
Calc. Var.
DOI 10.1007/s00526-010-0309-3 Calculus of Variations

Contact equations, Lipschitz extensions
and isoperimetric inequalities

Valentino Magnani

Received: 15 February 2009 / Accepted: 13 January 2010
© Springer-Verlag 2010

Abstract We characterize locally Lipschitz mappings and existence of Lipschitz exten-
sions through a first order nonlinear system of PDEs. We extend this study to graded group-
valued Lipschitz mappings defined on compact Riemannian manifolds. Through a simple
application, we emphasize the connection between these PDEs and the Rumin complex. We
introduce a class of 2-step groups, satisfying some abstract geometric conditions and we show
that Lipschitz mappings taking values in these groups and defined on subsets of the plane
admit Lipschitz extensions. We present several examples of these groups, called Allcock
groups, observing that their horizontal distribution may have any codimesion. Finally, we
show how these Lipschitz extensions theorems lead us to quadratic isoperimetric inequalities
in all Allcock groups.
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1 Introduction

The local Lipschitz property for mappings between Euclidean spaces is characterized by
local L∞-bounds on distributional derivatives. If we replace the target space even with the
simplest sub-Riemannian manifold, as the Heisenberg group, then the previous statement
does not hold. This elementary fact is the starting point of our study.

An important instance is the case of mappings defined on a Riemannian manifold, that
is related to the study of horizontal submanifolds. In this connection, Gromov among other
results has treated various Lipschitz approximation theorems along with Lipschitz extensions
problems, see Sect. 3.5 of [19].
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It is well known that smooth Lipschitz mappings taking values into a contact Carnot-
Carathéodory manifold are horizontal and the converse also holds, [19]. The main concern
of this work is to understand this fact under Lipschitz regularity, where both source and target
spaces have the sub-Riemannian structure of stratified groups. The horizontality condition
for mappings of stratified groups yields the system of nonlinear first order PDEs (1), that
only depends on the Lie algebra and that it can be written in terms of exponential coordi-
nates.

For general sub-Riemannian structures, these equations can be replaced by the pull-back
of forms defining the horizontal distribution, according to Sect. 4.2 of [19]. Recall that in the
case the target of our mappings is Euclidean, then they are all horizontal and their Lipschitz
property is characterized in the usual way by bounds on distributional horizontal derivatives.
This fact holds for general Carnot-Carathéodory source spaces, [16].

Our point of view is that of considering mappings of stratified groups as solutions to
the system of equations (1). Although the main results of this work are Theorems 1.1 and
1.2, a substantial part of the paper is devoted to applications, regarding construction of both
Lipschitz and non-Lipschitz mappings and the relationship between Lipschitz extension the-
orems and isoperimetric inequalities.

The interest in geometric properties of mappings in the sub-Riemannian setting has
recently proved useful in connection with bi-Lipschitz embeddability of sub-Riemannian
metric spaces into different classes of infinite dimensional Banach spaces, according to the
remarkable work by Cheeger and Kleiner [10].

Our framework is that of graded groups, that are real, finite dimensional, connected, sim-
ply connected and nilpotent Lie groups, with graded Lie algebra. Notice that they might
not be connected by rectifiable curves, according to Example 2.1. When the Lie subalgebra
spanned by the first layer of the grading coincides with the whole algebra, we say that the
group is stratified, [15]. The so-called horizontal directions of the group are spanned by the
left invariant vector fields belonging to the first layer of the algebra, see Sect. 2 for more
details. Stratified groups, also called Carnot groups, represent the foremost models of nilpo-
tent and simply connected sub-Riemannian geometries. As we will see below, our techniques
will allow for studying mappings from a stratified group to a graded group.

The above mentioned horizontality for mappings of graded groups is well known as con-
tact property. This property corresponds to preserving horizontal directions. In Remark 2.16,
we derive equations (1) that correspond to this constraint. We will refer to these equations as
contact equations. For instance, every parametrization of a horizontal curve has the contact
property by definition, hence the property of being horizontal can be equivalently stated in
terms of contact equations, that in this case become ODEs (16). More generally, parametri-
zations of either Legendrian submanifolds in Heisenberg groups or horizontal submanifolds
in stratified groups are characterized by being solutions to (1), where horizontal derivatives
Xj are replaced by usual partial derivatives. Incidentally, these manifolds coincide with
(Rk,M)-regular sets, according to [25]. Quasiconformal mappings of stratified groups have
the contact property, [27], hence they solve the system (1) a.e. For instance, contact equations
have been implicitly used in [8], in relation with smoothness of 1-quasiconformal mappings
between Carnot groups. In connection with mappings with bounded distortion in two step
groups, contact equations explicitly appear in (3.2) of [11]. Certainly, many other interesting
cases could be added from the existing literature.

In the present paper, we focus our attention on mappings defined on an open subset � of
a stratified group G, with graded group target M. Lie algebras of G and M will be denoted by
G and M, respectively. Turning to the initial question of characterizing the local Lipschitz
property, we state the following
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Theorem 1.1 Let � ⊂ G be an open set and let f : � −→ M. Consider the mappings
F = exp−1 ◦f and Fj = πj ◦ F , hence f = exp

∑υ
j=1 Fj and Fj take values in Wj . If

F ∈ L1
loc(�,M), then the following statements are equivalent:

• f is locally Lipschitz,
• all the distributional derivatives ∇XiF belong to L∞

loc(�,M) and the system

∇HFj =
υ∑

n=2

(−1)n

n! πj ([F,∇HF ]n−1) (1)

µ-a.e. holds in � for every j = 2, . . . , υ,
• f is a.e. P-differentiable and ∇HF = (∇X1F, . . . ,∇XmF) ∈ L∞

loc(�,M)m,

where (X1, . . . , Xm) is a basis of V1 and µ is the Haar measure of G. The mappings πj :
M −→ Wj indicate the canonical projection onto the j th layer of the graded algebra M
of M.

Under the stronger assumption that M is stratified, results of [27] imply that the local
Lipschitz property yields both the second and the third condition of Theorem 1.1. Since a
graded group need not be connected by rectifiable curves, then the previously mentioned
implications are obtained employing some technical tools developed in [25].

However, in this work we are interested in the converse to these implications, since we
aim to achieve the Lipschitz property starting from the contact property. Clearly, the stan-
dard smoothing argument used in Euclidean spaces to get the Lipschitz property cannot be
applied here. In fact, the mapping F is a weak solution to (1), but its mollification might
no longer be a solution of these equations, due to their nonlinearity. The direct use of Pansu
differentiability does not seem to be of help, since this notion has no corresponding distri-
butional version. Here our point is that Theorem 1.1 allows us to think of (1) somehow as a
distributional counterpart of Pansu differentiability. Our approach boils down to making the
problem a.e. one dimensional. In fact, due to the distributional validity of (1) and a Fubini’s
decomposition, one shows that for a.e. horizontal line in the domain, the restriction of the map-
ping to this line is horizontal. Then these restrictions are Lipschitz continuous with uniform
Lipschitz constant with respect to the homogeneous distance of the target. This argument can
be iterated for a basis of horizontal directions. Since points are locally connected by piece-
wise horizontal lines and any horizontal curve can be approximated by piecewise horizontal
lines, the local Lipschitz property follows. Constructing globally Lipschitz functions on a
domain � of a stratified group clearly depends on the geometry of �. In this respect, if we
assume that this set is a John domain, then every mapping satisfying one of the equivalent
conditions in Theorem 1.1 and also ∇HF ∈ L∞(�,M)m is Lipschitz in �.

The approach adopted to get Theorem 1.1 also works replacing the open set of a stratified
group with a complete Riemannian manifold, since one replaces horizontal lines with Rie-
mannian geodesics, that are more manageable than sub-Riemannian’s. By Theorem 4.5 and
taking into account Remark 4.6, we are lead to the following

Theorem 1.2 LetN be a compact connected Riemannian manifold and let ν be the canonical
Riemannian measure of N . Let F : N −→ M be a Lipschitz mapping that ν-a.e. satisfies

∇Fj =
υ∑

n=2

(−1)n

n! πj ([F,∇F ]n−1) for every j = 2, . . . , υ. (2)

Then f : N −→ M, where f = exp ◦F , is Lipschitz and there exists a geometric constant
C > 0 such that Lip(f ) ≤ C Lip(F1).

123



V. Magnani

A special instance of this theorem will be used in the proof of Theorem 1.3, about the exis-
tence of Lipschitz extension. Next, we discuss some applications of Theorem 1.1. In fact,
this theorem provides a general PDEs approach to construct either Lipschitz or non-Lipschitz
mappings. For instance, it is easy to construct smooth mappings in the Heisenberg group that
are nowhere locally Lipschitz: it suffices to consider the parametrization of the vertical line
in the first Heisenberg group. In Subsect. 5.1, through contact equations, we provide another
case for a mapping of Heisenberg groups. To construct examples of Lipschitz mappings, we
use the natural relationship between contact equations and the Rumin complex, [31]. In fact,
an elementary computation only relying on contact equations and using the complex property
of Rumin differential allows us to determine all smooth Lipschitz mappings of the Heisenberg
group, whose horizontal components are affine functions, see Subsect. 5.2. Our point here
clearly is in the method, that rests on the solution of the simple contact equations specialized
to this case. It is also clear how our approach could be extended to either higher dimensional
Heisenberg groups or other variants. Recall that affine Lipschitz mappings of the first Heisen-
berg group have been characterized in [5] through the explicit use of the Lipschitz condition.

Another application of Theorem 1.1 concerns existence of Lipschitz extensions that can
be interpreted as existence of solutions to (1) with assigned boundary datum, see Subsect. 5.3.
Treating this problem is certainly very hard, even in the case of couple of spaces involving
Euclidean spaces and Heisenberg groups. This leads us to two possible methods to approach
Lipschitz extension problems in sub-Riemannian geometry: the geometric approach and the
PDEs approach.

These two demanding projects cannot be treated here in depth, then we will limit our-
selves to show first elementary examples of how one can apply both Theorems 1.1 and 1.2
to obtain Lipschitz extensions, showing how this issue is essentially equivalent to find-
ing isoperimetric inequalities. We concentrate our attention on the geometric approach,
following the method by Allcock to get quadratic isoperimetric inequalities in higher
dimensional Heisenberg groups, [1]. Essentially, contact equations permit us to rephrase
Allcock construction in a larger class of two step groups that must satisfy some abstract
geometric properties. We call these groups Allcock groups. This leads us to a disk extension
theorem in this class of groups, see Theorem 1.3. Notice that Gromov pointed out how his
disk extension theorem for contact simply connected compact Carnot-Carathéodory target
gives a quadratic isoperimetric inequality, see p. 218 of [19]. As further application of the
tools developed in this work, we will also prove this implication for all Allcock groups, see
Theorem 1.5.

In Sect. 6, we introduce this family of groups and present several examples, that include
higher dimensional quaternionic H-type groups, the complexified Heisenberg group and other
classes of two step groups. It is easy to show that Heisenberg groups are a special instance
of Allcock groups, see Remark 6.7. Next, we state the following

Theorem 1.3 (Disk extension theorem) Let Aln be an Allcock group, with n ≥ 2. Then there
exists a geometric constant c > 0 such that for every Lipschitz mapping f : S1 −→ Aln there
exists a Lipschitz extension on the closed disk f̃ : D −→ Aln such that Lip(f̃ ) ≤ c Lip(f ).

It is a rather general fact that Lipschitz extension theorems from spheres to the correspond-
ing higher dimensional disks imply full Lipschitz extension theorems, from an Euclidean
source space. The argument of the proof essentially relies on Whitney cube decomposition,
according for instance to Theorem 1.2 of [2]. A different statement of this fact can be found
for mappings taking values in a compact Carnot-Carathéodory manifold, see p. 219 of [19].
In the recent work by Lang and Schlichenmaier [21], using Nagata dimension, more general
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source spaces are considered. In Sect. 7, we use both terminology and results of this paper
to show how Theorem 1.3 yields the following

Corollary 1.4 Let Aln be an Allcock group, with n ≥ 2. Then the couple (R2,Aln) has the
Lipschitz extension property.

It is worth to mention that not all stratified group-valued mappings admit Lipschitz extensions,
[4,30]. On the other hand, other interesting targets can be considered for establishing Lipschitz
extension theorems, [33].

To complete the study of the relationship between Lipschitz extension theorems and isoperi-
metric inequalities, in Sect. 8 we establish quadratic isoperimetric inequalities for all Allcock
groups.

Theorem 1.5 (Quadratic isoperimetric inequality) Let Aln be an Allcock group, with n ≥ 2.
Then there exists a geometric constant K > 0 such that for every Lipschitz loop � : S1 −→
Aln there exists a Lipschitz map f : D −→ Aln such that f|S1 = � and the “spanning disk”
(D, f ) satisfies the quadratic isoperimetric inequality

H2
ρ0
(f (D)) ≤ K lengthρ0

(�)2, (3)

where ρ0 is a fixed Carnot-Carathéodory distance.

Recall that quadratic isoperimetric inequalities impose quadratic behaviour to the cor-
responding “geometric Dehn functions”. It is interesting to point out that there is also a
combinatorial notion of Dehn function, that is shown to be equivalent to the geometric one,
[6,7]. This represents a fascinating connection between Combinatorial Group Theory and
Geometric Group Theory. To have a glimpse of this vast research area, we mention just a few
references, [6,12,17,18].

