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Chapter 1

Introduction

The main purpose of this thesis is to extend methods and results of Geometric Mea-
sure Theory to the geometries of sub-Riemannian groups.

A detailed description of all the material of the thesis is given in the introductions
to individual chapters and in the more concise overview at the end of this chapter.
Here we want to outline how the research on this topic historically grew, trying to
reach the more recent developments. In this way, we hope to provide for the reader
the mathematical landscape where this thesis should be �tted in and the reasons that
motivate this study.

Typical features of \sub-Riemannian structures" historically appeared in several
�elds of Mathematics. Perhaps, the �rst seeds can already be found in the 1909 work,
[34], by Constantin Carath�eodory, on the second principle of Thermodynamics. Here
a thermodynamic process can be represented by a curve in Rq and the heat exchanged
during the process by the integral of a suitable one-form � along the curve. The work
of the physicist Joules Carnot led to the existence of two thermodynamic states that
cannot be connected by adiabatic processes, namely, curves where � vanishes at ev-
ery point. These are the so-called horizontal curves, whose velocities belong to the
distribution of nullspaces of �. Carath�eodory proved that if there exist two points
that cannot be connected by horizontal curves, then � is integrable. From both this
theorem and the result by Carnot, we can conclude that � is integrable, namely, there
exist two functions T and S such that � = T dS. When T and S are interpreted as
the Temperature and the Entropy, respectively, the last equation becomes the mathe-
matical formulation of second principle of Thermodynamics. The geometric content
of Carath�eodory Theorem becomes clearer when it is stated in a di�erent way: if �
is a nonintegrable one-form, then any two points can be connected by an horizontal
curve. Here we want to mention that this result was probably already known to
Hertz, although without proof. If we consider a frame of vector �elds that span the
distribution of nullspaces of the nonintegrable one-form �, then Frobenius Theorem
tells us that there exist two vector �elds of the distribution whose Lie bracket is not
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6 CHAPTER 1. INTRODUCTION

contained in the distribution itself. In this case the distribution of subspaces associ-
ated to � has codimension one, hence the Lie algebra generated by the vector �elds at
any point has the same dimension of the tangent space. This version of Carath�eodory
Theorem can be generalized to distributions of any codimension, whose Lie algebra
generates the tangent space at every point. The condition on the distributions above
is known in Nonholonomic Mechanics, subelliptic PDE's and Optimal Control Theory
under different names, as \total nonholonomicity", \H�ormander condition", \bracket
generating condition" or \Chow condition". The reason is the following fundamental
theorem which extends the previous Carath�eodory result: a connected manifold with
a bracket generating distribution is connected by curves which are tangent to the
distribution itself. This result was independently proved in the 1938-1939 papers by
Rashevsky and Chow, [38], [160] and it is the foremost basic result of sub-Riemannian
Geometry. A complete characterization of system of vector �elds which give a distri-
bution of subspaces such that the manifold is connected by curves tangent to the
distribution was proved by Sussmann in the 1973 paper [176].

A distribution of subspaces seen as a �ber bundle will be called horizontal sub-

bundle and its tangent curves will be referred to as horizontal curves. Throughout
the thesis we will frequently use the adjective \horizontal" to indicate objects re-
lated to the horizontal subbundle and we will often use the pre�x H. The Chow-
Rashevsky Theorem allows us to introduce a distance that takes into account the
geometry induced by the horizontal subbundle on the manifold. The distance be-
tween two points is the in�mum of lengths of all horizontal curves connecting them.
This is the so-called Carnot-Carath�eodory distance, as it was named in [87], [154]
(CC-distance). The manifold together with its horizontal subbundle is the so-called
Carnot-Carath�eodory space (CC-space). A �rst general formulation of the method to
�nd geodesics in CC-spaces dates back to the 1973 paper by Hermann, [97]. Here the
author notes that the classical formulation of geodesic equations using the Hamilton-
Jacobi Theory allows of cometrics that may vanish on a subspace of one-forms. The
Riemannian metrics which are dual to these cometrics have formally in�nite value on
the subspace of directions (the vertical ones) which is dual to that of one-forms. This
method amounts to seek geodesics subject to constraints imposed on their directions.
This type of question is a feature of CC-geometries which has no counterpart in Rie-
mannian Geometry. It is worth to mention that smoothness of singular geodesics in
CC-spaces is still an open issue. In the 1994 paper by Montgomery, [136], it has been
shown an example of length minimizer which does not satisfy the geodesic equations.
We quote the paper by Liu and Sussmann, [121], and the recent book by Montgomery,
[137], for a detailed exposition and further studies on this question.

In the �eld of PDE's the importance of both the bracket generating condition
on the horizontal subbundle and the CC-distance �rst appeared in the 1967 paper
by H�ormander, [99]. He proved the hypoellipticity of the second order degenerate
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elliptic operator

LX = �
mX
i=1

X2
i ; (1.1)

under the condition that the �rst order operators Xi, which form a frame for the
horizontal subbundle, satisfy the crucial bracket generating condition. A surprising
relation between CC-distance and hypoellipticity was shown in the 1981 paper by
Fe�erman and Phong, [56]. Here it is established that an H�older estimate of the
following type

�(x; y) � C jx� yj" ;
where � is the CC-distance, is equivalent to the subelliptic estimate

kukH" � C
�
kuk2 +

mX
i=1

kXiuk2
�
;

which gives in turn the hypoellipticity. In the previous formula we have denoted by k�k
the L2 norm and by k�kH" the fractional Sobolev norm. Precisely, the previous result
was proved for a distance associated with a degenerate elliptic operator. Furthermore,
when the degenerate elliptic operator is of type (1.1), its associated distance coincides
with the CC-distance.

A large number of important works has appeared in this area, following the points
of view of Sobolev Space Theory, Harmonic Analysis, Regularity Theory for PDE's,
Spectral Theory, fundamental solutions for subelliptic operators and other aspects.
Among these ones, we mention the papers by Bony, [20], Capogna [28], [29], Capogna,
Danielli and Garofalo, [30], [32], Citti, Garofalo and Lanconelli, [39], Fabes, Kenig
and Serapioni, [54], Folland, [57], [58], Franchi and Lanconelli, [62], [63], Franchi and
Serapioni, [68], Garofalo and Lanconelli, [78], Gaveau [81], M�etivier, [132], Nagel,
Ricci and Stein, [147], [148], S�anchez-Calle [166], Xu and Zuily, [189].

At the same time, the notion of Sobolev space was extended to CC-spaces, requi-
ring that only distributional derivatives along the vector �elds of the subbundle are
p-summable. This naturally occurred in order to �t the corresponding PDE's theory.
The crucial role played by Sobolev inequality and Poincar�e inequality in the regu-
larity theory of elliptic PDE's was clear since the celebrated results by De Giorgi,
Nash and Moser, [48], [144], [150]. In the context of CC-spaces, the �rst use of the
so-called Moser iteration technique dates back to the 1983 paper by Franchi and Lan-
conelli, [62], where it was shown that solutions to degenerate second order operators
of \Grushin type" are H�older continuous with respect to the CC-distance induced
by the operator itself. A few years later Jerison, [100], generalized the Poincar�e
inequality for vector �elds Xi under the bracket generating conditionZ

Ux;r

jw(z)� wUx;r j2 dz � C r2
Z
Ux;r

mX
j=1

jXjw(z)j2 dz: (1.2)
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Here, the ball Ux;r of center x and radius r is considered with respect to the CC-
distance, w 2 C1(Ux;r) and wUx;r is the average integral of w on Ux;r. The proof
of this result is �rst accomplished in the model case of strati�ed groups (CC-spaces
with a Lie group structure). Then the Lifting Theorem of Rothschild and Stein,
[163], according to which CC-spaces can be seen as submanifolds of suitable strati�ed
groups, allows of the extension to general CC-spaces. Incidentally, this paper arose in
connection with the solution to the Yamabe problem on CR manifolds, [101], [102],
[103]. Recall that CR structures can be pointwise approximated by the Heisenberg
group, which is the simplest paradigm of nonabelian strati�ed group. We also mention
that a new proof of the Poincar�e inequality for vector �elds has been recently given
by Lanconelli and Morbidelli, [118].

These results con�rmed the possibility to extend much of the classical theory of
Sobolev spaces to the setting of CC-spaces, together with various other connected is-
sues. We mention questions as Sobolev embeddings, isoperimetric inequalities, traces
theorems, representation formulae, mapping with �nite distortion, quasiconformal
mappings, monotone maps and other more. It is really di�cult to give an exhaustive
account of all literature in this �eld. We refer the reader to the works by Buck-
ley, Koskela and Lu, [24], Capogna, Danielli and Garofalo, [30], [31], Chernikov and
Vodop'yanov, [36], [37], Danielli, Garofalo and Nhieu, [42], [43], Franchi, Gallot and
Wheeden, [60], Franchi, Guti�errez and Wheeden, [61], Franchi, Lu and Wheeden, [66],
Franchi Serapioni and Serra Cassano, [69], [70], Garofalo and Nhieu, [79], Greshnov
and Vodop'yanov, [82], [83] Heinonen and Holopainen, [94], Kor�anyi and Reimann
[113], [114], Lanconelli and Morbidelli, [118], Lu, [122], Marchi, [128], Margulis and
Mostow, [129], Monti and Morbidelli, [140], Morbidelli, [142], Pansu, [154], Sawyer
and Wheeden, [167], Vodop'yanov [182], [183]. Some of the previous papers consider
strati�ed groups, which form a privileged class of CC-spaces, as we will discuss later.

In the last few years there has been an impressive development of these theories
in general metric spaces. The beginning of this research line can be dated to around
1995, with papers by Biroli and Mosco, [17], [18], [19], Hajlasz, [89], and Hailasz
and Koskela, [90]. In the paper [89] Sobolev spaces have been de�ned by means of a
generalized Lipschitz condition

ju(x)� u(y)j �
�
g(x) + g(y)

�
d(x; y) ;

where u is a Borel map on a metric measure space X and g 2 Lp(X). Some years
before this paper, in connection with a conjecture by Yau on the space of harmonic
functions with polynomial growth in a Riemannian manifold, Grigor'yan and Salo�-
Coste independently extended the Yau result, [190], to Riemannian manifolds with
a doubling volume measure and where the Poincar�e inequality holds, [84], [165]. We
recall that a doubling measure � on a metric space X has the property

�(Bx;2r) � C �(Bx;r)
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for some constant C > 0 and every ball Bx;r of center x 2 X and radius r > 0.
The brief note by Hajlasz and Koskela, [90], shows that a doubling condition on the
measure and the validity of Poincar�e inequality are enough to obtain the Sobolev
inequality in an arbitrary metric measure space. In the abstract setting of Dirichlet
forms on metric spaces the same kind of implication was proved in [18], [19]. The ab-
stract approach of considering a doubling measure, the validity of Poincar�e inequality
and Sobolev inequality in metric spaces was already made in [17].

This is a good occasion to remark that CC-spaces endowed with the Lebesgue
measure are doubling, as Nagel, Stein and Wainger proved, [149], and the Poincar�e
inequality (1.2) holds. We also mention that other types of geometries that have a
Poincar�e inequality has been found, [21], [22], [116], [172]. Hence it is not surprising
that even other settings are suitable to develop the Sobolev Space Theory, as graphs,
fractals and metric spaces with Dirichlet forms. Clearly, the metric theory of Sobolev
spaces provides a uni�ed picture where these geometries �t in. A survey on these
themes and references on the previously mentioned research lines can be found in the
monograph by Hajlasz and Koskela [91], where a particular attention is devoted to the
case of CC-spaces. Concerning relations between heat equation and Sobolev Theory
on groups we quote the book by Varopoulos, Salo�-Coste and Coulhon, [180], where
a section is specialized on groups with a CC-structure (strati�ed groups). Another
approach to metric Sobolev spaces is given in the paper by Shanmugalingam, [173].
Concerning functions of bounded variation in metric spaces see [134], by Miranda.

These and other observations have lead several authors to tackle various geome-
trical questions in a pure metric setting. On the other hand, this approach has also
other motivations and it can be seen as a part of modern developments of Anaysis
and Geometry; see the works by Ambrosio, [5], Ambrosio and Kirchheim, [7], [8],
Assouad, [11], Biroli and Mosco, [17], [18], [19], Cheeger, [35], David and Semmes
[45], De Giorgi [49], Franchi, Hajlasz and Koskela, [64], Franchi, Lu and Wheeden,
[67], Gromov, [87], [88], Heinonen and Koskela [95], Kirchheim, [110], Kirchheim
and Magnani, [111], Korevaar and Schoen, [115], Lang and Schroeder, [119], Preiss
and Tisier, [158], Semmes, [170], [171], Weaver, [186], but surely this list could be
enlarged. About an overview of metric geometry we mention the recent textbook
[26], by D.Burago, Y.Burago and Ivanov. Concerning methods of Analysis in metric
spaces we mention the book [93], by Heinonen, where there is an account of several
recent results and open questions in this �eld. New types of geometries with \good
calculus properties" are studied in [172], by Semmes.

We have seen that results in CC-geometries also served as a model of inspiration
for further generalizations to a pure metric setting. This process can be explained be-
cause CC-geometries contain a wider class of metric spaces than the Riemannian one.
In fact, a CC-space, also called \nonriemannian space", is far from being Euclidean
from a metric point of view in that the CC-distance is not bilipschitz equivalent to
the Euclidean distance in a coordinate chart. This is the standard situation corre-
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sponding to a bracket generating horizontal subbundle whose dimension is less than
the topological dimension of the manifold. In the case when these dimensions co-
incide we obtain the well known Riemannian manifold, hence CC-spaces encompass
Riemannian manifolds. The study of the geometry of the CC-distance �ts into the
area of \sub-Riemannian Geometry". One of the leading themes of a thorough paper
by Gromov, [86], is the study of the possibility to obtain all information about a
CC-space using only its CC-distance. The same paper and the book [88] provide
more information on this research stream. These works clearly show how CC-spaces
constitute a new terrain for Analysis and Geometry, where classical theories can be
extended and developed, keeping only the fundamental principles.

Now it is time to introduce the ambient where our investigations will take place,
i.e. sub-Riemannian groups. These are strati�ed groups endowed with a Riemannian
metric restricted to the horizontal subbundle. The term \sub-Riemannian" is taken
from [175] in order to emphasize the particular metric structure that characterizes
these groups, which is strictly related to the horizontal subbundle. To ensure that
the horizontal subbundle yields a homogeneous structure compatible with the alge-
braic structure of the group, we require that translations of the group preserve the
distribution of subspaces which forms the horizontal subbundle. Precisely, taking a
subspace H of the tangent space TeG of the group at the unit element e 2 G, one
moves it to any point of G by means of the di�erential of left translations lpx = p � x
and call the collection of all these subspaces the horizontal subbundle generated by
the subspace H. A strati�ed group is a simply connected nilpotent Lie group, whose
Lie algebra G admits a decomposition into the direct sum G = V1 � � � � � V�, where
the relations

Vj+1 = [Vj ; V1] (1.3)

hold for every j 2 N and Vk = f0g whenever k � �. This last condition tells us that
the algebra is nilpotent. Groups whose Lie algebra is nilpotent are called nilpotent
groups and the integer � is called the step of the group. Recall also that if a and b are
subspaces of a Lie algebra, the expression [a; b] represents the vector space spanned
by the Lie brackets [X;Y ], where X 2 a and Y 2 b. The canonical choice of the
horizontal subbundle is given de�ning

H = fX(e) j X 2 V1g � TeG (1.4)

The terminology \strati�ed group" is taken from [59]. In the literature the name
\Carnot group" is also used, following the terminology of [154].

As we have previously mentioned, strati�ed groups form a particular class of
CC-spaces. In fact, the horizontal subbundle of the group is spanned by the left
invariant vector �elds belonging to V1, therefore relations (1.3) yield the bracket
generating condition. In order to obtain a metric structure compatible with the
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algebraic structure of the group, the scalar product on the horizontal subbundle is
taken to be left invariant, hence the associated CC-distance is also left invariant.

Much of the previously quoted works on CC-spaces were exactly on strati�ed
groups, that constitute a simpli�ed model of these spaces. A signi�cant way to see
the interconnection between strati�ed groups and CC-spaces is given by a result of
Mitchell, [135], according to which a strati�ed group can be seen as the tangent cone
to a CC-space at some point. Precisely, looking at the couple formed by the CC-space
M and one of its points p as a pointed metric space (M;p; d), it is studied the limit
of metric spaces (M;p; � d), as � ! 1. This enlargement of the distance amounts
to dilate the space around the point p. When M is a Riemannian manifold the limit
space coincides with the classical tangent space TpM . In the general case of a CC-
space the limit is exactly a strati�ed group, that generalizes the Euclidean space.
Re�ned versions of this result can be found in [15], [130]. The way of interpreting
strati�ed groups as tangent cones of CC-spaces o�ers us an enlightening comparison
between sub-Riemannian Geometry and Riemannian Geometry: strati�ed groups are
to CC-spaces what Euclidean spaces are to Riemannian manifolds.

Another context where these groups naturally arise is that of in�nite discrete
groups. An element of a discrete group can have di�erent representations of the form
g = gi11 � � � gik2 and the length of the representation is the positive integer

Pk
j=1 ij .

The distance d(g; 1) of g from the unit element 1 is the minimum length of all rep-
resentations of g. One can check that d(g�1; 1) = d(g; 1). As a result, de�ning
d(g; h) = d(g�1h; 1) we obtain a natural left invariant distance on the group and
we can consider the number Nr of elements contained in a ball of radius r. If Nr

is less than or equal to a function of type Crd for some positive numbers C and d,
we say that the group has polynomial growth. A result by Bass, Milnor and Wolf,
[14], [133], [188] establishes that every discrete �nitely generated nilpotent group has
polynomial growth. A deep result due to Gromov provides the striking \viceversa" to
the previous result, [85], answering a 1968 Milnor conjecture: every discrete �nitely
generated group with polynomial growth contains a nilpotent subgroup of �nite in-
dex. It is striking that the only information on the growth of the group yields a
nilpotent structure. The geometric idea is to look at the discrete group from in�nity,
i.e. moving the observation point far away from the group and then obtaining a con-
tinuous structure that corresponds to the limit Lie group. This process corresponds
to consider the limit of metric spaces (�; "d) as " ! 0+, where (�; d) is the discrete
group with its left invariant distance. We mention that the notion of convergence of
metric spaces was introduced by Gromov exactly in connection with this problem,
[85]. Further studies on this notion can be found in [87], [88] and [157].

More can be said about the limit space. In fact, it is not only nilpotent, but even
strati�ed and it carries a family of dilations �r : G �! G, see [153]. These maps, also
called self-similarities, are one of the most important features of the group. They
are compatible with the CC-distance in the sense that �(�rp; �rq) = r �(p; q), where
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� is the CC-distance, r > 0, p; q 2 G, and well behave with respect to the group
operation, �r(p � q) = �rp � �rq. We can always extend the Riemannian metric on
the horizontal subbundle to the whole tangent bundle of the group, obtaining a left
invariant Riemannian metric. This yields a Riemannian volume measure vg that is
also left invariant and then it coincides with the Haar measure of the group. Dilations
scale well with the volume measure, as the formula

vg(�rE) = rQvg(E) (1.5)

shows, where E is a measurable subset of G and Q is the Hausdor� dimension of the
group with respect to the CC-distance. The Hausdor� dimension of G with respect
to the CC-distance is related to the dimension of subspaces Vi by the formula

Q =
�X

j=1

j dimVj : (1.6)

Strati�ed groups are in particular nilpotent and simply connected, hence in view of
Theorem 2.3.10 they are linearly isomorphic to a �nite dimensional vector space.

All these features could remind us of the familiar Euclidean structure, but as soon
as we consider nonabelian groups, in many respects we are dealing with a geometry
closer to the fractal one. For instance, formula (1.6) tells us that in the nonabelian
case � > 1 the Hausdor� dimension of the group is always greater than its topological
dimension and this is a typical feature of fractal objects. Throughout the thesis we
will refer to the non-Euclidean case � > 1, that contains the new features of these
geometries. Nevertheless, all our results hold in particular for Euclidean spaces, which
seen as particular strati�ed groups are recovered in the case �=1.

The fractal nature of these groups also appears in other respects. We can have
purely unrecti�able sub-Riemannian groups, as it was �rst shown by Ambrosio and
Kirchheim, [7], for Heisenberg groups, that constitute the simplest class of nonabelian
sub-Riemannian groups (see Subsection 2.3.1). Recall that the notion of pure unrecti-
�ability can be stated in metric spaces, see 3.2.14 of [55]. A full characterization of
all purely unrecti�able sub-Riemannian groups is given in Section 4.4 as an original
contribution of the thesis. Also \regular surfaces", in the sense of sub-Riemannian
groups, possess a fractal nature, that will be explained later. All these features are
certainly a source of di�culties in dealing with these geometries and often prevent
us from utilizing the \Euclidean intuition".

