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Abstract. Let G be a Carnot group with homogeneous dimension Q ≥ 3 and let L be a
sub-Laplacian on G. We prove that the critical dimension for removable sets of Lipschitz L-
harmonic functions is (Q − 1). Moreover we construct self-similar sets with positive and finite
HQ−1 measure which are removable.

1. Introduction

A compact set K in the complex plane is called removable for bounded analytic functions
if for any open set Ω containing K any bounded analytic function on Ω \ K has an analytic
extension to Ω. It is easily seen that points are removable while closed disks are not. Already
at the end of the 19th century, Painlevé proved that sets of zero length are removable. He
naturally raised the question of geometrically characterizing removable sets. In 1947 Ahlfors in
[1] gave a potential-theoretic characterization of removable sets by defining the celebrated notion
of analytic capacity. In passing we note that Vitushkin, see e.g. [40], used analytic capacity and
a close variant, the so called continuous analytic capacity, to study problems of uniform rational
approximation on compact sets of the complex plane. Although it was known by then that the
critical dimension for removable sets is 1 very few things were known about sets with critical
dimension. The following question arose: is it true that a compact K is non-removable if and
only H1(K) > 0? Here, H1 stands for the 1-dimensional Hausdorff measure.

The negative answer to the above question was obtained by Vitushkin [39] in the 1960’s. Vi-
tushkin constructed a removable compact set K with 0 < H1(K) < ∞. Later on, Garnett [16]
and Ivanov [18] proved that the familiar 1-dimensional 4-corners Cantor set is in fact removable
for bounded analytic functions. The “irregular” geometric structure of these examples led Vi-
tushkin to conjecture that: a compact set K is removable if and only if it is purely unrectifiable.
Recall that a set K is called rectifiable if there exist countably many Lipschitz curves Γi such
that H1(K \∪iΓi) = 0. On the other hand a set is called purely unrectifiable if it intersects any
rectifiable curve in a set of H1 measure zero. Although Vitushkin’s conjecture is false in full
generality (this was proved in an astonishing way by Mattila in [24]) it turns out that it holds
if we restrict attention to sets of finite length. The latter result is due to David [9].

The proof of Vitushkin’s conjecture has a long and interesting history which is deeply related
to the geometric study of singular integrals. See [38], [25] or [37] for extensive treatments. We
first remark that the “if” part in the restricted conjecture of Vitushkin follows from Calderón’s
theorem on the L2 boundedness of the Cauchy transform on Lipschitz graphs with small Lip-
schitz constant. It is of interest that Calderón studied this problem in connection with partial
differential equations with minimal smoothness conditions not being aware with the connec-
tions to removability. In subsequent years the topic was studied extensively and several deep
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contributions were made, see e.g. [8],[19] and [11]. Nevertheless it was Melnikov’s discovery in
[28] of the relation of the Cauchy kernel to the so-called Menger curvature that triggered many
advances during the 1990’s, which eventually led to the complete resolution of Vitushkin’s con-
jecture. In [26] Mattila, Melnikov and Verdera proved Vitushkin’s conjecture in the particular
case where the set K is 1 Ahlfors–David regular, or in short 1-AD-regular. A Radon measure µ
is s-AD-regular, s > 0, if

rs

C
≤ µ(B(z, r)) ≤ Crs for z ∈ sptµ and 0 < r < diam(spt(µ)),

for some fixed constant C. A set K is s-AD regular if the measure HsbK is s-AD regular. A few
years later David characterized in [9] the removable sets of bounded analytic functions among
sets of finite length and Tolsa gave a complete Menger curvature integral characterization in [36]
of all removable sets of bounded analytic functions. We mention that all these results depend
on the deep geometric study of the Cauchy singular integral.

A compact set K ⊂ Rn is said to be removable for Lipschitz harmonic functions if whenever
D is an open set containing K and f : D → R is a Lipschitz function which is harmonic in
D \K, then f is harmonic in D. David and Mattila in [10] characterized planar removable sets
with finite length: finite length removable sets for either bounded analytic or Lipschitz harmonic
functions are precisely the purely 1-unrectifiable sets. This is one of the various reasons why
Lipschitz harmonic functions are a natural class to study. Very recently Nazarov, Tolsa and
Volberg [31] extended the result of David and Mattila in Rn by proving that a compact set
K ⊂ Rn with Hn−1(K) < ∞ is removable for Lipschitz harmonic functions if and only if it is
purely (n−1)-unrectifiable. We should mention here that both results depend heavily on singular
integrals. The result of David and Mattila is based on intricate Tb theorems for non-doubling
measures and the Cauchy transform. Nazarov, Tolsa and Volberg base their proof on their
earlier very deep work [30], where they prove that if µ is an (n − 1)-AD regular measure, then
the Riesz kernel x/|x|n, x ∈ Rn \ {0}, defines bounded singular operators in L2(µ) if and only if
µ is (n−1)-uniformly rectifiable. Uniform rectifiability can be thought as a quantitative version
of rectifiability. The Riesz kernels arise naturally in the study of removable sets for Lipschitz
harmonic functions, as one readily sees that ∇Γn = x/|x|n, x ∈ Rn \ {0}, where Γn = cn|x|2−n
denotes the fundamental solution of the Laplacian for n ≥ 3.

Recently, significant effort has been made towards the extension of classical Euclidean analysis
and geometry into general non-Riemannian spaces, including Carnot groups and more abstract
metric measure spaces. In particular, potential theory related to sub-Laplacians in Carnot groups
is an active research field with many recent developments, see [4] and the references given there.
In [6] the problem of removability for Lipschitz L-harmonic functions in the Heisenberg group
Hn was considered. It was established there that, in accordance with the Euclidean case, the
critical removability dimension is Q− 1, where Q = 2n+ 2 denotes the Hausdorff dimension of
the Heisenberg group. Moreover, examples of separated self-similar removable sets with positive
and finite (Q−1)-measure were given. An essential ingredient in order to establish the existence
of such sets was the proof of a general criterion for unboundedness of singular integrals on self
similar sets of metric groups.

The aim of the present paper is to extend the results from [6] to general Carnot groups. Our
first result reads as follows.

Theorem 1.1. Let C be a compact subset of a Carnot group G and denote by Q the homogeneous
dimension of G. Let L be the sub-Laplacian in G.

(i) If HQ−1(C) = 0, C is removable for Lipschitz L-harmonic functions.
(ii) If dimC > Q− 1, C is not removable for Lipschitz L-harmonic functions.
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The proof of Theorem 1.1 is similar to the proof from [6]. Nevertheless we decided for the
convenience of the reader to provide all of the details, although in some places the arguments are
identical to those in [6]. As in [6] the proof of Theorem 1.1 relies on a representation theorem
for Lipschitz L-harmonic functions (Theorem 3.1). The analogue of Theorem 3.1 in [6] uses the
divergence theorem of Franchi, Serapioni and Serra-Cassano [15] which is known to be true only
for step two Carnot groups.

In the case of general Carnot groups, we overcome this obstacle using the Euclidean regularity
of the domains appearing in the proof of Theorem 3.1. In fact, we have finite unions of bounded
sets with smooth boundary, that are sets of finite perimeter in the Euclidean sense. On the
other hand, we have also to detect the Euclidean reduced boundary, which we accomplish by
perturbing a given piecewise smooth boundary and using the classical Sard’s theorem. Then
joining the Euclidean divergence theorem for finite perimeter sets, [12], with area-type formulae
for the sub-Riemannian spherical Hausdorff measure of smooth sets, [20], [23], we reach the
sub-Riemannian divergence formula in this special class of domains.

Additional technical difficulties arise from the fact that, while the fundamental solution Γ of
the sub-Laplacian in the Heisenberg group has an explicit formula, the corresponding funda-
mental solution for general sub-Laplacians in general Carnot groups admits no such formula.
Nevertheless the fundamental solution is always (2−Q)-homogeneous and this fact is essential
in our proofs.

We also study the critical case (dimension Q−1). It is easy to construct nonremovable sets of
positive and finite HQ−1 measure (see Remark 4.13). Our second main theorem reads as follows.

Theorem 1.2. There exist sets K ⊂ G with 0 < HQ−1(K) < ∞ which are removable for
Lipschitz L-harmonic functions.