In fact, quadratic isoperimetric inequalities in Heisenberg groups have also a combinato-
rial proof, [26]. More recently, R. Young have found various estimates for Dehn functions
in some specials classes of stratified groups, [34,35]. In particular, for some central powers
of two step groups he establishes quadratic isoperimetric inequalities using combinatorial
methods, [34]. It is interesting to compare his results with our Theorem 1.5, since the con-
struction of central powers is somehow similar to the construction of an Allcock group Alnn,
starting from its model algebra n, see Sect. 6.

Notice that the core of Allcock isoperimetric inequality is establishing this result in the
“symplectic part” (R2n, ω) of the Heisenberg group H

n using the Euclidean Hausdorff mea-
sure in R

2n. In this respect, he raises the question on the proper notion of area to read
isoperimetric inequalities in the Heisenberg group equipped with its Carnot-Carathéodory
distance, see at p. 230 of [1]. Theorem 1.5 answers this question showing that the 2-dimen-
sional Hausdorff measure with respect to the Carnot-Carathéodory distance works. This is a
simple consequence of the sub-Riemannian area formula, [22], that shows how the Euclidean
surface measure of the projected surface in R

2n corresponds to its Hausdorff measure with
respect to the Carnot-Carathéodory distance in H

n. This works more generally for Allcock
groups, see Proposition 8.5.

In this case, we first obtain an Euclidean isoperimetric inequality in the “multi-symplec-
tic space” (Rmn, ω), where the multi-symplectic form ω is defined in (48). In fact, Aln can
be identified with R

mn × R
s with respect to suitable graded coordinates and the horizontal

subspace given by R
mn inherits ω from the Lie algebra of Aln. The quadratic isoperimet-

ric inequality in (Rmn, ω) is then the main point, corresponding to Theorem 8.6. Then the
sub-Riemannian area formula leads us to Theorem 1.5.
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Since the Riemannian Heisenberg group is quasi-isometric to the sub-Riemannian one, it
is natural to expect the same isoperimetric inequality with respect to both distances, accord-
ing to the case of finitely presented groups, [3]. In fact, under the same assumptions of
Theorem 1.5 we have

H2
� (f (D)) ≤ K length�(�)

2, (4)

where � is the Riemannian distance obtained by the fixed left invariant Riemannian metric
defining the Carnot-Carathéodory distance ρ0, see Sect. 8. In fact, since ρ0 is greater than
or equal to � and Proposition 8.2 show that Riemannian and sub-Riemannian lengths of a
horizontal curve coincide, it follows that (3) implies (4). Finally, we wish to point out how
the use of Euclidean Hausdorff measure to find quadratic isoperimetric inequalities directly
inside H

n does not seem to work, according to Example 8.8 that considers the case of H
2.

2 Preliminaries and known results

2.1 Some elementary facts on graded groups

A graded group is a real, finite dimensional, connected and simply connected Lie group M,
whose Lie algebra M can be written as the direct sum of subspaces Wi , called layers, such
that

[Wi,Wj ] ⊂ Wi+j (5)

and M = W1 ⊕· · ·⊕Wυ . The integer υ is the step of nilpotence of M. A graded group M is
stratified if its layers satisfy the stronger condition [Wi,Wj ] = Wi+j , see for instance [15].
The horizontal tangent spaces

HxM = {Z(x) | Z ∈ W1} ⊂ TxM, x ∈ M

define all horizontal directions of the group, that are collected into the so-called horizontal
subbundle HM. We also define subbundles of higher order Hj

M, setting

H
j
x M = {Z(x) | Z ∈ Wj } ⊂ TxM, x ∈ M

We fix a norm ‖ · ‖ in M, then the bilinearity of Lie brackets gives

‖[X, Y ]‖ ≤ β ‖X‖ ‖Y‖ for every X, Y ∈ M (6)

for some constant β > 0, depending on the norm and on the algebra. The grading of M
allows us to introduce a one-parameter group of Lie algebra automorphisms δr : M −→ M,
defined as δr (X) = riX ifX ∈ Vi , where r > 0. These mappings are called dilations. Taking
into account that the exponential mapping exp : M −→ M is a diffeomorphism for simply
connected nilpotent Lie groups, we can read dilations in the group M through the mapping
exp and maintain the same notation. We fix a homogeneous distance ρ on M, namely, a left
invariant continuous distance that is 1-homogeneous with respect to dilations δr . We will use
the convention ρ(x) = ρ(x, e), where e denotes here the unit element of M.

Example 2.1 Let M = R
n × R be equipped with the sum of vectors as commutative group

operation and define the parabolic distance |(x, t)| = |x| + √|t | and dilations δr (x, t) =
(rx, r2t). Here we have the grading V1 ⊕V2, where V1 and V2 can be identified with R

n×{0}
and {0} × R, respectively. Clearly, M is a 2-step graded group, but it is not stratified.
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Following the notation of [27], Sect. 4.5, in the next definition we introduce the iterated
Lie bracket.

Definition 2.2 Let X, Y ∈ M. The kth bracket is defined by

[X, Y ]k = [X, [X, [· · · , [X
︸ ︷︷ ︸

k times

, Y ], ], . . . , ] and [X, Y ]0 = Y. (7)

Notice that [X, Y ]k = adk(Y ).

We can express the group operation in the Lie algebra by the Baker–Campbell–Hausdorff
formula, that we present in the following form

X � Y =
υ∑

j=1

cn(X, Y ), (8)

where c1(X, Y ) = X + Y , c2(X, Y ) = [X, Y ]/2 and the subsequent terms can be defined
inductively, [32]. Notice that the sum (8) has υ addends, since X, Y belong to M that has
step of nilpotence υ. The addends cn in general are given by induction through the following
Baker–Campbell–Hausdorff–Dynkin formula

(n+ 1) cn+1(X, Y ) = 1

2
[X − Y, cn(X, Y )] (9)

+
∑

p≥1
2p≤n

K2p

∑

k1,...,k2p>0
k1+···k2p=n

[ck1(X, Y ), [· · · , [ck2p (X, Y ),X + Y ], ], . . . , ],

see Lemma 2.15.3 of [32].

Lemma 2.3 Let ν > 0 and let n = 2, . . . , ι. Then there exists a constant αn(ν) only depend-
ing on n and ν such that

‖cn(X, Y )‖ ≤ αn(ν) ‖[X, Y ]‖ (10)

whenever ‖X‖, ‖Y‖ ≤ ν.

Proof Our statement is trivial for n = 2, being c2(X, Y ) = [X, Y ]/2. Assume that it is true
for every j = 2, . . . , n, with n ≥ 2. We observe that [ck2p (X, Y ),X+ Y ] �= 0 in (9) implies
k2p > 1, then inductive hypothesis yields

‖ck2p (X, Y )‖ ≤ αk2p (ν) ‖[X, Y ]‖.
Using this estimate in (9) and observing that ‖cki (X, Y )‖ ≤ 2ν, whenever ki = 1, our claim
follows. 
�
Definition 2.4 A homogeneous subgroup H of G is a Lie subgroup that is closed under
dilations. Analogously, for subalgebras the same terminology is adopted.

Definition 2.5 LetN andH be homogeneous subgroups of G, whereN is normal,N ∩H =
{e} andNH = G. Then G is an inner semidirect product ofN andH and we write G = N�H .

We denote by HX the one-dimensional subgroup of G, spanned by expX, where X ∈ G.
Next, we recall a standard fact concerning direct sums of homogeneous subalgebras, whose
proof can be found for instance in [25]. Recall that a homogeneous algebra p satisfies δrp ⊂ p

for every r > 0.
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Proposition 2.6 Let p and h be homogeneous subalgebras of G and let P and H denote
their corresponding homogeneous subgroups, respectively. Then the condition p ⊕ h = G is
equivalent to require thatP ∩H = {e} andPH = G. Furthermore, if one of these conditions
hold, then the mapping

φ : p × h −→ G, φ(W, Y ) = expW expY (11)

is a diffeomorphism.

Another elementary fact is the following

Lemma 2.7 Let X ∈ V1 \ {0}. Then there exists a normal homogeneous subgroup N ⊂ G

such that G = N � HX .

2.2 Haar measure and Fubini’s theorem

We consider a graded group G with grading G = V1 ⊕ · · · ⊕ Vι and we fix a left invariant
Riemannian metric g on G. Then the associated volume measure volg is clearly left invariant
and defines the Haar measure of G. We will denote by µ this measure. Let X ∈ V1 and N
be a homogeneous normal subgroup N such that G = N �HX . Then we have the following
Fubini’s theorem with respect to this factorization.

Proposition 2.8 Let µ be the Haar measure of G. Then for every measurable set A ⊂ G,
we have

µ(A) =
∫

N

νX (An) dµN(n), (12)

where An = {h ∈ HX | nh ∈ A}. We have denoted by µN and νX the Haar measure of N
and of HX , respectively,

Proof We fix an orthonormal basis (X1, . . . , Xq) of G with respect to the metric g. In addi-
tion we assume that this basis is adapted to the grading of M, such that X1 is proportional
to X. By Proposition 2.6, the mapping

ψ : R × R
q−1 −→ M, (t, ξ) −→ exp

⎛

⎝
q−1∑

j=1

ξjXj+1

⎞

⎠ exp (t X1)

is a diffeomorphism. Our fixed basis also introduces the special system of coordinates
F : R

q −→ G, F(x) = exp
(∑q

i=1 xiXi
)

on G. Now we observe that

F�Lq = µ,
(
F|{0}×Rq−1

)
�
Lq−1 = µN, and

(
FR×|{0}

)
�
L1 = νX,

see for instance Proposition 2.3.47 of [23]. Thus, the fact that X1 ∈ V1 implies that the
mapping F−1 ◦ ψ has jacobian equal to one. Combining these facts with classical Fubini’s
theorem, we get our claim. 
�
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2.3 Differentiability

In the present subsection, we recall the notion of Pansu differentiability. G and M denote two
stratified groups and � is an open subset of G.

Definition 2.9 (h-homomorphism) A group homomorphism L : G −→ M such that
L(δG

r x) = δM

r L(x) for every x ∈ G and r > 0 is called homogeneous homomorphism,
in short h-homomorphism.

Analogous terminology will be used for the corresponding Lie algebra homomorphisms of
graded algebras that commute with dilations.

Definition 2.10 (P-differentiability) Let d and ρ be homogeneous distances of G and M,
respectively. We consider the mapping f : � −→ M. We say that f is P-differentiable at
x ∈ � if there exists an h-homomorphism L : G −→ M such that

ρ
(
f (x)−1f (xh), L(h)

)

d(h)
−→ 0 as h → e.

The h-homomorphism L satisfying this limit is unique and it is called P-differential of f at
x. We denote L by Df (x), when we read the P-differential between the corresponding Lie
algebras, we will denote it by df (x).

Theorem 2.11 Every Lipschitz mapping f : � −→ M is µ-a.e. P-differentiable.

This theorem is an important result due to Pansu, [27]. Here have presented a slightly more
general version where M is graded, but it might not be stratified, [25].

Definition 2.12 (Distributional derivatives) Let� be an open subset of a stratified group G,
let X be a left invariant vector field of G and let E be a finite dimensional normed space.
Then for every F ∈ L1

loc(�,E) we say that G ∈ L1
loc(�,E) is the distributional derivative

of F with respect to X if
∫

�

F Xϕ dµ = −
∫

�

G ϕ dµ

for every ϕ ∈ C∞
c (�). Uniqueness of G allows us to use the notation ∇XF . In the case �

is an open subset of R
n and X = ∂xj we will use the notation ∇j , where ej belongs to the

canonical basis of R
n.

Remark 2.13 To avoid confusion, we stress that the symbol ∇X will always denote a distri-
butional derivative, since we will never consider connections in this work.

Definition 2.14 (Horizontal gradient) Under the conditions of Definition 2.12 if we have
equipped V1 with a scalar product and (X1, . . . , Xm) is an orthonormal basis of V1, then we
introduce the notation

∇HF = (∇X1F, . . . ,∇XmF
)

to denote the distributional horizontal gradient of F : � −→ E.
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2.4 Some auxiliary results

In this subsection M denotes a graded group equipped with Lie algebra M. The next lemma
easily follows from the scaling property of the homogeneous distance in a graded group.

Lemma 2.15 Let M = W1 ⊕· · ·⊕Wυ and let πi : M −→ Wi⊕· · ·⊕Wυ be the canonical
projection. Let U be a bounded open neighbourhood of the unit element e ∈ M. Then there
exists a constant KU > 0, depending on U , such that

‖πi (exp−1(x)
) ‖ ≤ KU d(x)

i (13)

holds for every x ∈ U and every i = 1, . . . , υ.

Remark 2.16 (Contact property) We wish to point out how the contact property of a mapping
f : � −→ M at some point x ∈ �, namely,

df (x)(HxG) ⊂ Hf(x)M

is equivalent to the differential constraint

XiFj −
υ∑

n=2

(−1)n

n! πj
([Fj−1, XiFj−1]n−1

) = 0, (14)

for every i = 1, . . . , m and every j = 2, . . . , υ, where (X1, . . . , Xm) is a basis of V1,
f = exp ◦F and Fj = πj ◦ F . The exponential mapping exp : M −→ M satisfies

d exp (X) = Id −
υ∑

n=2

(−1)n

n! ad(X)n−1, (15)

see Theorem 2.14.3 of [32]. Identifying for every y ∈ M the tangent space TyM with M and
applying formula (15), we have

df (x)(Xi) = XiF(x)−
υ∑

n=2

(−1)n

n! ad (F (x))n−1 (XiF (x)) .