Returning to the properties of sub-Riemannian groups, formula (1.5) and homo-
geneity of dilations with respect to the CC-distance imply that the Q-dimensional
Hausdor� measure HQ constructed by the CC-distance is �nite. Hence, from left in-
variance of CC-distance we conclude that HQ is proportional to the volume measure.
The advantage of HQ is its \intrinsic nature", which requires only the distance of
the group. It is also meaningful the study of surface measures with any codimension,
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although this study in sub-Riemannian groups for surfaces of codimension greater
than one is still to be explored. We will touch on this issue in Section 3.5, giving
a novel perspective to be followed in the investigation of these geometries. In fact,
much of the recent studies on the geometry of CC-spaces are essentially devoted to
surfaces of codimension one.

The rich structure of sub-Riemannian groups, despite their fractal nature, is un-
doubtedly su�cient to start the study of Geometric Measure Theory on these groups.
Classical Analysis tells us the importance of Geometric Measure Theory in connection
with Calculus of Variations, elliptic PDE's, isoperimetric inequalities, �ne properties
of functions and so forth. It is surprising that although a bulk of work has been done
both in CC-spaces and strati�ed groups from di�erent points of view, the study of
Geometric Measure Theory in these spaces is still in its very beginning. Only recently
some papers have begun this project, as the works by Ambrosio and Magnani, [9],
Balogh, [12], Danielli, Garofalo and Nhieu, [43], Franchi, Serapioni and Serra Cas-
sano, [71], [72], [73], Garofalo and Nhieu, [79], Leonardi and Rigot, [120], Magnani,
[124], [125], [126], Monti and Serra Cassano, [141], Pauls, [155], [156], Ukhlov and
Vodop'yanov, [177], Vodop'yanov, [184] and many others.

We can take these recent works back to some important starting points: the
isoperimetric inequality in CC-spaces, BV functions on CC-spaces and an intrinsic
notion of di�erentiability on sub-Riemannian groups. The �rst isoperimetric inequa-
lity proved in a sub-Riemannian context is due to Pansu, [152], for the Heisenberg
group, but only recently it was extended to CC-spaces by Capogna, Danielli and
Garofalo, [31], Franchi, Gallot and Wheeden, [60], and Garofalo and Nhieu, [79].
Isoperimetric inequality is an important tool in order to obtain the recti�ability of
�nite perimeter sets, [47]. Recently, this famous result due to De Giorgi has been
extended by Franchi, Serapioni and Serra Cassano to the case when the ambient space
is the Heisenberg group, or more generally a sub-Riemannian group of step two, [71],
[73]. A set of �nite perimeter is those set whose characteristic map is a function of
bounded variation. This is a well known notion in the Euclidean context. It has been
introduced in CC-geometries by Capogna, Danielli and Garofalo in the 1994 paper
[31], concerning a general Sobolev embedding on CC-spaces, and it was subsequently
studied with various characterizations and applications to Calculus of Variations by
Franchi, Serapioni and Serra Cassano, [69]. A locally summable function u : 
 �! R

is of X-bounded variation if the supremum of integralsZ


u(y)

mX
j=1

X�
j '(y) dx (1.7)

over all maps ' 2 C1
c (
) is �nite. As usual, vector �elds Xj span the horizontal

subbundle and satisfy the bracket generating condition. The symbol X�
j represents

the formal adjoint operator. A measurable subset whose characteristic function has
bounded X-variation is said to be a set of �nite X-perimeter. An important aspect
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related to the notion of X-perimeter measure is that it does not require a �xed
Hausdor� dimension of the space. In fact, the Hausdor� dimension of a CC-space
can vary on di�erent parts of the space, hence the use of the Hausdor� measure in
CC-spaces is meaningless. Other notions of surface measure make sense in CC-spaces,
as the Minkowski content that was proved to be equal to the X-perimeter measure,
for su�ciently regular domains, by Monti and Serra Cassano, [141]. However, the
use of Lebesgue measure in (1.7) is not really intrinsic. A canonical notion of volume
measure actually lacks in CC-spaces and only in some special cases a �rst answer
has been given, [137]. This and other reasons make hard a complete development
of Geometric Measure Theory in CC-spaces, mainly on the study of surfaces with
higher codimension.

Now, it remains the notion of intrinsic di�erentiability on sub-Riemannian groups.
Here we meet the �rst important theme of the thesis that will be studied in Chapter 3.
Di�erentiability on sub-Riemannian groups was introduced in the 1989 paper by
Pansu, [154], where it was used to extend Mostow rigidity, [146]. This notion is
intrinsic since it employs the group operation, dilations and a natural family of \linear
maps" of the group, called H-linear maps. Let G and M be two sub-Riemannian
groups, 
 � G be an open subset and f : G �!M. We say that f is H-di�erentiable
at p 2 
 if there exists an H-linear map L : G �!M such that

�
�
f(p)�1f(x); L(p�1x)

�
d(p; x)

�! 0 as x! p ; (1.8)

where d and � are the CC-distances of G and M, respectively. The map L is denoted
by dHf(p) and called the H-di�erential. Recall that an H-linear map is a group
homomorphism that is 1-homogeneous with respect to dilations. When G and M
are Euclidean spaces these de�nitions give the classical notion of di�erentiability.
Perhaps the core of many ideas that allow us to employ several methods of Geometric
Measure Theory in sub-Riemannian groups is the following fundamental result due
to Pansu, [154]. A Lipschitz map f : 
 �!M is H-di�erentiable HQ-a.e. on 
. This
is an extension of the classical Rademacher Theorem to sub-Riemannian groups. A
manageable version of this theorem in view of applications to Geometric Measure
Theory has to encompass the case when the domain of the map f is only measurable.
This was the beginning of the author's research on this topic. Due to the lack of
Lipschitz extension theorems for maps between sub-Riemannian groups the task of
extending the previous result to the case of measurable domains becomes technically
nontrivial, [124]. The �rst paper dealing with this question among others is due to
Ukhlov and Vodop'yanov, [177]. We refer the reader to Chapter 3 for the proof of
this theorem (Theorem 3.4.11) and more detailed comments on this argument.

Di�erentiability of Lipschitz maps also allows of the extension of the classical area
formula to Lipschitz maps between sub-Riemannian groups,Z

A
JQ(dHf(x)) dHQ

d (x) =

Z
M

N(f;A; y) dHQ
� (y) ; (1.9)
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provided that a suitable notion of jacobian is used, [124]. The map N(f;A; y) is the
multiplicity function (De�nition 2.1.11) and JQ(dHf(x)) is the H-jacobian of dHf(x),
introduced in De�nition 4.2.1. An original contribution of this thesis concerns a
general formulation of the area formula in metric spaces, that provides a uni�ed way
to obtain the area formula in several contexts. This general approach is developed
in Section 4.1. A classical proof of (1.9) will be given in Chapter 4. Area formula
also gives an easy way to prove a \rigidity result" for sub-Riemannian groups. This
question was already considered by Pansu, [154], and Semmes, [168]. Basically, it
is a direct consequence of the a.e. di�erentiability of Lipschitz maps. Consider
two sub-Riemannian groups G and M and call them \equivalent" if there exist two
measurable subsets A � G and B � M both with positive measure, such that there
exists a bilipschitz map f : A �! B. Then every equivalence class contains only
one sub-Riemannian group up to H-linear isomorphisms, see Theorem 4.4.6. Our
novel contribution in this result is the extension of the rigidity result to measurable
subsets, instead of open subsets, and the simple use of the area formula. As a
consequence, a measurable subset of a nonabelian sub-Riemannian group cannot be
parametrized by a bilipschitz map on a subset of an Euclidean space. This tells
us immediately that nonabelian sub-Riemannian groups are substantially di�erent
from Riemannian metric spaces. Furthermore, each of these groups has an own
geometry, that is essentially di�erent from that of any other nonisomorphic group.
An unpleasant consequence is that it is not possible to adopt \Euclidean methods"
directly by means of bilipschitz parametrizations with pieces of Euclidean spaces. The
good one is that results valid for sub-Riemannian groups encompass a wide class of
di�erent geometries, where the Euclidean one is an example among the others. The
above rigidity theorem emphasizes also another aspect which comes up from this
thesis. This is the interconnection between metric and algebraic properties of sub-
Riemannian groups. There are di�erent situations where this principle occurs. In the
terminology of [45], we say thatM looks down on G if there exists a closed set A �M
and a Lipschitz map f : A �! G such that HQ (f(A)) > 0, where G and M are sub-
Riemannian groups. This means that Rk does not look down on G if and only if G
is purely k-unrecti�able. This observation o�ers us the possibility to study whether
a given sub-Riemannian group looks down on another one using the same technique
of Theorem 4.4.4, where purely k-unrecti�able groups are characterized by checking
algebraic conditions on the groups and exploiting the area formula. Another situation
related to the above mentioned principle occurs when one establishes whether two
sub-Riemannian groups are bilipschitz equivalent by checking H-linear maps between
the groups, as it is done in Theorem 4.4.6. In Theorem 6.3.4 we have a di�erent case
where this principle applies. Here it is proved the nonexistence of nontrivial coarea
formulae between di�erent Heisenberg groups, using the fact that every H-linear
between these groups cannot be surjective, due to algebraic constraints.

The notion of di�erentiability on sub-Riemannian groups also provides a natural
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way to introduce \intrinsic regular surfaces". This concept was �rst introduced by
Franchi, Serapioni and Serra Cassano in [71], [72], [73], in order to obtain a natural
notion of recti�ability that �ts the geometry of sub-Riemannian groups. A subset
� � 
 isG-regular if there exists an H-di�erentiable map f : 
 �! R with continuous
di�erential p �! dHf(p) such that for every p 2 � the H-linear map dHf(p) is
nonvanishing. In the case when G is an Euclidean space the above de�nition yields
classical C1 regular submanifolds. But things can change tremendously as soon as
the group is nonabelian. In fact, it seems that it is possible to construct an example
of H3-regular surface with Hausdor� dimension 5=2 with respect to the Euclidean
distance, where H3 is the three dimensional Heisenberg group, [112]. This interesting
surface cannot be 2-recti�able in the sense of 3.2.14 of [55], even though in view of
an Implicit Function Theorem proved in [72], its topological dimension is still two.
Hence G-regularity is clearly an intrinsic notion, since what is regular with eyes of the
sub-Riemannian groups has a de�nitive fractal nature from the Euclidean viewpoint.
This is another con�rmation of the fact that the study of intrinsic regular surfaces
has to be accomplished employing more general tools and methods. The notion
of G-regularity can be extended to subsets of higher codimension and modeled on
the geometry of another sub-Riemannian group M. This is precisely explained by
the notion of (G;M)-regularity, a novel notion introduced in the thesis, which will
be discussed in Section 3.5. This study opens many new questions together with
a good perspective to introduce a theory of currents according to the geometry of
sub-Riemannian groups.

The �rst motivation for the above notions of G-regular surfaces is the validity of
the De Giorgi Recti�ability Theorem on the class of sub-Riemannian groups of step
two, [71], [73], as we will explain later. We point out that the de�nition of functions
with bounded X-variation can be specialized to sub-Riemannian groups adopting only
the left invariant Riemannian metric restricted to the horizontal subbundle (De�ni-
tion 2.4.3). In this way we obtain a notion independent from the choice of vector
�elds utilized in (1.7). Following the general terminology adopted in this thesis, we
will speak of functions of H-bounded variation and of sets of H-�nite perimeter on
sub-Riemannian groups. Sets of H-�nite perimeter also naturally possess the notion
of H-reduced boundary, along with the Euclidean notion (De�nition 2.4.10). The re-
cent version of the Recti�ability Theorem proved by Franchi, Serapioni and Serra
Cassano establishes that the H-reduced boundary of an H-�nite perimeter set in a
step two sub-Riemannian group is a countable union of G-regular surfaces up to
HQ�1-negligible sets, where Q is the Hausdor� dimension of the group. The validity
of this result for groups of higher step is an open problem and already in step three
a counterexample to the classical method is possible, [73].

One of the crucial points in the Recti�ability Theorem is the blow-up method
of enlarging the subset around a point up to obtain its \generalized" tangent space.
This method was introduced by De Giorgi, [47]. Here we meet the second important
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theme of the thesis, e.g. the \blow-up principle". The blow-up technique applied by
rescaling a Lipschitz map f : A �! M on its di�erentiability points yields a general
coarea inequalityZ

M

HQ�P
�
A \ f�1(�)� dHP (�) �

Z
A
CP (dHf(�)) dHQ(�) ; (1.10)

proved in [125]. The symbol CP (dHf(�)) denotes the H-coarea factor of dHf(�),
according to De�nition 6.1.3. This formula will be proved in Section 6.2. An impor-
tant application is the HQ�1-negligibility of characteristic points of C1 hypersurfaces,
proved in Theorem 6.6.2. This completes and extends some previous results in the
literature, [12], [73] and it is one of the foremost contributions of this thesis. The
blow-up technique which relies on the recti�ability of the perimeter measure stated in
Theorem 6.4.7 yields the coarea formula for real-valued Lipschitz maps u : G �! R,

Z
G

h(w) jrHuj(w) dvg(w) =
Z
R

Z
u�1(t)

�gQ�1(�Et(w))

!Q�1
h(w) dSQ�1(w) dt ;

where SQ�1 is the spherical Hausdor� measure, �gQ�1 is the metric factor �rst intro-
duced in [126] and studied in Chapter 5, and �Et is the generalized inward normal to
the set Et = fx 2 G j u(x) > tg, de�ned in De�nition 2.4.9. In Section 6.5 we give
a novel proof of this formula, which was �rst obtained for the Heisenberg group in
[125], by means of the coarea inequality (1.10).

If we consider C1 sets instead of general sets with H-�nite perimeter the Blow-
up Theorem is possible in every sub-Riemannian group, see Theorem 7.4.2. This
basic observation and the results on characteristic points above mentioned give the
following representation of the perimeter measure

j@EjH =
�gQ�1(�H)

!Q�1
SQ�1x@E : (1.11)

This last formula is another original result of the thesis and it generalizes the previous
one in the Heisenberg group [71]. Its main consequence is the answer to a conjecture
raised by Danielli, Garofalo and Nhieu in [42]. These facts are discussed and proved
in Chapter 7.

It is well known that BV functions on Euclidean spaces are a.e. approximately
di�erentiable. This result can be extended to H-BV functions de�ned on open subsets
of sub-Riemannian groups. In Chapter 8 higher order approximate di�erentiability
is also proved for functions of H-bounded higher order variation, see [9].

In conclusion, although sub-Riemannian groups have an homogeneous structure
given by dilations, a notion of di�erentiability, a precise Hausdor� dimension, intrinsic
regular surfaces and so forth, still many questions are to be answered. We mention
for instance the validity of a general coarea formula, corresponding to the equality in
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(1.10), a characterization of G-regular surfaces in terms of Lipschitz parametrizations
from suitable subgroups and an intrinsic theory of currents. The understanding of
these and other questions on the class of sub-Riemannian geometries is undoubtedly
a good starting point in order to grasp what are the fundamental principles in some
of the already known theories of Geometric Measure Theory. As a result, this path is
also useful within the project of extending Analysis and Geometry in metric spaces.

References

Part of the materials used for this introduction is taken from [16] by Berger, [91] by
Hajlasz and Koskela, [137] by Montgomery and [181] by Vershik and Gershkovich.
In these works further references on the above mentioned topics can be found.

1.1 A concise overview of the thesis

Chapter 2 is devoted to the main notions utilized throughout the thesis, with an essen-
tially self-contained exposition. After a brief introduction to some general concepts
on metric spaces, our study specializes in CC-spaces and �nally in sub-Riemannian
groups. In particular, Theorem 2.2.24 shows that the distance associated to a sub-
elliptic operator by subunit curves equals the one associated to a horizontal subbundle
by horizontal curves. We introduce graded coordinates (De�nition 2.3.43), that rep-
resent an important tool in many proofs of the thesis. We give a novel presentation of
H-BV functions on sub-Riemannian showing that the associated variational measure
only depends on the left invariant Riemannian metric restricted to the horizontal
subbundle. Moreover, once a system of graded coordinates is �xed this de�nition co-
incides with the already known notion in the literature, where the Lebesgue measure
is commonly used. This de�nition has been �rst used in [9].

Chapter 3 extends several tools of classical Calculus to sub-Riemannian groups. After
a detailed description of H-linear maps, the notion of H-di�erentiability is introduced
and the chain rule on sub-Riemannian groups is proved. A section is devoted to the
proof of the Inverse Mapping Theorem for H-di�erentiable maps. This is our �rst
novel application of H-di�erentiability to \sub-Riemannian Calculus". The main
result of the chapter is the a.e. H-di�erentiability of Lipschitz maps de�ned on
measurable subsets of sub-Riemannian groups. This part is taken from a recent
paper of the author, [124]. A section of the chapter is devoted to a brief survey of all
recent notions of recti�ability on sub-Riemannian groups, presenting and discussing
the novel and general notion of (G;M)-recti�ability. In the last part of the chapter we
present a counterexample to the H-di�erentiability of Lipschitz maps as soon as we
replace a homogeneous distance of the target with a left invariant distance which is
not homogeneous. This example was obtained in collaboration with Bernd Kirchheim
and it is essentially taken from [111].
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Chapter 4 deals with the area formula in di�erent contexts. An original contribution
of the thesis is the proof of the area formula for Lipschitz maps in a purely metric
setting, once a suitable notion of \metric jacobian" is adopted. Besides a uni�ed
approach to area formula in several spaces, as Riemannian manifolds and strati�ed
groups, this result also emphasizes the key role played by the notion of jacobian. Sub-
sequently we introduce the H-jacobian for H-linear maps and we present two proofs of
the area formula for Lipschitz maps between sub-Riemannian groups. The �rst one
is derived from the general metric area formula. The second one, of more classical
fashion, utilizes the H-jacobian. The notion of H-jacobian was �rst introduced in
[124] and it was inspired by the metric de�nition of [7]. The second proof of the area
formula is also taken from [124]. Finally, we present two new applications of the sub-
Riemannian area formula. We characterize all purely k-unrecti�able sub-Riemannian
groups for every k � 1 and we prove the following rigidity theorem. Let G and M be
sub-Riemannian groups with two subsets A � G and B � M with positive measure
such that there exists a bilipschitz map f : A �! B. Then G and M are isomorphic.

Chapter 5 presents the notion of isometry in sub-Riemannian groups and the class
of sub-Riemannian groups that are \symmetric" with respect to these maps. An
horizontal isometry T : G �! G must respect both the metric structure and the
algebraic structure of the group, i.e. it is both an H-linear map and an isometry
with respect to the sub-Riemannian metrics of the groups. A group which has a
family R of horizontal isometries that acts transitively on vertical hyperplanes of the
group is said to be R-invariant (see De�nition 5.1.4). A metric notion associated to a
homogeneous distance (De�nition 2.3.35) is that of metric factor �Q�1(�), where � is
a direction of the Lie algebra. This function plays the same role of !n�1 introduced
in (2.5) about the representation of the Euclidean Hausdor� measure Hn�1 in Rn.
The dependence of �Q�1 on the direction � takes into account the anisotropy of the
homogeneous distance. We prove that R-invariant groups possess a constant metric
factor. All this notions have been �rst introduced in [126] in connection with the
representation of the Q-1 dimensional spherical Hausdor� measure of hypersurfaces
with respect to an arbitrary homogeneous distance.

Chapter 6 contains various coarea formulae on sub-Riemannian groups together with
some applications. We �rst prove a general coarea inequality for Lipschitz maps
between sub-Riemannian groups (6.1). A �rst application is a Sard-type theorem
for Lipschitz maps of sub-Riemannian groups (Theorem 6.3.1) and the nonexistence
of nontrivial coarea formulae between di�erent Heisenberg groups (Theorem 6.3.4).
These results are taken from [125]. We prove a general representation formula for the
perimeter measure (6.31) on generating groups (De�nition 6.4.8). As a consequence,
we obtain the coarea formula for real-valued Lipschitz maps on generating groups
(6.42). The technique used for the representation formula of the perimeter measure
is a re�ned version of that used in [125] in the case of the Heisenberg group. The
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method to prove the coarea formula di�ers from the one used in [125], based on
the coarea inequality. We adopt a new and simpler proof relying on Theorem 6.5.1.
Here it is proved that the H-reduced boundary (De�nition 2.4.10) of a.e. upper level
set of a Lipschitz map coincides with the corresponding level set up to an HQ�1-
negligible set and the generalized inward normal of upper level sets is proportional
to the horizontal gradient of the map restricted to the level set. In the end, we prove
that the characteristic set of a C1 hypersurface (De�nition 2.2.8) has HQ�1-negligible
measure (Theorem 6.6.2). The proof of this fact relies on the Sard-type Theorem and
it is a new contribution of the thesis that extends previous results relative to the case
of two step groups, [12], [73].