In [6] such sets were constructed in the Heisenberg group Hn based on Strichartz-type tilings,
see [35]. However in general Carnot groups such tilings do not exist, and we provide an alternate
constructive argument involving separated self-similar Cantor subsets in vertical subgroups of
G. As in the Euclidean case we need to consider singular integrals with respect to the kernel
k = ∇GΓ, which is (1 − Q)-homogeneous. Roughly speaking, if one is able to prove that a
certain singular integral is unbounded on L2(HQ−1bK), then the set K is removable. Our idea
is to construct a separated self similar set K, with 0 < HQ−1(K) <∞, which lives on a dilation
cone where at least one coordinate of the kernel k keeps constant sign. Moreover the set K is
constructed in such a way that it has a fixed point at the origin. These properties enable us
to apply directly the unboundedness criterion for singular integrals on self similar sets from [6]
(reproduced in this paper as Theorem 4.11).

Removability of sets can be studied for other partial differential equations, and in other
regularity classes. In [7], quantitative estimates on the size of removable sets for solutions of a
wide variety of partial differential equations in Carnot groups are given.

The paper is organised as follows. In section 2 we lay down the necessary background in
Carnot groups as well as some basic properties of their sub-Laplacians. In section 3 we prove a
representation theorem for Lipschitz L-harmonic functions outside some compact set K, namely
Theorem 3.1, and this leads to the proof of Theorem 1.1. In section 4 we provide examples of
removable sets with positive and finite HQ−1-measure.

2. Definitions and notation

A Carnot group is a connected, simply connected and nilpotent Lie group G, with graded Lie
algebra

g = v1 ⊕ · · · ⊕ vs ,
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such that [v1, vi] = vi+1 for i = 1, 2, . . . , s − 1 and [v1, vs] = 0. Under these conditions the
exponential mapping exp : g → G is bianalytic, hence we can canonically identify elements g,
namely left invariant vector fields, with elements of G. The integer s ≥ 1 is the step of G. We
denote the group law in G by · and the identity element of G by 0.

We fix an inner product 〈 , 〉 in v1 and let X1, . . . , Xm be an orthonormal basis for v1 relative
to this inner product. Using this basis, we construct the horizontal subbundle HG of the tangent
bundle TG with fibers HpG = span{X1(p), . . . , Xm(p)}, p ∈ G. A left-invariant vector field X
on G is horizontal if it is a section of HG. The inner product on v1 defines a left invariant family
of inner products on the fibers of the horizontal subbundle.

We denote by d the Carnot–Carathéodory metric on G, defined by infimizing the lengths of
horizontal paths joining two fixed points, where the horizontal length is computed using the
aforementioned inner product. More specifically we define:

Definition 2.1. An absolutely continuous curve γ : [0, T ] → G will be called sub-unit, with
respect to the vector fields X1, . . . , Xm, if there exist real measurable functions aj : [0, T ]→ R,
with j = 1, . . . ,m, such that

∑m
j=1 aj(t)

2 ≤ 1 for a.e. t ∈ [0, T ] and

γ̇(t) =
m∑
j=1

aj(t)Xj(γ(t)) for a.e. t ∈ [0, T ].

Definition 2.2. For p, q ∈ G their Carnot-Carathéodory distance is

d(p, q) = inf{T > 0 : there is a sub-unit curve γ : [0, T ]→ G
such that γ(0) = p and γ(T ) = q}.

It follows by Chow’s theorem that the above set of curves joining p and q is not empty and
hence d is a metric on G. The closed and open balls with respect to d will be denoted by B(p, r)
and U(p, r) respectively.

For each t > 0, we define δt : g → g by setting δt(X) = tiX if X ∈ vi and extending the
mapping by linearity. The identification of the Lie algebra with the Lie group via the exponential
mapping allows us to introduce dilations on G, that we also denote by δt. Then (δt)t>0 is the
one-parameter family of dilations of G satisfying d(δt(p), δt(q)) = td(p, q) for p, q ∈ G. Another
family of automorphisms in G are the left translations τq : G→ G defined by τq(x) = q ·x, x ∈ G,
for all q ∈ G. We note also that the metric d is left invariant, i.e., d(q · p1) = d(q · p2) for
q, p1, p2 ∈ G.

The Jacobian determinant of δt (with respect to Haar measure) is everywhere equal to tQ,
where

Q =
s∑
i=1

idim vi

is the homogeneous dimension of G. In this paper, we always assume Q ≥ 3.
A measurable function f on G will be called λ-homogeneous, or homogeneous of degree λ, if

f ◦ δt = tλf for all t > 0. A continuous function ‖ · ‖ : G→ [0,∞) is called a homogeneous norm
if ‖δt(p)‖ = t‖p‖ for all t > 0 and p ∈ G and ‖p‖ > 0 for all p 6= 0. A typical example of a
homogeneous norm is the function

‖p‖cc := d(p, 0).

All homogeneous norms in G are equivalent: recall that two norms ‖ · ‖1 and ‖ · ‖2 are said to
be equivalent if there exists a positive constant c such that

(2.1) c−1‖p‖2 ≤ ‖p‖1 ≤ c‖p‖2 for all p ∈ G.

Proofs of these facts, as well as other properties of homogeneous norms, can be found in [4].
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Since G is identified with the linear space g, we can fix a graded basis of g, hence we can
identify elements of G with elements of RN , where N =

∑s
i=1 dim vi. A graded basis in g

respects the grading, that is there exists s ordered subsets of the basis that are in turn bases of
the single layers vi. One can check that translations with respect to graded coordinates preserve
the Lebesgue measure in RN . As a consequence, the Haar measure on G can be obtained from
the Lebesgue measure on RN . It also agrees (up to a constant) with the Q-dimensional Hausdorff
measure in the metric space (G, d).

In this paper we will denote the Haar measure of a set E ⊂ G by |E|, and we will write
integrals with respect to this measure as

∫
E f(x) dx or

∫
E f . We refer the reader to [29], [4] or

[5] for further information on Carnot groups and their metric geometry.
In particular a fixed basis X1, . . . , Xm of the first layer v1 is fixed. This is the so-called

horizontal frame, that linearly spans all of the horizontal directions. If f is a real function
defined on an open set of G its G-gradient is given by

∇Gf = (X1f, . . . ,Xmf).

The G-divergence of a function φ = (φ1, . . . , φm) : G→ Rm is defined as

divG φ =

m∑
i=1

Xiφi.

Remark 2.3. For our purposes, a sub-Riemannian divergence theorem is necessary. We will
deal with regular domains comprised of finite unions of smooth open and bounded sets. Let div
denote the standard divergence in RN and let X be a C1 smooth vector field on RN with

X = (a1, . . . , aN ) ∼ a1∂x1 + · · · aN∂xN .

If Ω is a bounded set of finite perimeter and f is a C1 smooth real valued function on an open
neighborhood of Ω, then

(2.2)

∫
Ω
Xf =

∫
F∗Ω

f 〈X, ν〉 d‖∂Ω‖ −
∫

Ω
fdivX,

where 〈·, ·〉 denotes the Euclidean scalar product, ν is the generalized outer normal to Ω, F∗Ω
is the reduced boundary and ‖∂Ω‖ is the perimeter measure of Ω, [12]. The validity of (2.2) is
seen from the following equalities:∫

Ω
Xf =

∫
Ω

N∑
l=1

al ∂xlf =

∫
Ω

N∑
l=1

(
∂xl(alf)− f∂xlal

)
=

∫
Ω

div(fX)−
∫

Ω
fdivX

=

∫
F∗Ω

f 〈X, ν〉 d‖∂Ω‖ −
∫

Ω
fdivX.

All the left invariant vector fields X of a Carnot group satisfy divX = 0. As a corollary of
(2.2), it follows therefore that

(2.3)

∫
Ω

divG F =

∫
F∗Ω

m∑
j=1

fj 〈Xj , ν〉 d‖∂Ω‖ =

∫
F∗Ω
〈F, νG〉 d‖∂Ω‖ ,

where νG =
(
〈X1, ν〉, . . . , 〈Xm, ν〉

)
is the non-normalized horizontal normal.
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The sub-Laplacian in G is given by

L =
m∑
i=1

X2
i

or equivalently

L = divG∇G.

Definition 2.4. Let D ⊂ G be an open set. A real valued function f ∈ C2(D) is called
L-harmonic, or simply harmonic, on D if Lf = 0 on D.

We shall consider removable sets for Lipschitz solutions of the sub-Laplacian:

Definition 2.5. A compact set C ⊂ G will be called removable, or L-removable for Lipschitz L-
harmonic functions, if for every domain D with C ⊂ D and every Lipschitz function f : D → R,

Lf = 0 in D \ C implies Lf = 0 in D.