Then df (x)(Xi) ∈ Hf(x)M if and only if

πj

(

XiF(x)−
υ∑

n=2

(−1)n

n! [F(x),XiF (x)]n−1

)

= 0 for all j ≥ 2.

This proves the characterizing property of equations (14). We also notice that this char-
acterization holds even if the mapping is differentiable along horizontal directions, see [25]
for the precise definition of horizontal differentiability.

The following result corresponds to Corollary 5.4 of [25].

Theorem 2.17 Let � : [a, b] −→ M be a curve and define γ = exp−1 ◦� = ∑υ
i=1 γi ,

where γi takes values in Wi . Then the following statements are equivalent:

(1) � is Lipschitz continuous,
(2) γ is Lipschitz continuous and the differential equation

γ̇i (t) =
υ∑

n=2

(−1)n

n! πi ([γ (t), γ̇ (t)]n−1) (16)

is a.e. satisfied for every i ≥ 2.
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If one of the previous conditions holds, then there exists a constant C > 0 only depending
on ρ and ‖ · ‖, such that for any τ1 < τ2, we have

ρ (�(τ1), �(τ2)) ≤ C

τ2∫

τ1

‖γ̇1(t)‖ dt. (17)

Remark 2.18 If M is a stratified group, namely, its horizontal distribution satisfies the Lie
bracket generating condition, then the previous theorem is well known. In fact, in this case
equivalence of (1) and (2) would follow by Proposition 11.4 of [20] joined with Remark 2.16.
This proposition shows that Lipschitz curves can be characterized as horizontal curves in the
more general Carnot-Carathéodory spaces, that clearly include stratified groups. Moreover,
estimate (17) can be obtained for instance by the sub-Riemannian area formula [22] joined
with Theorem 2.10.13 of [14]. However, graded groups need not satisfy the Lie bracket gen-
erating condition, then they are not included in the family of Carnot-Carathéodory spaces.

3 Technical lemmata

In this section we study the properties of mappings f : A −→ M where M is a graded
group and A may vary. F denotes the mapping exp−1 ◦f : A −→ M, where M is the
Lie algebra of M. The canonical projections onto the layers Wi of the algebra M are the
mappings π : M −→ Wi . We use the notation Fi = π ◦ F , hence

F = F1 + · · · + Fυ and f = exp (F1 + · · · + Fυ) .

Lemma 3.1 Let X ∈ V1 and let N ⊂ G be a normal subgroup such that G = N � HX . Let
O ⊂ N and J ⊂ HX be open subsets, where J is connected, and consider u ∈ L1

loc(�),
where � = OJ is an open set. If the distributional derivativeDXu belongs to L∞(�), then
up to redefinition of u an a µ-negligible set, for µN -a.e. n ∈ O, we have

|u (n exp(tX))− u (n exp(τX)) | ≤ ‖DXu‖L∞(�) |t − τ |.

Proof We follow the same notation used in the proof of Proposition 2.8. Then we recall the
mappingψ : R×R

q−1 −→ M, observing that ũ = u◦ψ belongs to L1
loc

(
ψ−1(�)

)
. Taking

into account that F−1 ◦ψ has jacobian equal to one, by definition of distributional derivative
one easily gets the following equality of distributional derivatives

∇1ũ = (DXu) ◦ ψ.
Then ũ ∈ L1

loc

(
ψ−1(�)

)
and ∇1ũ ∈ L∞ (

ψ−1(�)
)
. The setψ−1(O) = Õ is an open subset

of {0}×R
q−1 and J̃ = ψ−1(J ) is an open interval of R×{0} ⊂ R

q , henceψ−1(O) = J̃×Õ.
Thus, by a standard mollification argument, see for instance [13], Theorem 2 of Sect.4.9.2,
our claim follows. 
�

Lemma 3.2 LetX ∈ V1 and let G = N�HX , whereN is a homogeneous normal subgroup.
Let O and J be open subsets of N and of HX , respectively, where J is connected, and let
z ∈ G. We consider the open set� = zOJ along with the continuous mapping f : � −→ M.
Let (X1, . . . , Xm) be a basis of V1 and assume that there exist

∇XiFj ∈ L∞
loc(�,Wj ) and ∇XiF1 ∈ L∞(�,W1) (18)
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for every i = 1, . . . , m and j = 2, . . . , υ and the contact equations

XiFj =
υ∑

n=2

(−1)n

n! πj ([F,XiF ]n−1) (19)

µ-a.e. hold in �, then there exists C > 0, depending on ρ and ‖ · ‖, such that

ρ(f (zn exp(tX)) , f (zn exp(τX)) ) ≤ C ‖XF1‖L∞(�)|t − τ |
for every exp(tX), exp(τX) ∈ J and every n ∈ O.

Proof Up to a left translation, taking into account the left invariance ofX, it is not restrictive
to assume that z is the unit element. Then we consider the curve

�n(s) = n exp(sX) = exp
(
γn,1(s)+ · · · γn,υ(s)

)

where γn,j = πj ◦ γn and γn = exp−1 ◦�n. We choose t, τ ∈ R with t < τ such that
exp(tX), exp(τX) ∈ J . By linearity, we have DXF exists and belongs to L∞

loc(�,M).
Taking into account continuity of all Fj ’s, Lemma 3.1 gives

‖Fj (�n(t))− Fj (�n(τ)) ‖ ≤ c ‖XFj‖L∞(�′
n)
(τ − t)

for all n ∈ O, where c > 0 depends on ‖ · ‖ and �′
n is an open neighbourhood of �n([t, τ ]),

that is compactly contained in �. In particular, t → F ◦ �n(t) is absolutely continuous on
compact intervals for all n ∈ O. By Proposition 2.8, from theµ-a.e. validity of (19) it follows
that for µN -a.e. n ∈ O, we have

d

ds

(
Fj ◦ �n

)
(s) = XFj ◦ �n(s) =

υ∑

n=2

(−1)n

n! πj ([F ◦ �n(s), (XF) ◦ �n(s)]n−1)

for a.e. s ∈ {l ∈ R | exp(lX) ∈ J }. Thus, we can apply Theorem 2.17 to the curve

f ◦ �n = exp (F1 ◦ �n + · · · + Fυ ◦ �n) ,
getting

ρ (f ◦ �n(t), f ◦ �n(τ)) ≤ C

τ∫

t

‖(XF1) ◦ �n(s)‖ ds. (20)

Then the continuity of f and the hypothesis XF1 ∈ L∞(�) lead us to the conclusion. 
�
Lemma 3.3 Let f : X −→ M be a Lipschitz mapping, where X is a metric space. Then
there exists a constant C > 0, depending on the norm ‖ · ‖ of M and the distance ρ of M

such that

‖F1(x)− F1(y)‖ ≤ C Lip(f ) d(x, y) for every x, y ∈ X.
The proof of this lemma is a consequence of the Baker–Campbell–Hausdorff formula.

Definition 3.4 (Piecewise horizontal line) A continuous curve � : [a, b] −→ G is a piece-
wise horizontal line if there exist n ∈ N, numbers a ≤ t0 < · · · < tn ≤ b and Xk ∈ V1 with
k = 1, . . . , n such that �|[tk−1,tk ](t) = �(tk−1) exp ((t − tk−1)Xk).

Lemma 3.5 Let � be an open subset of G and let � : [a, b] −→ � be a Lipschitz curve.
Then there exists a sequence of piecewise horizontal lines uniformly converging to �, whose
lengths are also converging to the length of �.
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Proof By Lemma 3.3, it follows that the curve γ1 = π1 ◦ exp−1 ◦� : [a, b] −→ W1 is
Lipschitz. The derivative γ̇1 is essentially bounded. Let ϕk : [a, b] −→ W1 be a sequence of
piecewise constant functions that a.e. converge to γ̇1 and |ϕk(t)| ≤ |γ̇1(t)| for every k and
a.e. t ∈ [a, b]. We define the Lipschitz functions

γ1k(t) = γ1(0)+
t∫

0

ϕk(s) ds

that uniformly converge to γ1. Exploiting (16), we can define

γ2k(t) = γ2(0)+ 1

2

t∫

0

[
γ1k(s), γ̇1k(s)

]
ds

and more generally by iteration

γik(t) = γik(0)+
υ∑

n=2

(−1)n

n!
t∫

0

πi

⎛

⎝

⎡

⎣
i−1∑

j=1

γjk(s),

i−1∑

j=1

γ̇jk(s)

⎤

⎦

n−1

⎞

⎠ ds.

The curve �k = exp
(∑υ

j=1 γjk

)
is the unique horizontal lifting of γk . We wish to show

that it is piecewise horizontal and uniformly converge to �. To see this, we observe that the
projection on the first layer of any curve

t −→ exp ξ exp tX

with X ∈ V1 and ξ ∈ G has the form t −→ ξ1 + tX, where π1(ξ) = ξ1 ∈ V1. We notice
that γ1k has exactly this form, since ϕk is piecewise constant, then the uniqueness of the
horizontal lifting implies that �k is piecewise horizontal. By construction, the fact that γ1k

uniformly converges to γ1 implies the uniform convergence of �k to �. From Corollary 5.5
of [25], we get the formula

length(�k) = Varba� =
b∫

a

ρ (exp (γ̇1k(t))) dt.

It follows that length(�k) → length(�) as k → ∞. 
�

4 Group-valued mappings on Riemannian manifolds

In this section we extend contact equations to graded group-valued mappings on Riemannian
manifolds and find the corresponding differential characterization of the Lipschitz property.
In this case, contact equations can be written using the standard differential for differentiable
manifolds.

Throughout this section, we have the following assumptions. We denote by M a graded
group with graded algebraM andN indicates a Riemannian manifold. The symbol ρ denotes
a homogeneous distance of M. Any function f : N −→ M is also written as the compo-
sition f = exp ◦F , where F : N −→ M and exp : M −→ M denotes the exponential
of Lie groups. We will also use the notation Fi = π ◦ F , where F = F1 + · · · + Fυ ,
f = exp (F1 + · · · + Fυ) and πi : M −→ Wi is the canonical projection onto the ith layer.
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Proposition 4.1 Let N be a one dimensional connected Riemannian manifold and let F :
N −→ M be a Lipschitz mapping such that

Ḟj =
υ∑

n=2

(−1)n

n! πj
([F, Ḟ ]n−1

)
(21)

a.e. holds in N for every j = 2, . . . , υ. Then the associated mapping f : N −→ M is
Lipschitz continuous and there exists a geometric constant C > 0 depending on the norm of
M and the distance of M such that Lip(f ) ≤ C Lip(F1).

Proof Let x, y be two points of N and let c : [0, L] −→ N be the length minimizing geo-
desic such that c(0) = x, c(L) = y and L = d(x, y). The curve γ = F ◦ c is Lipschitz and
in view of (21) it satisfies (16) for a.e. t in [0, L], then by Theorem 2.17, we get

ρ (f (x), f (y)) = ρ (�(0), �(L)) ≤ C

L∫

0

‖(F1 ◦ c)′(t)‖ dt (22)

for a suitable geometric constantC > 0 depending on M andM, where we have set� = f ◦c.
Since

|(F1 ◦ c)(t + h)− (F1 ◦ c)(t)| ≤ Lip(F1) d (c(t + h), c(t)) = Lip(F1) |h|,
where d is the Riemannian distance of N . Then (22) leads us to our claim. 
�
Remark 4.2 As the linearity of X −→ [Z,X]n−1 = adn−1(X) makes (21) intrinsic, the
same holds for higher dimensional manifolds. In fact, if N has dimension k ≥ 1 and f
is differentiable at a point x of N , then the contact condition df (x)(TxN) ⊂ Hf(x)M is
equivalent to the validity of the system

∂xlFj (x) =
υ∑

n=2

(−1)n

n! πj
([F(x), ∂xlF (x)]n−1

)
, (23)

for every j = 2, . . . , υ and l = 1, . . . , k. This follows by Remark 2.16. Since the previous
formula is independent of the local coordinates (xl) chosen around x inN , then an equivalent
intrinsic version is the following one

dFj (x) =
υ∑

n=2

(−1)n

n! πj ([F(x), dF (x)]n−1) , (24)

for every j = 2, . . . , υ. Here d denotes the standard differential for mappings on differen-
tiable manifolds and

dFj (x) : TxN −→ H
j

f (x)M.

Formula (23) can be also written in a short and intrinsic form adopting the Riemannian
gradient as follows

∇Fj (x) =
υ∑

n=2

(−1)n

n! πj ([F(x),∇F(x)]n−1) . (25)

Definition 4.3 Let N be a Riemannian manifold and let d denote the Riemannian distance.
We say that a subset O ⊂ N is geodetically convex if for every x, y ∈ O, there exists a
length minimizing geodesic c : [0, L] −→ O such that c(0) = x, c(L) = y.
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Remark 4.4 Notice that notion of geodetic convexity we are adopting is not standard, since
in Riemannian Geometry different forms of uniqueness of the connecting and minimizing
geodesic are also required, see for instance [9]. For instance, according to our definition,
the intersection of the 2-dimensional sphere S2 embedded in R

3 with any closed half space,
where S2 is equipped with the canonical Riemannian metric, is an example of geodetically
convex set.