Chapter 7 analyzes the blow-up procedure in two main cases relative to C1 subsets.
In the �rst one, it is studied the limit of the measure of a dilated and rescaled C1

hypersurface around one of its noncharacteristic points (7.11). The expression of
the limit contains the metric factor studied in Chapter 5 and yields relations be-
tween the Q-1 dimensional spherical Hausdor� measure and the Riemannian surface
measure of the hypersurface (7.16), (7.17). The validity of these formulae for C1

hypersurfaces with HQ�1-negligible characteristic set was already proved in [126].
Due to the HQ�1-negligibility of characteristic points, proved in Chapter 6, these
formulae always hold without any additional assumption. The same formulae are
also used to prove the coarea formula for real-valued Lipschitz maps with respect to
the Riemannian distance of the group (7.19). The validity of this formula in every
sub-Riemannian group is due to the assumption of the Lipschitz property with re-
spect to the Riemannian distance. This is a stronger request than the natural one
of considering the Lipschitz property with respect to the CC-distance. The same
blow-up technique applied at characteristic points of C1;1 surfaces of two step groups
yields an estimate of the SQ�2-measure of the characteristic set. As a consequence,
we obtain a sharp upper estimate of the Hausdor� dimension of the characteristic set
(7.35). This result is taken from [126]. In the second case the blow-up technique is
applied to subsets with C1 boundary, i.e. C1 subsets, obtaining an explicit formula
for the perimeter measure of these sets in terms of the Q-1 dimensional spherical
Hausdor� measure, (7.51). This formula was �rst obtained in [71] in the case of
the Heisenberg group. The validity of (7.51) in any sub-Riemannian group was an
open question raised in [72] and [73]. Its proof is another contribution of this thesis.
The same formula immediately yields a reciprocal estimate between the perimeter
measure of a C1 subset and the Q-1 dimensional Hausdor� measure of its boundary
(7.52). The general validity of this formula was conjectured in [42]. Finally, some
intrinsic divergence theorems for C1 subsets are proved, (7.54), (7.55), (7.56).

Chapter 8 is devoted to the study of approximate di�erentiability of H-BV functions
on sub-Riemannian groups. Its content essentially stems from a recent collaboration
with Luigi Ambrosio, [9]. The concept of approximate di�erentiability easily extends
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from Euclidean spaces to sub-Riemannian groups, considering the corresponding no-
tion of H-di�erentiability. We prove that an H-BV functions isHQ-a.e. approximately
di�erentiable and that the H-di�erential is given by the density of the absolutely con-
tinuous part of the vector measure associated to the H-BV map. Part of the chapter
deals with the structure of the approximately discontinuity set of an H-BV function.
We prove that this set is a countable union of essential boundaries (De�nition 2.1.16)
of sets with H-�nite perimeter. Thus, whenever one is able to prove that these bound-
aries are G-recti�able, the same property holds for the approximate discontinuity set.
Actually, this recti�ability result is true in all two step sub-Riemannian groups, [73].
A section of the chapter recalls the representation formula on sub-Riemannian groups
(8.19). Our proof of this formula is taken from [66], where the general case of spaces
of homogeneous type is considered. This formula is an important tool in order to
obtain higher order di�erentiability. In Theorem 8.5.7 we prove that functions with
H-bounded k-variation are HQ-a.e. k-approximately di�erentiable. The case k = 2
�ts into a weak version of an Alexandrov type di�erentiability on sub-Riemannian
groups. In the last section we present some nontrivial example of functions with
H-bounded 2-variation, arising from inf-convolution of a suitable cost function.
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Chapter 2

Main notions

In this chapter we present a self-contained exposition of all basic materials we will use
throughout the thesis. In this way we provide also for the reader that is not familiar
with these notions by giving all necessary information required to enter safely into
the topic of the thesis. In order to clarify the generality of several notions, we have
divided the chapter into di�erent sections that go from general metric spaces to the
richer structure of sub-Riemannian groups. Next, we present a brief overview of the
chapter.

In Section 2.1 we recall some elementary facts about measures in metric spaces.
We show a simple change of variable formula for Borel maps and we introduce the
general notion of doubling space. We present a standard covering theorem and an
estimate between measures by means of their reciprocal spherical density.

In Section 2.2 we present the so called Carnot-Carath�eodory spaces, in short CC-
spaces. After some basic de�nitions of Di�erential Geometry we introduce the notions
of horizontal curve, horizontal gradient, horizontal vector �eld and characteristic
point, which come directly from the geometry induced by the \horizontal subbundle".
We state the important theorem of Chow-Rashevsky, which says that connected
manifolds, where horizontal vector �elds and their iterated commutators generate
the tangent bundle, are H-connected. Finally, in Subsection 2.2.1 we introduce sub-
Riemannian metrics on a CC-space, obtaining the notion of \sub-Riemannian mani-
fold". We de�ne the Carnot-Carath�eodory distance, in short CC-distance, and we
provide some characterizations that connect di�erent notions used in the literature.

In Section 2.3 we recall some general facts on nilpotent groups. A particular
attention is devoted to the Heisenberg group, that is the simplest nonabelian sub-
Riemannian group and represents a precious source of manageable examples. Sub-
sequently, we present the class of nilpotent groups that constitute the privileged
ambient on which we can extend most of the classical Geometric Measure Theory,
namely \sub-Riemannian groups". The connection between sub-Riemannian mani-
folds and sub-Riemannian groups is given by the following result: the \tangent space"

23
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to a sub-Riemannian manifold is a sub-Riemannian group. Here the notion of tan-
gent space has to be considered in appropriate way, e.g. it is the limit of a sequence
formed by pointed metric spaces that correspond to the sub-Riemannian manifold
with dilated distance at the given point, see [15], [130], [135]. Sub-Riemannian groups
can be regarded as strati�ed groups with a left invariant metric. We will always con-
sider the class of left invariant metrics that respect the grading, namely \graded
metrics". The assumption on the strati�cation guarantees that a sub-Riemannian
group is a particular example of CC-space. Via the graded metric we have a natu-
ral CC-distance, that turns out to be a homogeneous distance (Proposition 2.3.39).
Then any sub-Riemannian group has a privileged homogeneous distance, that is also
\geodesic" in the sense that the in�mum of all lengths of recti�able curves that con-
nect two points is equal to their distance. Another important subsection is devoted
to \graded coordinates". Throughout the thesis we will see their important role in
the proof of many theorems. Basically, they can be thought of as privileged charts
to look at the group, where several objects introduced in the abstract group G can
be translated into Rq with manageable computations. By means of graded coordi-
nates we can de�ne polynomials on groups with an intrinsic notion of polynomial
degree. Homogeneous polynomials will be useful to obtain an explicit formula for left
invariant vector �elds when translated into Rq via graded coordinates, (2.42).

In Section 2.4 we present functions of bounded variation in sub-Riemannian
groups, namely H-BV functions. This notion can be stated in the general framework
of Carnot-Carath�eodory spaces, [31], [69], and metric spaces, [134]. In our presen-
tation we use the horizontal divergence and the Riemannian volume, so one easily
recognizes that the variational measure associated to an H-BV function depends only
on the graded metric �xed on the group. We point out that the horizontal divergence
(De�nition 2.4.1) is a di�erential operator independent of the graded metric. How-
ever, graded metrics have the following compatibility: the horizontal divergence is
equal to the Riemannian divergence when the last one is referred to a graded metric,
(Proposition 2.4.7). It turns out that the Riemannian divergence with respect to a
graded metric depends only on the horizontal subbundle and it is indeed indepen-
dent of the choice of the graded metric itself. This phenomenon occurs analogously
in Euclidean spaces with the canonical associated metric. An H-BV function that is
the characteristic map of some measurable subset yields a set of H-�nite perimeter.
We introduce this class of subsets and the related concepts of generalized inward
normal and of H-reduced boundary. Due to a general result of L. Ambrosio, [5], the
H-reduced boundary is the set where the perimeter measure is concentrated.

In Section 2.5 we state some important results, as the coarea formula for H-BV
functions, the Poincar�e inequality and the isoperimetric estimate. All these known
facts hold in general CC-spaces. Throughout the thesis these results will be applied
to sub-Riemannian groups.
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2.1 Some facts in metric spaces

In this section (X; d) and (Y; �) will denote two metric spaces. The set of extended
real numbers will be denoted by R = R [ f+1g [ f�1g and the family of subsets
of X by P(X).

De�nition 2.1.1 A nonnegative function � : P(X) �! R is a measure over X if for
any sequence of subsets (Ej) � P(X) and any E 2 P(X) such that E � SEj we
have

�(E) �
1X
j=1

�(Ej) :

It is well known that there exists a �-algebra of �-measurable sets A�(X) � P(X)
where the measure � is countably additive.

De�nition 2.1.2 (Borel measures) We denote by B(X) the smallest �-algebra
containing all the open sets of X. Elements of B(X) are called Borel sets. A measure
� on X is called a Borel measure if B(X) � A�(X). A Borel measure � such that
for every A � X there exists B 2 B(X) with A � B and �(A) = �(B), is said to be
a Borel regular measure.

De�nition 2.1.3 Let � be a measure on X and N be a topological space. A map
f : X �! N is measurable if for any open subset O � N we have f�1(O) 2 A�(X).
We say that f is Borel map if f�1(O) 2 B(X).

Remark 2.1.4 It is not di�cult to recognize that if f : X �! Y is Borel, then
f�1(E) 2 B(X) whenever E 2 B(Y ). It follows easily that compositions of Borel
maps are still Borel.

We recall that a measurable map F : X �! N , where N is either R or a normed
space, is called p-summable, with p � 1, if we haveZ

X
kF (x)kp d�(x) < +1 :

If p = 1 we simply say that F is summable. The space of all p-summable maps
is denoted by Lp�(X;N), sometimes we will omit either the symbols N or � when
N = R or � is the Haar measure of the locally compact group X.

De�nition 2.1.5 Let � be a measure over X. The image measure of � under the
map F : X �! Y is de�ned as follows

F]�(A) = �(F�1(A)) for any A � Y :

By previous de�nitions we can prove the following theorem.
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Theorem 2.1.6 Let F : X �! Y and u : Y �! N be Borel maps, � be a Borel

measure over X and u � F be either �-summable or nonnegative. Assume that N is

either R or a �nite dimensional space. Then for any B 2 B(X) we haveZ
F�1(B)

u � F d� =

Z
B
u dF]� : (2.1)

Proof. First of all, we note that u � F is a Borel map and that the image measure
F]� is a Borel measure over Y . The latter assertion follows by the Carath�eodory's
criterion (see for instance 2.3.2(9) of [55]). Now, following a standard argument, we
check formula (2.1) on the class of �nite linear combinations of characteristic maps
of Borel sets. Thus, considering the decomposition u = u+ � u�, where u+; u� � 0
and approximating u+ and u� with maps of this class our claim follows by the Beppo
Levi Monotone Convergence Theorem. 2

De�nition 2.1.7 Let � be a measure on X and let f : X �! Y be a �-summable
map, where Y is either R or a �nite dimensional space. We denote by f � the measure,
or vector measure, de�ned on any set A 2 A�(X) as follows

f �(A) =

Z
A
f d� :

Notice that up to this point we have used only the topology of X, without referring
to the distance.

De�nition 2.1.8 (Metric ball) We denote by Bx;r = fy 2 X j d(y; x) < rg the
open ball with center x and radius r and we simply write Br = Be;r, if some particular
element e of the space is understood. We will also write Bd

x;r to emphasize the
distance. For the closed ball Dx;r = fy 2 X j d(y; x) � rg of center x and radius r
we follow the same conventions adopted for open balls.

De�nition 2.1.9 (Lipschitz functions) Let f : X �! Y be a map of metric
spaces. We say that f is L-Lipschitz and if there exists a constant L � 0 such that

�(f(u); f(v)) � Ld(u; v) for any u; v 2 X :

The number L is a Lipschitz constant of f and Lip(f) is the in�mum among all
Lipschitz constants of f .

De�nition 2.1.10 (Recti�able curves) Let I be an interval of R. We say that a
curve  : I �! X is recti�able if the following number is �nite

ld()=sup
n nX
j=1

d ((ti�1);  (ti))
���where ti�1 < ti for any i = 1; : : : ; n and n 2 N

o
:

The number ld() is the length of  with respect to the distance d of X.
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De�nition 2.1.11 (Multiplicity function) Let f : A � X �! Y and B � A. We
de�ne themultiplicity function of f relatively to B as y �! N(f;B; y) = #(ff�1(y)\
Bg) 2 N [ f+1g, where # indicates the cardinality of the set.

In the sequel we denote a metric space with a measure by the triplet (X; d; �) and
call it a metric measure space.

De�nition 2.1.12 (Doubling spaces) Let (X; d; �) be a metric measure space.
We say that � is doubling if it is �nite and positive on some open set and there exists
a constant C > 0 such that for any ball Bx;2r � X we have

�(Bx;2r) � C �(Bx;r): (2.2)

In this case we say that (X; d; �) is a doubling space.

Remark 2.1.13 Notice that if � is positive and �nite on some open set, the doubling
property (2.2) implies that it is �nite on bounded sets and positive on all open sets
of X. Furthermore, it is standard to notice that iterating (2.2) one obtains constant
C 0; s > 0 such that

�(Bx;tr) � C 0 ts �(Bx;r) (2.3)

for any x 2 G, r > 0 and t > 1.

Throughout the thesis we will follow the standard convention to denote the averaged
integral Z

E
u d� =

1

�(E)

Z
E
u d� ;

where E � X is �-measurable and u : E �! R is either a �-summable or nonnegative
measurable map.

De�nition 2.1.14 (Density points) Let (X; d; �) be a metric measure space and
consider a �-measurable set A � X. We de�ne I(A) as the set of points x 2 X such
that Z

Bx;r

1A d� �! 1 as r ! 0+ :

We call every element of I(A) a density point.

Note that in a doubling space �-measurable sets have the property � (A n I(A)) = 0.
This follows by Theorem 2.1.22 stated in this section and Theorem 2.9.8 of [55].

Lemma 2.1.15 Let (X; d; �) be a doubling space and A � X. Then for any x 2 I(A)
we have dist(y;A) = o (d(y; x)) as y ! x.
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Proof. We de�ne ty = dist(y;A). If ty > 0 we have

By;ty � Bx;ty+d(x;y) nA
and the property x 2 I(A) together with (2.3) yield

1

C 0

�
ty

ty + d(x; y)

�s
=

1

C 0 �(By;ty)

�
ty

ty + d(x; y)

�s
�(By;ty) �

�(By;ty)

�(Bx;ty+d(x;y))

� �(Bx;ty+d(x;y) nA)
�(Bx;ty+d(x;y))

�! 0+ as r ! 0+: 2

The notion of density point allows us to introduce the measure theoretic boundary
of a set in a metric measure space.

De�nition 2.1.16 (Essential boundary) Let (X; d; �) be a metric measure space
and let E � X. The essential boundary of E is the set

@�E = fp 2 X j p is a density point neither of E nor of X n Eg :
We use the following notation to indicate the diameter of a set A in a metric space

diam(A) = sup
x;y2A

d(x; y) :

Now we recall the Carath�eodory's construction (see [55] for the general de�nition).

De�nition 2.1.17 (Carath�eodory measure) Let (X; d) be a metric space and let
F be a family of subsets of X. We �x a � 0 and de�ne for every t > 0 the measures

�a
t (E) = �a inf

(
1X
i=1

diam(Di)
a j E �

1[
i=1

Di; diam(Di) � t; Di 2 F
)
;

�a(E) = lim
t!0

�a
t (E) ;

with E � X and �a > 0. We assume that the family F has the following property

��1
a Ha � �a � �aHa ; (2.4)

where �a > 0 and Ha is the Hausdor� measure built with F = P(X), �a = !a=2
a,

!a =
�a=2

�(1 + a=2)
and �(s) =

Z 1

0
rs�1e�r dr : (2.5)

For instance, if F is the family of closed (or open) balls and �a = !a=2
a, the cor-

responding measure �a satis�es the latter estimate with �a = 2a. Indeed, in this
case �a is the well known spherical Hausdor� measure, denoted by Sa. Sometimes
we will also write both Ha

d or Sad to emphasize the dependence on the distance d we
have used to build the measure.
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De�nition 2.1.18 (Hausdor� dimension) Let E be a subset of a metric space
(X; d). We de�ne the Hausdor� dimension of E as the following number

H�dim(E) = inf f� > 0 j H�(E) = 0g :

Now we state an important coarea estimate that holds for Lipschitz maps between
metric spaces. In fact, after a work of Davies [46], the assumptions in paragraph
2.10.25 of [55] can be removed.

Theorem 2.1.19 (Coarea estimate) Let f : X �! Y be a Lipschitz map of met-

ric spaces and consider A � X, with 0 � P � Q. Then the following estimate

holds Z �

Y
HQ�P

�
A \ f�1(�)� dHP (�) � Lip(f)

!Q�P !P
!Q

HQ(A) : (2.6)

The symbol
R �

denotes the upper integral (see for instance [55]). We can easily
transform (2.6) using our measures �a from De�nition 2.1.17, obtainingZ �

Y
�Q�P

�
A \ f�1(�)� d�P (�) � Lip(f)

!P !Q�P
!Q

�Q�P �P �Q�Q(A) : (2.7)

The following de�nition is taken from 2.8.16 of [55].

De�nition 2.1.20 (Vitali relation) Let � be a measure on a metric space (X; d).
We say that a family of Borel sets V � P(X) is a �-Vitali relation if for any C � V
and A � X such that for any x 2 A

inf fdiam(S) j S 2 C; x 2 Sg = 0 ;

then the family fS j S 2 C; x 2 S; x 2 Ag has a countable disjoint subfamily F such
that

�
�
A n

[
S2F

S
�
= 0 :

De�nition 2.1.21 (Asymptotically doubling measures) Let � be a Borel mea-
sure, that is �nite on bounded sets of X. We say that � is asymptotically doubling

on X if for �-a.e. p 2 X we have

lim sup
r!0+

�(Bp;�0r)

�(Bp;r)
< +1

for some �0 > 1 (and thus for any � > 1).

In view of Theorem 2.8.17 of [55] we state the following result.
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Theorem 2.1.22 Let � be an asymptotically doubling measure on X, which is �nite

on bounded sets and such that

lim sup
r!0+

�(Bx;�r)

�(Bx;r)
< +1

for some � > 1 and �-a.e. x 2 X. Then closed balls of X form a �-Vitali relation.

Remark 2.1.23 By virtue of Theorem 2.1.22 the family of closed balls of X is a
�-Vitali relation whenever (X; d; �) is a doubling space.

The next lemma is a simple variant of Lemma 2.9.3 in [55], where we replace the
Borel regularity of � with the absolute continuity with respect to �.

Lemma 2.1.24 Let � and � be measures that are �nite on bounded sets of X, where

� is absolutely continuous with respect to �. Assume that the family V of closed

balls is a �-Vitali relation and that � is Borel regular. Then for any � > 0 and any

�-measurable set

A �
�
x 2 X j lim inf

r!0

�(Dx;r)

�(Dx;r)
< �

�

we have �(A) � ��(A).

Proof. First of all, we �x " > 0. By Theorem 2.2.2 of [55] and the fact that � is
Borel regular and �nite on bounded sets it follows that there exists an open subset
O such that �(O nA) � ". Let us consider the family of closed balls

C =
�
Dx;r � O

���x 2 A; �(Dx;r)

�(Dx;r)
< �

�
;

and notice that by our assumptions, de�ning Ix = fr j Bx;r 2 Cg we have inf Ix = 0
for any x 2 A. Thus, by the �-Vitali property there exists a countable disjoint
subfamily fDxj ;rjg � C such that

�
�
A n

[
j2N

Dxj ;rj

�
= 0 :

Utilizing the absolutely continuity of � and the previous equation we get

�(A) � �
X
j=1

�(Dxj ;rj ) = ��
� [
j2N

Dxj ;rj

�
� ��(O) � ��(A) + �"

and letting "! 0+ we achieve our claim. 2
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2.2 Carnot-Carath�eodory spaces

Throughout the section, we will denote by M a smooth manifold with topological
dimension q. We start recalling some elementary notions of Di�erential Geometry.

De�nition 2.2.1 Let M and N be smooth manifolds and let 
 � M be an open
subset. We denote by Ck(
; N), k � 1, the set of k-times continuously di�erentiable
maps f : 
 �! N and we de�ne C1(
; N) =

T
k2Nnf0gC

k(
; N). If N = R we

simply write Ck(M).

De�nition 2.2.2 (Vector �elds) We denote by �(TM) the linear space of smooth
sections of TM , that is a module over C1(M).

The space �(TM) can be identi�ed with the space of all derivations D1(M), see
Theorem 1.51 of [75], where we can de�ne the di�erential operator

f �! X(Y f)� Y (Xf) = [X;Y ]f (2.8)

for any X;Y 2 D1(M) and f 2 C1(M). This operator is indeed a derivation, so
we have uniquely de�ned the corresponding vector �eld [X;Y ] 2 �(TM), namely the
Lie bracket of X and Y . This product has the following properties:

1. the map �(TM)� �(TM) �! �(TM), (X;Y ) �! [X;Y ] is bilinear

2. [X;Y ] + [Y;X] = 0 (antisymmetric property)

3. [X; [Y;Z]] + [Y; [Z;X]] + [Z; [X;Y ]] = 0 (Jacobi identity) .