As usual we denote for any D ⊂ G and any function f : D → R,

Lip(f) := sup
x,y∈D

|f(x)− f(y)|
d(x, y)

,

and we will also use the following notation for the upper bound for the Lipschitz constants in
Carnot-Carathéodory balls:

LipB(f) := sup{Lip(f |Uc(p,r)) : p ∈ D, r > 0, Uc(p, r) ⊂ D}.
The following proposition is known. It follows, for example, from the Poincaré inequality, see

Theorem 5.16 in [5] and the arguments for its proof on pages 106-107. A simple direct proof
which applies directly in our setting can be found in [6].

Proposition 2.6. Let D ⊂ G be a domain and let f ∈ C1(D). Then LipB(f) <∞ if and only
if ‖∇Gf‖∞ <∞. More precisely, there is a constant c(G) depending only on G such that

(2.4) ‖∇Gf‖∞ ≤ LipB(f) ≤ c(G)‖∇Gf‖∞.

Fundamental solutions for sub-Laplacians in homogeneous Carnot groups are defined in ac-
cordance with the classical Euclidean setting.

Definition 2.7 (Fundamental solutions). A function Γ : RN \{0} → R is a fundamental solution
for L if:

(i) Γ ∈ C∞(RN \ {0}),
(ii) Γ ∈ L1

loc(RN ) and lim‖p‖cc→∞ Γ(p)→ 0,

(iii) for all ϕ ∈ C∞0 (RN ), ∫
RN

Γ(p)Lϕ(p) dp = −ϕ(0).

It also follows easily, see Theorem 5.3.3 and Proposition 5.3.11 of [4], that for every p ∈ G,

(2.5) Γ ∗ Lϕ(p) = −ϕ(p) for all ϕ ∈ C∞0 (RN ).

Convolutions are defined as usual by

f ∗ g(p) =

∫
f(q−1 · p)g(q) dq

for f, g ∈ L1 and p ∈ G.
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A very general result due to Folland [13] guarantees the existence of a fundamental solution
for each sub-Laplacian on a homogeneous Carnot group with homogeneous dimension Q ≥ 3.
The following proposition gathers some well-known properties of such fundamental solutions.
Proofs can be found in [4].

Proposition 2.8 (Properties of Γ). Let Γ be the fundamental solution of L. Then for all
p ∈ G \ {0} and all t > 0:

(i) (Symmetry) Γ(p−1) = Γ(p),
(ii) (δt-homogeneity) Γ(δt(p)) = t2−QΓ(p),
(iii) (Positivity) Γ(p) > 0.

The function

‖p‖Γ =

{
Γ(p)

1
2−Q if p ∈ G \ {0}

0 if p = 0.

is a symmetric homogeneous norm which is C∞ away from the origin. Let

dΓ(p, q) = ‖p−1 · q‖Γ

be the quasi-distance defined by ‖ · ‖Γ. We will denote the corresponding open and closed balls
by UΓ(p, r) and BΓ(p, r) respectively. Note also that by (2.1) d and dΓ are globally equivalent.

Let k = ∇GΓ, then k = (k1, . . . , km) : G \ {0} → Rm, and

k(p) = ∇GΓ(p) = ∇G(‖p‖2−QΓ ) = (2−Q)
∇G‖p‖Γ
‖p‖Q−1

Γ

:=
Ω(p)

‖p‖Q−1
Γ

for p ∈ G \ {0}. Furthermore Ω is smooth in G \ {0} and δt-homogeneous of degree zero, which
in particular implies that k is (1−Q)-homogeneous and

(2.6) |k(p)| . ‖p‖1−QΓ

for p ∈ G \ {0}. Notice also that

(2.7) ki(p) =
Ωi(p)

‖p‖Q−1
Γ

, p ∈ G \ {0},

where Ω = (Ω1, . . . ,Ωm) and every function Ωi is smooth and homogeneous of degree zero.
We denote by Hs, s ≥ 0, the s-dimensional Hausdorff measure obtained from the Carnot-

Caratheodory metric d, i.e. for E ⊂ G and δ > 0, Hs(E) = supδ>0Hsδ(E), where

Hsδ(E) = inf

{∑
i

diam(Ei)
s : E ⊂

⋃
i

Ei,diam(Ei) < δ

}
.

In the same manner the s-dimensional spherical Hausdorff measure for E ⊂ G is defined as
Ss(E) = supδ>0 Ssδ (E), where

Ssδ (E) = inf

{∑
i

rsi : E ⊂
⋃
i

B(pi, ri), ri ≤ δ, pi ∈ G

}
.

We will denote by HsΓ and SsΓ the Hausdorff and spherical Hausdorff measures with respect to
dΓ. Since homogeneous norms are equivalent it follows that the measures Hs,Ss, HsΓ and SsΓ
are all mutually absolutely continuous with bounded Radon-Nikodym derivatives.
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3. The critical dimension for L-removable sets

We first prove a representation theorem for Lipschitz harmonic functions outside compact
sets of finite HQ−1 measure.

Theorem 3.1. Let C be a compact subset of G with HQ−1(C) <∞ and let D ⊃ C be a domain
in G. Suppose f : D → R is a Lipschitz function such that Lf = 0 in D \ C. Then there exist
a bounded domain G, C ⊂ G ⊂ D, a Borel function h : C → R and an L-harmonic function
H : G→ R such that

f(p) =

∫
C

Γ(q−1 · p)h(q) dHQ−1(q) +H(p) for p ∈ G \ C

and ‖h‖L∞(HQ−1bC) + ‖∇GH‖∞ . 1.

Proof. Let D1 be a domain such that C ⊂ D1 ⊂ D, D̄1 is compact and dist(D1,G \D) > 0. For
every m = 1, 2, . . . there exists a finite number of balls Um,j := UΓ(pm,j , rm,j), j = 1, . . . , jm,
such that Um,j ∩ C 6= ∅,

(3.1) C ⊂
jm⋃
j=1

Um,j ⊂ D1, rm,j ≤
1

m
,

and

(3.2)

jm∑
j=1

rQ−1
m,j ≤ S

Q−1
Γ (C) +

1

m
.

Temporarily fix m ∈ N, and for simplicity let pj := pm,j and rj := rm,j . The boundary of
the union of the balls,

⋃
j UΓ(pj , rj), is contained in the union of the boundaries, and hence has

(Euclidean) dimension at most N − 1. We want to show that the overlap set⋃
j 6=i

∂UΓ(pi, ri) ∩ ∂UΓ(pj , rj)

is a null set for the Euclidean Hausdorff (N − 1)-measure, in order to ensure that it is negligible
for the classical divergence theorem. This follows from Sard’s theorem, provided we adjust the
radii slightly.

Since C is compact and the balls UΓ(pj , rj) are open, we have room to decrease the radii
slightly while still covering C.

Lemma 3.2. Assume the centers pj are distinct, and fix intervals Jj = [rj − ε, rj ] for some
ε > 0. Then there exist values r′j ∈ Jj so that

dimE

⋃
i 6=j

∂UΓ(pi, r
′
i) ∩ ∂UΓ(pj , r

′
j)

 ≤ N − 2.

Consequently, ∪j 6=i∂UΓ(pi, r
′
i) ∩ ∂UΓ(pi, r

′
i) is a null set for the measure HN−1

E .

Here dimE refers to the dimension in the underlying Euclidean metric of RN .

Proof. It suffices to assume jm = 2. We wish to show that

dimE(∂UΓ(p1, r
′
1) ∩ ∂UΓ(p2, r

′
2)) ≤ N − 2

for some r′1 ∈ J1, r′2 ∈ J2. Consider the map F : G→ R2 given by

F (p) = (dΓ(p, p1), dΓ(p, p2)) .
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Then F is C∞, and F−1(r′1, r
′
2) = ∂UΓ(p1, r

′
1) ∩ ∂UΓ(p2, r

′
2) for r′1, r

′
2 > 0. According to Sard’s

theorem [32], the set of critical values of F has measure zero in R2. Since J1 × J2 has positive
measure, there exist r′1 ∈ J1, r′2 ∈ J2 so that (r′1, r

′
2) is a regular value of F , i.e., rankDF (p) = 2

for all p ∈ F−1(r′1, r
′
2). Moreover, the set F−1(r′1, r

′
2) is a smooth submanifold whose (Euclidean)

dimension is at most dimE G− dimE R2 = N − 2. �

The balls UΓ(pj , r
′
j) continue to cover C and satisfy (3.1) and (3.2). In view of the above, we

can assume without loss of generality that the conclusion of the lemma holds for the original
balls UΓ(pj , rj) (i.e., we relabel r′j as rj).