Theorem 4.5 Let N be a connected Riemannian manifold of dimension higher than one
and let O ⊂ N be an open and geodetically convex set. Let ν be the canonical Riemannian
measure on N and let F : O −→ M be a Lipschitz mapping such that

dFj =
υ∑

n=2

(−1)n

n! πj ([F, dF ]n−1) (26)

ν-a.e. holds in O for every j = 2, . . . , υ. Then the associated mapping f : O −→ M is
Lipschitz continuous and there exists a geometric constant C > 0 depending on the norm of
M and the distance of M such that Lip(f ) ≤ C Lip(F1).

Proof We choose two arbitrary points p, q ∈ O and consider the smooth length minimizing
geodesic c : [0, L] −→ N , where L = d(p, q), c(0) = p and c(L) = q. Here d denotes
the Riemannian distance on N . Let τ ∈ [0, L] and let (c(τ ), ċ(τ )) ∈ TN . Let T N be the
open subset of TN corresponding to the domain of the Riemannian exponential mapping
Exp : T N −→ N , see Theorem I.3.2 of [9]. We wish to construct a tubular neighbourhood
of geodesics containing also the image of the restriction of c to a neighbourhood of τ .

To do this, we fix z = c(τ ), ξ = ċ(τ ) and select an arbitrary embedded smooth one codi-
mensional submanifold � ⊂ N passing through z, such that Tz� is orthogonal to ξ ∈ TzN .
We will select all geodesics tangent to a normal field of� in a neighbourhood of z. To make
this argument rigorous, according to Chap. 5, p. 132, of [28], we consider the vector bundle
T�⊥ of fibers

Ts�
⊥ =

{
v ∈ TsN | v ∈ (Ts�)⊥ ⊂ TsN

}
for every s ∈ �.

By definition, we have the orthogonal decomposition TsN = Ts�⊕Ts�⊥. Now, we consider
the normal exponential mapping Exp⊥ as the following restriction

Exp⊥ : T N ∩ T�⊥ −→ N.

Since the differential of Exp⊥ is nonsingular at every point (s, 0), in particular there exist
open neighbourhoods U of (z, 0) in T N ∩ T�⊥ and U of z in N such that Exp⊥| : U −→ U

is a smooth diffeomorphism. This provides us with a local system of coordinates around z
made by the local geodesic flow. Let k be the dimension of N , hence up to shrinking both U
and U , we can select local coordinates (y1, . . . , yk−1) of � centered at zero, around z and
fix the local unit normal field n of � around z such that n(z) = ξ . Then we define

H(y, t) = Exp⊥| (ζ(y), t n (ζ(y)))

where (A, ζ ) is a local chart of �, A is an open subset of R
k−1 containing the origin, with

ζ(0) = z, and (ζ(y), t n (ζ(y))) ∈ U if and only if (y, t) ∈ A× I for a suitable open interval
I of R. By local uniqueness of geodesics, we get

I � t −→ c(τ + t) = H(0, t) = Exp⊥ (z, t n(z)) = Exp (z, t ξ) .
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Since H : A × I −→ U is bilipschitz, then in view of Fubini’s theorem for a.e. y ∈ A

we have that F is differentiable at H(y, t) for a.e. t ∈ I and there satisfies (26) for every
j = 2, . . . , υ. Then in particular, we have the partial derivatives

∂t (Fj ◦H)(y, ·) =
υ∑

n=2

(−1)n

n! πj

([
(F ◦H)(y, ·), ∂t (Fj ◦H)(y, ·)]

n−1

)
(27)

a.e. in I for a.e. y ∈ A. SinceF ◦H(y, ·) is also Lipschitz, then for a.e. y ∈ A Proposition 4.1
yields a geometric constant C1 > 0 such that

ρ
(
f ◦H(y, t), f ◦H(y, t ′)) ≤ Lip (F1 ◦H(y, ·)) C |t − t ′|.

Continuity extends the previous estimate to all y ∈ A and t ∈ I . In particular, for y = 0, it
follows that

ρ
(
(f ◦ c)(τ + t), (f ◦ c)(τ + t ′)

) ≤ C Lip(F1) |t − t ′| (28)

for every t, t ′ ∈ I . The arbitrary choice of τ ∈ [0, L] gives a finite open covering of [0, L]
made of intervals satisfying (28). Since the constants of this estimate are independent of τ ,
this leads us to the end of the proof. 
�
Remark 4.6 Under the hypotheses of the previous theorem, if we assume in addition that
N is a complete Riemannian manifold, then the mapping f extends to a Lipschitz map-
ping f : O −→ M, with Lip(f ) ≤ C Lip(F1). Since compact Riemannian manifolds are
complete and then geodetically convex, then Theorem 4.5 obviously implies Theorem 1.2.

5 The differential characterization

In this section we give a proof of the differential characterization of locally Lipschitz map-
pings and show a simple application.

Proof of Theorem 1.1 Let f be locally Lipschitz. By Lemma 3.3, there exists C > 0 only
depending on the norm ‖ · ‖ and the distance ρ, such that

‖F1(x)− F1(y)‖ ≤ C ρ (f (x), f (y)) (29)

for every x, y ∈ �. Then F1 is also locally Lipschitz. We wish to show that all Fj ’s are
locally Lipschitz. By the Baker–Campbell–Hausdorff formula (8), we have

∥
∥
∥
∥
∥
−ξi + ηi +

υ∑

n=2

πi (cn(−ξ, η))
∥
∥
∥
∥
∥

= |πi (−ξ � η)|i ≤ [
C ρ(exp ξ, exp η)

]i
,

then estimate (10) yields α̃n(ν) > 0, with ν = max{‖ξ‖, ‖η‖}, such that

‖ − ξi + ηi‖ ≤
υ∑

n=2

α̃n(ν)‖[ξ, η]‖ + [
C ρ(exp ξ, exp η)

]i
,

then taking into account (6) and (13), we get

‖ − ξi + ηi‖ ≤
(

υ∑

n=2

α̃n(ν) β ν KU + Ci ρ(exp ξ, exp η)i−1

)

ρ(exp ξ, exp η)
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where U is a compact set containing exp ξ and exp η, hence depending on ν. As a conse-
quence, replacing both ξi and ηi with Fi(x) andFi(y), we have shown that allFi’s are locally
Lipschitz. As a standard fact, it follows that all ∇XiFj belong to L∞

loc(�). To prove the a.e.
validity of (1), we choose an arbitrary left invariant vector field X ∈ V1 and by Lemma 2.7
we get a normal subgroup N of G such that G = N � HX . We can cover � by a countable
union of open sets of the form zOJ , where z ∈ G, O and J are connected open neighbour-
hoods of the unit element in N and in HX, respectively. Thus, we can reduce ourselves to
prove our claim in the case� = zOJ . Due to Theorem 2.11 in the case M is a vector space,
we consider the full measure set A ⊂ � of points where all Fj ’s are P-differentiable. Then
formula (12) implies

νX
(
J \ p−1z−1A

) = 0

for µN -a.e. p ∈ O. Let us pick one of these p’s. For a.e. t we have zp exp(tX) ∈ A, then all
Fj ’s are P-differentiable at this point. Definition of P-differentiability yields

DFj
(
czp,X(t)

)
(X) = XFj

(
czp,X(t)

)
,

for every j = 2, . . . , υ, where we have defined

τ −→ czp,X(τ) = zp exp (τX) .

As a result, setting

τ −→ �zp,X(τ) = f ◦ czp,X(τ) = exp γzp,X(τ) = exp
υ∑

j=1

γzp,X,j (τ ),

where we have set γzp,X,j = πj ◦ γzp,X . We have then proved that

γ̇zp,X,j (t) = XFj ◦ czp,X(t). (30)

By Theorem 2.17, the local Lipschitz property of f implies the a.e. validity of (16) for the
curve γzp,X . Thus, taking into account (30), we obtain

XFj (czp,X(τ)) =
υ∑

n=2

(−1)n

n! πj
([F(czp,X(τ)),XF(czp,X(τ))]n−1

)
,

for a.e. τ . We have proved the a.e. validity of the previous equation for µN -a.e. p ∈ O,
therefore Proposition 2.8 implies the validity of

XFj =
υ∑

n=2

(−1)n

n! πj ([F,XF ]n−1) (31)

µ-a.e. in � for every j = 2, . . . , υ. The arbitrary choice of X gives the validity of (1).
Conversely, we assume the validity of the second condition. By linearity of distributional

derivative and of (1) for every X ∈ V1, we have DXF ∈ L∞
loc(�,M) and (31) µ-a.e. holds

for every j = 2, . . . , υ. We fix ‖X‖ = 1 and choose z ∈ �. We select connected open
neighbourhoods O ⊂ N and J ⊂ HX of the unit element e ∈ G such that �′ = zOJ is
compactly contained in �. Thus, we can apply Lemma 3.2, getting

ρ(f (zn exp(tX)), f (zn exp(τX))) ≤ C′ ‖XF1‖L∞(�) |t − τ | (32)

≤ C′ ‖∇HF1‖L∞(�) |t − τ |
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for every n ∈ O and every exp(tX), exp(τX) ∈ J . Now, we consider the Carnot-Carathéod-
ory distance δ generated by a left invariant metric fixed on G, see for instance [19]. This
distance is homogeneous and then it is equivalent to d . It is well known that (G, δ) is a length
space, namely any couple of points x, y ∈ G is connected by a geodesic whose length equals
their distance δ(x, y). Then from (32), we get

ρ
(
f (p), f (p′)

) ≤ C ‖∇HF1‖L∞(�) δ(p, p
′) for every p, p′ ∈ zJ, (33)

where C = C′/ inf‖Y‖=1 δ(exp Y ). Now we arbitrarily choose r > 0 and p ∈ � such that
Bp,6r ⊂ �, where we have denoted by Bp,r the open ball of center x and radius r with respect
to δ. Let x, y ∈ Bp,2r and let � : [0, δ(x, y)] −→ G be the geodesic connecting x with y.
By triangle inequality, it follows that the image of � is contained in Bp,6r . By Lemma 3.5 we
can find a sequence (�k) of piecewise horizontal lines defined in [0, δ(x, y)] and contained
in Bp,6r that uniformly converge to � and their lengths converge to �. On any horizontal
segment of �k with horizontal direction Xi , that is also a geodesic, we apply the estimate
(33) where J is considered contained in the subgroup HXi . Thus, triangle inequality yields

ρ(f (�k(0)) , f (�k(δ(x, y))) ) ≤ C ‖∇HF1‖L∞(�) l(�k),

where Kp,r = Bp,6r and l(�k) is the length of �k with respect to δ. Passing to the limit as
k → ∞, we have shown that

ρ (f (x)), f (y)) ≤ C ‖∇HF1‖L∞(�) δ(x, y) (34)

for every x, y ∈ Bp,2r . Adopting the same argument of Theorem 3.18 of [24], it follows that
f is Lipschitz continuous on compact sets of �, namely, f is locally Lipschitz. Now, we
show that the third condition is equivalent to the previous ones. We first assume that the first
condition holds, namely, f is locally Lipschitz. Due to Theorem 2.11, f is a.e. P-differen-
tiable and the equivalence of the first two conditions clearly yields ∇XiF ∈ L∞

loc(�,M) for
every i = 1, . . . , m. If we know that f is a.e. P-differentiable and ∇XiF ∈ L∞

loc(�,M) for
every i = 1, . . . , m, then we apply Theorem 4.8 of [25], according to which the pointwise
P-differentiability of f implies the pointwise P-differentiability of all Fj : � −→ M with
the validity of formulae

π1 ◦ df (x) = dF1(x)

dFi(x)(h) =
υ∑

n=2

(−1)n

n! πi ([F(x), dF (x)(h)]n−1) .

at P-differentiability points x. Taking into account that dFi denotes the P-differential read in
the Lie algebras and that dFi(x)(expX) = XFi , these formulae implies the a.e. validity of
contact equations (1). We have then shown that the third conditions implies the second one.
This concludes the proof. 
�

5.1 Smooth functions that are not locally Lipschitz

We consider exponential coordinates (x1, x2, x3) of the Heisenberg group H
1, with p =

exp
(∑3

j=1 xjXj

)
∈ H

1 and the basis of left invariant vector fields given by

X1 = ∂x1 − x2 ∂x3 , X2 = ∂x2 + x1 ∂x3 and X3 = ∂x3 .
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As mentioned in the introduction, the simplest case of smooth mapping that is not Lips-
chitz is the smooth curve � : R −→ H

1 defined as �(t) = (0, 0, t). In this case, using any
explicit homogeneous norm, it is straightforward to see the failure of the Lipschitz property.
On the other hand, if we consider the smooth mapping I : H

1 −→ H
1 defined as

I (x1, x2, x3) = (f1, f2, f3) = (x3, x1, x2),

then showing that any of its restrictions to open sets is not locally Lipschitz may require
slightly more computations using distances and the use of contact equations could prove a
convenient tool. We have

{
f1X1f2 − f2X1f1 = x3 + x1x2

f1X2f2 − f2X2f1 = −x2
1

and

{
X1f3 = 0
X2f3 = 1

Thus, definingF1 : H
1 −→ h as F1(x1, x2, x3) = x3X1 +x1X2 ∈ h and taking into account

both (1) and

[F1, XjF1] = f1Xjf2 − f2Xjf1,

it follows that the contact equations cannot hold at every point. As a consequence of The-
orem 1.1, the mapping f is not Lipschitz on every open subset of H

1. Clearly, since I is
smooth, all components of the mapping I are continuously P-differentiable.

5.2 Contact equations and Rumin complex

In view of our study of Lipschitz mappings in the three dimensional Heisenberg group H
1,

we limit ourselves to recall the Rumin complex on H
1, see [31] for the case of general contact

manifolds. We denote by �k(H1) the module of k-forms on H
1 and also

J 2 = {
α ∈ �2(M) | θ ∧ α = 0

}
, I 1 = {

ϕ θ | ϕ ∈ C∞(H1)
}
,

where θ = dt + (
x2dx

1 − x1dx
2
)
/2 is the contact form. In this coordinates, we fix the left

invariant vector fields

X1 = ∂1 − x2

2
∂t , X2 = ∂2 + x1

2
∂t and X3 = ∂t .