Then �(TM) has a natural structure of in�nite dimensional Lie algebra.

De�nition 2.2.3 (Image of vector �elds) Let f : M �! N be a C1 di�eomor-
phism of di�erentiable manifolds and let X 2 �(TM). Then the image of X under f
is the vector �eld of �(TN) de�ned for any n 2 N as follows

f�X(n) = df(f�1(n))
�
X
�
f�1(n)

��
:

Remark 2.2.4 If we read the vector �elds in terms of derivations it is not di�cult
to recognize the following rule

f�Xu = [X(u � f)] � f�1 (2.9)

for any u 2 C1(N).
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An easy relation connects Lie bracket of vector �elds with their image through a
di�eomorphism:

[f�X; f�Y ] = f�[X;Y ] (2.10)

whenever f :M �! N is a di�eomorphism and X;Y 2 �(TM). This formula easily
follows checking its validity for the corresponding derivations.

De�nition 2.2.5 (Horizontal subbundle) A horizontal subbundle is a distribu-
tion of subspaces HpM � TpM , for any p 2 M , that is locally generated by a set of
Lipschitz vector �elds. The collection of all subspaces is denoted by HM . We will
say that HM is either a smooth, Ck or Lipschitz horizontal subbundle if the locally
de�ning vector �elds have the corresponding regularity.

We mention that in the terminology of Nonholonomic Mechanics, smooth horizontal
subbundles are called \di�erential systems" or simply distributions, [181]. Notice
that the dimension of HpM may depend on the point p.

De�nition 2.2.6 (Horizontal vector �elds) Let HM be a horizontal subbundle.
We denote by �(HM) the space of sections of HM that possess the same regularity
of HM . The space �c(HM) denotes all elements of �(HM) with compact support.
A section of �(HM) is called horizontal vector �eld.

De�nition 2.2.7 (Horizontal gradient) Let (M; g) be a Riemannian manifold
with a C1 horizontal subbundle HM and let u 2 C1(M). We denote by pH the
�berwise orthogonal projection of TM onto HM . The horizontal vector �eld rHu 2
�(HM) de�ned by

du(p) � pH(X) = g(p)(rHu;X)

for any p 2M and X 2 TpM is called the horizontal gradient of u.

De�nition 2.2.8 (Characteristic points) Let M be a C1 manifold with horizon-
tal subbundle HM and let � �M be a hypersurface of class C1 with p 2 �. We say
that p 2 � is a characteristic point of � if HpM � Tp�. The characteristic set of �,
denoted by C(�), is the subset of � which contains all characteristic points.

De�nition 2.2.9 (Horizontal normal) Let (M; g) be a Riemannian manifold with
a horizontal subbundle HM and let � �M be a hypersurface of class C1 with p 2 �.
Let �(p) be a unit normal of � at p. We de�ne �H(p) = pH (�(p)) to be the horizontal
normal of � at p.

Proposition 2.2.10 Let � be a C1 hypersurface of (M; g) with horizontal subbundle
HM . Then p 2 C(�) if and only if �H(p) = 0.



2.2. CARNOT-CARATH�EODORY SPACES 33

Proof. Suppose that �H(p) = 0 and assume by contradiction that there exists
w 2 HpM n Tp�. Then we can write w = u + ��(p), with � 6= 0 and u 2 Tp�. Let
pH : TpM �! HpM be the projection associated to the scalar product g(p) on TpM .
Hence we have

w = pH(w) = pH(u) + � pH (�(p)) = pH(u) + � �H(p) = pH(u) = u+ � �(p) ;

that yields the following contradiction

jpH(u)j2 = ju+ � �(p)j2 = juj2 + �2 j�(p)j2 � jpH(u)j2 + �2 j�(p)j2 :
Now suppose that HpM � Tp�. We know that �(p) is perpendicular to Tp�, then it
is perpendicular to HpM . 2

De�nition 2.2.11 (Horizontal curve) A horizontal curve is an absolutely conti-
nuous map  : [a; b] �! M , with �1 < a < b < +1, such that 0(t) 2 H(t)M for
a.e. t 2 [a; b].

De�nition 2.2.12 (H-connectedness) A smooth connected manifold M with ho-
rizontal subbundle HM is horizontally connected, or in short H-connected, if any two
points of M can be joined by a horizontal curve.

De�nition 2.2.13 (CC-space) We say that a smooth H-connected manifold M is
a Carnot-Carath�eodory space, or in short a CC-space.

We have assumed only Lipschitz regularity on the vector �elds of HM for di�erent
reasons. There are simple examples of CC-spaces where the system of vector �elds
is Lipschitz but it is not smooth. We mention the so called Grushin plane (R2; HR2)
where H(x;y)R

2 is generated by @x and �(x)@y, where � is a nonnegative and noncon-
stant Lipschitz map, that is C1 outside the origin. Many important results such as
Poincar�e inequalities, Harnack inequalities and the De Giorgi-Nash regularity Theo-
rem were obtained in general versions of the Grushin plane, see [62], [63].

Another reason comes from the theory of degenerate elliptic equations. In fact, if
the matrix A = (aij) of the second order derivatives is smooth with rank less than or
equal to m, with m < q, then the operator can be decomposed as a sum of m squares
of Lipschitz vector �elds. This form is particularly convenient when the vector �elds
are smooth, where if the condition of De�nition 2.2.14 is satis�ed, then hypoellipticity
holds for such operators [99]. However, even if vector �elds are only Lipschitz it is
possible to de�ne Sobolev spaces with respect to them and to obtain a wide variety
of embedding theorems and Sobolev-Poincare' inequalities. This is a wide subject of
increasing interest, with contributions of many authors. We address the reader to
the recent monograph [91], where an exhaustive list of reference is given.

A well known condition that ensures the H-connectedness in the smooth case is
the following.
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De�nition 2.2.14 Let HM be a smooth horizontal subbundle of M . Then we say
that HM satis�es the Chow condition if for any p 2M the Lie algebra generated by
HpM with respect to the Lie product of vector �elds coincides with TpM .

The proof of H-connectedness in the assumptions of De�nition 2.2.14 is due to W.L.
Chow and to P.K. Rashevsky independently, [38], [160]. See also [99], [117] and the
recent approaches of [15], [86].

Theorem 2.2.15 (Chow-Rashevsky Theorem) Let M be a smooth connected

manifold, such that HM satis�es the Chow condition. Then M is H-connected.

A complete characterization of systems of vector �elds that yield H-connectedness is
given in [176].

Remark 2.2.16 If the Chow condition holds and we assume in addition that at any
point p 2 M the Lie algebra generated by HM at p is nilpotent of step less than
or equal to �, for some positive integer �, we have the following estimate (in local
coordinates)

jx� yj � d(x; y) � C jx� yj1=� for any x; y 2 K �M ; (2.11)

where K is a compact and C is a dimensional constant depending on K, see [149].

2.2.1 CC-distance

In this subsection we characterize the CC-distance of a CC-space with respect to
di�erent points of view adopted in the literature.

De�nition 2.2.17 (Sub-Riemannian manifold) Let (M;HM) be a smooth ma-
nifold with a horizontal subbundle. A quadratic form g on TM

TM 3 (p;W ) �! g(p;W ) 2 [0;+1]

such that the restriction gjHM is Lipschitz regular on HM is called a sub-Riemannian
metric on M . We call the triplet (M;HM; g) a sub-Riemannian manifold.

The previous notion of sub-Riemannian metric is taken from [15].

De�nition 2.2.18 Let  : [c; d] �! M be a horizontal curve. The length of  with
respect to the sub-Riemannian metric g is de�ned as follows

lg() =

Z b

a

p
g((t); 0(t)) dt :
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De�nition 2.2.19 (CC-distance) Let (M;HM; g) be a sub-Riemannian manifold
and let p; p0 2 M . We denote by Hp;p0 the set of horizontal curves that connect p
to p0. The Carnot-Carath�eodory distance, in short CC-distance, between p and p0 is
de�ned as follows

�(p; p0) = inf
�
lg() j  2 Hp;p0

	
;

where we assume that inf ; = +1.

It is clear that any CC-space has �nite CC-distance.

Now we want to emphasize the importance of the CC-distance in connection with
sub-elliptic PDE's. This is another feature that illustrates how CC-distance naturally
�ts the intrinsic geometry induced by HM . Following [56] we will de�ne the distance
associated to a sub-elliptic operator L on M in local coordinates

L = �
qX

i;j=1

aij(x)
@2

@xixj
+

qX
j=1

bj(x)
@

@xj
+ c(x) ; (2.12)

where the controvariant matrix (aij(x)) is symmetric and nonnegative.

De�nition 2.2.20 We say that V 2 TpM is a subunit vector if

V iV j � aij(p) :

An absolutely continuous curve  : [c; c0] �! M , with �1 < c < c0 < +1, is a
subunit curve if 0(t) is a subunit vector for a.e. t 2 [c; c0].

The above de�nition does not depend on the coordinate system that we consider
and can be expressed in a more intrinsic way considering a(x) = aij(x) @xi
@xj as
a semide�nite metric on the cotangent bundle T �M . So the condition of being a
subunit vector is equivalently expressed as follows

h�; V i2 � a(p)(�; �) (2.13)

for 1-form � 2 TpM�.

De�nition 2.2.21 Let a be a semide�nite metric on T �M . For any couple of points
p; p0 2M the a-distance between p and p0 is

da(p; p
0) = inf

n
c0�c j  : [c; c0] �!M is a subunit curve which connects p with p0

o

where we assume that inf ; = +1.
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To understand the role of da, we mention the following remarkable result due to
C.Fe�erman and D.H.Phong, [56], where it is proved that the condition

jx� yj � C da(x; y)
"

for some " > 0 is equivalent to the sub-elliptic estimate

kuk2H" � C
�
kuk2 +

Z qX
i;j=1

aij(x)uxiuxj dx
�
; (2.14)

where a is the semide�nite metric on T �M associated to the operator L as in (2:12).
The subelliptic estimate (2.14) in turn implies the hypoellipticity of L (see also [117]).
Now, via the Legendre transformation we de�ne the sub-Riemannian metric asso-
ciated to the controvariant semide�nite metric a, as it is done in [15].

De�nition 2.2.22 Let a be a semide�nite metric on T �M . The sub-Riemannian
metric associated to a is de�ned as follows

ga(p; V ) = sup
�2TpM�

n
2h�; V i � a(p)(�; �)

o
:

By de�nition of ga one can verify that it is a sub-Riemannian metric onM . We check
the homogeneity of degree 2. For each � > 0 we have

ga(p; �V ) = sup
�2TpM�

n
2h���1; �2V i � a(p)(�; �)

o

= sup
��2TpM�

n
2h�; �2V i � �2a(p)(�; �)

o
= �2 ga(p; V ) :

Lemma 2.2.23 A vector V 2 TpM is subunit if and only if ga(p; V ) � 1.

Proof. Suppose that V 2 TpM is a subunit vector, then we have

ga(p; V ) � 2h�; V i � a(p)(�; �) � 2h�; V i � h�; V i2 � 1 :

Viceversa, if we assume by contradiction that V is not subunit, then there exists a
linear map �0 such that

h�0; V i2 > a(p)(�0; �0) :

Up to a multiplication by a positive constant we can suppose that h�0; V i = 1. It
follows that

ga(p; V ) � 2h�0; V i � a(p)(�0; �0) > 2h�0; V i � h�0; V i2 = 1 ;

so the proof is complete. 2



2.2. CARNOT-CARATH�EODORY SPACES 37

Theorem 2.2.24 Let �a be the CC-distance associated to ga. Then we have da = �a.

Proof. Let p; p0 2 M be such that da(p; p
0) < 1 and let " > 0. There exists a

subunit curve  : [c; c0] �!M that connects p and p0 such that c0 � c < da(p; p
0) + ".

By Lemma 2.2.23 it follows

lg() =

Z c0

c

p
ga((t); 0(t)) � c0 � c ;

then �a(p; p
0) � da(p; p

0) + " and letting " ! 0+ we have the �rst inequality. Now
suppose that �a(p; p

0) <1 and consider " > 0. We can �nd a curve  : [0; 1] �!M
with L = lg() < �a(p; p

0) + ". We de�ne the nondecreasing maps

�(t) =

Z t

0

p
ga((r); 0(r)) dr ; h(s) = inf ft j �(t) = sg ;

where � : [0; 1] �! [0; L], h : [0; L] �! [0; 1] and � � h = Id[0;L]. We de�ne the set

F = fs 2 [0; L] j either � or  is not di�erentiable at h(s)g :
If we denote by G the set of points where either  or � are not di�erentiable we have
h(F ) � G and F � �(G). By the absolutely continuity of � and the fact that G is
negligible we conclude that F has vanishing measure. Now, de�ning �(s) =  � h(s)
it follows that for a.e. s 2 [0; L]

1 = �0(h(s))h0(s) =
p
ga((h(s)); 0(h(s)))h

0(s) =
p
ga(�(s);�0(s)) :

Again, by Lemma 2.2.23 the curve � is subunit, then da(p; p
0) � �a(p; p

0)+". Letting
"! 0+ the thesis follows. 2

As we have mentioned previously, a smooth symmetric nonnegative matrix (aij) of
rank less than or equal to m, can be decomposed locally as a product of Lipschitz
matrices (aij) = CCT , where C is a m� q matrix, m < q, see [15]. If we de�ne Xj ,
with j = 1; : : : ;m as the columns of C, then it is easy to check that

a(p)(�; �) =
mX
i=1

h�;Xj(p)i2 : (2.15)

Lemma 2.2.25 Assume that vectors fXj(p) j j = 1; : : : ;mg in (2.15) are linearly

independent. Then v 2 TpM is a subunit vector if and only if v =
Pm

i=1 a
jXj(p),

with
Pm

i=1(a
j)2 � 1.

Proof. Suppose that v satis�es (2.13). We prove �rst that v is a linear combination
of (Xj(p)). Reasoning by contradiction, if v =2 spanfX1(p); : : : ; Xm(p)g, then there
exists a linear map � such that h�; vi 6= 0 and h�;Xii = 0 for any i = 1; : : : ;m.
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In view of (2.15) and (2.13) the previous conditions give a contradiction. Then
v =

Pm
i=1 a

jXj(p) for some constants a
j , with j = 1; : : : ;m. Again, conditions (2.15)

and (2.13) imply  
mX
i=1

ajh�;Xji
!2

�
mX
j=1

h�;Xji2

for any linear map �. By the fact that fXj(p)g are linearly independent we deduce
that

Pm
i=1(a

j)2 � 1. The opposite implication follows easily from Cauchy-Schwarz
inequality. 2

Remark 2.2.26 In view of the previous lemma the distance da corresponds to the
common notion of CC-distance de�ned with respect to a set of Lipschitz vector �elds
fXj(p) j j = 1; : : : ;mg, see for instance the de�nitions used in [79], [100], [118].
Notice that when a semide�nite controvariant metric a is given, the notion of da
clearly does not depend on the particular choice of vector �elds that we use to de�ne
locally the controvariant metric a itself.

Now we consider that case when the HpM has a �xed dimension m < dim(M) for
any p 2 M . We assume to have a sub-Riemannian metric g on M . By the Gram-
Schmidt procedure it is possible to construct locally a set of orthonormal vector
�elds fXj(p) j j = 1; : : : ;mg. By these vector �elds we can de�ne a semide�nite
controvariant metric a by formula (2.15). Notice that this de�nition does not depend
on the orthonormal basis we consider. It is easy to check that

g(p)
� mX
i=1

cjXj(p);
mX
i=1

cjXj(p)
�
= ga

�
p;

mX
i=1

cjXj(p)
�
=

mX
i=1

(cj)2 :

So, in view of Theorem 2.2.24 and Lemma 2.2.25 we obtain the following result.

Theorem 2.2.27 Let (M;HM; g) be a sub-Riemannian manifold and assume that

dim(HpM) = m < dim(M) for any p 2M . Then for any p; p0 2M we have

�(p; p0) = inffc0 � c j  2 Sp;p0 ;  : [c; c0] �!Mg ;

where the � is the CC-distance and Sp;p0 is the family of absolutely continuous curves
 : [c; c0] �! M such that (c) = p, (c0) = p0 and 0(t) =

Pm
i=1 c

j(t)Xj((t)), for
some system of orthonormal vector �elds under the condition

Pm
i=1(c

j)2 � 1.

In the previous theorem we have characterized the CC-distance between two points
p; p0 2 M as either the in�mum among \times" of subunit curves or the in�mum
among lengths of horizontal curves, where both of them connect p and p0.
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2.3 Nilpotent groups

Let G be a second countable and locally compact Lie group, i.e. a di�erentiable
manifold with a smooth group operation G � G �! G, (g; h) �! g�1h. It is well
known that there exists an analytic structure on G such that the above map is
analytic, [178]. Classical examples of Lie groups are the following:

1. the Euclidean space En under the additive operation.

2. the unit circle S1 under the product operation of complex numbers.

3. the manifold GLn(R) of all non-singular real matrices under matrix product
operation

4. the submanifold On(R) � GLn(R) of all orthogonal matrices .

De�nition 2.3.1 (Left translations) Let G be a Lie group and let p 2 G. The left
translation associated to p is the di�eomorphism lp : G �! G de�ned as lp(w) = pw.

Note that the group of left translations is a subgroup of Di�eo(G) and it is isomorphic
to G. We will use the symbol e to denote the unit element of the group.

De�nition 2.3.2 (Left invariance) We say that a vector �eld X 2 �(TG) is left
invariant if for any p 2 G we have dlp (X(e)) = X(p). The linear space of all left
invariant vector �elds of G will be denoted by G.

Remark 2.3.3 Notice that De�nition 2.3.2 provides also a way to construct left
invariant vector �elds starting from tangent vectors of TeG. It su�ces to de�ne
Xv(p) = dlp(e)(v) for any p 2 G when v 2 TeG and check that Xv is a left invariant
vector �eld. Then the map v �! Xv is a isomorphism between TeG and G, so the
dimension of G is equal to the topological dimension of G.

We also observe that if we look at vector �elds as di�erential operators, the left
invariance can be stated requiring that for any u 2 C1(G) and any p 2 G we have

X (u � lp) = (Xu) � lp ;

where X 2 G.

De�nition 2.3.4 (Lie algebra) We say that a �nite dimensional vector space g is
a Lie algebra if there exists an antisymmetric bilinear map

g� g �! g ; (X;Y ) �! [X;Y ] ;

such that the Jacobi identity holds (see properties of the Lie bracket in Section 2.2).
A linear subspace a � g is a Lie subalgebra of g if [X;Y ] 2 a for any X;Y 2 a.



40 CHAPTER 2. MAIN NOTIONS

By formula (2.10) it follows that the Lie bracket of left invariant vector �elds is still
left invariant, hence G is a �nite dimensional Lie subalgebra of �(TM).

Example 2.3.5 Let us consider the space of n�n real or complex matrices gln with
the product operation

[A;B] = A �B �B �A ;
for any A;B 2 gln. The space gln with this product operation is a Lie algebra.

Broadly speaking, the Jacobi identity replaces the associative property of the product
operation on a ring. Indeed, given an associative algebra u we can always build a Lie
algebra structure on it, de�ning [v; w] = v � w � w � v for any v; w 2 u. We mention
that due to a deep result of Ado any �nite dimensional real (or complex) Lie algebra
can be characterized as the Lie algebra of a subgroup of GLn(R) (or GLn(C)), for
some positive integer n, see [178].

Now, in order to introduce the exponential map in Lie groups we consider the
following system of O.D.E. �

@t�(p; t) = V (�(p; t))
�(p; 0) = p

(2.16)

where V 2 G. The ow � associated to this system is de�ned on all of R. In fact, if
we consider �(e; �) de�ned on some interval [0; b], we observe that �(p; �) = p ��(e; t)
is again de�ned on [0; b], so � (�(e; b=2); t) = �(e; b=2)�(e; t) = �(e; t + b=2) can be
extended [0; b], then �(e; �) can be de�ned on [0; 3b=2], and so forth. It is clear that
this argument can be repeated analogously on the left half line. Thus, we can give
the following de�nition.

De�nition 2.3.6 For any V 2 G we de�ne the map exp : G �! G to be

exp(V ) = �(e; 1) ;

where � is the ow associated to the system (2.16).

Remark 2.3.7 Notice that this de�nition of exponential map involves only the dif-
ferentiable structure of G and it does not refer to any metric on G.

De�nition 2.3.8 (Nilpotent group) Consider a Lie algebra g and two subspaces
a; b � g. We de�ne [a; b] to be the subspace of g generated by all linear combinations
of elements [X;Y ], where X 2 a and Y 2 b. For each k 2 N n f0g we de�ne by
induction the following sequence of subspaces

g(1) = g ;

g(k+1) = [g(k); g ] :
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The family (g(k))k�1 is called the descending central sequence of g. If there exists
a positive integer � such that g(�+1) = 0 we say that g is a nilpotent Lie algebra,
precisely g is �-step nilpotent. The integer � is called the step of g, or the degree of

nilpotency of g. We use the same terminology for Lie groups whose Lie algebra is
nilpotent.

