.18 1f M is a stratified group, namely, its horizontal distribution satisfies the Lie
bracket generating condition, then the previous theorem is well known. In fact, in this case
equivalence of (1) and (2) would follow by Proposition 11.4 of [20] joined with Remark 2.16.
This proposition shows that Lipschitz curves can be characterized as horizontal curves in the
more general Carnot-Carathéodory spaces, that clearly include stratified groups. Moreover,
estimate (17) can be obtained for instance by the sub-Riemannian area formula [22] joined
with Theorem 2.10.13 of [14]. However, graded groups need not satisfy the Lie bracket gen-
erating condition, then they are not included in the family of Carnot-Carathéodory spaces.

3 Technical lemmata

In this section we study the properties of mappings f : A —> M where M is a graded
group and A may vary. F denotes the mapping exp ' of : A —> M, where M is the
Lie algebra of M. The canonical projections onto the layers W; of the algebra M are the
mappings 7 : M — W;. We use the notation F; = 7 o F, hence

F=F+---+F, and f=exp(F1+- -+ Fy).

Lemma 3.1 Let X € V| and let N C G be a normal subgroup such that G = N x Hy. Let
O C N and J C Hy be open subsets, where J is connected, and consider u € LIIUL,(Q),
where Q = OJ is an open set. If the distributional derivative Dxu belongs to L*°(2), then
up to redefinition of u an a ju-negligible set, for uy-a.e. n € O, we have

lu (nexp(1X)) —u (nexp(zX))| < | DxullL=@) |t — |.

Proof We follow the same notation used in the proof of Proposition 2.8. Then we recall the
mapping ¥ : R x RY~! — M observing that ii = u o belongsto L}, (¥ ~'()). Taking
into account that F~! o ¢ has jacobian equal to one, by definition of distributional derivative
one easily gets the following equality of distributional derivatives

Viii = (Dxu) o .

Thenii € L}, (~'(Q)) and Vi € L® (y~'(R2)). The set ¥y~ (0) = O is an open subset
of {0} x R9~! and J= ¥~ 1(J) is an open interval of R x {0} C RY, hence ¥~ (0) = JxO0.
Thus, by a standard mollification argument, see for instance [13], Theorem 2 of Sect.4.9.2,
our claim follows. ]

Lemma 3.2 Let X € Vi andletG = N x Hx, where N is a homogeneous normal subgroup.
Let O and J be open subsets of N and of Hyx, respectively, where J is connected, and let
z € G. We consider the open set 2 = 70 J along with the continuous mapping f : Q —> M.
Let (X1, ..., X) be a basis of V| and assume that there exist

VX;Fj € LIO:C(Q, Wj) and VXiFl € LOO(Q, W) (18)
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foreveryi =1,...,mand j =2,...,v and the contact equations
= (=)
XiFj =3 5 mj (F. XiFly-1) (19)
n=2
u-a.e. hold in Q, then there exists C > 0, depending on p and || - ||, such that

p(f znexp(tX)), f (znexp(rX))) < C | X Fillr)lt — Tl
Jor every exp(tX), exp(tX) € J and everyn € O.

Proof Up to aleft translation, taking into account the left invariance of X, it is not restrictive
to assume that z is the unit element. Then we consider the curve

Tu(s) = nexp(sX) = exp (y,1(5) + - ¥u,(5))

where y, j = mj oy, and y, = exp~!oI',. We choose 7,7 € R with 1 < T such that
exp(tX), exp(trX) € J. By linearity, we have Dy F exists and belongs to L;’:C(Q, M).
Taking into account continuity of all F;’s, Lemma 3.1 gives

1Fj (Tn()) = F; (T (D) | < ¢ I X FjllLoe(qy) (T —1)

foralln € O, where ¢ > 0 depends on || - || and €2/, is an open neighbourhood of ' ([¢, T]),
that is compactly contained in €2. In particular, t — F o I',(¢) is absolutely continuous on
compact intervals foralln € O. By Proposition 2.8, from the ;1-a.e. validity of (19) it follows
that for uy-a.e. n € O, we have

d — (="

ds (FjoTn) (s) = XFjoTu(s) :Z; n!

7j ([F oTu(s), (XF)oTu(s)la-1)

fora.e.s € {{ e R | exp(IX) € J}. Thus, we can apply Theorem 2.17 to the curve
folw=exp(F1olyy+---+ Fyoly),

getting
p(foln(), foly(r)) =C / (X F1) o Tn(s)ll ds. (20)
t

Then the continuity of f and the hypothesis X F| € L°(2) lead us to the conclusion. O

Lemma 3.3 Let f : X —> M be a Lipschitz mapping, where X is a metric space. Then
there exists a constant C > 0, depending on the norm || - || of M and the distance p of M
such that

IF1(x) = Fi(nll = CLip(f)d(x,y) forevery x,y € X.
The proof of this lemma is a consequence of the Baker—Campbell-Hausdorff formula.

Definition 3.4 (Piecewise horizontal line) A continuous curve I : [a, b] —> G is a piece-
wise horizontal line if there exist n € N, numbersa <ty < --- < t, < b and X} € V| with
k=1,...,nsuchthat I'j;_, »1(#) = T'(ti_1) exp ((t — tx—1) Xk).

Lemma 3.5 Let Q2 be an open subset of G and let T" : [a, b] —> 2 be a Lipschitz curve.
Then there exists a sequence of piecewise horizontal lines uniformly converging to I, whose
lengths are also converging to the length of .
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Proof By Lemma 3.3, it follows that the curve y; = mj o exp*l ol : [a,b] — W) is
Lipschitz. The derivative y; is essentially bounded. Let ¢ : [a, b] —> W] be a sequence of
piecewise constant functions that a.e. converge to y; and | (¢)| < |y1(t)| for every k and
a.e.t € [a, b]. We define the Lipschitz functions

t

mm=m@+/wmw
0

that uniformly converge to y;. Exploiting (16), we can define

t
1
;%m=n©+5/hwwwmﬂw
0

and more generally by iteration

v ! i—1 i—1
1)
Yik (@) = vik (0) + Z ( n,) /m Zij(S), Z)}jk(s) ds.
: j=1 j=1

n=2 0

n—1

The curve I'y = exp (Z';zl yjk> is the unique horizontal lifting of ;. We wish to show

that it is piecewise horizontal and uniformly converge to I". To see this, we observe that the
projection on the first layer of any curve

t — expéexptX

with X € V| and & € G has the form ¢t — &) 4+ t X, where 71 (§) = & € V;. We notice
that yyx has exactly this form, since gy is piecewise constant, then the uniqueness of the
horizontal lifting implies that 'y is piecewise horizontal. By construction, the fact that yx
uniformly converges to y; implies the uniform convergence of I'y to I'. From Corollary 5.5
of [25], we get the formula

b
length(I') = Var’T' = / p (exp (Y1 (1)) dt.

a

It follows that length(I'y) — length(I") as k — oo. ]

4 Group-valued mappings on Riemannian manifolds

In this section we extend contact equations to graded group-valued mappings on Riemannian
manifolds and find the corresponding differential characterization of the Lipschitz property.
In this case, contact equations can be written using the standard differential for differentiable
manifolds.

Throughout this section, we have the following assumptions. We denote by M a graded
group with graded algebra M and N indicates a Riemannian manifold. The symbol p denotes
a homogeneous distance of M. Any function f : N — M is also written as the compo-
sition f = expofF, where F : N — M and exp : M — M denotes the exponential
of Lie groups. We will also use the notation F; = mw o F, where F = F| + --- + Fy,
f=exp(F1+---+ F,) and ; : M — W; is the canonical projection onto the ith layer.
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Proposition 4.1 Let N be a one dimensional connected Riemannian manifold and let F :
N —> M be a Lipschitz mapping such that

v

. —1" .
F; = Z ( n) 7; ([F, Flo—1) 1)

!

n=2

a.e. holds in N for every j = 2,...,v. Then the associated mapping [ : N — M is
Lipschitz continuous and there exists a geometric constant C > 0 depending on the norm of
M and the distance of M such that Lip(f) < C Lip(Fy).