The Dimension Comparison Theorem in Carnot groups (see Theorem 2.4 and Proposition 3.1

in [3]), in codimension one, implies that the spherical Hausdorff measure SQ−1
Γ constructed from

the metric dΓ for a fixed homogeneous distance Γ is bounded above (up to a constant) by the

Euclidean measure HN−1
E . It follows from this and Lemma 3.2 that the overlap set is also a null

set for the spherical Hausdorff measure SQ−1
Γ .

Let Gm = ∪jmj=1Um,j and

0 < εm < min{1,dist(C,G \Gm),dist(Gm,G \D1)}.

By the Whitney-McShane Extension Lemma there exists a Lipschitz function F : G → R such
that F |D = f and F is bounded.

If d0 = 1 + maxz∈D1
d(z, 0), then the condition d(y, 0) + d(z, 0) ≤ d0 gives

(3.3) d(y−1 · z, z) ≤ c(d0)d(y, 0)1/s,

due to [21, 3.18]. Let Φ ∈ C∞0 (RN ), Φ ≥ 0, such that spt Φ ⊂ U(0, 1) and
∫

Φ = 1. For any

δ > 0 let Φδ(x) = δ−QΦ(δ1/δ(x)). We consider the sequence of mollifiers

fm(x) := F ∗ Φδm(x) =

∫
F (y)Φδm(x · y−1) dy =

∫
U(0,δm)

F (y−1 · x)Φδm(y) dy(3.4)

for x ∈ G and δm = ( εm
2c(d0))s. Since F is bounded and uniformly continuous,

‖fm − F‖∞ → 0

on compact sets of G. Furthermore for all m ∈ N, we have that

(i) fm ∈ C∞,
(ii) ‖∇Gfm‖∞ ≤ ‖∇GF‖∞ <∞.

For δ > 0 and S ⊂ G let

L(S, δ) = {p ∈ S : dist(p, Sc) > δ}.
If x ∈ L(D1 \ C, εm), y ∈ B(0, δm) and z ∈ C, by (3.3) we obtain

d(y−1 · x, z) ≥ d(x, z)− d(y−1 · x, x) > εm − c(d0)d(y, 0)1/s > 0.

In particular y−1 · x /∈ C and in the same way y−1 · x /∈ G \D1. Therefore every mollifier fm is
harmonic in Dεm . We continue by choosing another domain D2 such that Gm ⊂ D2 ⊂ L(D1, εm)
for all m = 1, 2, . . . , and an auxiliary function ϕ ∈ C∞0 (RN ) such that

ϕ =

{
1 in D2

0 in G \D1.

For m = 1, 2, . . . set gm := ϕfm and notice that gm ∈ C∞0 (RN ) and

‖∇Ggm‖∞ ≤ A1
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where A1 does not depend on m. It follows by (2.5) that for all m ∈ N,

(3.5) −gm(p) = Γ ∗ Lgm(p) for all p ∈ G.
Notice that

(i) gm = 0 in G \D1,
(ii) gm = fm in D2 \Gm and hence Lgm = Lfm = 0 in D2 \Gm.

Therefore for all m ∈ N and p ∈ D2 \Gm,

(3.6) −fm(p) =

∫
Gm

Γ(q−1 · p)Lgm(q) dq +

∫
D1\D2

Γ(q−1 · p)Lgm(q) dq

by (3.5). For m ∈ N set Hm : D2 → R to be

(3.7) Hm(p) = −
∫
D1\D2

Γ(q−1 · p)Lgm(q) dq

and Im : D2 \Gm → R, m = 1, 2, . . . to be

(3.8) Im(p) = −
∫
Gm

Γ(q−1 · p)Lgm(q) dq.

Since the functions Lgm are uniformly bounded in D1 \D2, for all m ∈ N
(i) Hm is harmonic in D2,

(ii) ‖∇GHm‖∞ . 1, since ∇GΓ is locally integrable.

The functions Hm are C∞ by Hörmander’s theorem, see for example Theorem 1 in Preface of
[4]. Thus we can apply Proposition 2.6 and conclude from (ii) that LipB(Hm) . 1.

The functions Im can be expressed as

(3.9) Im(p) = −
∫
Gm

divG,q(Γ(q−1 · p)∇Ggm(q)) dq +

∫
Gm

〈∇GΓ(p−1 · q),∇Ggm(q)〉 dq,

where divG,q stands for the G-divergence with respect to the variable q and we also used the left
invariance of ∇G and the symmetry of Γ to get that

∇G,q(Γ(q−1 · p)) = ∇G,q(Γ(p−1 · q)) = ∇GΓ(p−1 · q).
By (2.3) one has the identity∫

Ω
divG F =

∫
F∗Ω
〈F, νG〉 d‖∂Ω‖

for every C1 horizontal vector field F and bounded C1 smooth domain Ω, where νG denotes
the non-normalized horizontal normal introduced in Remark 2.3. For instance, we may take
Ω = UΓ(pj,m, rj,m) as above for each m and j. In fact, in this case Lemma 3.2 implies that the

overlap of the boundaries is a null set for the HN−1
E measure, whence

F∗Ω = ∂Ω \N ,

where HN−1
E (N) = 0 and the generalized outer normal ν coincides with the classical outer

normal of Ω at smooth points of ∂Ω. Since the restriction of the perimeter measure to the
reduced boundary is the (N − 1)-dimensional Hausdorff measure, it follows that

(3.10)

∫
Ω

divG F =

∫
∂Ω
〈F, νG〉 dHN−1

E .

Next we want to show that the identity

(3.11) |νG|HN−1
E ∂Ω = αSQ−1 ∂Ω
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holds for such piecewise C1 domains Ω, where α is a Borel function on ∂Ω and SQ−1
Γ is the

spherical Hausdorff measure with respect to a fixed homogeneous distance dΓ. Since ∂Ω is
not C1, we cannot apply directly the area formula of [23] to represent the spherical Hausdorff
measure, as that formula is restricted to C1 domains and arbitrary auxiliary Riemannian metrics.

We proceed as follows. The overlap of the boundaries is HN−1
E negligible, hence it also

SQ−1
Γ negligible due to Proposition 3.1 of [3]. The restriction of (3.11) to the smooth parts of
∂Ω where νG vanishes easily follows from the Q − 1-dimensional negligibility of characteristic
points, see [22]. In fact, these points are characterized by the vanishing of the horizontal normal
νG. Finally, we consider the Borel subset B0 of ∂Ω that does not intersect both the overlap
set and the characteristic set. From the measure theoretic area formula of [20], joined with the
blow-up theorem at non-characteristic points [23], we obtain

|νG|HN−1
E B0 = αSQ−1

Γ

for some Borel function α defined on B0, that extends by zero at points of ∂Ω\B0. Consequently,
(3.10) implies the identity

(3.12)

∫
Ω

divG F =

∫
∂Ω

〈
F,

νG
|νG|

〉
αdSQ−1

Γ

for every C1 horizontal vector field F and bounded piecewise C1 domain Ω for which the overlap
set is a null set for the boundary measure. The integrand in (3.12) is undefined on the char-
acteristic set, but this is irrelevant since it is a null set for the measure. The important fact is
that, from Theorem 5.4 of [23], we obtain two geometric constants c1, c2 > 0, independent of Ω,

such that c1 ≤ α ≤ c2 at SQ−1
Γ a.e. point of B0. Switching from a general homogeneous distance

to the Carnot-Carathéodory distance d and corresponding spherical Hausdorff measure SQ−1,
we obtain ∫

Gm

divG,q

(
Γ(q−1 · p)∇Ggm(q)

)
dq

=

∫
∂Gm

Γ(q−1 · p)
〈
∇Ggm(q),

νm(q)

|νm(q)|

〉
bm(q) dSQ−1(q),

(3.13)

for some bm ∈ L∞(SQ−1 ∂Gm), where νm is the non-normalized horizontal normal of Gm and
c1 ≤ bm ≤ c2 at SQ−1-a.e. point of ∂Gm and for every m. (Note that the Radon–Nikodym

derivative of SQ−1
Γ with respect to SQ−1, which is bounded away from zero and infinity, is

included in the weight function bm.)
By (3.2), |Gm| → 0, therefore for p ∈ D2 \ C,

(3.14) lim
m→∞

∣∣∣∣∫
Gm

〈∇GΓ(p−1 · q),∇Ggm(q)〉 dq
∣∣∣∣→ 0,

since |∇Ggm| is uniformly bounded in D2 and ∇GΓ is locally integrable.
Notice that the signed measures,

(3.15) σm =
〈
∇Ggm(·), νm(·)

|νm(·)|

〉
bm SQ−1b∂Gm,
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have uniformly bounded total variations ‖σm‖. This follows by (3.2), as

‖σm‖ ≤ ‖∇Ggm‖∞‖bm‖L∞(SQ−1)SQ−1(∂Gm)

.
∑
j

SQ−1
Γ (∂Um,j) .