Remark 2.3.9 Notice that if g is �-step nilpotent, then for each 1 � j � � the
subalgebra g(j+1) is strictly contained in g(j).

An important theorem for simply connected nilpotent Lie groups holds, see for in-
stance Theorem 1.2.1 of [40].

Theorem 2.3.10 Let G be a simply connected nilpotent Lie group and let G be its

Lie algebra. Then the exponential map exp : G �! G is a di�eomorphism.

Due to the preceding theorem we can de�ne the inverse map ln = exp�1 in simply
connected nilpotent groups.

Remark 2.3.11 It is a standard fact that for any A 2 gln(R) the function

eA =
1X
i=0

Ak

k!
(2.17)

is the exponential map of GLn(R), according to De�nition 2.3.6. If we restrict the
exponential map to the orthogonal subalgebra on(R), that corresponds to the Lie
group of orthogonal matrices On(R), i.e.

exp : on(R) �! On(R) ;

we have an example where the exponential map is not a di�eomorphism. This follows
observing that On(R) is a compact topological space.

It is possible to get an explicit representation of simply connected nilpotent Lie
groups. Precisely, for any nilpotent Lie algebra g of topological dimension q, there
exists an isomorphic Lie algebra G � �(TRq) of polynomial vector �elds that can
be constructed explicitly from the Lie bracket relations, see Proposition 2.4 of [107].
These vector �elds yield the polynomial group operation on Rq, which makes it a Lie
group with algebra G.

To get this operation we proceed as follows: let Y1; Y2; : : : ; Yq be the vector �elds
which induce the nilpotent structure in Rq and consider the O.D.E.�

@t�(x; t) =
Pq

i=1 y
iYi (�(x; t))

�(x; 0) = x
:
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The ow (x; y; t) �! �(x; y; t) de�nes the group element ~y = �(0; y; 1) 2 Rq, and
the group operation in Rq is given by

~x � ~y = �(�(0; x; 1); y; 1) :

The nilpotence of vector �elds and their polynomial expression imply that the opera-
tion above has a polynomial form. It turns out that Rq endowed with this polynomial
operation is a nilpotent group with Lie algebra isomorphic to g. So we can associate
(in a noncanonical way) to any nilpotent algebra g a simply connected Lie group Rq

with the same nilpotent algebra. This means that we can identify a nilpotent group
with Rq together with a polynomial operation. In De�nition 2.3.13 we will see in
detail how can be made precise this identi�cation.

Next, we will state the remarkable Baker-Campbell-Hausdor� formula, where
a relation between vectors of the algebra and the product of their corresponding
exponentials is established. In the sequel we will say shortly BCH formula.

Theorem 2.3.12 (Baker-Campbell-Hausdor� formula) Let X;Y 2 G, where
G is the nilpotent Lie algebra of a simply connected group G of step � and de�ne

ln
�
expX expY

�
= X } Y :

Then we have

X } Y =
�X

n=1

(�1)n+1
n

X
1�j�j+j�j��

(AdX)�1(AdY )�1 � � � (AdX)�n(AdY )�n�1(Y )

�!�! j�+ �j ; (2.18)

where for any Z 2 G the map AdZ : G �! G is the linear operator de�ned by

AdZ(W ) = [Z;W ] and for any � 2 Nn we have assumed the convention �! =
Qn

l=1 �l
and j�j =Pn

l=1 �l.

Now, to better clarify the BCH formula we state it for groups of step 3. In this case
for any X;Y 2 G we have

X } Y = X + Y +
[X;Y ]

2
+
[X; [X;Y ]]� [Y; [X;Y ]]

12
: (2.19)

De�nition 2.3.13 (Exponential coordinates) Let G be simply connected nilpo-
tent Lie group and let (W1; : : : ;Wq) be a basis of G. We de�ne the di�eomorphism
F : Rq �! G as

F (y) = exp
� qX
i=1

yiWi

�
:

We say that (F;W ) is a system of exponential coordinates associated to the basis
W = (W1; : : : ;Wq).
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In the following theorem we recall the uniqueness of the simply connected Lie group
associated to a Lie algebra, see [187].

Theorem 2.3.14 Let G and M be simply connected Lie groups with isomorphic Lie

algebras. Then there exists a group isomorphism between G and M.

Remark 2.3.15 Since the map exp : G �! G is a di�eomorphism for simply con-
nected nilpotent Lie groups, the operation } de�ned in (2.18) makes exp a group
isomorphism, which allows us to identify the algebra with the group. It is immediate
to observe from formula (2.18) that

ln(x�1) = � ln(x) for any x 2 G:

It is enough to observe that AdZ(Z) = 0 whenever Z 2 G.

Now we introduce a particular class of nilpotent Lie algebras, where it is possible to
de�ne a one parameter group of dilations.

De�nition 2.3.16 (Graded algebra) We say that a Lie algebra G is graded if it
can be decomposed as the following direct sum

G = V1 � � � � � V� ; � 2 N ; (2.20)

with Vi+1 � [Vi; V1] for any i 2 Nnf0g and Vj = f0g for any j > �. A Lie group whose
Lie algebra is graded is called graded group. The decomposition (2.20) is called the
grading of the group. If G is the simply connected group associated to G, we de�ne
for every p 2 G the subspace of degree k at p as follows

Hj
pG =

n
X(p)

���X 2 Vj
o
� TpG ;

we also write HpG = H1
pG. We denote by Vk = expVk � G the space of elements in

G of degree k = 1; : : : ; �.

Remark 2.3.17 Notice that any graded group is in particular nilpotent and the
positive integer � is the step of the group. This fact holds because the group is
assumed �nite dimensional.

The grading property guarantees the existence of a one parameter group of dilations.

De�nition 2.3.18 (Dilations) Let G be a graded algebra. Then for any r � 0 we
de�ne the map �r : G �! G as

�r(v) =
�X

i=1

ri vi ;
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where v =
P�

i=1 vi and vi 2 Vi for any i = 1; : : : ; �. We can extend dilations also for
negative parameters t < 0

�t(v) = ��jtjv :
The sign map is de�ned as �t(v) = �t=jtjv whenever t 6= 0. Dilations and the sign map
can be read on the group as exp � �r � ln and exp ��t � ln. For the sake of simplicity,
we will denote them with the same symbol.

The above de�nition of dilation comes in a rather natural way. It su�ces to consider
the unique extension of the standard dilation w �! r w on V1 to an algebra homomor-
phism of G. This yields just De�nition 2.3.18 and allows us to see that �r : G �! G
is an algebra homomorphism, i.e. �r is linear and satis�es �r(v } w) = �rv } �rw for
any v; w 2 G. The one parameter group property �rs = �r��s with r; s > 0, comes
from the fact that compositions of algebra homomorphisms are still algebra homo-
morphisms. Notice that by De�nition 2.3.18 and Remark 2.3.15 if x 2 G and t < 0
we have �tx = �jtjx

�1.
In the terminology of [59] we give the following de�nition.

De�nition 2.3.19 (Strati�ed algebra) A graded algebra G with grading

G = V1 � � � � � V� ; � 2 N ;
is called strati�ed if for any i 2 N n f0g we have Vi+1 = [Vi; V1], where Vj = f0g for
any j > �. A Lie group whose Lie algebra is strati�ed is called strati�ed group.

De�nition 2.3.20 The horizontal subbundle associated to a graded group is de�ned
as follows

HG =
[
p2G

H1
pG: (2.21)

Remark 2.3.21 With the previous de�nition it is easy to notice that the horizontal
subbundle HG of a strati�ed group satisfy the Chow condition (De�nitions 2.2.14),
so all strati�ed groups are CC-spaces.

All notions of Section 2.2, as horizontal curve, horizontal vector �eld, character-
istic point and so forth, are understood for all graded groups, regarded as smooth
manifolds endowed with the horizontal subbundle HG de�ned in (2.21).

The H-connectedness of strati�ed groups can be stated in a more precise way using
the group operation and dilations. This is done in the following proposition, whose
proof is essentially taken from Lemma 1.40 of [59].

Proposition 2.3.22 (Generating property) Let G be a strati�ed group and let

(v1; v2; : : : ; vm) be a basis of V1. Then there exists a positive integer  and an open

bounded neighbourhood of the origin U � R such that the following set(
Y

s=1

exp(asvis) j (as) � U

)
; (2.22)
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where is = 1; : : : ;m and s = 1; : : : ; , is an open neighbourhood of e 2 G.
Proof. By the fact that G is strati�ed, for any j = 2; : : : ; � there exists a set of multi-
indices Aj � (Im)

j , with Im = f1; 2; : : : ;mg, such that for any � = (i1; : : : ; ij) 2 Aj

we have i1 � i2 � � � � � ij and (v�)�2Aj is a basis of Vj , where we have denoted

v� = [� � � [ [vi1 ; vi2 ]; vi3 ]; : : : ; vij ] :
We write [x; y] = xyx�1y�1 for any x; y 2 G to denote the commutator of group
elements. Utilizing formula (2.19) that amounts to consider the �rst terms of (2.18)
we can recognize that

'v(expY ) = [expY; exp v] = exp ( [Y; v] +R(Y; v)) ;

where R(Y; v) contains terms in both Y and v of order higher than 2, in the sense
that these terms appear in the iterated Lie products more than twice. We identify
the Lie algebra G with the tangent space TeG, obtaining d'v(0)(Y ) = [Y; v] for every
Y 2 G. By the chain rule formula for composition of di�erentiable maps we obtain

d ('v � 'w) (0)(Y ) = [ [Y;w]; v] ;

where 'v � 'w(expY ) = [ [expY; expw]; exp v] and v; w 2 G. Now, for every j =
2; : : : ; � and every � 2 Aj we de�ne

'j�(expY ) = [� � � [ [expY; exp vi2 ]; exp vi3 ]; : : : ; exp vij ]
where � = (i1; i2; : : : ; ij). By previous considerations we get

d'j�(0)(Y ) = [� � � [ [Y; vi2 ]; vi3 ]; : : : ; vij ] :
We consider the map � : Rq �! G de�ned as

�
� mX
l=1

y1l e
1
l +

�X
j=2

X
�2Aj

yj�e
j
�

�
=
�Y
l=1

exp(y1l vl)
� �Y
j=2

Y
�2Aj

'j�(y
j
�v�1)

where fe1l j l = 1; : : : ;mg [ fej� j j = 2; : : : ; �; � 2 Ajg is a basis of Rq and �1 is
the �rst component of the integer vector �. Thus, for every l = 1; : : : ;m, every j =
2; : : : ; � and every � 2 Aj we have @y1l

�(0)(vl) = vl and @yj��(0)(v�1) = v�. It follows

that the di�erential d�(0) is invertible and the map � maps an open neighbourhood
of Rq onto an open neighbourhood of e 2 G. To reach the form (2.22), for every
j = 2; : : : ; � and every � = (i1; i2; : : : ; ij) 2 Aj , we develop the iterated commutators
as an ordered product

[� � � [ [exp vi1 ; exp vi2 ]; exp vi3 ]; : : : ; exp vij ] =
NjY
s=1

exp(�s vks)
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where Nj = 2j+1�2�2j�1, �s 2 f�1; 1g and ks 2 fi1; i2; : : : ; ijg. Then we de�ne

Ej
�(b

�) =

NjY
s=1

exp(b�s vks)

where b� = (b�1 ; b
�
2 ; : : : ; b

�
Nj
) 2 RNj and

E(b) =
�Y
l=1

exp(b1l vl)
� �Y
j=2

Y
�2Aj

Ej
�(b

�) ;

where b =
Pm

l=1 b
1
l e

1
l +

P�
j=2

P
�2Aj

PNj

s=1 b
�
s e

�
s 2 R with  = m+

P�
j=2 nj Nj and

dimVj = nj . The map E : R �! G takes in particular the values of �, hence there
exists a neighbourhood of the origin in R that is mapped onto a neighbourhood of
e 2 G through the map E. 2

2.3.1 The Heisenberg group

In this subsection we describe the most simple example of nonabelian strati�ed Lie
group, namely the Heisenberg group.

De�nition 2.3.23 A Lie algebra with a basis (X1; : : : ; Xn; Y1; : : : Yn; T ) that satis�es
relations

[Xi; Xj ] = 0 ; [Yi; Yj ] = 0 ; [Xj ; Yj ] = �T ; (2.23)

for some � 2 R n f0g and every i; j = 1; : : : ; n, is called Heisenberg algebra and it is
denoted by h2n+1. The Heisenberg group H2n+1 is the simply connected nilpotent
Lie group associated to h2n+1.

In the following proposition we see that the algebraic structure of the Heisenberg
group does not depend on �, up to group isomorphisms.

Proposition 2.3.24 For any � 6= 0 the Heisenberg algebra h2n+1 yields a unique

simply connected group H2n+1 up to group isomorphisms.

Proof. For any � 6= 0 let (X�
1 ; : : : ; X

�
n ; Y

�
1 ; : : : Y

�
n ; T

�) be a basis of h2n+1 that
satis�es

[X�
i ; X

�
j ] = 0 ; [Y �

i ; Y
�
j ] = 0 ; [X�

j ; Y
�
j ] = �T� : (2.24)

Let A� be the Heisenberg algebra associated to the basis de�ned above and let G�

the simply connected nilpotent group associated to A�. We de�ne the Lie algebra
homomorphism L : A� �! A1 such that

L(X�
i ) = X1

i ; L(Y �
i ) = Y 1

i ; L(T�) =
T 1

�
:

Then by Theorem 2.3.14 the Heisenberg group G� is isomorphic to G1. 2
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Remark 2.3.25 By relations (2.23) and the Jacobi identity we get immediately that
[Xi; T ] = [Yi; T ] = 0 for any i = 1; : : : ; 2n. Therefore h2n+1 is a nilpotent Lie algebra.
De�ning

V1 = spanfX1; : : : ; Xn; Y1; : : : Yng V2 = spanfTg
we also see that h2n+1 is a 2-step strati�ed Lie algebra. The group of dilations is
easily described

�r(Xi) = r Xi ; �r(Yi) = r Yi ; �r(Z) = r2 T

for any i = 1; : : : ; n.

The Heisenberg algebra can be realized in di�erent ways. We start considering the
subalgebra of gln(R) constituted by all the upper triangular (n+2)�(n+2)-matrices
of the following form 0

BBBBBBBBBB@

0 x1 x2 � � � xn �
0 0 � � � � � � 0 y1
...

...
. . .

. . .
... y2

...
...

. . .
. . .

...
...

0 0 � � � . . .
... yn

0 0 � � � � � � ... 0

1
CCCCCCCCCCA
; (2.25)

which correspond to vectors �T +
Pn

i=1 xiXi + yiYi. The Lie product of matrices
restricted to that of the form (2.25) gives relations (2.23) with � = 1. By formula
(2.17) we get a realization of H2n+1 as a subgroup of GLn+2(R), where any element
of H2n+1 can be represented as follows0

BBBBBBBBB@

1 x1 x2 � � � xn �
0 1 � � � � � � 0 y1
...

...
. . .

. . .
... y2

...
...

. . .
. . .

...
...

0 0 � � � . . . 1 yn
0 0 � � � � � � 0 1

1
CCCCCCCCCA
: (2.26)

and the group operation is given by the standard matrix product.
Another way to realize h2n+1 is to consider 2n+1 vector �elds in R2n+1, satisfying

the commutator relations (2.23). There is not a unique choice for such vector �elds.
We can consider for instance the following

Xj = @xj �
�

2
yj @� ; Yj = @yj +

�

2
xj @� ; T = @� (2.27)

~Xj = @xj ;
~Yj = @yj + �xj@� ~T = @� : (2.28)
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Both systems of vector �elds (2.27) and (2.28) satisfy relations (2.23). Now we
want to obtain the explicit form of the group operation in H2n+1 with respect to
the exponential coordinates corresponding to the system (2.27). We use directly the
de�nition of exponential map in the same way we have done in Section 2.3. Let us
consider the ordinary di�erential system

0(t) =
nX
i=1

�iXi((t)) + �n+i Yi((t)) ;

that can be written as follows8<
:

0i(t) = �i; i = 1; : : : ; 2n
02n+1(t) = �2n+1 +

�
2

Pn
i=1 �n+ii � �in+i

(0) = �
:

When � = 0 it is straightforward that (1; 0; �) = �, then

exp
� nX
j=1

�jXj + �n+jYj

�
= � 2 R2n+1 :

To compute the group operation we use the fact that for any i = 1; : : : ; 2n we have
i(t; �; �) = �i + t�i. It follows the equation

02n+1(t; �; �) = �2n+1 +
�

2

nX
i=1

�n+i�i � �i�n+i ;

so we have

2n+1(1; �; �) = �2n+1 + �2n+1 +
�

2

nX
i=1

�n+ixi � �i�n+i :

We have obtained the following group operation

� � � =
 
�1 + �1; : : : ; �2n + �2n; �2n+1 + �2n+1 +

�

2

nX
i=1

�n+i �i � �i �n+i

!
: (2.29)

Then the group operation of H2n+1 with respect to exponential coordinates of the
basis (2.27) is given by (2.29).

Remark 2.3.26 The preceding calculation could have been accomplished also with
respect to the basis (2.28). In this case we would have had a di�erent expression of
the group operation. However, Proposition 2.3.24 guarantees that these two di�erent
operations yield isomorphic groups, i.e. the same Heisenberg group.
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Remark 2.3.27 If we choose the exponential coordinates corresponding to � = �4
we can use the complex notation to write the group operation in Cn � R, that is
identi�ed with R2n+1. We denote � = (z; s) and � = (w; t) where z; w 2 Cn and
s; t 2 R. Then formula (2.29) yields

(z; s) � (w; t) =
�
z + w; s+ t+ 2Imhz; wi

�
; (2.30)

where h; i denote the Hermitian product in Cn.

To understand the \twisted structure" of nonabelian nilpotent groups we will show
that the 3-dimensional Heisenberg group cannot be realized as a product of proper
subgroups.

Proposition 2.3.28 The Heisenberg group H3 is not isomorphic to any product of

two nontrivial Lie groups.

Proof Let us assume by contradiction that H3 is isomorphic to G1 � G2, where
dim(Gi) � 1 and Gi is the Lie algebra of Gi for i = 1; 2. It follows that Gi is 2-
step nilpotent and dim(Gi) � 2 for any i = 1; 2. These conditions imply that Gi
is abelian, i.e. [X;Y ] = 0 for any X;Y 2 Gi. This is trivial when dim(Gi) = 1.
When dim(Gi) = 2, taking a basis (X;Y ) of Gi, we suppose by contradiction that
[X;Y ] = �X + �Y with � 6= 0. By hypothesis we get [Y; [X;Y ] ] = 0 = �X that
implies the contradiction � = 0. We reason in the same way if � 6= 0. Then G1 and
G2 are abelian Lie algebras. It follows that G1 � G2 is abelian and G1 � G2 is also.
This would imply that H3 is abelian, hence the isomorphism above cannot occur. 2

2.3.2 Sub-Riemannian groups

In the sequel any Lie group will be assumed connected and simply connected.

De�nition 2.3.29 Let G be a Lie group. A left invariant metric on G is a Rieman-
nian metric such that all left translations of the group are isometries.

Throughout the thesis g will denote a left invariant metric on G, if not otherwise
stated. When it will be clear from the context we will also use the simpler notation

hX;Y ip = g(p)(X;Y ) for any X;Y 2 TpG : (2.31)

De�nition 2.3.30 (Graded metric) Let G be a graded group. We say that a left
invariant metric g on G is a graded metric if all subspaces Vj � G of the grading are
orthogonal each other.

Throughout the thesis the Riemannian volume with respect to g, seen as a measure
over G, will be denoted by vg. We point out that if dg is the Riemannian distance
associated to g we have vg = Hq

dg
, see 3.2.46 of [55]. When a left invariant metric is

understood the norm of a vector X 2 TpM with respect to the metric will be denoted
simply by jXj =pg(p)(X;X).
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De�nition 2.3.31 (Sub-Riemannian group) We say that strati�ed group G is a
sub-Riemannian group if it is endowed with a graded metric.

Throughout the thesis we will use the term \sub-Riemannian group" when we are
using its metric structure, otherwise we will use the term \strati�ed group".

Remark 2.3.32 Notice that the notion of horizontal gradient of De�nition 2.2.7 can
be written more explicitly in a sub-Riemannian group. In fact, if we consider a C1

map u : 
 �! R, where 
 � G is an open set and we �x an orthonormal frame
(X1; : : : ; Xm) of V1, we have

rHu(x) =
mX
i=1

Xiu(x)Xi

and the expression clearly does not depend of the frame.