Proof Let x, y be two points of N and let ¢ : [0, L] —> N be the length minimizing geo-
desic such that ¢(0) = x, ¢(L) = y and L = d(x, y). The curve y = F o c is Lipschitz and
in view of (21) it satisfies (16) for a.e. ¢ in [0, L], then by Theorem 2.17, we get

L
p(f), f(y) =p@0), (L) =C / I(F1 o) ()]l dt (22)
0

for a suitable geometric constant C > 0 depending on M and M, where wehavesetI" = foc.
Since

[(F1oc)(+h) — (F1oc)®)| < Lip(F1)d (¢t + h), c(r)) = Lip(F1) |hl,
where d is the Riemannian distance of N. Then (22) leads us to our claim. O

Remark 4.2 As the linearity of X — [Z, X],—1 = ad"~!(X) makes (21) intrinsic, the
same holds for higher dimensional manifolds. In fact, if N has dimension k > 1 and f
is differentiable at a point X of N, then the contact condition df (xX)(TxN) C HypxM is
equivalent to the validity of the system
- (="
oy Fi(x) = Z Y (IF (), 0 F(D)]n-1) . (23)

!
n=2

forevery j =2,...,vandl =1, ..., k. This follows by Remark 2.16. Since the previous
formula is independent of the local coordinates (x;) chosen around X in N, then an equivalent
intrinsic version is the following one

v

_ (=D" _ _
dFj(®) =D ~—— 7; (F&),dF®l1), (24)
n!
n=2
for every j = 2, ..., v. Here d denotes the standard differential for mappings on differen-

tiable manifolds and

=) - J
dFj(x): IsN — Hf(f)
Formula (23) can be also written in a short and intrinsic form adopting the Riemannian
gradient as follows

ML

v

—1n
VFj(x) = Z ( ” ) 7j ([F(x), VEX)]n-1) . (25)

!
n=2

Definition 4.3 Let N be a Riemannian manifold and let d denote the Riemannian distance.
We say that a subset O C N is geodetically convex if for every x, y € O, there exists a
length minimizing geodesic ¢ : [0, L] —> O such that ¢(0) = x, ¢(L) = y.
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Remark 4.4 Notice that notion of geodetic convexity we are adopting is not standard, since
in Riemannian Geometry different forms of uniqueness of the connecting and minimizing
geodesic are also required, see for instance [9]. For instance, according to our definition,
the intersection of the 2-dimensional sphere S? embedded in R? with any closed half space,
where S? is equipped with the canonical Riemannian metric, is an example of geodetically
convex set.

Theorem 4.5 Let N be a connected Riemannian manifold of dimension higher than one
and let O C N be an open and geodetically convex set. Let v be the canonical Riemannian
measure on N and let F : O —> M be a Lipschitz mapping such that

v _1n
dF./:Z( ) 7 ([F,dFlu-1) (26)

n'
n=2

v-a.e. holds in O for every j = 2,...,v. Then the associated mapping f : O — M is
Lipschitz continuous and there exists a geometric constant C > 0 depending on the norm of
M and the distance of M such that Lip(f) < C Lip(Fy).

Proof We choose two arbitrary points p, g € O and consider the smooth length minimizing
geodesic ¢ : [0, L] — N, where L = d(p, q), c(0) = p and ¢(L) = ¢. Here d denotes
the Riemannian distance on N. Let t € [0, L] and let (¢(t), ¢(t)) € TN. Let TN be the
open subset of TN corresponding to the domain of the Riemannian exponential mapping
&p: TN —> N, see Theorem 1.3.2 of [9]. We wish to construct a tubular neighbourhood
of geodesics containing also the image of the restriction of ¢ to a neighbourhood of <.

To do this, we fix z = ¢(7), £ = ¢(7) and select an arbitrary embedded smooth one codi-
mensional submanifold ¥ C N passing through z, such that 7 X is orthogonal to £ € T_ N.
We will select all geodesics tangent to a normal field of ¥ in a neighbourhood of z. To make
this argument rigorous, according to Chap. 5, p. 132, of [28], we consider the vector bundle
T of fibers

7,5t = [v eT,N |ve (D) C TsN] for every s € X.

By definition, we have the orthogonal decomposition 4N = T, X P T > 1. Now, we consider
the normal exponential mapping Exp™ as the following restriction

&pt:TNNTSt — N.

Since the differential of &p™ is nonsingular at every point (s, 0), in particular there exist
open neighbourhoods 2/ of (z,0) in TN N TE+ and U of z in N such that Sxpf- U —U
is a smooth diffeomorphism. This provides us with a local system of coordinates around z
made by the local geodesic flow. Let k be the dimension of N, hence up to shrinking both ¢/
and U, we can select local coordinates (y1, ..., yxr—1) of X centered at zero, around z and
fix the local unit normal field n of ¥ around z such that n(z) = &. Then we define

H(y, 1) = &pj- (C(y), 1n (£ ()

where (A, ¢) is a local chart of X, A is an open subset of Rk containing the origin, with
¢(0) =z,and (¢(y), tn (¢(y))) € U if and only if (y, ) € A x [ for a suitable open interval
I of R. By local uniqueness of geodesics, we get

I35t —>c(t+1)=H(0,1)=&p" (z,rn(z)) = &p (2, 1 §).
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Since H : A x I — U is bilipschitz, then in view of Fubini’s theorem for a.e. y € A
we have that F' is differentiable at H(y, t) for a.e. € I and there satisfies (26) for every

j =2,...,v. Then in particular, we have the partial derivatives
(=)
0(Fj 0 W)y, ) = D~y ([(F o H)(v 0. 0 (Fy o D0, ) @D)
n=2 ’

a.e.in [ fora.e. y € A. Since F o H(y, -) is also Lipschitz, then for a.e. y € A Proposition 4.1
yields a geometric constant C; > 0O such that

p(fOH(y’t)’foH(yrt/)) ELlp(Fl OH(yv )) C|t_t/|

Continuity extends the previous estimate to all y € A and ¢ € [. In particular, for y = 0, it
follows that

p((foe)t+1),(foc)r+1)) < CLip(F) |t — 1| (28)

for every t, ' € I. The arbitrary choice of v € [0, L] gives a finite open covering of [0, L]
made of intervals satisfying (28). Since the constants of this estimate are independent of t,
this leads us to the end of the proof. O

Remark 4.6 Under the hypotheses of the previous theorem, if we assume in addition that
N is a complete Riemannian manifold, then the mapping f extends to a Lipschitz map-
ping f : O — M, with Lip(f) < C Lip(F}). Since compact Riemannian manifolds are
complete and then geodetically convex, then Theorem 4.5 obviously implies Theorem 1.2.

5 The differential characterization

In this section we give a proof of the differential characterization of locally Lipschitz map-
pings and show a simple application.

Proof of Theorem 1.1 Let f be locally Lipschitz. By Lemma 3.3, there exists C > 0 only
depending on the norm || - || and the distance p, such that

[F1(x) = FiIl = Cp (f(x), f()) (29)

for every x, y € Q. Then Fj is also locally Lipschitz. We wish to show that all F;’s are
locally Lipschitz. By the Baker—Campbell-Hausdorff formula (8), we have

H —& + i + D7 (ca(—E, 1)

n=2

‘ = |7 (=€ @ )" < [C p(exp&, expn)]',
then estimate (10) yields &, (v) > 0, with v = max{||&|], [|n]|}, such that

| =& +mill < D @ IIE 7l + [C plexpt.expm].

n=2

then taking into account (6) and (13), we get

=& +mill < (Z&nww vKy +C' plexp&, exp n)“)p(exps, exp )

n=2
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where U is a compact set containing exp & and exp 1, hence depending on v. As a conse-
quence, replacing both &; and n; with F;(x) and F; (y), we have shown that all F;’s are locally
Lipschitz. As a standard fact, it follows that all V, F; belong to L} (£2). To prove the a.e.
validity of (1), we choose an arbitrary left invariant vector field X € V; and by Lemma 2.7
we get a normal subgroup N of G such that G = N x Hy. We can cover 2 by a countable
union of open sets of the form zO J, where z € G, O and J are connected open neighbour-
hoods of the unit element in N and in Hy, respectively. Thus, we can reduce ourselves to
prove our claim in the case 2 = 7O J. Due to Theorem 2.11 in the case M is a vector space,
we consider the full measure set A C €2 of points where all F;’s are P-differentiable. Then
formula (12) implies

vy (J\plz7'A) =0

for uy-a.e. p € O. Letus pick one of these p’s. For a.e. t we have zp exp(tX) € A, then all
F;’s are P-differentiable at this point. Definition of P-differentiability yields

DF;j (cp.x() (X) = XFj (cp.x (1)),
forevery j =2, ..., v, where we have defined
T —> ¢z, x(t) = zp exp (X).