∑
j

rQ−1
m,j

. SQ−1
Γ (C) +

1

m
.

(3.16)

Therefore, by a general compactness theorem, see e.g. [2], we may extract a weakly converging
subsequence (σmk

)k∈N such that σmk
→ σ. Furthermore sptσ := spt |σ| ⊂ C and by (3.16)

(3.17) ‖σ‖ ≤ lim inf
k→∞

‖σmk
‖ . SQ−1(C).

Finally combining (3.9)—(3.15) we get that for p ∈ D2 \ C,

lim
k→∞

Imk
(p) =

∫
C

Γ(q−1 · p) dσ(q)

and by (3.6)—(3.8)

f(p) =

∫
C

Γ(q−1 · p) dσ(q) + lim
k→∞

Hmk
(p).

Since the sequence of harmonic functions (Hmk
) is equicontinuous on compact subsets of D2, the

Arzelà-Ascoli theorem implies that there exists a subsequence (Hmkl
) which converges uniformly

on compact subsets of D2. From the Mean Value Theorem for sub-Laplacians and its converse,
see [4], Theorems 5.5.4 and 5.6.3, we deduce that (Hmkl

) converges to a function H which is

harmonic in D2. Therefore for p ∈ D2 \ C,

f(p) =

∫
C

Γ(q−1 · p) dσq +H(p).

Furthermore the function H is C∞ in D2 with LipB(H) . 1, therefore by Proposition 2.6

‖∇GH‖∞ . 1.

In order to complete the proof it suffices to show that

(3.18) σ � µ and h :=
dσ

dµ
∈ L∞(µ),

where µ = SQ−1bC. The measure-theoretic proof of (3.18) can be found in [6]. �

Lemma 3.3. For p1, p2 6= q ∈ G

|Γ(q−1 · p1)− Γ(q−1 · p2)| . d(p1, p2)(d(q, p1)1−Q + d(q, p2)1−Q).

Proof. Let p1, p2 6= q ∈ G. Without loss of generality assume that d(p1, q) ≤ d(p2, q). We are
going to consider two cases.

Case I. d(p1, p2) ≥ 1
2d(p1, q). In this case, since dΓ is globally equivalent to d we have

|Γ(q−1 · p1)− Γ(q−1 · p2)| . 1

d(p1, q)Q−2
+

1

d(p2, q)Q−2

.
1

d(p1, q)Q−2
.

d(p1, p2)

d(p1, q)Q−1



REMOVABLE SETS FOR LIPSCHITZ HARMONIC FUNCTIONS ON CARNOT GROUPS 13

Case II. d(p1, p2) < 1
2d(p1, q). In this case, by the definition of the Carnot-Carathéodory metric

there exists a sub-unit curve γ : [0, d(p1, p2)] → G such that γ(0) = q−1 · p1 and γ(d(p1, p2)) =
q−1 · p2. Furthermore,

(3.19) γ([0, d(p1, p2)]) ⊂ B(q−1 · p1, d(p1, p2)).

Hence for every t ∈ [0, d(p1, p2)]

‖γ(t)‖ & d(0, γ(t)) ≥ d(0, q−1 · p1)− d(γ(t), q−1 · p1)

≥ d(q, p1)− d(p1, p2) ≥ 1

2
d(q, p1)

(3.20)

since d(γ(t), q−1 · p1) ≤ d(p1, p2) by (3.19). Therefore, with T := d(p1, p2) we have

|Γ(q−1 · p1)− Γ(q−1 · p2)| = |Γ(γ(0))− Γ(γ(T ))| =
∣∣∣∣∫ T

0

d

dt
(Γ(γ(t)) dt

∣∣∣∣
≤
∫ T

0

 m∑
j=1

(XjΓ(γ(t)))2

 1
2

dt =

∫ T

0
|∇GΓ(γ(t))| dt

.
∫ T

0

dt

‖γ(t)‖Q−1
.

d(p1, p2)

d(p1, q)Q−1

where we used (2.6) and (3.20) respectively. �

We are now able to prove Theorem 1.1 which as discussed earlier is also valid for Lipschitz
harmonic functions in Rn, with Q replaced by n.

Proof of Theorem 1.1. The first statement follows from Theorem 3.1. To see this let D ⊃ C be
a subdomain of G. Applying Theorem 3.1 and recalling that C is a null set for the measure
HQ−1, we deduce that if f : D → R is Lipschitz in D and L-harmonic in D \C, then there exists
an L-harmonic function H in a domain G, C ⊂ G ⊂ D, such that

f(p) = H(p) for p ∈ G \ C.
This implies that f = H in G. Hence f is harmonic in G, and so also in D. Therefore C is
removable.

In order to prove (ii) let Q−1 < s < dimC. By Frostman’s lemma in compact metric spaces,
see [25], there exists a nonvanishing Borel measure µ with sptµ ⊂ C such that

µ(B(p, r)) ≤ rs for p ∈ G, r > 0.

We define f : G→ R+ as

f(p) =

∫
Γ(q−1 · p)dµ(q).

It follows that f is a nonconstant function which is C∞ in G \ C and

Lf = 0 on G \ C.
Furthermore f is Lipschitz. Indeed, for p1, p2 ∈ G we may use Lemma 3.3 to obtain

|f(p1)− f(p2)| =
∣∣∣∣∫ Γ(q−1 · p1) dµ(q)−

∫
Γ(q−1 · p2) dµ(q)

∣∣∣∣
. d(p1, p2)

(∫
1

d(p1, q)Q−1
dµ(q) +

∫
1

d(p2, q)Q−1
dµ(q)

)
. d(p1, p2).
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To prove the last inequality let p ∈ G, and consider two cases. If dist(p, C) > diam(C),∫
1

d(p, q)Q−1
dµ(q) ≤ µ(C)

diam(C)Q−1
. 1.

If dist(p, C) ≤ diam(C), then C ⊂ B(p, 2 diam(C)). Let A = 2 diam(C), then∫
1

d(p, q)Q−1
dµ(q) ≤

∞∑
j=0

∫
B(p,2−jA)\B(p,2−(j+1)A)

dµ(q)

d(p, q)Q−1

≤
∞∑
j=0

µ(B(p, 2−jA))

(2−(j+1)A)Q−1

≤ 2Q−1As−(Q−1)
∞∑
j=0

(2s−(Q−1))−j

. 1.

Assume, by way of contradiction, that f is L-harmonic on G. Since f ≥ 0, by a Liouville-type
theorem for sub-Laplacians, see e.g. Theorem 5.8.1 of [4], we deduce that f is constant. Hence
we have reached a contradiction and consequently C is not removable. �

4. Removable sets with positive and finite HQ−1 measure

In this section we shall construct a self-similar Cantor set K in G which is L-removable despite
having positive HQ−1 measure. As noted earlier our proof is rather different than the one in
[6]. Nevertheless, note that in Theorem 4.1 there is also one piece S0(K) of K which is well
separated from the others. This fact allows for a straightforward application of the condition in
Theorem 4.11.

We let S := {p ∈ G : ||p||cc = 1} be the unit sphere centered at the origin in this norm.
The norm || · ||cc is comparable to any other homogeneous norm on G, in particular, to the
homogeneous norm

|||p||| := |p1|+ |p2|1/2 + · · ·+ |ps|1/s, p = (p1, p2, . . . , ps).

Definition 4.1. For a set A ⊂ S, we define the dilation cone over A to be the set

Â := {δr(p) : r > 0, p ∈ A}.

We will prove the following theorem.

Theorem 4.1. Let U ⊂ S be a nonempty open set. There exists a self-similar iterated function
system F = {Si : i = 0, 1, . . . ,M} with invariant set K such that the following conditions are
satisfied:

(i) the map S0 has fixed point 0,

(ii) K ⊂ Û ,
(iii) the pieces S0(K), . . . , SM (K) are pairwise disjoint, and
(iv) 0 < HQ−1(K) <∞.

Fix a horizontal vector ~v ∈ v1 and denote by V := {exp(t~v) : t ∈ R} the corresponding hori-
zontal one-parameter subgroup of G. Denote by W := exp(~v⊥×v2×· · ·×vs) the corresponding
complementary vertical subgroup, and by Wa, a ∈ V, the coset a ∗W of W. We may choose ~v
and a so that U ∩Wa 6= ∅. In what follows we will assume that ~v and a have been so chosen.