De�nition 2.3.33 (CC-distance) LetG be a sub-Riemannian group with a graded
metric g. We de�ne ~g as the restriction of g on V1 and as +1 otherwise. According to
De�nition 2.2.17 ~g is a sub-Riemannian metric over G. Regarding G as a particular
CC-space we de�ne the CC-distance of G referring to De�nition 2.2.19, where the
sub-Riemannian metric is given by ~g.

Remark 2.3.34 By virtue of Theorem 2.2.27 the CC-distance between two points
w;w0 2 G corresponds to the in�mum of all T > 0 such that  : [0; T ] �! G is
horizontal, (0) = w, (T ) = w0 and for a.e. t 2 [c; d] we have

0(t) =
mX
j=1

cj(t)Xj ((t)) ;

where
Pm

j=1 cj(t)
2 � 1 and (Xj) is an orthonormal basis of V1. Notice that the latter

notion of distance is currently used in general Carnot-Carath�eodory spaces, see for
instance [79], [100], [118].

In the following de�nition we single out a class of distances that are compatible with
the geometry of graded groups.

De�nition 2.3.35 (Homogeneous distance) Let G be a graded group. A homo-

geneous distance on G is a continuous map d : G�G �! [0;+1[ that makes (G; d)
a metric space and has the following properties

1. d(x; y) = d(ux; uy) for every u; x; y 2 G (left invariance) ,

2. d(�rx; �ry) = r d(x; y) for every r > 0 (homogeneity) :
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We simply write d(x) = d(x; e), where e is the unit element of the group.

Throughout the thesis it will be always understood the use of a homogeneous distance,
if not otherwise stated.

Remark 2.3.36 Note that the symmetry property d(x; y) = d(y; x) and the left
invariance imply that d(x) = d(x�1) for any x 2 G. The homogeneity of homogenous
distances yields for any r > 0 the relation

�rB1 = Br ; (2.32)

where Br is the metric ball with respect to an arbitrary homogeneous distance. Thus,
we can write a metric ball Bp;r with respect to a homogeneous distance as p �rB1.

Proposition 2.3.37 Let d and � be homogeneous distances on G. Then there exist

two positive constants C1 and C2 such that for any x; y 2 G we have

C1 �(x; y) � d(x; y) � C2 �(x; y) :

Proof. We de�ne the sphere S = fx 2 G j �(x) = 1g and the numbers

C1 = min
y2S

d(e; y) C2 = max
y2S

d(e; y):

By the fact that d(e; �) is strictly positive and continuous on S the numbers C1 and
C2 are positive constants. By property 2 of homogeneous distances we get

C1 �(e; y) � d(e; y) � C2 �(e; y) ;

for any y 2 G. Now the left invariance (property 1) leads us to the conclusion. 2

Example 2.3.38 We present an example of homogeneous distance that is used in
[71] to obtain explicit calculations in the Heisenberg group.

Let us consider the Heisenberg group H2n+1 endowed with the exponential coordi-
nates (F; (Xi; Yi; Z)), where the only nontrivial bracket relations are [Xi; Yi] = �4Z
for any i = 1; : : : ; n. For any element p 2 H2n+1 we adopt the complex notation
F�1(p) = (z; t) 2 Cn � R. In these coordinates the group operation reads as in
formula (2.30). De�ne the map ~N(z; t) = maxfjzj; jtj1=2g and N = ~N �F : H3 �! R.
Now, for any p; q 2 H2n+1 we consider the continuous map

d1(p; q) = N(p�1q) :

It is easy to check that d1 is left invariant. We also have

N(�rp) = ~N(rz; r2t) = r ~N(z; t) = r N(p) ;
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that yields the homogeneity. We notice that F (p�1) = �(z; t), so N(p) = N(p�1)
and the symmetry property of d follows. Now, to prove the triangle inequality it
su�ces to prove that

N(pq) � N(p) +N(q) :

Denoting F�1(p) = (z; t) and F�1(q) = (w; s) we obtain

N(pq) = maxfjz + wj; jt+ s+ 2Imhz; wij1=2g:
If N(pq) = jz + wj, we have

N(pq) � jzj+ jwj � N(p) +N(q) :

If N(pq) = jt+ s+ 2Imhz; wij1=2, we have
N(pq)2 � jtj+ jsj+ 2jwj jzj � N(p)2 +N(q)2 + 2N(p)N(q) ;

so d1 is a homogeneous distance on H2n+1.

Proposition 2.3.39 Let � be the CC-distance of a sub-Riemannian group G. Then

� is a homogeneous distance.

Proof. By Remark 2.2.16 the continuity of � follows. The left invariance of g implies
that translations lp : G �! G, p 2 G, are isometries, so horizontal curves are moved
into horizontal curves preserving the velocities. From this we get

�(lpw; lpw
0) = �(w;w0) for any p 2 G ;

that yields the left invariance of �. To prove the homogeneity let us consider a
horizontal curve  : [c; d] �! G that connects w and w0 and de�ne � = �r � . Since
�rX = rX whenever X 2 V1 we see easily that j�0(t)j = r j0(t)j for a.e. t 2 [c; d],
then lg(�) = r lg(). The last equality yields �(�rw; �rw

0) = r �(w;w0). 2

Throughout the thesis we will also utilize the classical notions of jacobian and coarea
factor in �nite dimensional Hilbert spaces, [6]. Note that these spaces formally cor-
respond to abelian sub-Riemannian groups.

De�nition 2.3.40 (Jacobian) Let G and M be Hilbert spaces with dimensions q
and p, respectively. Let L : G �! M be a linear map and assume that q � p. The
jacobian of L is the following number

Jq(L) =
p
det(L� � L) ;

where L� :M�! G is the adjoint map.

De�nition 2.3.41 (Coarea factor) Let G and M be Hilbert spaces with dimen-
sions q and p, respectively. Let L : G �!M be a linear map and assume that q � p.
Then the coarea factor of L is the following number

Cp(L) =
p
det(L � L�) ;

where L� :M�! G is the adjoint map.
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2.3.3 Graded coordinates

Graded coordinates represent a privileged system of coordinates that �ts the geometry
of the group. Here we present their main properties.

De�nition 2.3.42 (Adapted basis) We denote nj = dimVj for any j = 1; : : : ; �,
m0 = 0 and mi =

Pi
j=1 nj for any i = 1; : : : �. We say that a basis (W1; : : : ;Wq) of

G is an adapted basis, if

(Wmj�1+1;Wmj�1+2; : : : ;Wmj )

is a basis of Vj for any j = 1; : : : �.

De�nition 2.3.43 (Graded coordinates) Let G be a graded group. A system of
exponential coordinates (F;W ) associated to an adapted basis of G will be called a

system of graded coordinates. Posing F (y) = exp
�Pq

i=1 yiWi

�
, we de�ne for any

i = 1; : : : ; q the degree of the coordinate yi as di = j + 1, if mj � i � mj+1.

Remark 2.3.44 We emphasize the attention on the fact that whenever a graded
metric on the graded group is considered together with a system of graded coordi-
nates, then it is understood that the adapted basis of the system is orthonormal with
respect to the graded metric. It is also understood that any graded metric on a graded
group admits a system of graded coordinates with respect to an orthonormal basis.
So, whenever a graded metric is considered on the group the system of graded coor-
dinates will be understood with respect to an orthonormal adapted basis. We also
mention that De�nition 2.3.43 has a natural generalization in Carnot-Carath�eodory
spaces, see [15], [130].

De�nition 2.3.45 (Coordinate dilations) Let (F;W ) be a system of graded co-
ordinates. We say that the maps �r : R

q �! Rq, with r > 0, de�ned as

�r(�) =

qX
j=1

rdj �j ej ; (2.33)

where (ej) is the canonical basis of R
q, are coordinate dilations with respect to (F;W ).

Notice that coordinate dilations constitute a one parameter group with the product
�rs = �r � �s for any r; s > 0.

Remark 2.3.46 Note that coordinate dilations commute with F as follows

F � �r = �r � F : (2.34)

In the following proposition we analyze the relation between the Lebesgue measure
in graded coordinates and the Riemannian volume.
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Proposition 2.3.47 Let G be a graded group and let (F;W ) be a system of graded

coordinates. Then we have the formula F]Lq = vg.

Proof. We know that F : Rq �! G is a smooth di�eomorphism. Let A be a
measurable set of Rq. By the classical area formula and taking into account the left
invariance of both vg and F]Lq we have

c Lq(A) = vg(F (A)) =

Z
A
Jq (dF (�)) d�

for some constant c > 0. Then
R
A Jq(dF ) = c for any measurable A. By continuity

of � �! Jq(dF (�)) we obtain that Jq(dF (�)) = c for any � 2 Rq. We know that
F = exp �L, where L(�) =Pq

i=1 �jWj and (Wj) is an orthonormal basis of G. Since
the map dF (0) = d exp(0)�L = L has jacobian equal to one, then c = 1 and the thesis
follows. 2

The previous proposition and the notion of coordinate dilation allow us to establish
an explicit formula for the Hausdor� dimension of a graded group endowed with a
homogeneous distance. We have

vg(Bp;r) = vg(Br) = c Lq(F�1(Br)) = c Lq(F�1
��r(B1)) (2.35)

= c Lq(�rF�1(B1)) = c rQ Lq(F�1(B1)) = rQ vg(B1) : (2.36)

The �rst equality of (2.35) follows by the fact that left translations are isometries
with respect to the left invariant Riemannian metric, the third equality of (2.35) is
a consequence of (2.32), the �rst equality of (2.36) follows by (2.34) and the second
equality of (2.36) is due to a simple computation of the jacobian of �r. In fact, by
De�nition 2.33, a simple calculation shows that Jq(�r) = rQ and we have the formula

Q =
�X

j=1

j dimVj : (2.37)

Then we have prove that

vg(Bp;r) = rQ vg(B1) (2.38)

for every p 2 G and r > 0, where Q is given by formula (2.37). Applying the
classical result of Theorem 2.56 in [6] we can conclude from formula (2.38) that HQ

d
is �nite and positive on open subsets of G, hence the Hausdor� dimension of G is
equal to Q. This fact is true for an arbitrary homogeneous distance. Furthermore,
by left invariance of homogeneous distances it follows that HQ

d is proportional to vg.
Throughout the thesis, it will be always assumed that the Hausdor� measure on a
graded group is built with respect to a homogeneous distance and we will omit the
symbol d when it will be clear from the context.
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Polynomials on groups

Via graded coordinates we review some basics about polynomials on groups, see
Chapter 1.C of [59].

De�nition 2.3.48 (Polynomials) Let (F;W ) be a system of graded coordinates
of G. We say that a function P : G �! R is a polynomial on G if the composition
P �F is a polynomial on Rq.

Notice that if ( ~F ; ~W ) is another system of graded coordinates the map F�1 � F :
Rq �! Rq is a linear. Thus, P � F is a polynomial if and only if P � ~F is also and
the previous de�nition does not depend on the �xed graded coordinates.

De�nition 2.3.49 Let pj : Rq �! R be the canonical projection x �! xj . We
de�ne the graded projections associated to a system of graded coordinates (F;W ) as
�j(s) = pj

�
F�1(s)

�
for any s 2 G. We will also use the simpler notation xj = xj(s).

Note that any polynomial of G can be expressed in the form

P (s) =
X
�2A

c��
�(s); (2.39)

where �� =
Qq

j=1 �
�j
j is a monomial of graded projections and A is a �nite subset of

Nq.

De�nition 2.3.50 We associate to a monomial of graded projections �� the follow-
ing integer

degH(�
�) =

qX
j=1

dj �j :

The homogeneous degree of a polynomial P with expression (2.39) is de�ned as follows

degH(P ) = max
�2A

fdegH(��)g :

We denote by PH;k(G) the space of polynomials of homogeneous degree less than or
equal to k.

For instance, in the Heisenberg groupH3 with graded coordinates (x; y; t) with respect
to the basis (X;Y; T ) with [X;Y ] = T , the polynomial P (x; y; t) = t2 � x3 has
homogeneous degree equal to 4.

Proposition 2.3.51 The homogeneous degree of a polynomial does not depend on

the choice of graded coordinates.
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Proof. Let (F;W ) and ( ~F ; ~W ) be two system of graded coordinates. We have the
linear relations

~Wj =

qX
k=1

Ak
j Wk; F�1 � ~F (~x) =

qX
k=1

qX
j=1

Ak
j ~x

j ek ;

where Ak
j = 0 for any mdj�1 < k � mdj , due to the fact that (Wi) and ( ~Wi) are

adapted bases. Then the q � q matrix A = (Ak
j ) has � diagonal blocks of dimensions

ni for any i = 1; : : : ; �, where � is the step of the group. Let us consider a monomial
of graded projections �� = x� with respect to the system (F;W ) and represent it
with respect to ( ~F ; ~W )

x� =

qY
k=1

 
qX

k=1

Ak
j ~x

j

!�k

:

Since the matrix A is invertible with diagonal blocks for any k = 1; : : : ; q there exists
Ak
jk
6= 0, with dk�1 < jk � dk. Moreover, in the sum

Pq
k=1A

k
j ~x

j we have Ak
j = 0

whenever dj 6= dk. It follows that

degH

 
qX

k=1

Ak
j ~x

j

!�k

= dk �k :

As a result, observing that the homogeneous degree is additive on products of poly-
nomials we obtain that

degH(x
�) =

qX
k=1

dk �k =

qX
k=1

degH

 
qX

k=1

Ak
j ~x

j

!�k

= degH

 
qY

k=1

 
qX

k=1

Ak
j ~x

j

!�k
!
:

By the general representation (2.39) the latter equality yields our claim. 2

Remark 2.3.52 It might be misleading to try to determine the homogeneous degree
of a polynomial expressed with respect to coordinates that are not graded, but only
of exponential type (De�nition 2.3.13).

Consider the simple polynomial P � ~F (x; y; t) = t of H3, where ( ~F ; (T;X; Y )) are
exponential coordinates and [X;Y ] = T . It might naively seem that the homogeneous
degree of P is two, if one does not look carefully to the order of the basis. But, if we
represent P with respect to the graded coordinates (F; (X;Y; T )) we obtain

P � F (x; y; t) = P � ~F
�
( ~F�1 � F )(x; y; t)

�
and ~F�1 � F (x; y; t) = (t; x; y), hence

P � F (x; y; t) = P � ~F ((t; x; y)) = y ;

now it is clear that the homogeneous degree of P is one.
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De�nition 2.3.53 (Homogeneous degree) A polynomial P : G �! R is homo-
geneous of degree � > 0 if P (�rs) = r� P (s) for any s 2 G and r > 0.

Note that all polynomials of homogeneous degree 0 are constants. In fact, if P :
G �! R is of homogeneous degree 0, we have

P � �r � F = P � F � �r = ~P � �r : Rq �! Rq

and ~P (�rx) = ~P (x) implies

d ~P (x) = d ~P (�rx) � �r �! 0 as r ! 0+

for any x 2 Rq, hence ~P is a constant function and P is also.

Left invariant vector �elds

Here we obtain a standard representation in Rq of left invariant vector �elds in G via
graded coordinates. To get this representation, we will basically follow the approach
adopted in [174], Chapter XIII, Section 5.

Let us �x a system of graded coordinates (F;W ). We aim to obtain an explicit
canonical representation of the vector �elds ~Wk = F�1

� Wk 2 �(TRq) for any k =
1; : : : ; q. We will need to consider translations read on Rq and a representation of the
BCH formula (2.18) in graded coordinates.

De�nition 2.3.54 (Coordinate translations) Let (F;W ) be a system of graded
coordinates and choose x 2 Rq. We say that the map

~lx = F�1 � lF (x) � F : Rq �! Rq

is the coordinate translation of x with respect to (F;W ).

Now we write the coordinate translation ~lx in graded coordinates:

~lxy = F�1 (F (x)F (y)) =

qX
j=1

Pj(x; y) ej : (2.40)

where by formula (2.18) we know that Pj are polynomials. Let us check that Pj are
homogeneous polynomials of degree dj . We have

Pq
j=1 Pj(x; y) r

dj ej = �r

�Pq
j=1 Pj(x; y) ej

�
= �r

�
F�1 (F (x)F (y))

�
= F�1 (�r (F (x)F (y))) = F�1 (�rF (x)�rF (y)) = F�1 (F (�rx)F (�ry))

=
Pq

j=1 Pj(�rx;�ry) ej ;
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hence from both the �rst and the last term of the chain of equalities we deduce

Pj(�rx;�ry) = rdj Pj(x; y) :

The �rst observation is that ~Wk is left invariant with respect to coordinate trans-
lations, due to the fact that Wk is also left invariant with respect to translations.
Utilizing the representation of vector �eld ~Wk as a derivation on a smooth map
' : Rq �! R and considering the translated map y �! ' � ~lx(y), we obtain

~Wk'(x) = @yk(' � ~lx)(0) =
qX

j=1

@xj'(x) @yk
~ljx(0) :

We deduce from (2.40) that @yk
~ljx(0) = @ykPj(x; �)(0) = akj(x) and the homogeneity

yields

rdj @ykPj(x; y)
���
y=0

= @ykPj(�rx;�ry)
���
y=0

= rdk @ykPj(�rx; �)(0) ;

hence the polynomials akj are of homogeneous degree dj � dk. As a result, noting
that dk > dj implies akj(x) = 0 and that dk = dj yields dakj(x) = 0 for any x 2 Rq,
we conclude that

~Wk'(x) =
X
dk=dj

@xj'(x) ckj +
X
dk<dj

@xj'(x) akj(x) ; (2.41)

where ckj are constants. Now we use the condition

~Wk'(0) =
d

dt

�
' � F�1 (exp tWk)

� ���
t=0

=
d

dt
'(t ek)

���
t=0

= @xk'(0) :

The last formula, together with (2.41), the condition akj(0) = 0 whenever dk < dj
and the arbitrary choice of ', yield that

~Wk'(x) = @xk'(x) +
X
dk<dj

@xj'(x) akj(x) = @xk'(x) +

qX
j=mdk

+1

@xj'(x) akj(x) :

From condition akj(�rx) = rdj�dk akj(x), with dj � dk > 0, we deduce that variables
xl with dl > dj�dk cannot appear in the polynomial expression of akj , then akj does
not depend on xl whenever dl � dj , i.e.

akj(x) = akj(x1; : : : ; xj�1) :

Finally, we have proved that

~Wk = @xk +

qX
j=mdk

+1

akj(x1; : : : ; xj�1) @xj : (2.42)
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2.4 H-BV functions

Throughout the section we will denote by 
 an open subset of G.

De�nition 2.4.1 (Horizontal divergence) Let (X1; : : : ; Xm) be a basis of left in-
variant vector �elds of V1 and let ' 2 �(H
). Writing ' =

Pm
i=1 '

jXj , the horizontal
divergence (in short H-divergence) of ' is de�ned as follows

divH ' =
mX
j=1

Xj'
j :

Remark 2.4.2 In previous de�nition it is not used any Riemannian metric. Further-
more, it does not depend on the basis (X1; : : : ; Xm). Let (Y1; : : : ; Ym) be another basis
of left invariant vector �elds of V1. Then we have the relationsXj = cijYi, where c

i
j are

constants. Supposing that ' =
Pm

j=1 '
jXj =

Pm
j=1

�Pm
i=1 c

i
j '

j
�
Yj =

Pm
j=1 ~'

jYj ,

we have

divH ' =
mX
j=1

Yj ~'
j =

mX
i;j=1

Yi(c
i
j '

j) =
mX

i;j=1

cij Yi'
j =

mX
j=1

Xj'
j :

De�nition 2.4.3 (H-BV functions) We say that a function u 2 L1(
) is a func-
tion of H-bounded variation (in short, a H-BV function) if

jDHuj(
) := sup

�Z


u divH� dvg

���� 2 �c(H
); j�j � 1

�
<1 ;

We denote respectively by BVH(
) and BVloc;H(
) the space of all functions of
H-bounded variation and of locally H-bounded variation.

Remark 2.4.4 Notice that in the de�nition of H-BV function we have employed
the Riemannian volume. However, in view of Proposition 2.3.47 our notion of H-BV
function coincides with the usual one adopted in the literature once it is interpreted
as referred to a system of graded coordinates.

Precisely, let us read the vector �elds Xj 2 �(H
) in Rq, de�ning ~Xi = F�1
� Xi 2

�(T ~
), where (F;W ) is a system of graded coordinates and ~
 = F�1(
) � Rq. We
consider ' =

Pm
j=1 '

jXj 2 �c(H
), where ~'i = 'i �F for any i = 1; : : : ;m. Formula
(2.9) yields

~Xi ~'
i = F�1

� Xi('
i � F ) = (Xi'

i) � F
for any i = 1; : : : ;m. As a consequence of De�nition 2.4.1, we have established

(divH') � F =
mX
j=1

~Xj ~'
j ; (2.43)
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consequently, by (2.1) and Proposition 2.3.47 it follows that

Z


u divH� dvg =

Z


u divH� dF]Lq =

Z
~

~u

mX
j=1

~Xj ~'j dLq

where ~u = u�F is the H-BV function read in graded coordinates. The last expression
in the chain of equalities corresponds to the standard de�nition given in the literature,
see [31], [69], [71], [72], [79].