As aresult, setting

v
T— sz,X(T) =fo Czp,X(T) = exp Vzp,X(T) = expzyzp,X,j(T),
j=1

where we have set ;) x,j = 7j o ¥;p, x. We have then proved that
)}zp.X,j(t) = XFjo Cop x (1. (30)

By Theorem 2.17, the local Lipschitz property of f implies the a.e. validity of (16) for the
curve y;p, x. Thus, taking into account (30), we obtain

v

XFj(epx(m) =)

n=2

—1)"
( ') Tj ([F(Czp,X(T))»XF(Czp,X(T))]n—l)y

for a.e. T. We have proved the a.e. validity of the previous equation for uy-a.e. p € O,
therefore Proposition 2.8 implies the validity of

v 1"
XFJ:Z% 7 ([F, XFl,—1) GD

n=2

p-a.e.in Q forevery j = 2, ..., v. The arbitrary choice of X gives the validity of (1).
Conversely, we assume the validity of the second condition. By linearity of distributional
derivative and of (1) for every X € Vi, we have Dx F € L7, (2, M) and (31) u-a.e. holds
for every j = 2,...,v. We fix || X]| = 1 and choose z € Q. We select connected open
neighbourhoods O C N and J C Hy of the unit element ¢ € G such that Q' = zOJ is

compactly contained in 2. Thus, we can apply Lemma 3.2, getting

,O(f (znexp(tX)), f(zn eXp(fX))) <C'|XFillr=@ It — 7l (32)
<C'|IVuFillL=@) |t — Tl
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for every n € O and every exp(tX), exp(t X) € J. Now, we consider the Carnot-Carathéod-
ory distance § generated by a left invariant metric fixed on G, see for instance [19]. This
distance is homogeneous and then it is equivalent to d. It is well known that (G, §) is a length
space, namely any couple of points x, y € G is connected by a geodesic whose length equals
their distance §(x, y). Then from (32), we get

o (f(p), f(P)) < CIVuFillLow 8(p, p') forevery p,p’ €zJ, (33)

where C = C’/infy|= 8(exp Y). Now we arbitrarily choose » > 0 and p € Q such that
By 6 C £2, where we have denoted by B, , the open ball of center x and radius r with respect
tod.Letx,y € By - andlet T : [0, 8(x, y)] —> G be the geodesic connecting x with y.
By triangle inequality, it follows that the image of I" is contained in B, ¢,. By Lemma 3.5 we
can find a sequence (I'x) of piecewise horizontal lines defined in [0, §(x, y)] and contained
in B, ¢ that uniformly converge to I' and their lengths converge to I'. On any horizontal
segment of I'; with horizontal direction X;, that is also a geodesic, we apply the estimate
(33) where J is considered contained in the subgroup Hy;. Thus, triangle inequality yields

p(fTk(0) . FTe@(x. 1)) < CIVH FillLo) [Te).

where K, , = By ¢ and [(I'y) is the length of I'; with respect to §. Passing to the limit as
k — oo, we have shown that

p(f(x), f) < ClIVuFillL=@) 8(x,y) (34)

forevery x, y € B, 5. Adopting the same argument of Theorem 3.18 of [24], it follows that
f is Lipschitz continuous on compact sets of €2, namely, f is locally Lipschitz. Now, we
show that the third condition is equivalent to the previous ones. We first assume that the first
condition holds, namely, f is locally Lipschitz. Due to Theorem 2.11, f is a.e. P-differen-
tiable and the equivalence of the first two conditions clearly yields Vx, F € L7® (2, M) for

loc
every i =1, ..., m.If we know that f is a.e. P-differentiable and Vy, F € Lf;C(Q, M) for
every i = 1,...,m, then we apply Theorem 4.8 of [25], according to which the pointwise

P-differentiability of f implies the pointwise P-differentiability of all F; : & —> M with
the validity of formulae
myodf(x) =dFi(x)
v
(="
dF;(x)(h) =

n=2

7 ([F(x), dF(x)(h)]a-1) -

n!
at P-differentiability points x. Taking into account that d F; denotes the P-differential read in
the Lie algebras and that d F; (x)(exp X) = X F;, these formulae implies the a.e. validity of

contact equations (1). We have then shown that the third conditions implies the second one.
This concludes the proof. O

5.1 Smooth functions that are not locally Lipschitz

We consider exponential coordinates (xp, xz, x3) of the Heisenberg group H!, with p =
exp (Z;ZI x;jX j) € H! and the basis of left invariant vector fields given by

X1 =0y —X20x;, Xo=0x, +x10y; and X3 = 0,,.
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As mentioned in the introduction, the simplest case of smooth mapping that is not Lips-
chitz is the smooth curve I' : R — H! defined as I'(t) = (0, 0, ¢). In this case, using any
explicit homogeneous norm, it is straightforward to see the failure of the Lipschitz property.
On the other hand, if we consider the smooth mapping / : H! — H! defined as

I(x1, x2,x3) = (f1, f2, f3) = (x3, x1, x2),

then showing that any of its restrictions to open sets is not locally Lipschitz may require
slightly more computations using distances and the use of contact equations could prove a
convenient tool. We have

fiXi1f2— LX1fi =x3 +x1x02 Xi1f3=0
and
fiXofo — X2 fi = —x} Xaf3=1

Thus, defining F7 : H — has F1(x1, x2, x3) = x3 X1 +x1 X2 € hand taking into account
both (1) and

[F1. X;Fil = fiXjf2— 22X f1,

it follows that the contact equations cannot hold at every point. As a consequence of The-
orem 1.1, the mapping f is not Lipschitz on every open subset of H'. Clearly, since I is
smooth, all components of the mapping I are continuously P-differentiable.

5.2 Contact equations and Rumin complex

In view of our study of Lipschitz mappings in the three dimensional Heisenberg group H',
we limit ourselves to recall the Rumin complex on H', see [31] for the case of general contact
manifolds. We denote by QF(H') the module of k-forms on H! and also

P={ae@M)|0ra=0}, I'={p0|pecc>m"]},

where 6 = dt + (xzdx1 — xldxz) /2 is the contact form. In this coordinates, we fix the left
invariant vector fields

X2 X1
?3;, X2:82+?8, and X3:81.

X1 =0 —
We also set Q' (H')/I' = {[a1dx) + azdxy + a30]r | aj € C¥(H)}. Clearly,
[a1dx) + azdxy + 30]r = [1dx) + a2dx2]r
and we have the following
Theorem 5.1 ([31]) There exists D : QY (H")/I' — J? such that
0—R— CM) — '@/ 1" 2> 2 0 35)
defines a complex whose cohomology coincides with the De Rham cohomology, where

Dlajdx; + ardxz|r = d (a1dx) + axdxy + a36) € J? defining o3z = X102 — Xo0].

We denote by dr the differential of this complex, called Rumin complex. For more infor-
mation, we address the reader to [31]. The next proposition can be proved joining contact
equations and the Rumin differential d . This proposition uses the notation

@ Springer



v.Mag 1ani
azr a2 b2 aZj az

Proposition 5.2 Let f = (F1, f3) : U C H' — H! be a smooth mapping, where U is an
open neighbourhood of the origin and Fi(x) = Ax + at + b and f3 = f3(x,t). Then f is
locally Lipschitz if and only if for some t € R the following conditions hold

det (A a) =det (A a) =0, (36)

[, )y =7+

xpdet(b Ay +xidet b A (det b a)

> + det A) . (37)

5.3 Lipschitz mappings as boundary value problems

This subsection is devoted to the characterization of existence of Lipschitz extensions as
solutions of contact equations with assigned boundary datum.