We also set �1(H1)/I 1 = {[α1dx1 + α2dx2 + α3θ ]R | αj ∈ C∞(H1)
}
. Clearly,

[α1dx1 + α2dx2 + α3θ ]R = [α1dx1 + α2dx2]R
and we have the following

Theorem 5.1 ([31]) There exists D : �1(H1)/I 1 −→ J 2 such that

0 −→ R −→ C∞(H1) −→ �1(H1)/I 1 D−→ J 2 −→ 0 (35)

defines a complex whose cohomology coincides with the De Rham cohomology, where

D[α1dx1 + α2dx2]R = d (α1dx1 + α2dx2 + α3θ) ∈ J 2 def ining α3 = X1α2 −X2α1.

We denote by dR the differential of this complex, called Rumin complex. For more infor-
mation, we address the reader to [31]. The next proposition can be proved joining contact
equations and the Rumin differential dR. This proposition uses the notation
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A =
(
a11 a12

a21 a22

)

, b =
(
b1

b2

)

, Aj =
(
a1j

a2j

)

and a =
(
a1

a2

)

.

Proposition 5.2 Let f = (F1, f3) : U ⊂ H
1 −→ H

1 be a smooth mapping, where U is an
open neighbourhood of the origin and F1(x) = Ax + at + b and f3 = f3(x, t). Then f is
locally Lipschitz if and only if for some τ ∈ R the following conditions hold

det (A1 a) = det (A2 a) = 0, (36)

f3(x, t) = τ + x2 det (b A2)+ x1 det (b A1)

2
+ t

(
det (b a)

2
+ detA

)

. (37)

5.3 Lipschitz mappings as boundary value problems

This subsection is devoted to the characterization of existence of Lipschitz extensions as
solutions of contact equations with assigned boundary datum.

Theorem 5.3 LetE be a closed set of a stratified group G, let� = G\E and letf : E −→ M

be a Lipschitz mapping. Existence of a Lipschitz extension f̃ : G −→ M of f with possible
larger Lipschitz constant is equivalent to the existence of a mapping g : � −→ M, with
G = exp−1 ◦g, Gj = πj ◦G and g = exp (G1 + · · · +Gυ), such that

(1) g|∂� = f|∂�,
(2) G1 : � −→ W1 is Lipschitz,
(3) all the distributional derivatives ∇HG ∈ L∞

loc(�,M)m and the system

∇HGj =
υ∑

n=2

(−1)n

n! πj ([G,∇HG]n−1) (38)

µ-a.e. holds in �, for each j = 2, . . . υ.

Whenever a function g satisfying these three conditions exists, then the Lipschitz extension
of f is given by f̃ = f 1E + g 1� and we have the estimate

Lip(f̃ ) ≤ C
(‖∇HG1‖L∞(�) + Lip(f )

)
,

for some geometric constant C > 0.

Proof If f admits a Lipschitz extension f̃ , in view of Theorem 1.1, taking the restriction
f̃|� = g, it follows that g satisfies conditions (1), (2) and (3). Conversely, let us assume the

existence of a mapping g : � −→ M satisfying these three conditions. Let p ∈ G and let
X ∈ V1 be arbitrarily fixed, with ‖X‖ = 1. Let us consider the curve

R � t −→ cp,X(t) = p exp(tX) ∈ G.

The open set c−1
p,X(�) is the disjoint union ∪j∈NIj of open intervals of R, where Ij =]aj , bj [.

LetN be a homogeneous normal subgroup such that G = N�HX and let aj < a′
j < b′

j < bj .
The element p is written in a unique way as n exp(tX), due to Proposition 2.6. Then we fix a
relatively compact, connected open neighbourhood O ⊂ N of the unit element e of G such
that

On exp
(
(t + s)X

) ∈ � for every s ∈ [a′
j , b

′
j ].
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By assumptions (2) and (3) on g, Lemma 3.2 applies, hence we have in particular

ρ
(
g(cp,X(b

′
j )), g(cp,X(a

′
j ))
)

≤ C′ ‖XG1‖L∞(�) d
(
cp,X(b

′
j ), cp,X(a

′
j )
)
,

where we have set C′ = C/ inf‖Y‖=1 d(expY ). Passing to the limit as a′
j → a+

j and b′
j →

b−
j , we achieve

ρ
(
g(cp,X(bj )), g(cp,X(aj ))

) ≤ C′ ‖XG1‖L∞(�) d
(
cp,X(bj ), cp,X(aj )

)
. (39)

Now, consider f̃ = f 1E + g 1� and arbitrary select t, τ ∈ R, with t < τ . We have the
following cases. If t, τ ∈ Ij for some j , then (39) yields

ρ
(
f̃ (cp,X(t)), f̃

(
cp,X(τ)

)) ≤ C′ ‖XG1‖L∞(�) d
(
cp,X(t), cp,X(τ)

)
. (40)

If t ∈ Ij and τ /∈ c−1
p,X(�), then the triangle inequality and the fact that cp,X is a geodesic

yield

ρ
(
f̃ (cp,X(t)), f̃ (cp,X(τ))

)

≤ C′ ‖XG1‖L∞(�) d
(
cp,X(t), cp,X(bj )

)+ Lip(f ) d
(
cp,X(bj ), cp,X(τ)

)

≤ (
C′ ‖XG1‖L∞(�) + Lip(f )

)
d
(
cp,X(t), cp,X(τ)

)
. (41)

The same estimate is obtained in the analogous case τ ∈ Ij and t /∈ c−1
p,X(�). If t ∈ Ij and

τ ∈ Ik with j �= k, with analogous argument we get

ρ
(
f̃ (cp,X(t)), f̃ (cp,X(τ))

)
≤ (

2C′ ‖XG1‖L∞(�) + Lip(f )
)
d
(
cp,X(t), cp,X(τ)

)
.

The remaining case t, τ /∈ c−1
p,X(�) is trivial, since cp,X(t), cp,X(τ) ∈ E, where f is

Lipschitz. We have shown that for every r, r ′ ∈ cp,X(R), we have

ρ
(
f̃ (r), f̃ (r ′)

)
≤ (

2C′ ‖∇HG1‖L∞(�) + Lip(f )
)
d(r, r ′). (42)

Finally, we adopt the same argument used in the proof of Theorem 1.1, where we connect two
arbitrary pointsp, p′ ∈ G by a geodesic with respect to the length distance δ, then we approx-
imate the geodesic by a sequence of piecewise horizontal lines, according to Lemma 3.5, and
we let the estimate (42) pass to the limit. 
�

6 Allcock groups

In this section, we introduce the class of Allcock groups, along with examples. The charac-
terizing geometric property of these groups is related to the notion of isotropic homotopy.
Throughout this section, we fix a 2-step graded algebra n with first layer v and second layer
z. We select a scalar product on n such that v and z are orthonormal.

Definition 6.1 Let a, b : [0, 1] −→ v be Lipschitz loops. We say that � : [0, 1]2 −→ v is
an isotropic homotopy carrying a to b if (τ, t) −→ �(τ, t) is Lipschitz,

[∂τ�, ∂t�] = 0 a.e. in [0, 1]2,

�(·, 0) = a, �(·, 1) = b and �(0, ·) = �(1, ·).
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Remark 6.2 For our purposes, the points �(0, ·) and �(1, ·) need not coincide with some
fixed point.

In the sequel, we will use the following linear space

Av∞
0 =

⎧
⎨

⎩
σ ∈ L∞ (]0, 1[, z) ∣∣

1∫

0

σ = 0

⎫
⎬

⎭
.

In the next definition the same symbol | · | will denote both the norm of vectors and 2-vectors.
The individual cases will be clear from the context.

Definition 6.3 We say that n is surjective on isotropic loops if there exists a constant C > 0
such that for every λ > 0 and every σ ∈ Av∞

0 one can find a loop a ∈ Lip([0, 1], v) and an
isotropic homotopy � : [0, 1]2 −→ v that carries a to a fixed point, such that [a, ȧ] = σ

a.e., |a(0)| ≤ C λ and the estimates

Lip(�) ≤ C

(

λ+ ‖σ‖L∞

λ

)

and |ȧ| ≤ C

λ
|σ | a.e. (43)

along with

1∫

0

1∫

0

|�τ ∧ �t | dτ dt ≤ C

⎛

⎝

1∫

0

|ȧ(t)| dt
⎞

⎠

2

. (44)

Remark 6.4 The L∞-norm understood for σ ∈ L∞ (]0, 1[, z) in the previous definition is
given by

‖σ‖L∞ = max
j=1,...,s

‖σj‖L∞ ,

where σ = ∑s
j=1 σj Zj and (Z1, . . . , Zs) is an orthonormal basis of z.

Definition 6.5 (Allcock group) Let n be surjective on isotropic loops and define

V1 =
n⊕

j=1

vj , V2 = z, [vi , vj ] = {0} whenever i �= j,

where all the two step algebras vj ⊕ z are isomorphic to n = v ⊕ z for every j = 1, . . . , n.
Then the two step algebra V1 ⊕V2 is denoted by Alnn. This algebra defines a unique stratified
group Alnn, that we call Allcock group of model n. If the model n is understood, then we
denote an Allcock group simply by Aln.

The following example shows that the three dimensional Heisenberg algebra h1 is surjective
on isotropic loops.

Example 6.6 Let h be the Heisenberg algebra, with layers span{X1, X2} = v and span{Z}=z,
where [X1, X2] = Z. Let σ ∈ Av∞

0 and λ > 0, where σ = σ1Z. Then we define the Lipschitz
curve

a = a1X1 + a2X2, where a1 ≡ λ and a2(t) = 1

λ

t∫

0

σ1(s) ds.
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Clearly [a, ȧ] = σ and the corresponding homotopy is

�(τ, t) = λX1 + (1 − t)a2(τ )X2

is clearly isotropic and carries a to the point λX1 ∈ h. We have |a(0)| = λ and simple
calculations yield

Lip(�) ≤ 2 ‖σ‖L∞

λ
and |ȧ| = |σ |

λ
.

The validity of (44) is trivial, since |�t ∧ �τ | = 0 at any differentiability point of �.

Remark 6.7 The previous example shows that Heisenberg groups H
n are Allcock groups,

since H
n = Alnh, where h is the 3-dimensional Heisenberg algebra. Let us mention that for

Heisenberg groups H
n with n ≥ 2, Lipschitz extensions from the Euclidean plane could be

also treated by a different method, according to Fässler Master’s thesis, 2007.

Remark 6.8 Arguing as in the previous example, one can find several examples of 2-step
stratified algebras n with one codimensional horizontal distribution that suitably yield Allcock
groups.

On the other hand, it is easy to find Allcock groups where the horizontal distribution has
codimension higher than one, as in the following

Example 6.9 Let us consider the 2-step algebra ks = v ⊕ z, where v = {X1, . . . , Xs+1},
z = span{Z1, . . . , Zs} and the only nontrivial bracket relations are

[X1, Xj ] = Zj−1, and j = 2, . . . , s + 1.

Following the same argument of Remark 6.6, one can show that ks is surjective on isotropic
loops.

Remark 6.10 In view of the previous example, we have obtained other Allcock groups, cor-
responding to Alnks . Notice that they have horizontal distribution of codimension s, for every
integer s ≥ 1. Clearly, a 2-step algebra n of s-dimensional second layer, having a subalgebra
isomorphic to ks is surjective on isotropic loops.

Example 6.11 We define the “multi-Heisenberg algebra” Mhs , as the 2-step stratified alge-
bra, where first and second layers are spanned by the bases (X1, . . . , X2s) and (Z1, . . . , Zs),
respectively, and the only nontrivial brackets are

[Xj ,Xs+j ] = Zj for every j = 1, . . . , s.