Remark 2.4.5 The use of a left invariant metric reveals some advantages when one
looks for some symmetry properties on the group. We will see in Chapter 5 that the
existence of a large class of horizontal isometries on the group depends on the choice
of the graded metric.

In Subsection 2.3.1 we have seen that di�erent bases (2.27) and (2.28) induce
isomorphic representations on the Heisenberg group. But this correspondence is not
longer true from a metric point of view when we regard these bases are orthonormal.
In fact, if we consider the graded metrics g1 and g2 on h2n+1 such that (2.27) and
(2.28) are orthonormal bases, respectively, it is clear that the metrics g1 and g2 are
di�erent. Now, if we think of A � Rq as a measurable subset in G with respect to the
coordinates (2.27) we will not see the di�erent value of the measure taking coordinates
associated to (2.28). This apparently ambiguous situation can be clari�ed considering
indeed di�erent sets F1(A) and F2(A) in G, where (F1;W ) and (F2; S) are systems
of graded coordinates associated to the bases (2.27) and (2.27), respectively.

We also observe that in view of Remark 2.4.2 the De�nition 2.4.3 is independent of
any frame of vector �elds. As a result, the variational measure jDHuj depends only
on the restriction of the left invariant metric g to H
.

By Riesz Representation Theorem we get the existence of a nonnegative Radon
measure jDHuj and a Borel section � of H
 such that jDHuj-a.e. we have j�j = 1
and for any horizontal vector �eld � 2 �(H
) we haveZ



udivH�dvg = �

Z


g(�; �) d jDHuj : (2.44)

Some remarks here are in order, since the canonical Riesz theorem deals with linear
operators on spaces of continuous functions. In this case the space is �(H
) and
we have used the scalar product in each �ber of the tangent spaces (indeed, strictly
speaking � should be thought of as a section of the cotangent bundle). Using local
coordinates it is not hard to prove the extension of Riesz theorem we have used. The
\vector" measure � jDHuj, acting on bounded Borel sections � of H
 as in (2.44) is
denoted by DHu. Splitting jDHuj in absolutely continuous part jDHuja and singu-
lar part jDHujs with respect to the volume measure, we have the Radon-Nikod�ym
decomposition DHu = Da

Hu + Ds
Hu, with Da

Hu = �jDHuja, Ds
Hu = �jDHujs. We
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denote by rHu the density of Da
Hu with respect to the volume measure HQ. Note

that Z
E
rHu dvg = � jDHuja(E)

for any E 2 B(
). Therefore the Borel map rHu is a section of H
.

Remark 2.4.6 For a.e. x 2 
 we have

lim
r!0+

jDs
Huj(Ux;r)
rQ

= 0 :

Indeed, notice that from Radon-Nikod�ym Theorem we get a Borel subset N � 

such that jN j = 0 and jDs

Huj(N c) = 0. Therefore, if we had a measurable subset
A � 
, with jAj > 0 and

lim sup
r!0+

jDs
Huj(Ux;r)
jU1j rQ > 0 ;

for any x 2 A we would get A0 � A and � > 0 such that jDs
Huj(A0) � � jA0j > 0, see

for instance Theorem 2.10.17 and Theorem 2.10.18 of [55]. Hence

jDs
Huj(A0 nN) � �jA0 nN j > 0 ;

which contradicts jDs
Huj(N c) = 0.

Proposition 2.4.7 For every orthonormal basis (X1; : : : ; Xm) of H
 we have

div� = divH� ;

where � 2 �(H
) and div is the Riemannian divergence with respect to a graded

metric.

Proof. We complete the horizontal orthonormal frame (X1 : : : ; Xm) to an orthonor-
mal adapted basis (X1 : : : ; Xm; Ym+1; : : : ; Yq), so we are considering a graded metric.
By de�nition of Riemannian divergence we have

div � = TrD� =
mX
i=1

g(DXi�;Xi) +

qX
i=m+1

g(DYi�; Yi)

where D is the Riemannian connection. We choose � 2 �(H
), with the represen-
tation � =

Pm
i=1 �

iXi for some smooth functions �i. By properties of Riemannian
connection (using the summation convention) we have

g(DXi�;Xi) = g(Xi�
lXl + �lDXiXl; Xi) = Xi�

i + �lg(DXiXl; Xi) ;

g(DXiXl; Xi) = g([Xi; Xl]; Xi) + g(DXl
Xi; Xi) = 0 :
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The last equation holds because [Xi; Xj ] 2 V2 is orthogonal to Xi 2 V1 and

2g(DXl
Xi; Xi) = Xl (g(Xi; Xi)) = 0 :

Reasoning as above we get

g(DYi�; Yi) = g(Yi�
lXl + �lDYiXl; Yi) = �l g(DYiXl; Yi) = 0 ;

and this completes the proof. 2

In view of Proposition 2.4.7 the H-divergence in De�nition 2.4.3 can be replaced by
the Riemannian divergence with respect to a graded metric (see De�nition 2.3.30).
This independence of the particular frame of vector �elds cannot occur in general
CC-spaces. In fact, the lack of a homogeneous structure forces the use of a particular
frame of vector �elds. However, with this �xed frame it is possible to construct a
nonnegative matrix A(x) (which should be interpreted as a degenerate Riemannian
controvariant metric) and introduce the space BVA(
), similarly to ours when we
replace the divH with the Riemannian divergence, see De�nition 2.1.5 and Proposi-
tion 2.1.7 of [69].

De�nition 2.4.8 We say that a measurable set E � 
 has H-�nite perimeter in 

when

PH(E;
) = j@EjH(
) = sup

�Z
E
divH� dvg

���� 2 �(H
); j�j � 1

�
<1 :

If 
 = G we simply say that E has H-�nite perimeter.

We will use both the notations PH(E;
) and j@EjH to denote the perimeter measure.
By previous discussion, PH(E;A) is the restriction to open sets A of a �nite Borel
measure in 
. It is clear that if E has H-�nite perimeter in 
 and 1E 2 L1(
), then
1E 2 BVH(
) and jDH1E j(F ) = PH(E;F ), for any Borel set F � 
.

For a set of H-�nite perimeter it is possible to introduce the notion of generalized
inward normal.

De�nition 2.4.9 (Generalized inward normal) Let E be a set of H-�nite peri-
meter in 
. The generalized inward normal to E is the measurable section �E of H

such that DH1E = �E jDH1E j.

By the standard polar decomposition (Corollary 1.29 of [6]) we have that j�E(p)j = 1
for jDH1E j-a.e. p 2 
. and the formula of integration by parts (2.44) givesZ

E
divH�dvg = �

Z


h�; �Ei d j@EjH : (2.45)
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Now we point out some compatibility properties of the perimeter measure with re-
spect to dilations and translations. Let E be a set of H-�nite perimeter. Thus,
directly from de�nition of perimeter measure we obtain

j@EjH(�rA) = rQ�1 j@ ��1=rE� jH(A) and j@EjH(lpA) = j@ �lp�1E� jH(A) (2.46)

for any open set A � G. Clearly, these properties can be extended with no di�culties
to any j@EjH -measurable set of G.

De�nition 2.4.10 (H-reduced boundary) Let E be a set of H-�nite perimeter
in 
. We say that a point p 2 
 belongs to the H-reduced boundary of E if

lim
r!0+

Z
Bp;r

�E dj@EjH = �E(p) and j�E(p)j = 1 : (2.47)

The H-reduced boundary of E is denoted by @�HE.

By a recent result of L. Ambrosio, [5], the H-perimeter measure is an asymptoti-
cally doubling measure, according to De�nition 2.1.21. This result holds in a metric
measure space that admits a (1; 1)-Poincar�e inequality and it is Ahlfors regular with
respect to the distance. In a sub-Riemannian group the previous conditions hold
for the CC-distance � of the group. Now we point out that if the asymptotically
doubling property holds for (X;�; �), then for any bilipschitz equivalent d the space
(X;�; d) is asymptotically doubling, according to De�nition 2.1.21. Thus, for any ho-
mogeneous distance of the group the H-perimeter measure is asymptotically doubling
and by Theorem 2.1.22 the family of closed balls in G form a j@EjH -Vitali relation
with respect to any homogeneous distance. In view of Theorem 2.9.8 of [55] and
the previous discussion it is clear that for any homogeneous distance and j@EjH -a.e.
p 2 G the conditions (2.47) hold. Thus, the H-reduced boundary @�HE is de�ned
independently of the homogeneous distance up to j@EjH -negligible sets and we have

j@EjH(G n @�HE) = 0 : (2.48)

2.5 Some general results

In this section we recall some important general theorems that will be used in the
thesis. The open ball of center x and radius r with respect to the CC-distance of
the group will be denoted by Ux;r. For the sake of simplicity we will simply write
jAj = vg(A), for the Riemannian volume of measurable subsets.

We start recalling the coarea formula for H-BV functions, see [69], [79], [134],
[141].
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Theorem 2.5.1 (Coarea formula) For any u 2 BVH(
) the following formula

holds

jDHuj(
) =
Z
R

j@EtjH(
) dt ; (2.49)

where Et = fx 2 
 j u(x) > tg.

A crucial tool in the Analysis on sub-Riemannain groups is the Poincar�e inequality.
This theorem holds for general vector �elds that satisfy the Chow condition, see [100].

Theorem 2.5.2 (Poincar�e inequality) There exists a constant C > 0 such that

for any C1 smooth map w : 
 �! R and any ball Ux;r compactly contained in 
,
we have Z

Ux;r

jw(z)� wUx;r j dz � C r jDHwj(Ux;r) : (2.50)

Now, we state an important theorem about the smooth approximation of H-BV
functions, see either Theorem 2.2.2 of [69] or Theorem 1.14 of [79].

Theorem 2.5.3 (Smooth approximation) Let u : 
 �! R be an H-BV function.

Then there exists a sequence (uk) of smooth functions such that

1. uk �! u in L1(
);

2. jDHukj(
) �! jDHuj(
).

In view of (2.50) and Theorem 2.5.3 we obtain the following theorem.

Theorem 2.5.4 Let w : 
 �! R be a locally H-BV function. Then for any ball Ux;r
compactly contained in 
 we haveZ

Ux;r

jw(z)� wUx;r j dz � C r jDHwj(Ux;r) : (2.51)

An important consequence of (2.51) is the local isoperimetric inequality for sets of
H-�nite perimeter.

Theorem 2.5.5 (Isoperimetric estimate) Let E be a set of H-�nite perimeter.

Then for any Ux;r � G we have

minfjUx;r \ Ej; jUx;r n Ejg � C r PH(E;Ux;r) : (2.52)

It is a general fact that the Poincar�e inequality (2.50) implies a Sobolev-Poincar�e
inequality, see for instance Theorem 2 of [66] or Theorem 1.15 (II) of [79]. This
inequality can be extended to H-BV functions via Theorem 2.5.3.
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Theorem 2.5.6 Let w : 
 �! R be a locally H-BV function. Then

 Z
Ux;r

jw(z)� wUx;r j1
�

!1=1�

� C r
jDHwj(Ux;r)

jUx;rj ; (2.53)

whenever Ux;r is compactly contained in 
 and 1� = Q=(Q� 1).

The following theorem is a consequence of Theorem 1.28 and Theorem 1.15 of [79].

Theorem 2.5.7 (Compact embedding) Let U be a Carnot-Caratheodory ball of

G. Then for any q 2 [1; 1�[ the inclusion BVH(U) ,! Lq(U) is compact.

Proposition 2.5.8 Let f : Rn �! R be a Lipschitz map which vanishes at the origin

and let u 2 [BVH(
)]
n. Then f�u : 
 �! R is a H-BV function and

jDH(f�u)j � Lip(f)
nX
l=1

jDHu
lj : (2.54)

Proof. Let � be a standard molli�er in Rn and consider fk(x) = f ��"k � f ��"k(0)
for x 2 Rn, with "k ! 0+ as k ! 1. Then, fk(0) = 0 for any k 2 N, (fk)
converges to f uniformly on bounded sets of Rn, the Lipschitz constants of fk are
uniformly bounded by the Lipschitz constant of f . Now, we take smooth maps (ulk)k
for any l = 1; : : : ; n, which approximate ul as in Theorem 2.5.3, and consider the
composition hk = fk�uk 2 C1(
), where uk = (ulk). One can easily verify that
under these conditions hk �! f�u in L1(
). In order to get the estimate (2.54) we
consider Z

hk div' = �
Z mX

i=1

'iXi(hk) = �
nX
l=1

Z
(@xlfk)�u

mX
i=1

'iXiu
l
k ;

where ' =
Pm

i=1 '
iXi, j'j � 1 and (X1; : : : ; Xm) is an orthonormal basis of H
. In

view of the last equality we have����
Z
hk div'

���� � L
nX
l=1

Z h mX
i=1

(Xiu
l
k)

2
i1=2

= L
nX
l=1

jDHu
l
kj :

Letting k ! 1, the thesis follows by condition 2 of Theorem 2.5.3 and the conver-
gence in L1(
) of (hk). 2

De�nition 2.5.9 (Maximal operator) We consider a nonnegative Radon mea-
sure � in 
. For each r > 0 the restricted maximal function of � is de�ned as
follows

Mr�(x) := sup

�
�(Ux;t)

jUx;tj : 0 < t < r; Ux;t � 


�
x 2 
 :
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The maximal function of � is de�ned as M�(x) = supr>0Mr�(x). If the measure �
is induced by a locally integrable function f : 
 �! R, we de�ne analogously

Mrf(x) := sup

(Z
Ux;t

jf(y)j dy : 0 < t < r; Ux;t � 


)

and Mf(x) = supr>0Mrf(x).

It is well known that the maximal operator is (1,1)-weakly continuous, i.e. there
exists a constant C > 0 such that

jfx 2 E jM�(x) > tgj � C

t
�(E) ; (2.55)

for any Borel set E � 
 and any t > 0, see for instance [10]. Inequality (2.55) implies
that if � is a �nite measure, then M� is �nite a.e. in 
.



Chapter 3

Calculus on sub-Riemannian

groups

This chapter is mainly devoted to the concept of \H-di�erentiability" and to some
related applications. In this setting the notion of di�erentiability can be formulated
in a purely intrinsic way, using the operation of the group and the homogeneous
structure given by dilations. With this notion we develop to some extent a \Calculus
on sub-Riemannian groups", showing some basic theorems of classical analysis, as the
chain rule formula and the inverse mapping theorem. Clearly these results generalize
the classical ones of Euclidean spaces. However, in the proof of the inverse mapping
theorem we will follow a novel approach.

The privileged role played by di�erentiability in classical Geometric Measure The-
ory still reveals a potentially rich variety of applications in the geometry of sub-
Riemannian groups. With this tool we are also able to de�ne in any codimension dif-
ferent \intrinsic" notions of recti�able set. For instance, the notion of G-recti�ability
introduced in [71], [73], has been proved to be the \right" concept to study sets of
H-�nite perimeter. An important structure theorem holds in 2-steps sub-Riemannian
groups: all sets of H-�nite perimeter are G-recti�able (De�nition 3.5.2), see [73].

It is well understood that the classical Rademacher Theorem on di�erentiability of
Lipschitz maps is a powerful tool in classical Geometric Measure Theory, [55], [131].
An important part of the chapter is also devoted to the proof of a.e. di�erentiability
of Lipschitz maps in the sub-Riemannian case. In a remarkable paper [154] P. Pansu
proved that any Lipschitz map f : A �!M is a.e. H-di�erentiable provided that A is
an open subset of G. We extend the Pansu result to a slightly more general situation,
requiring that A is only measurable. This generalization requires some e�ort, since
no Lipschitz extension theorem is presently known in this general setting. Although
we follow essentially the Pansu approach, our proof involves some nontrivial techni-
cal adjustments due to the fact that the interior of A could be empty, [124]. This
extension was �rst proved in [177], where some technical details were overlooked and

67
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subsequently corrected in [184]. The motivation for this extension comes from the
need of considering a manageable version of the area formula, [124], and to get basic
properties for (N;G)-recti�able sets, when N is a strati�ed group (De�nition 3.5.4).
We also prove by a counterexample that the hypothesis for di�erentiability of Lip-
schitz maps are basically sharp: if the target group has a left invariant distance
which is not homogeneous with respect to dilations, then it is possible to construct
a nowhere di�erentiable Lipschitz map, [111]. Now, let us look more closely to the
content of this chapter.

In Section 3.1 we introduce H-linear maps and we study their properties. We
prove that H-linear maps are indeed linear, if they are read between the correspond-
ing Lie algebras, so they form a subclass of all linear maps. This should give a naive
explanation of why the geometry of these groups is \rigid", see Remark 4.3.8 and The-
orem 4.4.6. Moreover, in Theorem 3.1.12 we provide a simple metric characterization
of H-linear maps and we prove their \contact property".

In Section 3.2 the notion of H-di�erential for maps f : A � G �! M is given.
We show that the di�erential of Lipschitz maps does not depend on any Lipschitz
extension that coincides in a set with the same density point, Proposition 3.2.4 and
we prove the chain rule formula for composition of di�erentiable maps. We introduce
H-continuously di�erentiable maps of any order, observing that real valued C1 maps
are C1

H (Proposition 3.2.8). However, this implication is no longer true for group
valued maps as we show in Examples 3.2.9 and 3.2.10.

In Section 3.3 we obtain the inverse mapping theorem for H-continuously di�eren-
tiable maps of sub-Riemannian groups (Theorem 3.3.3). Its proof follows an entirely
di�erent argument with respect to the standard one. In fact, the classical argument
to obtain the bilipschitz property in a neighbourhood of a point where the map has
invertible di�erential strongly relies on the commutativity of Euclidean spaces. Here
we adapt the general linearization procedure of Lemma 3.2.2 in [55] to C1

H smooth
maps, where the additional information on regularity of di�erential x �! dHf(x)
gives the Lipschitz estimate (3.15) in an open ball, instead of a measurable set.

The core of Section 3.4 is Theorem 3.4.11, i.e. Lipschitz maps of sub-Riemannian
groups are a.e. H-di�erentiable. The main di�culty in proving this theorem arises
from the fact that a Lipschitz extension theorem for maps of sub-Riemannian groups
is still not known. So, when we �x a point x 2 A \ I(A) and a direction w 2 G, it
might happen that x exp(tw) =2 A for many t > 0 and so we are not able to consider
the di�erence quotient of f in that direction. The leading idea is to consider the
\generating property" of bases (vi) of V1 (see Proposition 2.3.22) and to select all
density points x whose curves Ji(t) = x exp(tvi) intersect A in one dimensional sets
which have density 1 at t = 0, getting a set of full measure in A. At these points
we are able to approximate any curve c(t) = exp(�tz), z 2 G, with a path built with
projections on A of horizontal lines with controlled distance. All of this procedure is
performed by induction. Finally, the di�erence quotient of f is approximated by the
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di�erence quotient along these paths, where f is de�ned and uniformly di�erentiable
along the horizontal directions.

Section 3.5 is devoted to the presentation and discussion of di�erent notions of
\intrinsic" recti�ability. In the cycle of papers [71], [72], [73] B. Franchi, R. Serapioni
and F. Serra Cassano have introduced and studied the notion of G-recti�ability, where
regular hypersurfaces are seen as level sets of real valued C1

H maps with nonvanishing
H-di�erential. With this notion they have proved the celebrated De Giorgi Recti�a-
bility Theorem for sets of H-�nite perimeter in sub-Riemannian groups of step 2, [73].
It turns out that this notion �ts the geometry of the group. Another independent
notion of recti�ability is given in [156], where recti�able sets are regarded as Lips-
chitz images of subsets contained is some subgroup. This is a reasonable extension
of the Federer notion of recti�able set, see 3.2.14 of [55]. However, the problem of
establishing some equivalence between this notion and the G-recti�ability seems to
be an hard question. We extend the notion of G-recti�ability in higher codimension,
introducing the (G;M)-recti�ability, namely, regular sets are regarded as level sets
of maps in C1

H(G;M) with surjective H-di�erential. Note that G-recti�ability corre-
sponds to the case M = R. Clearly the class of (G;M)-recti�able sets depends on M.
So by means of M we can consider several geometries to be investigated in G. But
it may happen that some (G;M)-recti�able classes are empty. In this perspective
the \right" choice of M should yield an as large as possible class of (G;M)-recti�able
sets. For instance, if G = H2n+1 it is convenient to choose M = Rk. Hence we obtain
nontrivial classes of recti�able sets of Hausdor� dimension 2n+2�k and topological
dimension 2n+1�k, for any k = 1; : : : ; 2n. Furthermore, there exists also a rich class
of (Rk;H2n+1)-recti�able sets of Hausdor� dimension k and topological dimension k
for any k = 1; : : : ; n. The last assertion is due to the existence of \horizontal surfaces"
in H2n+1 whenever their dimension is less than n+ 1. Notice that horizontal curves
are included in (R;H2n+1)- recti�able objects. It turns out that both de�nitions of
recti�ability we have adopted complete the picture of recti�able sets in H2n+1.