Theorem 5.3 Let E be aclosed set of a stratified group G, let @ = G\E andlet f : E —> M
be a Lipschitz mapping. Existence of a Lipschitz extension f : G — M of f with possible

larger Lipschitz constant is equivalent to the existence of a mapping g : Q@ —> M, with
G=explog Gj=njoGandg =exp(Gi+--+ Gy), such that

1) gpe = flao
(2) Gy :Q —> Wi is Lipschitz,
(3) all the distributional derivatives VG € LS (2, M)™ and the system

loc

vy
VuGj = Z ( n‘) 7 (G, VuGly—1) (38)
n=2 '

n-a.e. holds in 2, foreach j =2, ... v.

Whenever a function g satisfying these three conditions exists, then the Lipschitz extension
of [ isgivenby f = f 1 + g 1qg and we have the estimate

Lip(f) = € (IVaGill=@ +Lip(f) .
for some geometric constant C > 0.

Proof If f admits a Lipschitz extension f , in view of Theorem 1.1, taking the restriction
fI§ = g, it follows that g satisfies conditions (1), (2) and (3). Conversely, let us assume the

existence of a mapping g : Q@ — M satisfying these three conditions. Let p € G and let
X € V be arbitrarily fixed, with || X|| = 1. Let us consider the curve

R>t— cpx(t) = pexp(tX) € G.

The open set c;ylx (€2) is the disjoint union U</ of open intervals of R, where I; =]a;, b;[.
Let N be ahomogeneous normal subgroup suchthat G = N x Hy andleta; < a; < b} < b;j.

The element p is written in a unique way as 7 exp(z X ), due to Proposition 2.6. Then we fix a
relatively compact, connected open neighbourhood O C N of the unit element e of G such
that

Onexp (I +5)X) € Q forevery s € [a],b]].
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By assumptions (2) and (3) on g, Lemma 3.2 applies, hence we have in particular
p (8(epx®)). 8(epx (@) = C'IXGilli d (¢px ). cpx(@))

where we have set C" = C/inf)y=1 d(expY). Passing to the limit as a; — af and 0, —

b;, we achieve

p (8(cp.x (b)), glcp.x (@) < C'IIXG1llz=@ d (cpx(bj). cpx(aj)). (39)

Now, consider f = f1p + g 1g and arbitrary select 7, T € R, with 7 < 7. We have the
following cases. If #, T € I; for some j, then (39) yields

p (Fepx®). F(epx(®)) = C'I1XGill= d (cp.x (D) cpx(®).  (40)

Ifreljandt ¢ c;.IX(Q), then the triangle inequality and the fact that c), x is a geodesic
yield '

o (Fepx®), Flepx @)

< C'|XGillr=) d (cpx @), cp.x (b)) +Lip(f)d (cpx (b)), cp x (7))
< (C"IXGillL(@) + Lip(f)) d (cp,x (1), cpx (1)) 41)

The same estimate is obtained in the analogous case 7 € I; and 7 ¢ ¢,y (2). If 1 € I and
T € Iy with j # k, with analogous argument we get

p (Fepx®), flepx(@)) = (€ 1XGill +Lin(1) d (cp.x (1), ¢px (D).

The remaining case 7,7 ¢ c;}X(Q) is trivial, since cp x(t),cp x(t) € E, where f is
Lipschitz. We have shown that for every r, r’ € ¢ p.x (R), we have

p (F@). 7)) = (2C IVHGillLm(@) + Lip(H)) d0- 1. “2)

Finally, we adopt the same argument used in the proof of Theorem 1.1, where we connect two
arbitrary points p, p’ € G by a geodesic with respect to the length distance 8, then we approx-
imate the geodesic by a sequence of piecewise horizontal lines, according to Lemma 3.5, and
we let the estimate (42) pass to the limit. ]

6 Allcock groups

In this section, we introduce the class of Allcock groups, along with examples. The charac-
terizing geometric property of these groups is related to the notion of isotropic homotopy.
Throughout this section, we fix a 2-step graded algebra n with first layer v and second layer
3. We select a scalar product on n such that v and 3 are orthonormal.

Definition 6.1 Leta, b : [0, 1] —> b be Lipschitz loops. We say that T" : [0, 11? — vis
an isotropic homotopy carrying a to b if (t,t) — I'(z, t) is Lipschitz,

[0;, 9,1 =0 ae.inl0, 1%,
[¢,0)=a,'(,1)=band'(0,-)=TI(,").
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Remark 6.2 For our purposes, the points I'(0, -) and I'(1, -) need not coincide with some
fixed point.

In the sequel, we will use the following linear space

1
Av® = 1o € L* (10, 1[, 3) | /a:O
0

In the next definition the same symbol | - | will denote both the norm of vectors and 2-vectors.
The individual cases will be clear from the context.

Definition 6.3 We say that n is surjective on isotropic loops if there exists a constant C > 0
such that for every A > 0 and every o € Av{® one can find a loop a € Lip([0, 1], v) and an
isotropic homotopy I'" : [0, 11> —> v that carries a to a fixed point, such that [a, a] = o
a.e., [a(0)| < C A and the estimates

llollze

C
Lip(") < C (A+ ) and al < o] ae. 43)

along with

11 1 2
// IT': ATy|dtdt <C /|('2(t)|dt . (44)
00 0

Remark 6.4 The L°°-norm understood for o € L™ (]0, 1[, 3) in the previous definition is
given by

,,,,,

where o = Zi‘:] ojZjand (Zy, ..., Zs) is an orthonormal basis of 3.

Definition 6.5 (Allcock group) Let n be surjective on isotropic loops and define

n
Vi= @Uj, Vo =3, [v;,0;]={0} whenever i # j,
j=1
where all the two step algebras v; @ 3 are isomorphicton =v @ 3 forevery j =1,...,n.
Then the two step algebra V| @ V> is denoted by A[};. This algebra defines a unique stratified
group A7, that we call Allcock group of model w. If the model n is understood, then we
denote an Allcock group simply by Al".

The following example shows that the three dimensional Heisenberg algebra h' is surjective
on isotropic loops.

Example 6.6 Leth be the Heisenberg algebra, with layers span{X;, X2} = v and span{Z}=3,
where [ X1, X2] = Z.Leto € Avgo and A > 0, where 0 = o1 Z. Then we define the Lipschitz
curve

t
1
a=a1X| +aX>, where aj=Xx and ax(t) = X/cn(s)ds.
0
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Clearly [a, a] = o and the corresponding homotopy is
LT, t)y=AX1+ {1 —tax(1)X>
is clearly isotropic and carries a to the point AX; € h. We have |a(0)] = A and simple
calculations yield
o]
T
The validity of (44) is trivial, since |I'; A I';| = 0 at any differentiability point of I".

2 )
Lip(I") < % and |a| =

Remark 6.7 The previous example shows that Heisenberg groups H" are Allcock groups,
since H" = A[g, where § is the 3-dimensional Heisenberg algebra. Let us mention that for
Heisenberg groups H" with n > 2, Lipschitz extensions from the Euclidean plane could be
also treated by a different method, according to Féssler Master’s thesis, 2007.

Remark 6.8 Arguing as in the previous example, one can find several examples of 2-step
stratified algebras n with one codimensional horizontal distribution that suitably yield Allcock
groups.

On the other hand, it is easy to find Allcock groups where the horizontal distribution has
codimension higher than one, as in the following

Example 6.9 Let us consider the 2-step algebra &, = v @ 3, where v = {X1, ..., X411},
3 = span{Zy, ..., Zs} and the only nontrivial bracket relations are

[X1,X;1=2Z;4, and j=2,...,5+1

Following the same argument of Remark 6.6, one can show that £ is surjective on isotropic
loops.

Remark 6.10 In view of the previous example, we have obtained other Allcock groups, cor-
responding to A[" Notice that they have horizontal distribution of codimension s, for every
integer s > 1. Clearly, a 2-step algebra n of s-dimensional second layer, having a subalgebra
isomorphic to ¢ is surjective on isotropic loops.

Example 6.11 We define the “multi-Heisenberg algebra” Mb?, as the 2-step stratified alge-
bra, where first and second layers are spanned by the bases (X1, ..., X25) and (Z1, ..., Zj),
respectively, and the only nontrivial brackets are

[Xj, Xs4j1=2Z; forevery j=1,...,5.

Even in this case, one can argue as in the previous examples showing that Mb® is surjective
on isotropic loops, then A[’/'Mhs are Allcock groups for every n, s € N\ {0}.