REMOVABLE SETS FOR LIPSCHITZ HARMONIC FUNCTIONS ON CARNOT GROUPS 15

Lemma 4.2. There exists a self-similar iterated function system F ′ = {Si : i = 1, . . . ,M} with
invariant set K ′ such that the following conditions are satisfied:

(i) the fixed points of each of the maps Si, 1 ≤ i ≤M , lie in Û ∩Wa,

(ii) K ′ ⊂ Û ∩Wa,
(iii) the pieces S1(K ′), . . . , SM (K ′) are pairwise disjoint, and
(iv) 0 < Ht(K ′) <∞, where t is the Hausdorff dimension of K ′.

Remark 4.3. In both Theorem 4.1 and Lemma 4.2, condition (iv) follows from condition (iii),
by results of Schief, see [33, Theorem 2.5].

In the proofs we will use the following elementary algebraic fact.

Lemma 4.4. There exists a constant C0 ≥ 1 so that

(4.1) d(δr(q), q) ≤ C0||q||cc
for all q ∈ G and 0 ≤ r ≤ 1.

Proof. By the 1-homogeneity of both sides of the desired inequality (4.1), it suffices to establish
the result for points q with ||q||cc = 1. Since the function (q, r) 7→ d(δr(q), q) is continuous from
G× [0, 1]→ R, the conclusion follows from compactness of the CC unit sphere. �

Proof of Lemma 4.2. We first observe that the coset Wa, equipped with the restriction of the
Carnot-Carathéodory metric, is AD (Q − 1)-regular. This can be proved in several ways. For
instance, we may observe that each such coset Wa is isometric to the vertical subgroup W, and
that the Haar measure on W is AD (Q− 1)-regular.

Let B be a Carnot-Carathéodory ball centered at a point of U ∩Wa such that (1+2C0)B ⊂ Û
and diamB ≤ 2, where C0 is as above. For ε > 0, let p1, . . . , pM ∈ B∩Wa be a maximal collection
of points with mutual distance at least εdiamB. By the Ahlfors regularity of Wa,

(4.2)
1

C1
ε1−Q ≤M ≤ C1ε

1−Q,

where C1 ≥ 1 is independent of ε. The choice of ε will be made later in the proof, but we note
here that we may choose ε small enough that M ≥ 2Q−1.

Let r > 0 be such that

(4.3) r =
ε diamB

2C
1/(Q−1)
1 (10 + 50C0(diamB))

.

Note that r < M1/(1−Q) by (4.2). In particular, r < 1
2 .

We consider the self-similar iterated function system F ′ = {Si : i = 1, . . . ,M}, where Si is
the contraction mapping of G with fixed point pi and contraction ratio r. Explicitly, Si : G→ G
is given by

Si(p) = pi ∗ δr(p−1
i ∗ p), i = 1, . . . ,M.

Let K ′ be the invariant set for F ′. Condition (i) is true by construction. The inclusion K ′ ⊂Wa

is true since K ′ is the closure of the full orbit of the set of fixed points and the coset Wa is
invariant under each of the maps S1, . . . , SM .

To proceed further we introduce the terminology and notation of symbolic dynamics. Let
W = {1, . . . ,M} be the symbol space, let Wm be the m-fold product of W with itself (with W0

containing only the empty set), and let W∗ = ∪m≥0Wm. Elements of Wm are called words of
length m in letters drawn from W . For w ∈W∗, w = w1w2 · · ·wm, set Sw = Sw1 ◦Sw2 ◦ · · ·◦Swm .
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We will make use of the fact that K ′ is the closure of the set⋃
w∈W∗

Sw(p1);

similarly, for each i, Si(K
′) is the closure of the set⋃

w∈W∗

Siw(p1).

Let w = w1w2 · · ·wm ∈ W∗. Repeated application of the triangle inequality, together with
the fact that Si is a similarity with contraction ratio r, shows that d(Sw(p1), p1) is less than or
equal to

d(p1, Sw1(p1)) + r d(p1, Sw2(p1)) + r2 d(p1, Sw3(p1)) + · · ·+ rm−1 d(p1, Swm(p1)).

For any i = 1, . . . ,M ,

d(p1, Si(p1)) = d(p1, pi ∗ δr(p−1
i ∗ p1)) = d(p−1

i ∗ p1, δr(p
−1
i ∗ p1)).

Applying Lemma 4.4 yields

d(p1, Si(p1)) ≤ C0d(p1, pi) ≤ C0 diamB.

Consequently, since r < 1
2 ,

d(Sw(p1), p1) ≤ C0
1

1− r
diamB ≤ 2C0 diamB

and so

K ′ ⊂ B(p1, 2C0 diamB) ⊂ (1 + 2C0)B ⊂ Û .

This completes the proof of condition (ii). We note in passing that

(4.4) diamK ′ ≤ 4C0 diamB.

In view of Remark 4.3, it remains only to check condition (iii). Note that the dimension of K ′,
logM/ log(1/r), is strictly less than Q− 1 by the choice of r.

To verify (iii) we show that

(4.5) Si(K
′) ⊂ B(pi,

1
5ε)

for each i = 1, . . . ,M . (Recall that d(pi, pi′) ≥ ε for all i 6= i′.) Following a similar argument as
above and using (4.4), we conclude that

d(Siw(p1), pi) = d(Siw(p1), Si(pi)) = rd(Sw(p1), pi) ≤ (diamK ′)r ≤ 4C0(diamB)r.

By the choice of r,

4C0(diamB)r <
1

5
ε.

The proof of (4.5) is complete. �

Remark 4.5. We record the following consequence of (4.5) and the definition of ε:

dist(Si(K
′), Si′(K

′)) ≥ 3

5
ε for all 1 ≤ i, i′ ≤M , i 6= i′.
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Proof of Theorem 4.1. Let S1, . . . , SM be selected as in the proof of Lemma 4.2, define r0 > 0
by the equation

rQ−1
0 +MrQ−1 = 1,

and let S0 be the contraction mapping S0(p) = δr0(p). Then condition (i) is satisfied. In view
of Remark 4.3, it suffices to verify conditions (ii) and (iii).

We will employ symbolic dynamics as introduced in the preceding proof to both iterated
function systems F ′ and F . In order to distinguish between these two systems, we continue to
denote by W = {1, . . . ,M} the word space for the IFS F ′. We let V = {0, . . . ,M} be the symbol
space for the IFS F , we let Vm be the m-fold product of V with itself, and we let V∗ = ∪m≥0Vm.
For v ∈ V∗, v = v1v2 · · · vm, we set Sv = Sv1 ◦ Sv2 ◦ · · · ◦ Svm . We make use of the fact that K is
the closure of the set ⋃

v∈V∗

Sv(K
′);

similarly, for each i = 1, . . . ,M , Si(K) is the closure of the set⋃
v∈V∗

Siv(K
′).

Each element v ∈ V∗ of length m can be uniquely written in the form

v = uk0w`0uk1w`1 · · ·ukT−1
w`T−1

ukT

where uk is a word consisting of k copies of the letter 0, w` ∈W`, k0, . . . , kT ≥ 0, `0, `1, . . . , `T−1 ≥
1, and

k0 + `0 + k1 + `1 + · · ·+ kT−1 + `T−1 + kT = m.

Words in V∗ with initial letter i, in the above representation, are precisely words for which k0 = 0
and w`0 begins with the letter i. We analyze the image of K ′ under such words.

For δ > 0 and S ⊂ G, we denote by N(S, δ) = {p ∈ G : dist(p, S) < δ} the δ-neighborhood
of S.

Lemma 4.6. There exists a constant C > 0 so that if w ∈W` and k, ` ∈ N, then

(Sw ◦ Sk0 )(K ′) ⊂ N(Sw(K ′), r`(1 + 5C0(diamB))).

Proof. Recalling (4.4), we note that it suffices to prove that

d(Sw(Sk0 (p)), Sw(p)) ≤ r`(1 + 5C0(diamB)).

for all p ∈ K ′. Since Sw has contraction ratio r`, this is equivalent to proving that

d(Sk0 (p), p) ≤ 1 + 5C0(diamB)

By Lemma 4.4,

d(Sk0 (p), p) ≤ C0||p||cc.
Using the fact that B ∩K ′ 6= ∅ and (4.4), we obtain

||p||cc ≤ 1 + diamB + diamK ′ ≤ 1 + (1 + 4C0)(diamB) ≤ 1 + 5C0(diamB),

completing the proof. �

In a geodesic metric space (e.g., G equipped with the Carnot–Carathéodory metric), we have

N(N(S, δ), ε) = N(S, δ + ε) for any set S and any δ, ε > 0.