Even in this case, one can argue as in the previous examples showing that Mhs is surjective
on isotropic loops, then AlnMhs are Allcock groups for every n, s ∈ N \ {0}.
Example 6.12 The complexified Heisenberg algebra is surjective on isotropic loops. Recall
that this algebra Ch = v ⊕ z is an H-type algebra, with JZ : v −→ v and J 2

Z = −|Z|2I for
every Z ∈ z. We fix an orthonormal basis (Z1, Z2) of z and define the unit vectors R0 = X0,
R1 = JZ1X0, R2 = JZ2X0 and R3 = JZ1JZ2X0, that form an orthonormal basis of v. For
more information on the complexified Heisenberg algebra, see [29]. Let us fix λ > 0 and
choose a curve σ = σ1Z1 + σ2Z2 ∈ Av∞

0 . We define a = ∑3
j=0 aj Rj ∈ Lip ([0, 1], v) as

follows

a0 ≡ λ, a3 ≡ 0, a1(t) = 1

λ

t∫

0

σ1 and a2(t) = 1

λ

t∫

0

σ2.
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This loop satisfies [a, ȧ] = λ ȧ1Z1 + λ ȧ2Z2 = σ , |a(0)| = λ and |ȧ| = λ−1 |σ |. We also
notice that the isotropic homotopy�(τ, t) = λR0 +(1− t) (a1(τ )R1 + a2(τ )R2) carries a to
λR0 ∈ v and satisfies Lip(�) ≤ 2 ‖σ‖L∞ λ−1. As in the previous cases, the validity of (44) is
straightforward. This proves that the complexified Heisenberg group CH

1, corresponding to
Al1

Ch, is an Allcock group and more generally Aln
Ch = CH

n are also Allcock groups. Notice
that these groups are all H-type groups.

Example 6.13 Let us consider the quaternionic H-type group nH, whose center z is spanned
by the orthonormal basis (Z1, Z2, Z3) and

(
X0, JZ1X0, JZ2X0, JZ3X0

)
is an orthonormal

basis of v. X0 is a fixed unit vector of v and we have

JZ1JZ2 = JZ3 , JZ1JZ3 = −JZ2 and JZ2JZ3 = JZ1 .

We define the direct product algebra n3
H

= v ⊕ z, where v = v1 ⊕v2 ⊕v3 and (Rl0, Rl1,
Rl2,R3l ) is the orthonormal basis of vl for l = 1, 2, 3. We have defined

Rl0 = Xl, Rl1 = JZ1Xl, Rl2 = JZ2Xl, Rl3 = JZ3Xl

where Xl is a unit vector of vl . Furthermore, whenever l �= s we set

[Rli, Rsj ] = 0 for every i, j = 1, 2, 3, 4.

Let λ > 0 and let σ = ∑3
j=1 σjZj ∈ Av∞

0 . We define the curve

a = λ

(
3∑

l=1

Rl0

)

+ 1

λ

3∑

l=1

⎛

⎝

t∫

0

σl(s) ds

⎞

⎠Rll ∈ Lip ([0, 1], v)

Then one can easily check that [a, ȧ] = ∑3
l=1 σl Zl , |a(0)| = √

3 λ and |ȧ| = λ−1 |σ |.
Finally, the isotropic homotopy

�(τ, t) = λ

(
3∑

l=1

Rl0

)

+ (1 − t)
1

λ

3∑

l=1

⎛

⎝

τ∫

0

σl(s) ds

⎞

⎠Rll

carries a to λ
(∑3

l=1 Rl0

)
∈ v and satisfies Lip(�) ≤ √

6 ‖σ‖L∞ λ−1. Thus, we have proved

estimates (43). Estimates (44) are obtained as in the previous examples. We have then proved
that the quaternionic H-type group N3

H
is an Allcock group. Notice that higher dimensional

Allcock groups Aln
n3

H

are H-type groups of dimension 12 n+ 3, where n is a positive integer.

Remark 6.14 Similar computations can be adapted to the octonionic H-type group. In gen-
eral, the principle to find Allcock groups is to add as many copies of the horizontal subspace
as possible. This yields the suitable “room” to construct isotropic homotopies.

On the other hand, it is not difficult to find 2-step groups that are not Allcock groups. It
suffices to show that some 2-step stratified algebras are not surjective on isotropic loops, as
we show in the next example.

Example 6.15 The free 2-step free Lie algebra g4,2 = V1 ⊕ V2 on five generators is not
surjective on isotropic loops. Let (X1, X2, X3, X4) be a basis of generators of V1 and let
Zlp = [Xl,Xp] be the vectors defining a basis of V2 where 1 ≤ l < p ≤ 4. The curve

σ(t) =
∑

1≤l<p≤4

σlp(t) Zlp
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is defined by setting

σlp(t) =
{
t − 1/2 if (l, p) ∈ {(1, 3), (2, 3), (1, 4)}
0 otherwise

. (45)

clearly belongs to Av∞
0 . Now, suppose by contradiction that there exists a Lipschitz function

a ∈ Lip0 ([0, 1], V1) such that [a, ȧ] = σ a.e. Setting a(t) = ∑4
j=1 aj (t)Xj , the previous

condition yields

det

(
al ap
ȧl ȧp

)

= σlp a.e. in [0, 1]. (46)

Then σ12 ≡ 0, σ13 = σ23 �= 0 a.e. imply (a1, ȧ1) = λ (a2, ȧ2) and λ(t) �= 0 a.e. It follows
that σ13 = λ σ23, that yields λ ≡ 1. Therefore σ14 = σ24, that conflicts with (45).

7 Lipschitz extensions from the plane to Allcock groups

This section is devoted to the proof of Theorem 1.3. Let Alnn be an Allcock group with
n = v ⊕ z and denote by m and s the dimensions of v and z, respectively. An orthonormal
basis (X1, . . . , Xm,Z1, . . . , Zs) of n will be fixed, where (X1, . . . , Xm) and (Z1, . . . , Zs)

are bases of v and z, respectively. We will also choose an orthonormal basis (Xij )j=1,...,m of
vi and an orthonormal basis (Zj )j=1,...,s of z. Since vj ’s are all isomorphic to v, then we can
select Xij such that

[Xil, Xip] = [Xl,Xp] for every i = 1, . . . , n and 1 ≤ l < p ≤ m. (47)

Then we fix graded coordinates in Alnn with respect to this basis. We consider

(x, y) =
∑

i=1,...,n
j=1,...,m

xij eij +
∑

l=1,...,s

yl El

where (eij , El) is the canonical basis of R
mn × R

s . Precisely, a point in Alnn of coordinates
(x, y) is given by

exp

⎛

⎜
⎜
⎝

∑

i=1,...,n
j=1,...,m

xij Xij +
∑

l=1,...,s

yl Zl

⎞

⎟
⎟
⎠ ∈ Alnn,

where exp : Alnn −→ Alnn is the canonical exponential mapping. Due to (47), for every
i = 1, . . . , n, we have

[Xil, Xip] = [Xl,Xp] =
s∑

k=1

bklp Zk.

Then, we are in the position to introduce the multi-symplectic form

ω =
s∑

k=1

ωk Ek, where ωk =
n∑

j=1

∑

1≤l<p≤m
bklp dxjl ∧ dxjp. (48)
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Notice that ω is an R
s-valued 2-form defined on R

mn. A primitive of this form is

θ =
s∑

k=1

θk Ek, where θk =
n∑

j=1

∑

1≤l<p≤m

bklp

2

(
xjl dxjp − xjp dxjl

)
. (49)

Then for every Lipschitz curve c : [a, b] −→ R
mn, we define the multi-symplectic area

swept by c as follows

∫

c

θ =
s∑

k=1

⎛

⎝

b∫

a

(c∗θk)(t) dt

⎞

⎠ Ek ∈ R
k.

This definition can be clearly extended to one-dimensional compact Lipschitz manifolds
through local parametrizations.

Definition 7.1 Let Alnn be an Allcock group and let R
mn × R

s be the associated graded
coordinates, where R

mn is the space of coordinates of the first layer. Then ω and θ defined
above are the associated multi-symplectic form and its primitive, respectively.

Definition 7.2 If ci : [0, 1] −→ R
mn, i = 0, 1, are Lipschitz loops, we say that � :

[0, 1]2 −→ R
mn is a multi-isotropic homotopy carrying c0 to c1 if � is Lipschitz, the pull-

back R
s-valued 2-form �∗ω a.e. vanishes in [0, 1]2, �(·, 0) = c0, �(·, 1) = c1 and �(0, ·) =

�(1, ·).
All the preceding notions will play a key role in the proof of the next theorem. Recall that
the Euclidean norm will be understood on R

mn and S1 will be thought of as the subset
{(x, y) | x2 + y2 = 1} equipped with the Euclidean distance of R

2. The symbol D denotes
the closed unit disk of R

2.

Theorem 7.3 Let Aln be an Allcock group and let ω and θ be the associated forms on R
mn

with respect to graded coordinates, where n ≥ 2. Then there exists a geometric constant
κ > 0 such that Lipschitz loop c : S1 −→ R

mn with
∫

c

θ = 0 and c(1, 0) = 0 can extended

to a mapping ϕ : D −→ R
mn such that ϕ∗(ω) = 0 a.e. in D and

Lip(ϕ) ≤ κ Lip(c). (50)

Proof We consider α(t) = c
(
e2πit

)
and set α̃ : R −→ R

mn such that α̃|[0,1] = α and
α̃(τ ) = α(0) = α(1) = 0 for every τ ∈ R \ [0, 1]. Clearly we have

Lip(α) = Lip(α̃) ≤ 2π Lip(c).

We first change the parametrization by the homotopy

�1 : [0, 1]2 −→ R
mn, �1(τ, t) = α̃ ((1 + t)τ − t) .

Notice that �1 is Lipschitz and clearly the pull-back form �∗
1ω vanishes a.e. in [0, 1]2. We

have shown that α is isotropically homotopic to [0, 1] � τ → α̃(2τ − 1). Now, we write
α̃(τ ) = β1(τ )+ β2(τ ), where we have set

β1(τ ) =
m∑

j=1

α̃1j (τ ) e1j and β2(τ ) =
∑

i=2,...,n
j=1,...,m

α̃ij (τ ) eij .
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Taking into account formula (48) for the multi-symplectic 2-form ω, we notice that

ω (β1(τ ) ∧ β2(τ )) =
s∑

k=1

ωk (β1(τ ) ∧ β2(τ )) Ek = 0,

since dxjl ∧ dxjp (e1r ∧ eiu) = 0 whenever i �= 1. Therefore, defining the homotopy

�2 : [0, 1]2 −→ R
mn, �2(τ, t) = β1(2τ − 1 + t)+ β2(2τ − 1),

it follows that for a.e. (τ, t) ∈ [0, 1]2, we have

�∗
2ω = ω (∂τ�2 ∧ ∂t�2) = 2ω

(
β̇2(2τ − 1) ∧ β̇1(2τ − 1 + t)

) = 0.

Then α̃(2τ − 1) is multi-isotropically homotopic to the product curve

(β1β2)(τ ) = β1(2τ)+ β2(2τ − 1).

Now, we move β1 to a multi-symplectically orthogonal space defining

β1(τ ) =
m∑

j=1

α̃1j (τ ) e2j .

Thus, we get ω(β1 ∧β1) = 0. Notice that to perform this move from β1 to β1, we have used
the assumption n ≥ 2. We define the isotropic homotopy �3 : [0, 1]2 −→ R

mn,

�3(τ, t) = cos(tπ/2) β1(2τ)+ sin(tπ/2) β1(2τ)+ β2(2τ − 1).

Now, we observe that

ωk(β1 ∧ β̇1) =
∑

1≤l<p≤m
bklp (dx1l ∧ dx1p)(β1 ∧ β̇1)

and similarly we have

ωk(β1 ∧ β̇1) =
∑

1≤l<p≤m
bklp (dx2l ∧ dx2p)(β1 ∧ β̇1),

hence ω(β1 ∧ β̇1) = ω
(
β1 ∧ β̇1

)
a.e. in [0, 1]. Thus, a simple computation yields

�∗
3ω = ω (∂t�3 ∧ ∂τ�3) = cos(tπ/2) ω

(
β1(2τ) ∧ β̇2(2τ − 1)

)

for every t ∈ [0, 1] and a.e. τ ∈ [0, 1]. On the other hand,β1(2τ) vanishes when 2−1 ≤ τ ≤ 1
and β̇2(2τ − 1) = 0 for a.e. τ ∈ [0, 2−1], this implies that �∗

3ω = 0 a.e. in [0, 1]2. We have
proved that β1β2 is multi-isotropically homotopic to

(β1β2)(τ ) = β1(2τ)+ β2(2τ − 1).

To construct the next homotopy, we use the fact that the algebra n is surjective on isotropic
loops. Let us consider the L∞ curve

σ =
s∑

k=1

ωk
(
(
β1β2

) ∧ d

ds

(
β1β2

)
)

Zk. (51)
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We wish to show that σ ∈ Av∞
0 , namely

∫ 1
0 σ = 0. To do so, we use the vanishing of the

multi-symplectic area
∫
c
θ = 0, that yields

∫

S1

c∗θ =
1∫

0

α∗θ = 0.

Then we get

1∫

0

(β1β2)
∗θ =

1/2∫

0

(β1)
∗θ +

1∫

1/2

β∗
2 θ =

1/2∫

0

β∗
1 θ +

1∫

1/2

β∗
2 θ =

1∫

0

(β1β2)
∗θ

=
1∫

0

α∗θ = 0.

and the equalities

(β1β2)
∗θ = 1

2
ω

(
(
β1β2

) ∧ d

ds

(
β1β2

)
)

= 1

2
σ

prove our claim, namely, σ ∈ Av∞
0 . Since n is surjective on isotropic loops, we set

λ = length(c) =
1∫

0

|α̇(t)| dt ≤ 2π Lip(c) = 2πL (52)

and apply Definition 6.3. Then we can find a loop a ∈ Lip([0, 1], v) that is isotropically
homotopic to a point and in particular satisfies

[a, ȧ] = σ and max[0,1] |a| ≤ C

(

λ+ ‖σ‖L∞

λ

)

. (53)

We write a = ∑m
i=1 ai Xi , then

∑

1≤l<p≤m
det

(
al ap
ȧl ȧp

)

bklp = ωk
(
(
β1β2

) ∧ d

ds

(
β1β2

)
)

for every k = 1, . . . , s. We introduce the Lipschitz loop q = ∑m
j=1 aj e1j in R

mn and observe
that

ω
(
q(τ) ∧ (β1β2)(τ )

) = 0.