Example 6.12 The complexified Heisenberg algebra is surjective on isotropic loops. Recall
that this algebra Ch = v @ 3 is an H-type algebra, with Jz : v — v and J% = —|Z/|?I for
every Z € 3. We fix an orthonormal basis (Z;, Z) of 3 and define the unit vectors Ry = X,
Ry = Jz,X0, Ry = Jz,X¢ and R3 = Jz, Jz, Xo, that form an orthonormal basis of v. For
more information on the complexified Heisenberg algebra, see [29]. Let us fix A > 0 and
choose acurve 0 = 01Z| + 0275 € Avgo. We define a = Z;zo aj R; € Lip ([0, 1], v) as
follows
t '

1 1
ag=xi, a3 =0, al(t)zi/m and az(t)zx/az.

0 0
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This loop satisfies [a,a] = Aa1Z1 + Xa2Z, = o, la(0)] = X and |a| = 21 |o|. We also
notice that the isotropic homotopy I'(z, 1) = A Ro+ (1 —1¢) (a1(v) R + a2(t) R») carries a to
ARp € v and satisfies Lip(I") < 2 ||o|| L 1~1. Asinthe previous cases, the validity of (44) is
straightforward. This proves that the complexified Heisenberg group CH!, corresponding to
A[}Cb, is an Allcock group and more generally A%h = CH" are also Allcock groups. Notice
that these groups are all H-type groups.

Example 6.13 Let us consider the quaternionic H-type group ny, whose center 3 is spanned
by the orthonormal basis (Z1, Z», Z3) and (Xo, Jz,Xo0, Jz, X0, Iz, Xo) is an orthonormal
basis of v. Xy is a fixed unit vector of v and we have

JZIJZ2 = ]Z3, ]Z]JZ3 = _-]Zz and ]22.123 = .]Z].

We define the direct product algebra nf_ﬂ =10 @ 3, where v = v]; PvrPv3 and (R, Ry,
Ri2, R3;) is the orthonormal basis of v; for [ = 1, 2, 3. We have defined

Rio=X;, Rn=JzXi;, Rp=1Jz,Xi;, Rp=JzX;
where X; is a unit vector of v;. Furthermore, whenever [ # s we set
[Rii, Rsj1=0 foreveryi, j=1,234.
LetA > Oandleto = Zi:l 0;Z; € Avy®. We define the curve

t

3 3
1
a= )L(I_E1 Rlo) + n I_El /ol(s) ds | Ry € Lip ([0, 1], v)
= = 0

Then one can easily check that [a,d] = >3, 07 Z;, [a(0)| = /34 and |a| = A" o]
Finally, the isotropic homotopy

3 3 T
1
I‘(r,t):)\(g Rlo)—i-(l—t)A E /Ul(s)ds Ry

I=1 =1 \

carries a to A (213:1 R;o) € v and satisfies Lip(I") < NG o]l Lo +~!. Thus, we have proved
estimates (43). Estimates (44) are obtained as in the previous examples. We have then proved

that the quaternionic H-type group NIEH is an Allcock group. Notice that higher dimensional
Allcock groups A[:l1 5 are H-type groups of dimension 12 n + 3, where 7 is a positive integer.
H

Remark 6.14 Similar computations can be adapted to the octonionic H-type group. In gen-
eral, the principle to find Allcock groups is to add as many copies of the horizontal subspace
as possible. This yields the suitable “room” to construct isotropic homotopies.

On the other hand, it is not difficult to find 2-step groups that are not Allcock groups. It
suffices to show that some 2-step stratified algebras are not surjective on isotropic loops, as
we show in the next example.

Example 6.15 The free 2-step free Lie algebra gs 2 = Vi @ V2 on five generators is not
surjective on isotropic loops. Let (X1, X2, X3, X4) be a basis of generators of V| and let
Z;p, = [X;, Xp] be the vectors defining a basis of V, where 1 </ < p < 4. The curve

ot)= D o)z

I<l<p<4
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is defined by setting

—1/2 if(, p) e {(,3),(2,3), (1, 4)}

o1p(1) = [ 0 otherwise (45)

clearly belongs to Avg®. Now, suppose by contradiction that there exists a Lipschitz function
a € Lip ([0, 1], V1) such that [a, a] = o a.e. Setting a(t) = Z‘}zl a;j(t) X;, the previous
condition yields

a apy\ _ .
det (d/ c'zp) =0y, ae.inl0,1]. (46)

Then 012 = 0, 013 = 023 # 0 a.e. imply (ay, a;) = X (ao, az) and A(¢) # 0 a.e. It follows
that 613 = A 023, that yields A = 1. Therefore 014 = 024, that conflicts with (45).

7 Lipschitz extensions from the plane to Allcock groups

This section is devoted to the proof of Theorem 1.3. Let All, be an Allcock group with
n = v @ 3 and denote by m and s the dimensions of v and 3, respectively. An orthonormal
basis (X1, ..., Xm, Z1, ..., Zs) of n will be fixed, where (X1, ..., X,,) and (Zy, ..., Zy)
are bases of v and 3, respectively. We will also choose an orthonormal basis (X;;) j=1,...,
v; and an orthonormal basis (Z) j—,... s of 3. Since v;’s are all isomorphic to v, then we can
select X;; such that

[Xi, Xipl =[X;, Xp] forevery i=1,...,n and 1</ <p=<m. (47)

Then we fix graded coordinates in Al; with respect to this basis. We consider

(X,y) Z xl]elj+ Z ylEl

..........

where (e;;, E;) is the canonical basis of R™" x R’. Precisely, a point in Al}} of coordinates
(x, y) is given by

exp Z -lele+ Z wZ|e ﬁy

...........

where exp : Al — A} is the canonical exponential mapping. Due to (47), for every
i=1,...,n,wehave

s
[Xi. Xipl = (X1, Xp] = Db}, Zi.
Then, we are in the position to introduce the multi-symplectic form

a)—Zw Er, where o _Z > bf, dxjindx,. (48)

j=1 1<l<p<m
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Notice that w is an R*-valued 2-form defined on R"". A primitive of this form is

s n bk
l}
0= 0"Ex where 6¥=Y" > 7” (xjidxjp —xjpdxj).  (49)
k=1 j=1 1<l<p<m

Then for every Lipschitz curve ¢ : [a, b] —> R™, we define the multi-symplectic area
swept by c as follows

)
/9 = Z /(c*@k)(t) dt | E; e RF.
c k=1 a

This definition can be clearly extended to one-dimensional compact Lipschitz manifolds
through local parametrizations.

Definition 7.1 Let Al;; be an Allcock group and let R"" x R¥ be the associated graded
coordinates, where R™" is the space of coordinates of the first layer. Then w and 6 defined
above are the associated multi-symplectic form and its primitive, respectively.

Definition 7.2 If ¢; : [0,1] — R™,i = 0, 1, are Lipschitz loops, we say that T" :
[0, 11> — R™" is a multi-isotropic homotopy carrying cg to ¢y if I" is Lipschitz, the pull-
back R-valued 2-form I'*w a.e. vanishes in [0, 1]%, T'(-, 0) = ¢o, '(-, 1) = ¢; and ['(0, -) =
r(,-.

All the preceding notions will play a key role in the proof of the next theorem. Recall that
the Euclidean norm will be understood on R and S! will be thought of as the subset
{(x,y) | x2 4+ y? = 1} equipped with the Euclidean distance of R?. The symbol D denotes
the closed unit disk of R.

Theorem 7.3 Let A" be an Allcock group and let w and 6 be the associated forms on R™
with respect to graded coordinates, where n > 2. Then there exists a geometric constant
k > 0 such that Lipschitz loop ¢ : S — R™ with J 6 =0andc(1,0) = 0 can extended

c
to a mapping ¢ : D — R™ such that ¢* (@) = 0 a.e. in D and

Lip(p) < « Lip(c). (50)

Proof We consider «a(t) = ¢ (ez””) and set @ : R — R™" such that jj0,1] = « and
a(t) =a(0) = a(l) =0 forevery T € R\ [0, 1]. Clearly we have

Lip(e) = Lip(@) < 27 Lip(c).
We first change the parametrization by the homotopy
0,17 — R™ Ti(t,t)=a((1+0T —1).