This fact and an easy inductive argument leads to the following result.
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Lemma 4.7. If w`0 ∈W`0, w`1 ∈W`1, . . . , w`T−1
∈W`T−1

and k1, . . . , kT ∈ N, then

(Sw`0
◦ Sk10 ◦ Sw`1

◦ Sk20 ◦ · · · ◦ Sw`T−1
◦ SkT0 )(K ′) ⊂ N(Sw`0

(K ′), ρ)

where

ρ = (r`0 + r`0+`1 + · · ·+ r`0+`1+···+`T−1)(1 + 5C0(diamB))).

We now conclude the proof of Theorem 4.1. Since r < 1
2 and `0 ≥ 1, we deduce from Lemma

4.7 that

r`0 + r`0+`1 + · · ·+ r`0+`1+···+`T−1 ≤ r`0

1− r
≤ 2r

and hence that

(Sw`0
◦ Sk10 ◦ Sw`1

◦ Sk20 ◦ · · · ◦ Sw`T−1
◦ SkT0 )(K ′) ⊂ N(Sw`0

(K ′), 2(1 + 5C0(diamB))r).

In particular, if the first letter of w`0 is i, then

(4.6) (Sw`0
◦ Sk10 ◦ Sw`1

◦ Sk20 ◦ · · · ◦ Sw`T−1
◦ SkT0 )(K ′) ⊂ N(Si(K

′), 2(1 + 5C0(diamB))r).

As discussed above, this means that all sets of the form Sv(K
′), where v ∈ V∗ has initial letter

i, are contained in the set on the right hand side of (4.6), so

Si(K) ⊂ N(Si(K
′), 2(1 + 5C0(diamB))r).

By the choice of r, 2(1 + 5C0(diamB))r < 1
5ε and so

(4.7) Si(K) ⊂ N(Si(K
′),

1

5
ε).

In view of Remark 4.5, the sets S1(K), . . . , SM (K) are disjoint.
Next, we want to show that S0(K) ∩ Si(K) = ∅ for 1 ≤ i ≤ M . To this end, we consider

projection πV into the horizontal subgroup V. The set V can be isometrically identified with
R; we denote by PV : G → R the composition of πV with this identification. There exists a
self-similar contraction Ti : R→ R so that Ti ◦ PV = PV ◦ Si. Explicitly,

T0(t) = r0t and Ti(t) = a+ r(t− a) for i = 1, . . . ,M .

It suffices to prove that

PV(S0(K)) ∩ PV(Si(K)) = ∅,
i.e.,

T0(PV(K)) ∩ Ti(PV(K)) = ∅.
Since PV(K) ⊂ [0, a], the latter condition holds provided

(4.8) r0 + r < 1.

Recalling that r and r0 are related by rQ−1
0 +MrQ−1 = 1, we rewrite (4.8) as

(4.9) r < 1− (1−MrQ−1)1/(Q−1).

We observe that

MrQ−1 ≥ MεQ−1(diamB)Q−1

2Q−1C1(10 + 50C0 diamB)Q−1

≥ (diamB)Q−1

2Q−1C2
1 (10 + 50C0 diamB)Q−1

(4.10)
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In view of (4.3) and (4.10), we see that (4.9) is satisfied provided that

εdiamB

C
1/(Q−1)
1 (10 + 50C0(diamB))

< 1−
(

1− (diamB)Q−1

2Q−1C2
1 (10 + 50C0 diamB)Q−1

)1/(Q−1)

.

The latter inequality is true provided ε is chosen sufficiently small. This completes the proof
that S0(K) is disjoint from each of the sets Si(K), i = 1, . . . ,M , and hence completes the proof
of (iii).

It remains to verify (ii). We first record the identity

K =
⋃
k≥0

Sk0

(
M⋃
i=1

Si(K)

)
.

In view of (4.7) and the choice of the data, S1(K)∪· · ·∪SM (K) ⊂ Û . Since Û is a dilation cone

and S0 is a dilation, it follows that K ⊂ Û as desired. The proof of the theorem is complete. �

Remark 4.8. It follows easily, see e.g. [33, Theorem 2.9] and [17, Theorem 5.3.1], that if K is
the separated set of Theorem 4.1 the measure HQ−1bK is (Q− 1)-AD regular.

In the following we fix some notation.

Notation 4.9. For a signed Borel measure σ set

Tσ(p) :=

∫
k(q−1 · p) dσ(q), whenever it exists,

T εσ(p) :=

∫
G\B(p,ε)

k(q−1 · p) dσ(q)

and
T ∗σ (p) := sup

ε>0
|T εσ(p)|.

The proof of the following lemma is rather similar to that of Lemma 5.4 in [27].

Lemma 4.10. Let σ be a signed Borel measure in G and Aσ a positive constant such that
|σ|(B(p, r)) ≤ AσrQ−1 for p ∈ G, r > 0. Then

|T ∗σ (p)| ≤ ‖Tσ‖∞ +AT for p ∈ G,
where AT is a constant depending only on σ.

Proof. We can assume that L = ‖Tσ‖∞ < ∞. The constants that will appear in the following
depend only on n and σ. For ε > 0 and p ∈ G,

1

|(B(p, ε/4))|

∫
B(p,ε/4)

∫
B(p,ε)

1

‖q−1 · z‖Q−1
d|σ|(q) dz

≈ ε−Q
∫
B(p,ε/4)

∫
B(p,ε)

1

‖q−1 · z‖Q−1
d|σ|(q) dz

≤ ε−Q
∫
B(p,ε)

∫
B(q,2ε)

dz

‖q−1 · z‖Q−1
d|σ|(q)

≈ ε1−Q|σ|(B(p, ε)) ≤ Aσ
where we used Fubini and the fact that∫

B(q,2ε)

dz

‖q−1 · z‖Q−1
.
∫
B(q,2ε)

dz

d(q, z)Q−1
≈ ε,
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which is easily checked by summing over the annuli B(q, 21−iε) \B(q, 2−iε), i = 0, 1, . . . .
Now because of the inequality established above we can choose z ∈ B(p, ε/4) with |Tσ(z)| ≤ L

such that ∫
B(p,ε)

|k(q−1 · z)| d|σ|(q) .
∫
B(p,ε)

1

‖q−1 · z‖Q−1
d|σ|(q) ≤ L1.

Therefore,

|T εσ(p)− Tσ(z)| =

∣∣∣∣∣
∫
G\B(p,ε)

k(q−1 · p)d|σ|(q)−
∫
k(q−1 · z)d|σ|(q)

∣∣∣∣∣
≤
∫
G\B(p,ε)

|k(q−1 · p)− k(q−1 · z)|d|σ|(q) +

∫
B(p,ε)

|k(q−1 · z)|d|σ|(q)

≤
∫
G\B(p,ε)

|k(q−1 · p)− k(q−1 · z)|d|σ|(q) + L1.

Since k is a C∞, (1−Q)-homogeneous function on G \ {0} by [14, Proposition 1.7]

(4.11) |k(X · Y )− k(X)| ≤ C‖Y ‖cc‖X‖−Qcc for all ‖Y ‖cc ≤ ‖X‖cc/2.

Therefore if z ∈ B(p, ε/4) and q ∈ B(p, ε)c, letting X = q−1 · z, Y = z−1 · p we have that

‖X‖cc = d(q, z) ≥ d(q, p)− d(p, z) > 3ε/4 ≥ 3d(z, p) = 3‖Y ‖cc
and ∫

G\B(p,ε)
|k(q−1 · p)− k(q−1 · z)| d|σ|(q) .

∫
G\B(p,ε)

d(p, z)

d(z, q)Q
d|σ|(q).

Since ∫
G\B(p,ε)

d(p, z)

d(z, q)Q
d|σ|(q) ≤ ε

2

∞∑
j=0

∫
B(z,2jε)\B(z,2j−1ε)

1

d(p, q)Q
d|σ|(q)

≤ ε

2

∞∑
j=0

|σ|(B(p, 2jε))

(2j−1ε)Q

≤ Aσ
ε

2

∞∑
j=0

(2jε)Q−1

(2j−1ε)Q

= L2,

we deduce that ∫
G\B(p,ε)

|k(q−1 · p)− k(q−1 · z)| d|σ|(q) ≤ L2.

Therefore

|T εσ(p)| ≤ |T εσ(p)− Tσ(z)|+ |Tσ(z)| ≤ L1 + L2 + L.