Furthermore, by definition of ωk , one immediately gets

ωk (q ∧ q̇) =
∑

1≤l<p≤m
det

(
al ap
ȧl ȧp

)

bklp. (54)

It follows that

ω (q ∧ q̇) = ω

(

(β1β2) ∧ d

dτ
(β1β2)

)

a.e. in [0, 1].
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Due to the previous condition, arguing as for �3, one easily finds that the Lipschitz mapping
�4 : [0, 1]2 −→ R

mn defined as

�4(τ, t) = cos(tπ/2) (β1β2)(τ )+ sin(tπ/2) q(τ )

is a multi-isotropic homotopy between β1β2 and q. According to Definition 6.3, there exists
an isotropic homotopy � : [0, 1]2 −→ v such that �(·, 0) = a, �(·, 1) ≡ ξ , �(0, ·) =
�(1, ·) and [∂τ�, ∂t�] = 0 a.e. in [0, 1]2. Writing � = ∑n

i=1
∑m
j=1 �ijXij and defining

�5 : [0, 1]2 −→ R
mn as �5 = ∑n

i=1
∑m
j=1 �ij eij , we have that �∗

5ω = 0 and estimate (43)

yields a constant C̃1 > 0 such that

Lip(�5) ≤ C̃1

(

λ+ ‖σ‖L∞

λ

)

. (55)

Defining ξ = ∑
i,j ξijXij and q0 = ∑

i,j ξij eij ∈ R
mn, one immediately check that �5

makes q multi-isotropically homotopic the a point q0 ∈ R
mn. Thus, pasting all the previous

multi-isotropic homotopies, we get the following mapping H : [0, 1]2 −→ R
mn, defined as

H(τ, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�1(τ, 5t) 0 ≤ t < 1/5
�2(τ, 5t − 1) 1/5 ≤ t < 2/5
�3(τ, 5t − 2) 2/5 ≤ t < 3/5
�4(τ, 5t − 3) 3/5 ≤ t < 4/5
�5(τ, 5t − 4) 4/5 ≤ t < 1

.

It is clearly both continuous and a.e. differentiable in [0, 1]2. Moreover, we also have
H ∗(ω) = 0 a.e. in [0, 1]2. By convexity of [0, 1]2 and triangle inequality, one easily notices
the following estimate

Lip(H) ≤ 5
5∑

j=1

Lip(�j ). (56)

Direct computations show that
⎧
⎨

⎩

Lip(�1) ≤ 6π L
Lip(�2) ≤ 6π L
Lip(�3) ≤ 6πL+ π

2 max[0,1] |α|
, (57)

where we recall that we have defined L = Lip(c). Taking into account the definition of All-
cock group, we have to estimate ‖σ‖L∞ . Thus, taking into account (51), a direct computation
yields

|ωk(γ (τ) ∧ γ̇ (τ ))| ≤ 2 nm

⎛

⎝ max
r=1,...,s

1≤l<p≤m
|brlp|

⎞

⎠ |γ (τ)| |γ̇ (τ )|

for every k = 1, . . . , s, hence estimates

max[0,1]
∣
∣
(
β1β2

)∣
∣ ≤ max[0,1] |α| and

∥
∥
∥
∥
d

dτ

(
β1β2

)
∥
∥
∥
∥
L∞((0,1),Rmn)

≤ 2‖α̇‖L∞((0,1),Rmn) ≤ 4πL,

along with max[0,1] |α| ≤ λ, lead us to the estimate

‖σ‖L∞ ≤ 8π
√
s nm

⎛

⎝ max
r=1,...,s

1≤l<p≤m
|brlp|

⎞

⎠ λL = C0λL.
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As a consequence, by virtue of (52) and (55), we get a constant C1 > 0 such that

Lip(�5) ≤ C1 L. (58)

In addition, by (52) and (53), observing that max |a| = max |q|, we also obtain

max[0,1] |q| ≤ C (2π + C0) L,

where C0 > 0 is a geometric constant depending on the group. It is also obvious that
Lip(q) ≤ Lip(�5) ≤ C1 L. Thus, joining all the previous estimates, we get a new constant
C2 > 0 such that

Lip(�4) ≤ C2 L.

By last inequality along with (58), all previous estimates for Lip(�j ) and applying (56), we
have found a geometric constant κ1 > 0, only depending on the group, such that

Lip(H) ≤ κ1 L. (59)

ThenH is a multi-isotropic homotopy such thatH(·, 0) = α : [0, 1] −→ R
mn andH(·, 1) ≡

q0. The condition H(0, t) = H(1, t) for every t ∈ [0, 1] implies that

ϕ
(
ρ ei2πθ

)
=
{
H (θ, 2(1 − ρ)) if 1/2 ≤ ρ ≤ 1
q0 if 0 ≤ ρ ≤ 1/2

is well defined on the closed unit disk D ⊂ R
2. Furthermore, a direct computation shows

that Lip(ϕD\B1/2) ≤ c0 Lip(H), for a suitable geometric constant c0 > 0, whereB1/2 = {z ∈
R

2 | |z| < 1/2}. Since ϕ|B1/2
≡ q0, then

Lip(ϕ) ≤ c0 Lip(H) ≤ c0 κ1 L

Clearly ϕS1 ≡ c and ϕ∗ω = 0 a.e. in D. Our claim is achieved. 
�
Remark 7.4 The previous theorem extends Theorem 2.3 of [1], where the standard sym-
plectic space R

2n is replaced with the R
mn equipped with the multi-symplectic form ω =∑s

k=1 ω
k Ek .

Next, we will show how Theorem 7.3 leads us to a Lipschitz extension theorem. We will use
some abstract tools in metric spaces, following the work by Lang and Schlichenmaier [21].

Definition 7.5 We say that a metric space Y is Lipschitz m-connected for some m ∈ N if
there exists a constant cm > 0 such that any Lipschitz map � : Sm −→ Y has a Lipschitz
extension � : Dm+1 −→ Y with estimate Lip(�) ≤ cm Lip(�).

Definition 7.6 Let (X, Y ) be a couple of metric spaces. We say that (X, Y ) has the Lips-
chitz extension property if there exists C > 0 such that for every subset Z ⊂ X and every
Lipschitz map f : Z −→ Y , there exists a Lipschitz extension f : X −→ Y such that
Lip(f ) ≤ C Lip(f ).

Theorem 7.7 (Lang and Schlichenmaier [21]) Let X and Y be two metric spaces and sup-
pose that the Nagata dimension of X is less than or equal to n and that Y is complete. If
Y is Lipschitz m-connected for m = 0, 1, . . . , n − 1, then the pair (X, Y ) has the Lipschitz
extension property.
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Taking into account that Nagata dimension of R
2 is clearly two, by Theorem 7.7 it follows that

both Lipschitz 0-connectedness and Lipschitz 1-connectedness of Alnn imply Corollary 1.4.
The former property is a consequence of the fact that Alnn, as any stratified group, is connected
by geodesics. The latter is proved in the following

Theorem 7.8 Aln is 1-connected for every n ≥ 2.

Proof Let � : S1 −→ Aln be a Lipschitz loop. Up to a left translation, that preserves the
Lipschitz constant of �, we can assume that �(1, 0) = e, where e is the unit element of Aln.
We introduce the 1-periodic mappings a : [0, 1] −→ V1 and b : [0, 1] −→ V2 such that
�
(
e2πit

) = exp (a(t)+ b(t)). We consider our fixed basis (Xij ) of V1, that satisfies (47),
along with the orthonormal basis (Zk) of V2. We define

a(t) =
∑

1≤i≤n
1≤j≤m

αij (t)Xij and b(t) =
s∑

k=1

βk(t) Zk

where α = (αij ) : [0, 1] −→ R
mn and β = (βk) : [0, 1] −→ R

s are Lipschitz loops that
satisfy α(0) = α(1) = 0 and β(0) = β(1) = 0. Since � is Lipschitz, Theorem 1.1 implies
the a.e. validity of contact equations

s∑

k=1

β̇k Zk = 1

2
[a, ȧ] = 1

2

n∑

j=1

∑

1≤l<p≤m

s∑

k=1

bklp
(
αjlα̇jp − αjpα̇jl

)
Zk =

s∑

k=1

α∗(θk)Zk

(60)

As a consequence, the 1-periodicity of β yields

∫

α

θ =
s∑

k=1

⎛

⎝

1∫

0

(α∗θk)(t) dt

⎞

⎠ Ek = 0. (61)

We define the curve c = (cij ) : S1 −→ R
mn defined by

cij

(
e2πit

)
= αij (t),

therefore c has vanishing multi-symplectic area, due to (61), and c(1, 0) = 0. This allows us to
apply Theorem 7.3, getting a Lipschitz extensionϕ : D −→ R

mn of c : S1 −→ R
mn such that

ϕ∗ω = 0 a.e. in D. (62)

To construct the extension of �, we introduce the function

A : D −→ V1, A(x1, x2) =
∑

1≤i≤n
1≤j≤m

ϕij (x1, x2)Xij .

We observe that a(t) = A
(
e2πit

)
and define zk(e2πit ) = βk(t), where zk : S1 −→ R

s is
Lipschitz continuous for every k = 1, . . . , s. To achieve our claim, we have to find a Lipschitz
extension T : D −→ V2 such that T|S1 = ∑s

k=1 zk Zk and the following contact equations
a.e. hold

∂x1T = 1

2

[
A, ∂x1A

]
and ∂x2T = 1

2

[
A, ∂x2A

]
. (63)
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In fact, if such a function B exists, then applying Theorem 1.2 in the case N is closed
Euclidean disk D of R

2, hence the mapping

� = exp ◦(A+ T ) : D −→ Aln

is Lipschitz continuous and Lip(�) ≤ C Lip(A) = C Lip(ϕ), for a suitable C > 0. Further-
more, �|S1 = �, hence Theorem 7.3 yields a geometric constant κ such that

Lip(�) ≤ κ C Lip(c). (64)

By Lemma 3.3, there exists C1 > 0 such that

Lip(�) ≤ κ C C1 Lip(�). (65)

Thus, to conclude the proof, we are left to show the existence of T : D −→ V2 satisfying
the contact equations (63) and the boundary condition T|S1 = ∑s

k=1 zk Zk .
First, for every k = 1, . . . , s, we consider the 1-form fk = f 1

k dx1 + f 2
k dx2 where

f ik = 1

2

n∑

j=1

∑

1≤l<p≤m
bklp

(
ϕjl ∂xi ϕjp − ϕjp ∂xi ϕjl

) ∈ L∞(B1),

where B1 is the unit open ball of R
2. Smoothing the function ϕ with ϕε = ϕ ∗ ζε , we obtain

the approximating forms gkε = g1
kεdx1 + g2

kεdx2 of components

gikε = 1

2

n∑

j=1

∑

1≤l<p≤m
bklp

(
ϕεjl ∂xi ϕ

ε
jp − ϕεjp ∂xi ϕ

ε
jl

)
,

where ζε is a standard mollifier and gkε is a smooth 1-form on B1−ε. It follows that

dgkε = (
∂x1g

2
kε − ∂x2g

1
kε

)
dx1 ∧ dx2

=
n∑

j=1

∑

1≤l<p≤m
bklp

(
∂x1ϕ

ε
jl ∂x2ϕ

ε
jp − ∂x1ϕ

ε
jp∂x2ϕ

ε
jl

)
dx1 ∧ dx2

= (ϕε)∗ωk.

Furthermore, (ϕε)∗ωk a.e. converge to ϕ∗ωk and has uniformly bounded L∞-norm with
respect to ε. Thus, taking into account (62), we have proved that (ϕε)∗ωk converges to zero in
L1(B1−δ) as ε → 0+ for arbitrary 0 < δ < 1. Taking also into account that gkε a.e. converge
to fk and are uniformly bounded with respect to ε in the L∞-norm, it follows that dfk = 0 in
the distributional sense. As a consequence, setting f ikε = f ik ∗ζε and fkε = f 1

kεdx1 +f 2
kεdx2

one gets dfkε = 0 on B1−ε. This gives the existence of a unique function ψ̃kε ∈ C∞(B1−ε)
such that ψ̃kε(0, 0) = 0 and dψ̃kε = fkε in B1−ε . The family of functions ψ̃kε is uniformly
Lipschitz continuous and uniformly bounded, hence Ascoli-Arzelà’s theorem gives the exis-
tence of a Lipschitz function ψ̃k : D −→ R that is the uniform limit of ψ̃kε on compact sets
of B1 and clearly extends to the closure D. Furthermore, dψ̃k = fk as distributions, hence
taking into account that ψ̃k is Lipschitz, it follows that dψ̃k = fk a.e. in D. Thus, defining
ψk : D −→ R as ψk = ψ̃k + zk(1, 0)− ψ̃k(1, 0) for every k = 1, . . . , s, we get

ψk(1, 0) = zk(1, 0) and dψk = ϕ∗θk a.e. in D.