Notice that I'y is Lipschitz and clearly the pull-back form I'f vanishes a.e. in [0, 11%. We
have shown that « is isotropically homotopic to [0, 1] 3 7 — @2t — 1). Now, we write
a(t) = B1(t) + B2(t), where we have set

ﬂl(f)=z5l1j(f)€1j and B(7) = a;;(1)ejj.

j=1 i=2,...,
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Taking into account formula (48) for the multi-symplectic 2-form @, we notice that
5
® (Bi1(1) A Ba(D) = D" (Bi(2) A B2(D)) Ex =0,
k=1
since dxj; A dxjp (e1r A ejy) = 0 whenever i # 1. Therefore, defining the homotopy
T2 :[0, 117 — R™, Ta(r,1) = 121 — 1 + 1) + o2t — 1),
it follows that for a.e. (t, 7) € [0, 1]?, we have
o= (@:T2 A3T2) =20 (21 — D) ABIQ2T —1+1)) =0.
Then @(2t — 1) is multi-isotropically homotopic to the product curve
(B1B2)(1) = B1(27) + f2 (27 — ).

Now, we move f to a multi-symplectically orthogonal space defining
m
Bi(x) =D aj(r)es;.
j=l1

Thus, we get w (81 A 31) = 0. Notice that to perform this move from §; to El, we have used
the assumption n > 2. We define the isotropic homotopy I'3 : [0, 11?2 — RrR™,

'3(z,t) = cos(tm/2) B1(2t) + sin(tw/2) BI(ZI) + B2t — 1).
Now, we observe that

o BiAB) = D b, (dxu Adxip)(Bi AP

I<l<p<m
and similarly we have

FBAB) = D bl (dxu Adxy) By A B,

I<l<p<m
hence w (B A Bl) =w (Bl A El) a.e. in [0, 1]. Thus, a simple computation yields

F;ka) =w ((0/'3 A 0;I'3) =cos(tn/2) w (31(2‘5) A B2(2t — 1))

fore\{eryt € [0, 1]anda.e. T € [0, 1]. On the other hand, E] (27) vanishes when 27l <7z <1
and B (2t — 1) =0fora.e. T € [0, 211, this implies that I‘;‘a) =0 a.e. in [0, 1]2. We have
proved that B 8, is multi-isotropically homotopic to

(B1B2)(v) = B1(20) + 22T — ).

To construct the next homotopy, we use the fact that the algebra n is surjective on isotropic
loops. Let us consider the L™ curve

N

— d
o=> o ((,31,32) A (Elﬂz)) Z. (51)

k=1
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We wish to show that o € Avg®, namely fol o = 0. To do so, we use the vanishing of the
multi-symplectic area L 0 = 0, that yields

1
/c*@:/a*@:O.
0

Sl
Then we get
1 1/2 1 1/2 1 1
/ (BB = / (B0 + / B30 = / BTO + / B30 = / (B152)*6
0 0 1/2 0 1/2 0
1
= /a*9 =0.
0

and the equalities
B B0 — 1 d — 1
(B1B2)70 = Ew((gﬂgz)/\a(ﬂlﬂz)) = EU

rove our claim, namely, o v7°. Since n is surjective on isotropi , Wi
ove our claim, namel 6A8°S ce n is surjective on isot ¢ loops, we set

1
A = length(c) = / la(r)|dt <2m Lip(c) =2xL (52)
0

and apply Definition 6.3. Then we can find a loop a € Lip([0, 1], v) that is isotropically
homotopic to a point and in particular satisfies

. llo |l Lo
la,al=0 and max|a| < C(\A+ ————). (53)
[0,1] A

We write a = 1" | a; X;, then

a a k k d &
E det(." .7 )b, = A —
I<l<p<m © (a; al’) p =@ ((3”82) ds ('81'82))

foreveryk =1, ..., s. Weintroduce the Lipschitzloop g = Z;”z 1 aj e1jinR™" and observe
that

 (9(t) A (B12)(1) = 0.

Furthermore, by definition of w¥, one immediately gets

. a a
fanp= D det (aj d”) bf,. (54)
I<l<p<m P

It follows that

_ d —
w(@Nng)=w ((ﬂlﬂz) A E(,BI,BQ)) a.e.in [0, 1].
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Due to the previous condition, arguing as for I'3, one easily finds that the Lipschitz mapping
[4: [0, 11> — R™" defined as

T4(z, 1) = cos(t7/2) (B1B2)(T) + sin(t7/2) g (1)

is a multi-isotropic homotopy between 8 and ¢. According to Definition 6.3, there exists
an isotropic homotopy I' : [0, 11 — v such that ['(-,0) = a, I'(-, 1) = £, 10, =
I'(l,-) and [3,T, 3T] = 0 ae. in [0, 1]%. Writing T" = > Z'}l:] [ijX;; and defining
Is:[0,1? — ]Ri’"” asTs =>", z;’;l Tjjeij, we have that I'fw = 0 and estimate (43)
yields a constant C1 > 0 such that

Li ~ ( ||<7||L°C)
ip(Ms) = C1 | A+ — . (55)

Defining & = Zi’j £iX;jand g0 = Zi,j &jejj € R™ one immediately check that I's
makes ¢ multi-isotropically homotopic the a point go € R"". Thus, pasting all the previous
multi-isotropic homotopies, we get the following mapping H : [0, 11> — R™", defined as

I'(z,5t) 0<t<1/5
Iy(r,5t—1) 1/5<t<?2/5
H(t,t) = { I3(r,5t—2) 2/5<r<3/5.
Ty(r,5t—3) 3/5<t<4/5
Is(z,5t—4) 4/5<t<1

It is clearly both continuous and a.e. differentiable in [0, 1]2. Moreover, we also have
H*(w) = 0 a.e. in [0, 1]%. By convexity of [0, 1]* and triangle inequality, one easily notices
the following estimate

5
Lip(H) <5 > Lip(T';). (56)
j=1
Direct computations show that

Lip(T'y) < 6w L
Lip(Tp) <6 L , 57
Lip(I'3) < 6L + % maxj, 1] |e|

where we recall that we have defined L = Lip(c). Taking into account the definition of All-

cock group, we have to estimate ||o || Loo. Thus, taking into account (51), a direct computation
yields

(v () AP ()] <2nm  Tnax_ b, | | ly @1y (o)l
1§l<’14)-gm

forevery k = 1, ..., s, hence estimates

< 2llell oo ((0,1),Rmmy < 4mL,
L9((0, 1), Rmm)

_ d
max |(B1B2)| < max o - and Hdt (BiB2)

along with max[o, 1] @] < A, lead us to the estimate

lollre < 8m+/snm max |blrp| AL = CoAL.
r= s

=1,...,
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As a consequence, by virtue of (52) and (55), we get a constant C; > 0 such that
Lip(I's) < C{ L. (58)
In addition, by (52) and (53), observing that max |a| = max |¢g|, we also obtain

I[I(}af]clql <CQ@m+Cy L,

where Cp > 0 is a geometric constant depending on the group. It is also obvious that
Lip(g) < Lip(I's) < C; L. Thus, joining all the previous estimates, we get a new constant
C; > 0 such that

Lip(Ty) < C2 L.

By last inequality along with (58), all previous estimates for Lip(I";) and applying (56), we
have found a geometric constant ; > 0, only depending on the group, such that

Lip(H) <« L. (59

Then H is a multi-isotropic homotopy such that H(-,0) = « : [0, 1] — R™and H(-, 1) =
qo- The condition H(0,t) = H(1, t) for every ¢ € [0, 1] implies that

izme) _ | H(O,2(1—p)) if1/2<p=<1
‘p(”e )_‘qo if0<p<1/2

is well defined on the closed unit disk D C R2. Furthermore, a direct computation shows
that Lip(¢p\ g, n) = co Lip(H), for a suitable geometric constant co > 0, where By» = {z €
R? | |z] < 1/2}. Since 9By, = 905 then

Lip(¢) < coLip(H) < cok1 L
Clearly g1 = ¢ and p*w = 0 a.e. in D. Our claim is achieved. O

Remark 7.4 The previous theorem extends Theorem 2.3 of [1], where the standard sym-
plectic space R?" is replaced with the R equipped with the multi-symplectic form o =

>t o Ex.