The lemma is proven. �

Theorem 4.11. Let K be the separated self similar set obtained in Theorem 4.1 and let ki be
any of the coordinate kernels of k. If there exists x = Sw(x) ∈ K, w ∈ V∗, such that∫

K\Sw(K)
ki(x

−1 · y) dHQ−1(y) 6= 0,

then the maximal operator T ∗HQ−1bK is unbounded in L2(HQ−1bK).
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The previous theorem was proved in [6] in the abstract setting of complete metric groups
with dilations. Here we have formulated a version tailored to our setting. We will also need
the following Lemma which compares usual maximal singular integrals to maximal symbolic
singular integrals on separated self-similar sets. The proof can be found in [6, Lemma 2.4].

Lemma 4.12. Let K be the separated self similar set obtained in Theorem 4.1 and let ki be any
of the coordinate kernels of k. Then

(i) there exists a constant αK > 0, depending only on the set K, such that

dist(Sv(K),K \ Sv(K)) ≥ αK diam(Sv(K))

for every v ∈ V∗, and
(ii) there is a constant AC, depending only on the set K and the kernel ki, such that∣∣∣∣∣

∫
Sw(K)\Sv(K)

ki(p
−1 · y) dHQ−1(y)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
B(p,2 diam(Sw(K)))\B(p,2 diam(Sv(K)))

ki(p
−1 · y) dHQ−1(y)

∣∣∣∣∣+AK

for all w, v ∈ V and p ∈ G for which Sv(K) ⊂ Sw(K) and

dist(p, Sv(K)) ≤ αK
2

diam(Sv(K)).

We can now prove Theorem 1.2.

Proof of Theorem 1.2. There exists some i = 1, . . . ,m such that ki is not identically zero in
G \ {0}. Therefore, since Ωi is continuous in S, there exists some open set U ⊂ S such that,

without loss of generality, Ωi(p) > 0 for all p ∈ U . In particular ki is positive for all p ∈ Û \ {0}.
Now let K be the separated self similar set that we obtain from Theorem 4.1 for Û as above.

Notice that since K ⊂ Û , and ki is positive on Û \ {0}∫
K\S0(K)

ki(y) dHQ−1(y) > 0.(4.12)

Since 0 is a fixed point of K, Theorem 4.11 implies that T ∗HQ−1bK is unbounded in L2(HQ−1bK).

Suppose that K is not removable. Then there exists a domain D ⊃ K and a Lipschitz function
f : D → R which is L-harmonic in D \K but not in D. By Theorem 3.1 there exists a domain
G,K ⊂ G ⊂ D, a Borel function h : C → R and an L-harmonic function H : G→ R such that

f(p) =

∫
K

Γ(q−1 · p)h(q) dHQ−1(q) +H(p) for p ∈ G \K

and ‖h‖L∞(HQ−1bK) + ‖∇GH‖∞ . 1. Let σ = hHQ−1bK. In this case by the left invariance of

∇G as in (3.9) and recalling Notation 4.9

Tσ(p) = ∇Gf(p)−∇GH(p) for all p ∈ G \K
which implies that

(4.13) |Tσ(p)| . 1 for all p ∈ G \K.
Let δ = dist(K,G \G) > 0. Then for p ∈ G \G,

(4.14) |Tσ(p)| .
∫

1

‖q−1 · p‖Q−1
d|σ|(q) ≤ |σ|(K)

δQ−1
. 1.
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By (4.13) and (4.14) we deduce that Tσ ∈ L∞. Hence, recalling Remark 4.8, the measure
HQ−1bK is (Q− 1)-AD regular and we can apply Lemma 4.10 to conclude that T ∗σ is bounded.

Furthermore since f is not harmonic in K, h 6= 0 in a set of positive HQ−1 measure. Therefore
there exists a point p ∈ K of approximate continuity (with respect to HQ−1bK) of h such that
h(p) 6= 0. Let wn ∈ {0, 1, . . . ,M}n, where M is as in Theorem 4.1, be such that p ∈ Swn(K).
Then by the approximate continuity of h,

r(1−Q)n(S−1
wn

)](σbSwn(K)) ⇀ h(p)HQ−1bK as n→∞.

We can now check that the boundedness of T ∗σ implies that T ∗HQ−1bK is bounded. Let z ∈
G \ (K ∪

⋃∞
n=1 S

−1
wn

(K)). If dist(z,K) > αK
2 diam(K), then

(4.15) |THQ−1bK(z)| . 1.

Therefore we can assume that dist(z,K) ≤ αK
2 diam(K). Hence for any w ∈ V∗,

dist(Sw(z), Sw(K)) = r|w| dist(z,K)

≤ r|w|αK
2

diam(K)

=
αK
2

diam(Sw(K)).

(4.16)

Notice that the 0-homogeneity of ki implies that ki(S
−1
wn

(q)−1 · z) = r(Q−1)nki(q
−1 · Swn(z)).

Therefore,

h(p)THQ−1bK(z) = lim
n→∞

r(1−Q)n

∫
ki(q

−1 · z) d(S−1
wn

)](σbSwn(K))(q)

= lim
n→∞

r(1−Q)n

∫
Swn (K)

ki(S
−1
wn

(q)−1 · z) dσ(q)

= lim
n→∞

∫
Swn (K)

ki(q
−1 · Swn(z)) dσ(q)

= lim
n→∞

(∫
K
ki(q

−1 · Swn(z)) dσ(q)−
∫
K\Swn (K)

ki(q
−1 · Swn(z)) dσ(q)

)
.

Since z /∈
⋃∞
n=1 S

−1
wn

(K), ∣∣∣∣∫
K
ki(q

−1 · Swn(z)) dσ(q)

∣∣∣∣ ≤ ‖T ∗σ‖∞.
Furthermore by Lemma 4.12 and (4.16) we get that,∣∣∣∣∣

∫
K\Swn (K)

ki(q
−1 · Swn(z)) dσ(q)

∣∣∣∣∣ ≤ 2‖T ∗σ‖∞ +AK .

Therefore,

|h(p)THQ−1bK(z)| ≤ 3‖T ∗σ‖∞ +AK ,

and since ∣∣∣∣∣K ∪
∞⋃
n=1

S−1
wn

(K)

∣∣∣∣∣ = 0

we get that THQ−1bCQ−1
∈ L∞. Hence by Lemma 4.10 T ∗HQ−1bK is bounded in L2(HQ−1bK) and

we have reached a contradiction. The proof of the theorem is complete. �
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Remark 4.13. Vertical hyperplanes of the form {(x, t) ∈ G : x ∈ W, t ∈ R}, where W is a
linear hyperplane in Rm, are homogeneous subgroups of G, that is, they are closed subgroups
invariant under the dilations δr. Their Hausdorff dimension is Q − 1. If V is any such vertical
hyperplane and σ denotes the (Q − 2)-dimensional Lebesgue measure on V it follows by [34,
Theorem 4, page 623 and Corollary 2, page 36] that T ∗σ is bounded in L2(σ). This implies, for
example by the methods used in [27], that positive measure subsets of vertical hyperplanes are
not removable for Lipschitz harmonic functions.

5. Concluding comments and questions

As in the Euclidean case the study of removable sets for Lipschitz L-harmonic functions
with positive and finite HQ−1-measure heavily depends on the study of the singular integral
T (f) = (T1(f), . . . , Tm(f)) where formally

Ti(f)(p) =

∫
ki(p

−1 · q)f(q) dHQ−1(q)

and k = (k1, . . . , km) = ∇GΓ.
Our understanding of such singular integrals is extremely limited even when the fundamental

solution of the sub-Laplacian, and hence the kernel k, have explicit formulas as in the Heisenberg
group. There are two natural directions one could pursue in order to extend our knowledge of
the topic. First of all it is not known what regularity and smoothness assumptions are needed
for a (Q− 1)-AD regular set M in order the operator T to be bounded in L2(HQ−1bM). Recall
that sets which define L2-bounded operators can be seen to be non-removable, cf. Remark 4.13.
Second it is not known how much we can extend the range of removable (Q − 1)-dimensional
self-similar sets. We are not aware of any self-similar sets where the condition in Theorem 4.11
fails for all its fixed points. Nevertheless due to the changes in sign of the kernel checking that
the integral in Theorem 4.11 does not vanish could be technically very complicated.
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[36] Tolsa, X. Painlevé’s problem and the semiadditivity of analytic capacity. Acta Math. 190, 1 (2003), 105–149.
[37] Tolsa, X. Analytic capacity, the Cauchy transform, and non-homogeneous Calderón–Zygmund theory,

vol. 307 of Progress in Mathematics. Birkhaüser, Basel, 2014.
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