As a result, the function T : D −→ V2 given by T = ∑s
k=1 ψk Zk satisfies the condition

T (1, 0) = ∑s
k=1 zk(1, 0) Zk along with the contact equations (63). The last step is to show

the validity of the boundary condition T|S1 = ∑s
k=1 zk Zk .
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To do this, we recall that the mapping � : D −→ Alnn, � = exp ◦(A + T ) is Lipschitz
continuous. In particular, �|S1 : S1 −→ Alnn and � : S1 −→ Alnn are Lipschitz curves with
�(1, 0) = �(1, 0) = e. Then these curves must coincide by uniqueness of the horizontal
lifting. In fact, we have

{
�(e2πit ) = exp

(
a(t)+ b̃(t)

)

�
(
e2πit

) = exp (a(t)+ b(t))
,

where b(0) = b̃(0) = 0. By Theorem 1.1, since both �|S1 and � are Lipschitz, then both b

and b̃ satisfy the contact equations

˙̃
b = 1

2
[a, ȧ] = ḃ a.e. in [0, 1]

and clearly b = b̃. This shows that �|S1 = � and leads us to the conclusion. 
�

Remark 7.9 From definition of 1-connectedness, one easily observes that Theorem 7.8
exactly coincides with Theorem 1.3.

8 Quadratic isoperimetric inequalities

In this section, we prove the validity of quadratic isoperimetric inequalities in Allcock groups.
We will follow conventions and notation of Sect. 7.

Let g be a left invariant Riemannian metric defined on Aln such that the fixed basis
(Xij , Zk)i,j,k of Aln is orthonormal. Denote by ρ the associated Carnot-Carathéodory dis-
tance defined on Aln as

ρ0(x, y) = inf
�:x−→y, T �⊂HAln

1∫

0

√
g (�(t)) (�′(t), �′(t)) dt

where � : [0, 1] −→ Aln. Notice that if �(t) = exp (γ1(t)+ γ2(t)), γi(t) ∈ Vi and also
�′(t) = ∑

ij aij (t) Xij ∈ L1 ((0, 1), V1), then

1∫

0

√
g (�(t)) (�′(t), �′(t)) dt =

1∫

0

|a(t)| dt =
1∫

0

|γ ′
1(t)| dt.

The last equality follows from (15), taking into account that � is horizontal. The symbol
| · | above also denotes the Hilbert norm in Aln that makes (Xij , Zk) orthonormal. Abusing
notation, we will use the same symbol to define a norm on Aln as follows

|x − y| := | exp−1(x)− exp−1(y)|,
for every x, y ∈ Aln. The Riemannian distance � associated to g, satisfies � ≤ ρ0. Then the
proof of the next proposition is elementary.

Proposition 8.1 Let V be a horizontal subgroup of Aln. Then for every x, y ∈ V, we have
ρ0(x, y) = �(x, y) = |x − y|.
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Proposition 8.2 Let � : S1 −→ Aln be a Lipschitz mapping defined as

� = exp ◦
⎛

⎝
∑

ij

cij Xij +
∑

k

zk Zk

⎞

⎠ .

Then we have length�� = lengthρ0
� = length|·|(c).

Proof Using the sub-Riemannian area formula, one gets

b∫

a

� (exp(γ̇1(t))) dt =
b∫

a

ρ0 (exp(γ̇1(t))) dt =
∫

G

N(�, y) dH1(y) ,

then Theorem 2.10.13 of [14] gives

b∫

a

� (exp(γ̇1(t))) dt =
b∫

a

ρ0 (exp(γ̇1(t))) dt = V ba � = lengthρ0
(�) = length�(�).

Taking into account Proposition 8.1, it follows that ρ0 (exp(γ̇1(t))) = |γ̇1(t)| = |ċ(t)|. 
�
Definition 8.3 LetL : R

2 −→ Aln be an h-homomorphism. Then the jacobian ofL is given
by J (L) = H2

ρ0
(L(A)) /H2|·|(A) where A is any set of positive measure in R

2.

The previous definition of jacobian has been introduced in [22] for h-homomorphisms of
stratified groups. Notice that it does not depend on the choice of the set A.

Remark 8.4 Let L : R
2 −→ Aln be an h-homomorphism. Then L(R2) = V is a horizontal

subgroup of Aln and Proposition 8.1 implies that

H2
ρ0
(L(A)) = H2|·| (L(A)) ,

then the classical area formula yields J (L) = |L1 ∧ L2|, where |L1 ∧ L2| is the classical
Euclidean jacobian of L and Li = L(ei).

Proposition 8.5 Let f : D −→ Aln be a Lipschitz mapping defined as

f = exp ◦
⎛

⎝
∑

ij

ϕij Xij +
∑

k

ψk Zk

⎞

⎠ .

Let N(f, y) = H0
(
f−1(y)

)
be the multiplicity function. Then we have

∫

Aln

N(f, y)H2
ρ0
(y) =

∫

D

J (Df (x)) dx =
∫

D

|∂x1ϕ ∧ ∂x2ϕ| dx. (66)

Proof Since the Pansu differential Df (x) : R
2 −→ Aln is an h-homomorphism, the last s

rows of the corresponding matrix are vanishing. In view of Remark 8.4, the sub-Riemannian
area formula of [22] concludes the proof. 
�
Theorem 8.6 Let Aln be an Allcock group and let ω and θ be the associated forms on R

mn

with respect to fixed graded coordinates, where n ≥ 2. Then there exists a geometric constant
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K > 0 such that for every Lipschitz loop c : S1 −→ R
mn, with

∫

c

θ = 0 and c(1, 0) = 0 one

can find a Lipschitz extension ϕ : D −→ R
mn such that ϕ∗ω = 0 a.e. in D and

H2|·| (ϕ(D)) ≤
∫

D

|∂x1ϕ ∧ ∂x2ϕ| dx ≤ K length|·|(c)2 , (67)

where length|·|(c) is the length of c with respect to the Euclidean norm | · | in R
mn.

Proof We will continue the argument used in the proof of Theorem 7.3, exploiting the same
notation. We first recall that

length|·|(c) =
1∫

0

|α′(t)| dt

is the length of c : S1 −→ R
mn, where α(t) = c(ei2πt ). From the proof of Theorem 7.3, we

recall the definition of ϕ : D −→ R
mn as

ϕ
(
ρ ei2πθ

)
=
{
H (θ, 2(1 − ρ)) if 1/2 ≤ ρ ≤ 1
q0 if 0 ≤ ρ ≤ 1/2

,

where H : [0, 1]2 −→ R
mn is given by

H(τ, t) = �k+1(τ, 5t − k) if
k

5
≤ t <

k + 1

5
and k = 0, 1, 2, 3, 4.

If we set ϕ̃(ρ, θ) = ϕ(ρ ei2πθ ), then we have

∫

D

|ϕx1 ∧ ϕx2 | dx =
1∫

1/2

1∫

0

J ϕ̃(ρ, θ) dθ dρ ,

where |v ∧ w| is the Hilbert norm on 2-vectors of �2(R
mn) with respect to the canonical

basis. This is a consequence of the change of variable φ(ρ, θ) = ρ ei2πθ and the fact that
|φρ ∧ φθ | = ρ. It follows that

∫

D

Jϕ(x) dx = 2

1∫

1/2

1∫

0

|Hθ (θ, 2(1 − ρ)) ∧Hρ (θ, 2(1 − ρ)) | dθ dρ.

Taking into account that

H (θ, 2(1 − ρ)) = �k+1 (θ, 10(1 − ρ)− k) if 1 − k + 1

10
< ρ ≤ 1 − k

10
and k = 0, 1, 2, 3, 4 ,

a simple change of variable yields

∫

D

|ϕx1 ∧ ϕx2 | dx =
4∑

k=0

1∫

0

1∫

0

|(�k+1)τ (θ, t) ∧ (�k+1)t (θ, t) | dt dθ. (68)

Now, we use the explicit formulas of �j given in the proof of Theorem 7.3. From definition
of �1 it is obvious that |(�1)τ ∧ (�1)t | = 0 a.e. in the unit square [0, 1]2, denoted by Q.
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Concerning �2 and �3, direct computations give

∫

Q

|(�2)τ ∧ (�2)t |dτdt ≤ 2

⎛

⎝

1∫

0

|α′(t)|dt
⎞

⎠

2

,

∫

Q

|(�3)τ ∧ (�3)t |dτdt ≤ 3π

⎛

⎝

1∫

0

|α̇(t)|dt
⎞

⎠

2

.

For �4 we show some computations, getting
∫

Q

|(�4)τ ∧ (�4)t |dτdt = π

2

∫

Q

∣
∣
(
cos (πt/2) (β1β2)

′(τ )+ sin (πt/2) q ′(τ )
)

∧ (− sin (πt/2) (β1β2)(τ )+ cos (πt/2) q(τ ))| dτdt

≤ π

2

1∫

0

(|(β1β2)
′(τ )| + |q ′(τ )|) (|(β1β2)(τ )| + |q(τ)|) dτ

By definition of β1β2, one easily checks that

max[0,1] |(β1β2)| ≤ 2

1∫

0

|α̇(t)| dt and |(β1β2)
′(t)| ≤ 2

(|α̃′(2t)| + |α̃′(2t − 1)|) . (69)

The curve q(t) is given by the proof of Theorem 7.3, where it has been obtained applying
Definition 6.3 with λ = length|·|(c). It follows that there existsC > 0 such that |q(0)| ≤ C λ.
Thus, we get

|q(t)| ≤ Cλ+ C

λ

t∫

0

|σ(t)| dt.

Recall that σ(t) =
∑s

k=1
ωk
(
(β1β2)(t) ∧ (β1β2)

′(t)
)
Zk , then bilinearity of ωk’s yields

C1 > 0 such that

|σ(t)| ≤ C1 |(β1β2)(t)| |(β1β2)
′(t)|.

As a result, in view of (69), it follows that

|σ(t)| ≤ 4C1 λ
(|α̃′(2t)| + |α̃′(2t − 1)|) . (70)

We have proved that max
t∈[0,1] |q(t)| ≤ C λ (1 + 4C1) , that implies

∫

Q

|(�4)τ ∧ (�4)t |dτdt ≤ λ
π

2
(2 + C + 4C1C)

1∫

0

(|(β1β2)
′(τ )| + |q ′(τ )|) dτ.

Taking into account that

1∫

0

|q̇(t)| dt ≤ C

λ

1∫

0

|σ(t)| dt ≤ 2C C1

1∫

0

|(β1β2)
′(t)| ≤ 4C C1 λ ,
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we are then lead to the following
∫

Q

|(�4)τ ∧ (�4)t |dτdt ≤ π (2 + C + 4C1C) (1 + 2CC1) λ
2.

Finally, by definition of Allcock group and applying Definition 6.3, we have

∫

Q

|(�5)τ ∧ (�5)t |dτdt ≤ C

⎛

⎝

1∫

0

|q̇(t)| dt
⎞

⎠

2

≤ 16C3 C2
1 λ

2.

Joining the previous estimates with (68), estimate (67) follows. 
�
Remark 8.7 The previous theorem could be seen as a completion of Theorem 7.3, where we
have fixed our attention on the area enclosed by the extension ϕ.

Proof of Theorem 1.5 Up to left translation, we can assume that �(1, 0) coincides with the
unit element. Thus, we define

� = exp ◦
⎛

⎝
n∑

i=1

n∑

j=1

cij Xij +
s∑

k=1

zk Zk

⎞

⎠ ,

where c : S1 −→ R
mn. Arguing as in the beginning of the proof of Theorem 7.8, it follows

that
∫

c

θ = 0 and c(1, 0) = 0. Then we apply Theorem 8.6, getting a Lipschitz extension

ϕ : D −→ R
mn such that

∫

D

|∂x1ϕ ∧ ∂x2ϕ| dx ≤ K length|·|(c)2 , (71)

Finally, Propositions 8.2 and 8.5 lead us to the conclusion. 
�
Example 8.8 Let us follow the notation used in the proof of Theorem 1.5, in the special case
Aln is the 5-dimensional Heisenberg group H

2 equipped with graded coordinates (x1, . . . , x5)

such that

∇φ(x) =

⎛

⎜
⎜
⎜
⎜
⎝

∇ϕ1

∇ϕ2

∇ϕ3

∇ϕ4

ϕ1∇ϕ3 − ϕ3∇ϕ1 + ϕ2∇ϕ3 − ϕ3∇ϕ2

⎞

⎟
⎟
⎟
⎟
⎠
, (72)

where we have set φ = (ϕ, ψ) and due to the contact equations ∇ψ is equal to the last row
of (72). Then a simple computation yields

|∂x1φ ∧ ∂x2φ| ≤
√

1 + 3|ϕ|2 |∂x1ϕ ∧ ∂x2ϕ|.
Now, if ϕ is the extension provided by Theorem 8.6 and f = exp

(∑4
j=1 ϕj Xj + ψ X5

)
is

the corresponding Lipschitz mapping, then

H2|·| (f (D)) ≤ C

(

1 + 2 max
D

|ϕ|
)

length|·|(c)2

for a suitable geometric constant C > 0.
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