Next, we will show how Theorem 7.3 leads us to a Lipschitz extension theorem. We will use
some abstract tools in metric spaces, following the work by Lang and Schlichenmaier [21].

Definition 7.5 We say that a metric space Y is Lipschitz m-connected for some m € N if
there exists a constant ¢,, > 0 such that any Lipschitz map I : $ — Y has a Lipschitz
extension ® : D"*t! — ¥ with estimate Lip(®) < ¢, Lip(I).

Definition 7.6 Let (X, Y) be a couple of metric spaces. We say that (X, Y) has the Lips-
chitz extension property if there exists C > 0 such that for every subset Z C X and every
Lipschitz map f : Z — Y, there exists a Lipschitz extension f : X —> Y such that
Lip(f) = CLip(f).

Theorem 7.7 (Lang and Schlichenmaier [21]) Let X and Y be two metric spaces and sup-
pose that the Nagata dimension of X is less than or equal to n and that Y is complete. If
Y is Lipschitz m-connected form = 0, 1, ..., n — 1, then the pair (X, Y) has the Lipschitz
extension property.
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Taking into account that Nagata dimension of R is clearly two, by Theorem 7.7 it follows that
both Lipschitz O-connectedness and Lipschitz 1-connectedness of Al imply Corollary 1.4.
The former property is a consequence of the fact that A[7,, as any stratified group, is connected
by geodesics. The latter is proved in the following

Theorem 7.8 Al" is [-connected for every n > 2.

Proof Let T : ' — AI" be a Lipschitz loop. Up to a left translation, that preserves the
Lipschitz constant of I', we can assume that I'(1, 0) = e, where e is the unit element of A[".
We introduce the 1-periodic mappings a : [0, 1] — Vj and b : [0, 1] —> V; such that
T (e*™i") = exp (a(t) + b(t)). We consider our fixed basis (X;;) of Vi, that satisfies (47),
along with the orthonormal basis (Z;) of V>. We define

a()y= D Xy and b(t) =D Bi(t) Zx
1<i<n k=1
I<j<m

where o = (o;;) : [0, 1] — R"™ and B = (i) : [0, 1] — R® are Lipschitz loops that
satisfy «(0) = (1) = 0 and B(0) = B(1) = 0. Since I" is Lipschitz, Theorem 1.1 implies
the a.e. validity of contact equations

S
ZBk Zk:% Z Z Zblp @jidp — jpd;i) Zk—Zoc 02
k=1

] 11<l<p<m k=1

(60)

As a consequence, the 1-periodicity of 8 yields

s 1
/9 => /(a*ok)(z) di | Ex =0. 61)
p k=1 \j
We define the curve ¢ = (¢;;) : S I 5 R™ defined by

cij (62””) = aij (1),

therefore ¢ has vanishing multi-symplectic area, due to (61), and c¢(1, 0) = 0. This allows us to
apply Theorem 7.3, getting a Lipschitz extension ¢ : D —> R™" of ¢ : ' —> R™" such that

¢*w =0 ae.in D. (62)
To construct the extension of I', we introduce the function

A:D— Vi, ALy = D @i, x) X,
1<i<n
1=j=m

We observe that a(t) = A (¢*™'") and define zx(e*™") = Bi(t), where zx : S — R’ is
Lipschitz continuous forevery k = 1, ..., s. To achieve our claim, we have to find a Lipschitz

extension 7' : D —> V; such that 7|1 = > -1 2k Zk and the following contact equations
a.e. hold

1 1
o, T [A, 3 A] and 0,,T = 3 [A, 9., A]. (63)

T2
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In fact, if such a function B exists, then applying Theorem 1.2 in the case N is closed
Euclidean disk D of R?, hence the mapping

® =expo(A+T): D —> Al"

is Lipschitz continuous and Lip(®) < C Lip(A) = C Lip(¢), for a suitable C > 0. Further-
more, <I>| st = I', hence Theorem 7.3 yields a geometric constant « such that

Lip(®) < « CLip(c). (64)
By Lemma 3.3, there exists C; > 0 such that
Lip(®) <« C C; Lip(TI). (65)

Thus, to conclude the proof, we are left to show the existence of T : D — V, satisfying
the contact equations (63) and the boundary condition TIigt = Zi:l 2k Zk.-

First, for every k = 1, ..., s, we consider the 1-form f; = fkldxl + szdxz where
1 n
= EZ Z b;cp (le ax,-@jp —@jp ax,-(/’jl) € L*(By),
j=11<l<p<m

where B! is the unit open ball of R2. Smoothing the function ¢ with ¢® = ¢ * £,, we obtain
the approximating forms gy, = g,isdxl + g,%sdxz of components

1 n
22 X by (ot — oh ushi)

j=11<l<p<m

i
8ke =

where ¢, is a standard mollifier and g, is a smooth 1-form on Bj_,. It follows that

dgre = (3x1g,%g - GXZglig) dx; ANdxy

n
=2 3ty (004 dudh, — dufpdadhy) dandw

j=11<l<p<m
= (/JE)* a)k

Furthermore, (¢°)** a.e. converge to ¢** and has uniformly bounded L*°-norm with
respect to . Thus, taking into account (62), we have proved that (¢¢)** converges to zero in
LY(Bi_s)ase — 07 for arbitrary 0 < § < 1. Taking also into account that g a.e. converge
to fx and are uniformly bounded with respect to ¢ in the L°°-norm, it follows that d fy = 0 in
the distributional sense. As a consequence, setting fk'a = fé * e and fr, = fksdx 1+ fksdxz
one gets dfr, = 0 on B .. This gives the existence of a unique function 1//ks € C*(B1—¢)
such that Wka 0,0) =0and d ¢ks fre in B1_. The family of functions 1///(8 is uniformly
Lipschitz continuous and uniformly bounded, hence Ascoli-Arzela’s theorem gives the exis-
tence of a Lipschitz function 1//‘k D — R that is the uniform limit of I/fkg on compact sets
of B; and clearly extends to the closure D. Furthermore, d lﬂk fr as distributions, hence
taking into account that ll’k is Lipschitz, it follows that d U = fr a.e. in D. Thus, defining
Yr D — Ras Yy = U + zx(1,0) — ¥ (1, 0) foreveryk =1,...,s, we get

Vi(1,0) = z;(1,0) and dyy = ¢*0* ae.in D.

As a result, the function T : D —> V, given by T = > }_ | ¥ Zi satisfies the condition
T(1,0) = Zizl zx (1, 0) Z; along with the contact equations (63). The last step is to show
the validity of the boundary condition Tjg1 = >ho1 2k Zk.
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To do this, we recall that the mapping ® : D — A[?, & = expo(A + T) is Lipschitz
continuous. In particular, ® g1 : § ' — Al and T : S! — A" are Lipschitz curves with
®(1,0) = I'(1,0) = e. Then these curves must coincide by uniqueness of the horizontal
lifting. In fact, we have

®(e27!) = exp (a(t) 4 B(z))
T (e¥™") = exp (a(t) + b(1))

where b(0) = l;(O) = 0. By Theorem 1.1, since both @1 and I" are Lipschitz, then both b
and b satisfy the contact equations

2 1 X . .

b= E[a, al=>b ae.in|0, 1]
and clearly b = b. This shows that @51 = I" and leads us to the conclusion. O

Remark 7.9 From definition of 1-connectedness, one easily observes that Theorem 7.8
exactly coincides with Theorem 1.3.

8 Quadratic isoperimetric inequalities

In this section, we prove the validity of quadratic isoperimetric inequalities in Allcock groups.
We will follow conventions and notation of Sect. 7.

Let g be a left invariant Riemannian metric defined on A[" such that the fixed basis
(Xij, Zy)i, jk of Al" is orthonormal. Denote by p the associated Carnot-Carathéodory dis-
tance defined on Al" as

Tix—>y, TTCHA

1
Pt )= inf / Ve CO) (0. T di
0

where I' : [0, 1] — AI". Notice that if I'(t) = exp (y1(t) + y2(¢)), yi(¢t) € V; and also
I(1) = 255 aij(t) Xij € L'((0, 1), V1), then

1 1 1
/ Ve T O, T di = / a0 dt = / Vi) dt.
0 0 0

The last equality follows from (15), taking into account that I is horizontal. The symbol
| - | above also denotes the Hilbert norm in Al" that makes (X;;, Zy) orthonormal. Abusing
notation, we will use the same symbol to define a norm on Al" as follows

Ix — y| := |exp~ ' (x) —exp ' ()],

for every x, y € Al". The Riemannian distance o associated to g, satisfies 0 < po. Then the
proof of the next proposition is elementary.

Proposition 8.1 Let V be a horizontal subgroup of Al". Then for every x,y € V, we have
po(x,y) =o(x,y) = |x — yl.
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Proposition 8.2 Let " : S' —s Al" be a Lipschitz mapping defined as

' =expo Zcij Xij + sz Zi
ij k
Then we have length,I" = length , I" = length, (c).

Proof Using the sub-Riemannian area formula, one gets

b b
[eexptnom di= [ metron ar= [N ar'o,
a a G
then Theorem 2.10.13 of [14] gives
b b
/Q (exp(y1(2))) dt = /,oo (exp(y1(2))) dt = Vubl“ = lengthpo([‘) = lengthQ(F).

Taking into account Proposition 8.1, it follows that pg (exp(y1(¢))) = |y1(1)| = [¢(®)]. O

Definition 8.3 Let L : R —> A[" be an h-homomorphism. Then the jacobian of L is given
by J(L) = Hio (L(A)) /H‘z,‘ (A) where A is any set of positive measure in R2.

The previous definition of jacobian has been introduced in [22] for h-homomorphisms of
stratified groups. Notice that it does not depend on the choice of the set A.

Remark 8.4 Let L : R —> Al" be an h-homomorphism. Then L(R?) = V is a horizontal
subgroup of AI" and Proposition 8.1 implies that

H,, (L(A) = H[| (L(A)) ,

then the classical area formula yields J(L) = |Lj A La|, where |L1 A Lj| is the classical
Euclidean jacobian of L and L; = L(e;).

Proposition 8.5 Let f : D —> Al" be a Lipschitz mapping defined as
S =expo Z‘/)ij Xij + Zlﬁk Zy
ij k
Let N(f,y) = H° (f_l (y)) be the multiplicity function. Then we have
/ N H, () = / J(Df(x)) dx = / 191, A Byl dx. (66)
Al D D

Proof Since the Pansu differential Df (x) : R> — A" is an h-homomorphism, the last s
rows of the corresponding matrix are vanishing. In view of Remark 8.4, the sub-Riemannian
area formula of [22] concludes the proof. ]

Theorem 8.6 Let Al" be an Allcock group and let w and 0 be the associated forms on R™"
with respect to fixed graded coordinates, where n > 2. Then there exists a geometric constant
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K > 0 such that for every Lipschitz loop ¢ : 8 —> R™ with [0 =0andc(1,0) = 0one
c

can find a Lipschitz extension ¢ : D —> R™" such that 9*w = 0 a.e. in D and

2, (p(D)) < / 19,9 A Byl dx < K length | ()% (67)
D

where length,. (c) is the length of ¢ with respect to the Euclidean norm | - | in R™".

Proof We will continue the argument used in the proof of Theorem 7.3, exploiting the same
notation. We first recall that

1

lengthl,l(c)=/|o/(t)|dt
0

is the length of ¢ : ' — R™", where a(f) = c(e™™). From the proof of Theorem 7.3, we
recall the definition of ¢ : D — R™" as

inze) _ | HO,2(1 —p)) if1/2<p =1
o (pe )_{qo if0<p<1/2"

where H : [0, 1]> — R™" is given by

k k+1
H(t,t) = Tky1(z, 5t — k) if §<t<% and k=0,1,23,4.

If we set ¢(p, 6) = @(p €27?), then we have

1 1
/ml wmmx://w(p,e)d@dp,
) .

120

where |v A w| is the Hilbert norm on 2-vectors of A, (R™") with respect to the canonical
basis. This is a consequence of the change of variable ¢ (p, 0) = p ¢27% and the fact that
[pp A pg| = p. It follows that

1

1
/Jga(x)dx:Z/ |Hy (6,2(1 — p)) A H, (6, 2(1 — p)) | d6 dp.
D 12 0

Taking into account that

. k+1 k
H(6,2(1 = p)) = Tiy1 (60,1001 — p) —k) if == <,=1-%

10
and k=0,1,2,3,4,

a simple change of variable yields

P
[1ow nontax =3 [ [1Tn: 0.0 8 e @0 1drde.— (69)
D

k=07

Now, we use the explicit formulas of I'; given in the proof of Theorem 7.3. From definition
of I'y it is obvious that |(I'1); A (I'1);| = 0 a.e. in the unit square [0, 112, denoted by Q.
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Concerning I'; and I'3, direct computations give
2

1
/I(Fz)r A (To)ldtdr <2 /Ia’(t)ldt ,
0 0

2

1
/|(r3)r A (T3)/ldrdt < 3m /Id(t)ldt
0 0

For I'4 we show some computations, getting

/ (T A (o ldvds = 5 / |(cos (e1/2) (By B2y (x) + sin (x1/2) ¢/ (1))
o o

A (=sin (1/2) (B1B2)(T) + cos (w1/2) q (7)) drdt

A
SR

1
/ (18182 (@1 +1¢" (1) (1(B1B) (D] + g (D)) dt
0
By definition of 882, one easily checks that

1
I[I(}al)]‘|(ﬁlﬂ2)| =< 2/ la()|dt and |(B1B2)' (D] <2 (|&' 20| + &' 2t — D). (69)
0

The curve ¢(¢) is given by the proof of Theorem 7.3, where it has been obtained applying
Definition 6.3 with & = length | (c). It follows that there exists C > O such that|g(0)| < C A.
Thus, we get

t
C
lg®)] < Cr+ I/ lo(t)] dt.
0

Recall that o (¢) = ZY

}{_] o ((B1B) () A (B1B2) (1)) Zi , then bilinearity of w*’s yields
Cy > 0 such that -

lo ()] < CrIB1BD O] (B1B2) (D).
As aresult, in view of (69), it follows that
lo(t)] <4Ci A (&' 20 + &' 2t — D). (70)
We have proved that trerfgﬁl lg(®)] < CXx(144C)), that implies

1
b4 _
[0 @oddrdr <35 @+ +4010) [ (i @1 +1g' @) dr.
o 0
Taking into account that

1 1 1
C _
/Iq‘(ﬂldrf ;/w(mdz szca/uﬁlﬁz)’(m <4CC 1,
0 0 0
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we are then lead to the following

/|(F4), A (L) ldtdt <7 (24 C+4C,C) (1+2CCy) A2
0

Finally, by definition of Allcock group and applying Definition 6.3, we have
2

1
[ msularar < ¢ ( [lawiar) <16cici
0 0

Joining the previous estimates with (68), estimate (67) follows. ]

Remark 8.7 The previous theorem could be seen as a completion of Theorem 7.3, where we
have fixed our attention on the area enclosed by the extension ¢.

Proof of Theorem 1.5 Up to left translation, we can assume that I'(1, 0) coincides with the
unit element. Thus, we define

n n A
I =expo ZZCU Xij +sz Z |
i=1 j=1 k=1

where ¢ : S —> R™". Arguing as in the beginning of the proof of Theorem 7.8, it follows
that [0 = 0 and ¢(1,0) = 0. Then we apply Theorem 8.6, getting a Lipschitz extension
ps

¢ : D — R"™ such that

/|axl¢ A dy,¢ldx < K length, (c)*, (71)
D

Finally, Propositions 8.2 and 8.5 lead us to the conclusion. O

Example 8.8 Let us follow the notation used in the proof of Theorem 1.5, in the special case

A" is the 5-dimensional Heisenberg group H” equipped with graded coordinates (x1, .. . , x5)
such that
Vol
Vo
Vo(x) = V3 , (72)
Vy

©1Ve3 — @3V + Ve — o3V

where we have set ¢ = (¢, ) and due to the contact equations Vi is equal to the last row
of (72). Then a simple computation yields

0,0 A 05,81 = V143192 35,0 A 3,01

Now, if ¢ is the extension provided by Theorem 8.6 and f = exp (Zé}zl 0 X+ X5) is
the corresponding Lipschitz mapping, then

HE (f(D) < C (1 +2max |<p|) length,, (c)?

for a suitable geometric constant C > 0.
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