In Section 3.6 we present a counterexample to a.e. H-di�erentiability of Lipschitz
maps (Theorem 3.4.11) as soon as we replace the homogeneous distance in the target
with another left invariant distance that is not homogeneous with respect to dilations.
This is accomplished by taking the identity map of the three dimensional Heisenberg
group I : H3 �! H3 and building such a particular non homogeneous left invariant
distance on the codomain. More precisely, we show a slightly stronger fact, i.e. that
the map I is also not metrically di�erentiable, according to De�nition 3.6.2, so in
particular it is not di�erentiable in the sense of De�nition 3.2.1. We mention that
if f : A �! Y , with A � Rn, is a metric space valued Lipschitz map, then in
[7], [110] and [115] it was proved that f is a.e. metrically di�erentiable. In view
of our counterexample it follows that there is no hope to extend these Lipschitz
di�erentiability results when A is a subset of some strati�ed group.
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3.1 H-linear maps

The notion of di�erentiability can be modeled with respect to a �xed family of maps
with suitable geometric properties. Then, one requires that a di�erentiable function
at a �xed point has an approximation of the �rst order with a map of such a family.
Clearly these class of maps constitutes just the family of intrinsic di�erentials. This
general idea was pursued in general metric spaces in the remarkable paper [35].

In case of strati�ed groups this class of di�erentials is formed by homogeneous
group homomorphisms, i.e. H-linear maps. These maps play the same role of linear
maps in Euclidean spaces, indeed the class of H-linear maps coincides with that of
linear maps when the group is an Euclidean space (i.e. an abelian sub-Riemannian
group). We will see in Proposition 3.1.3 that in general H-linear maps can be seen
as a subclass of all linear maps.

De�nition 3.1.1 Let L : G �! M be a map of strati�ed groups. We say that L is
homogeneous if �r(Lx) = L(�rx) for every r > 0.

De�nition 3.1.2 (H-linear maps) We say that L : G �!M is a horizontal linear
map (shortly, H-linear map) if it is a homogeneous Lie group homomorphism.

Proposition 3.1.3 Let G and M be nilpotent simply connected Lie groups and let

L : G �!M be a continuous group homomorphism. Then L can be read between the

Lie algebras as ~L = ln �L � exp : G �!M and ~L is an algebra homomorphism.

Proof. Since L is continuous, then Theorem 3.39 of [187] implies that it is C1.
Thus, by Theorem 3.32 of [187] we have that L can be written as exp � dL(e) � ln,
where dL(e) is an algebra homomorphism, so the proof is complete. 2

De�nition 3.1.4 We denote by HL(G;M) the class of H-linear maps between G
and M. Given T; L 2 HL(G;M) and t 2 R we de�ne the new functions �tT; T �
L; �T : G �! M as �tT (u) = �t(T (u)); T � L(u) = T (u)L(u); �T (u) = (T (u))�1

for any u 2 G. We de�ne HL(G;M) as the set of all maps L : G �! M such that
exp �L� ln 2 HL(G;M).

Remark 3.1.5 (Group of H-linear maps) It turns out that HL(G;M) has a na-
tural structure of Lie group with respect to the operation introduced in the previous
de�nition. We also notice that any map of HL(G;M) induces uniquely a map of
HL(G;M) and viceversa. We will prove that any T 2 HL(G;M) is linear, preserves
the bracket operation and L(V1) �W1. Finally, we point out that in both HL(G;M)
and HL(G;M) there is a natural group of dilations, T �! ��T , � > 0.

De�nition 3.1.6 Given T; L 2 HL(G;M) we de�ne

�(T; L) = sup
d(u)�1

� (T (u); L(u))
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as the distance between T and L. If L is identically equal to the unit element of
M, the distance between T and L corresponds to the norm of T , denoted with �(T ).
If we do not need to emphasize the distance that de�nes the norm, we can simply
denote it by kTk. Analogous de�nitions hold for maps in HL(G;M).

Remark 3.1.7 The norm de�ned above on the group HL(G;M) induces a homoge-
neous distance that makes the group a complete metric space.

Proposition 3.1.8 Any function T 2 HL(G;M) is continuous and the distance of

De�nition 3.1.6 is a �nite number, making HL(G;M) a complete metric space. More-

over, for any u 2 G we have the estimate �(T (u)) � �(T ) d(u).

Proof. Fix a basis fvi j i = 1; : : : ;mg of V1. By Proposition 2.3.22, after a rescaling
we obtain that

E =

(
Y

s=1

exp(asvis) j (as) � U

)
� fu 2 G j d(u) � 1g ;

where U � R is a bounded neighbourhood of the origin. By triangle inequality we
get the estimate

�(T ) � (sup
a2U

jaj)
X
i=1

� (T (vis)) <1 :

The homogeneity of � implies the inequality � (T (u)) � �(T ) d(u) for every u 2 G.
Considering the map T�1 � L 2 HL(G;M) we have proved that the distance between
T and L is �nite. Of course �(T ) = 0 implies that T is the null map, the triangle
inequality and symmetry property of the distance follow directly from that of the
metric � in M. The homogeneity of � on G gives the homogeneity of the distance
in HL(G;M). Even the continuity is straightforward from the same inequality. The
completeness of HL(G;M) easily follows by the completeness of M. 2

Corollary 3.1.9 Let L : G �!M be an injective H-linear map and L(G) = S. Then
S is a strati�ed subgroup of M and L�1 : S �! G is H-linear with

d
�
L�1(y)

� � kL�1k �(y) ; kL�1k <1 : (3.1)

Proof. Clearly S is a subgroup of M and the contact property L(V1) �W1 implies
the strati�cation. In fact, denoting ~L = dL(e) we have

[~L(Vi); ~L(V1)] = ~L([Vi; V1]) = ~L(Vi+1) ;

so S is a strati�ed subgroup and L�1 : S �! G is H-linear. Finally, Proposition 3.1.8
yields the estimate (3.1). 2
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Corollary 3.1.10 Consider L; T 2 HL(G;M) and S 2 HL(M;T), where (G; d),
(M; �), (T; �) are strati�ed Lie groups. Then S�L 2 HL(G;T), L �T 2 HL(G;M) and

kS�Lk � kSk kLk ; kL � Tk � kLk+ kTk : (3.2)

Proof. It is an easy computation, using Proposition 3.1.8 and the triangle inequality.
2

Corollary 3.1.11 Any map L 2 HL(G;M) is an algebra homomorphism.

Proof. Proposition 3.1.8 implies the continuity and Proposition 3.1.3 yields the
thesis. 2

Theorem 3.1.12 (Characterization) Any homomorphism L : G �! M is an H-

linear map if and only it is a Lipschitz map and in this case it has the contact property

L(Vj) �Wj for every j = 1; : : : ; �.

Proof. Proposition 3.1.8 implies the Lipschitz property of L if it is H-linear. Vice-
versa, consider a Lipschitz homomorphism L : G �!M. We introduce the auxiliary
homogeneous norm

kxk =
�X

j=1

jxj j1=j ;

where x = exp
�P�

j=1 xj

�
2 G, xj 2 Vj and j � j is a norm on G. Reasoning as in

the proof of Proposition 2.3.37 we easily obtain that c1k � k � d(�; e) � c2k � k with

c1; c2 > 0. We choose v 2 V1 and write L = exp
�P�

j=1 Li

�
, where Li : G �! Vi. By

the Lipschitz property we have

k�1=tL(�tv)k =
mX
j=1

jt1�jLi(v)j � Lip(L)

for any t > 0. Then we have Li(v) = 0 for every i = 2; : : : ; � and L(v) 2 W1, where
M = W1 � � � � � W� and Wj = expWj . Therefore the homomorphism property
yields L(Vj) � Wj , for any j = 1; : : : ; �. As a result, de�ning ~L = ln �L exp, x =

exp
�P�

j=1 xj

�
and the linear maps ~Lj = Lj � exp, where j = 1; : : : ; �, we have

L(�tx) = exp
� mX
j=1

~Lj (ln(�tx))
�
= exp

� mX
j=1

~Lj

�X
l=1

tlxl)
��

= exp
� mX
j=1

tj ~Lj(xj)
�
= exp

�
�t

mX
j=1

~Lj(xj)
�

(3.3)

= exp
�
�t ~L
� mX
j=1

xj

��
= �t (L(x)) ; (3.4)
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where the equalities of (3.3) and the �rst one of (3.4) follow by the fact that ~L(xj) 2
Wj for every j = 1; : : : ; �. The above chain of equalities proves the homogeneity of
L, so the proof is complete. 2

Remark 3.1.13 Notice that from the previous proof we deduce also that Lipschitz
homomorphisms of graded groups are H-linear. In fact, the hypothesis that G and
M are strati�ed was used only in the opposite implication.

The following example is taken from [151].

Example 3.1.14 We consider a basis of (X;Y; T ) of the Heisenberg algebra h3, with
[X;Y ] = T . Then the group operation in coordinates is as follows

(x; y; t) � (x0; y0; t0) = �x+ x0; y + y0; t+ t0 + (xy0 � yx0)=2
�
:

It is easy to check that all H-linear maps L : H3 �! H3 can be represented with
respect to the basis (X;Y; T ) with matrices of the following form

[L] =

0
@ a11 a12 0

a21 a22 0
0 0 det(A)

1
A : (3.5)

where A = (aij)i;j=1;2.

Remark 3.1.15 Notice that any H-linear map can be represented by a matrix with
diagonal blocks. This basically follows from the contact property stated in Theo-
rem 3.1.12. In fact, if we have the gradings G = V1 � � � � � V�, M = W1 � � � � �W�

the contact property of H-linear maps implies

LjVi : Vi �!Wi (3.6)

for any i � 1 (taking into account that spaces Vi and Wi are null spaces when i is
greater than the degree of nilpotency of the group). We point out that the general
explicit computation of the coe�cients of L with respect to a �xed basis can be
very involved. This is due to the fact that the group operation given by the BCH
formula (2.18) becomes a large polynomial expression as the step of nilpotence of
the group increases. So this general expression for the matrix seems to be an open
computational problem.

Let us consider another simple example.

Example 3.1.16 Let L : E2 �! H3 be an H-linear map and consider the canonical
basis (e1; e2) of the Euclidean space E2 and the basis (X;Y; Z) of H3 used in the
previous example. Then, in view of Remark 3.1.15 the representation of L with
respect to the above �xed bases is as follows

[L] =

0
@ a11 a12

a21 a22
0 0

1
A : (3.7)



74 CHAPTER 3. CALCULUS ON SUB-RIEMANNIAN GROUPS

3.2 The instrinsic di�erential

In this section we introduce the concept of H-di�erential for maps of graded groups
endowed with an homogeneous distance. The metric spaces (G; d), (M; �) and (P; �)
will indicate graded groups with their corresponding homogeneous distances. We will
denote by A and 
 a measurable subset and an open subset of G, respectively.

De�nition 3.2.1 (H-Di�erentiability) We say that f : A �! M is H-di�eren-
tiable (or simply di�erentiable) at x 2 I(A) \ A if there exists an H-linear map
L : G �!M such that

lim
y2A; y!x

�(f(x)�1f(y); L(x�1y))

d(x; y)
= 0 : (3.8)

Notice that when A is an open set, De�nition 3.2.1 coincides with Pansu de�nition
of di�erentiability [154]. Indeed this notion is also called Pansu di�erentiability. We
simply speak of di�erentiable functions, due to the fact that in strati�ed groups it is
understood that the use of dilations, of the group operations and of the homogeneous
distance, are exactly what we need to de�ne an \intrinsic" concept of di�erentiability.
Furthermore, when the group G is an Euclidean space, De�nition 3.2.1 coincides with
the classical de�nition of di�erentiability. However, we will often use the terminology
H-di�erentiability, when we want to emphasize the \intrinsic" notion in the sense
of De�nition 3.2.1. The pre�x \H" stands for \horizontal", indeed in the proof of
Theorem 3.4.11 we will see that the intrinsic di�erential is entirely reconstructed by
derivatives along \horizontal" directions. From the other side, the same principle
holds for H-linear maps, due to the fact that any element of the group can be written
as a �nite product of a �xed basis of horizontal elements (Proposition 2.3.22).

Next, we show that the H-linear map of De�nition 3.2.1 is unique.

Proposition 3.2.2 (Uniqueness) Let f : A �! M and let x 2 I(A) \ A. If f
satis�es limit (3.8) with respect to H-linear maps L and L0, then L = L0.

Proof. Let ! 2 G be an arbitrary element with d(!) = 1. By Lemma 2.1.15 we know
that d(x�t!;A) = o(t). Let us choose yt 2 A such that d(x�t!;A) + t2 > d(x�t!; yt)
and write the estimate

�
�
(�L)L0(!)� � �

�
(�L)L0(x�1yt)

�
t

+
�
�
(�L)L0(y�1t x�t!)

�
t

: (3.9)

The second of the above addenda goes to zero as t! 0+, due to both the behaviour
of yt and the Lipschitz property of (�L)L0. The �rst one can be estimated as follows

�
�
(�L)L0(x�1yt)

�
t

� �
�
L0(x�1yt); f(x)

�1f(yt)
�

t
+
�
�
L(x�1yt); f(x)

�1f(yt)
�

t
:

By previous estimate and taking into account that t�1d(x; yt) is bounded and f is
di�erentiable with respect to both L and L0, the thesis follows. 2
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De�nition 3.2.3 (H-di�erential) Let f : A �!M be di�erentiable at x 2 I(A)\
A. We denote by dHf(x) the unique H-linear map L, which satis�es (3.8). We will
call dHf(x) the H-di�erential of f at x, or simply di�erential when it will be clear
from the context that it is referred to sub-Riemannian groups.

In Section 3.4 a uniqueness result for maps with di�erent domains will be needed.
The following proposition shows that in the class of Lipschitz maps the di�erential
is unique and essentially independent of the domain.

Proposition 3.2.4 Let f : A � G �!M, g : B � G �!M be Lipschitz maps, with

x 2 I(A \ B) \ (A \ B), f = g on A \ B and suppose that f satis�es (3.8). Then

the map g is di�erentiable at x and

lim
y2B; y!x

�(g(x)�1g(y); L(x�1y))

d(x; y)
= 0 :

The proof of the above proposition can be obtained similarly to that of Proposi-
tion 3.2.2, again exploiting Lemma 2.1.15.

Proposition 3.2.5 (Chain rule) Let f : A �! P be di�erentiable at x 2 I(A)\A
and g : f(A) �!M di�erentiable at f(x) 2 I (f(A)) \ f(A). Then g�f : A �!M is

di�erentiable at x, with di�erential dH(g�f)(x) = dHg(y) � dHf(x).

Proof. Let us de�ne h = g�f , L = dHg(y) � dHf(x), y = f(x) and let us �x " > 0.
By hypothesis there exists � > 0 such that

�
�
h(x)�1h(u); L(x�1u)

� � �
�
h(x)�1h(u); dHg(y)(y

�1f(u))
�
(3.10)

+kdHg(y)k �
�
dHf(x)(x

�1u); y�1f(u)
� � " � (y; f(u)) + kdHg(y)k " d(x; u) ; (3.11)

whenever d(x; u); � (y; f(u)) � �. The di�erentiability of f at x implies in that

� (y; f(u)) � (kdHf(x)k+ 1) d(x; u) � �

whenever d(u; x) � �0, for some �0 2]0; �[. Replacing the latter inequality in (3.11)
the thesis follows. 2

De�nition 3.2.6 (C1
H-maps) We say that f : 
 �! M is H-continuously di�er-

entiable in 
 if it is di�erentiable at any x 2 
 and dHf : 
 �! HL(G;M) is con-
tinuous. We denote by C1

H(
;M) the space of all continuously di�erentiable maps.
When M = R we simply write C1

H(
).

We mention that when M = R, the class C1
H(
) corresponds to the one introduced

in [71], [72].
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Remark 3.2.7 It would be very natural to give a notion of C1
H regular map claim-

ing that only derivatives along horizontal directions exist and are continuous. But
presently it is not clear if the previous condition is su�cient to guarantee the exis-
tence of the H-di�erential. In other words the problem of �nding reasonable su�cient
conditions for the H-di�erentiability at a given point is an open question.

In the case of real valued maps we have a precise relation between C1 smoothness
and C1

H smoothness.

Proposition 3.2.8 The following inclusion holds C1(
) � C1
H(
) and for any f 2

C1(
) we have dHf(x)(v) = df(x)(v1) whenever x 2 
 and v =
P�

j=1 vj with vj 2
Hj
xG for any j = 1; : : : �.

Proof. By de�nition of H-di�erentiability we have to prove the existence of the
following limit

lim
r!0+

f (x exp(�rv))� f(p)

r
= dHf(x)(v) ; (3.12)

uniformly on v 2 exp�1(B1) � G. Let us de�ne the map

r �! f (x exp(�rv)) = f
�
x exp

� �X
j=1

rjvj

��
=  (r; v) ;

where v =
P�

j=1 vj and vj 2 Vj . Clearly the map  is C1 and in particular it is par-
tially di�erentiable with respect to r at the point 0. Hence the uniform convergence
of (3.12) follows, obtaining

@ 

@r
(0; v) = dHf(x)(v) = df(x)(v1);

where v =
P�

j=1 vj and vj 2 Hj
xG. 2

Example 3.2.9 However the inclusion in the previous proposition cannot be ex-
tended to the case of group valued maps. Consider the Heisenberg group H3 with
exponential coordinates (F; (X;Y; T )) and the nontrivial Lie relation [X;Y ] = Z. Let
us consider the curve  2 C1(R;H3) de�ned as

F�1(t) = t e3 2 R3 for any t 2 R;
where (e1; e2; e3) is the canonical basis of R

3. We utilize the homogeneous distance
d1 constructed in Example 2.3.38. By the BCH formula (2.18) we have

d1 ((t); (�))

jt� � j = N
�
�jt�� j

�
(t)�1(�)

��
=

1

jt� � j ;

where the map N : H3 �! R is de�ned in the Example 2.3.38. Then  : R �! H3 is
nowhere H-di�erentiable, according to De�nition 3.2.1.
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Example 3.2.10 Beyond the previous example there is a general fact that we want
to illustrate as a class of examples. Take ~z 2 Vk with k � 1 and notice that by the
group operation in the algebra (2.18) we have

�t(�~z)} �t0 ~z =
�
t0jt0jk�1 � tjtjk�1

�
~z = �

k
q
jt0jt0jk�1�tjtjk�1j �(t0jt0jk�1�tjtjk�1)~z

where t 6= t0. Then, posing z = exp ~z we obtain

��tz �t0z = �
k
q
jt0jt0jk�1�tjtjk�1j �(t0jt0jk�1�tjtjk�1)z (3.13)

that implies

d (��tz �t0z) =
k

r���t0jt0jk�1 � tjtjk�1
��� d(z) : (3.14)

Notice that if z 2 V1 formula (3.13) yields

��tz �t0z = �t0�tz:

It follows that the smooth curve t �! �tz 2 G is recti�able if and only if z 2 V1.

Remark 3.2.11 By preceding examples it is clear that H-di�erentiability requires a
geometric constraint on the map and not only the simple smoothness. One can also
observe that the curve considered in Example 3.2.9 is not recti�able in the sense of
De�nition 2.1.10. This can suggest a natural condition on a C1 map f : G �!M in
order to be H-di�erentiable: for any recti�able curve  of G the image curve f � 
is recti�able in M. Notice that the Lipschitz property implies the condition above
and we will see in Theorem 3.4.11 that Lipschitz maps of strati�ed groups are a.e.
H-di�erentiable.

In Remark 3.1.5 we have seen that HL(G;M) is endowed with a natural structure
of Lie group with dilations and also of a homogeneous distance. This allows us to
intrinsically de�ne higher order di�erentiability.

De�nition 3.2.12 By induction on k � 2 we say that f : 
 �!M is H-continuously
k-di�erentiable if the (k � 1) H-di�erential dk�1H f(x) : 
 �! HL

�
G;HLk�2(G;M)

�
is H-continuously di�erentiable, where also HLk(G;M) = HL

�
G;HLk�1(G;M)

�
is

de�ned by induction.

The previous de�nition of di�erentiability could be used in order to �nd further pro-
perties for Ck

H smooth functions. This certainly runs away from the studies accom-
plished in this thesis, but it remains however an interesting object to be investigated.
We will deal with higher order di�erentiability in Chapter 8, concerning real valued
functions of higher order variation.



78 CHAPTER 3. CALCULUS ON SUB-RIEMANNIAN GROUPS

3.3 Inverse mapping theorem

In this section we prove the inverse mapping theorem on a graded group G. We
denote by 
 an open subset of G. We start with the following de�nition.

De�nition 3.3.1 Let L 2 HL(G;G). Then we de�ne the number

kLk� = min
u2G; d(u)=1

d(Lu) :

The next lemma is the core of the proof of the inverse mapping theorem. In particular,
it implies that H-continuously di�erentiable maps with non-singular di�erential are
locally bilipschitz maps.

Lemma 3.3.2 Let f 2 C1
H(
;G). Then for every x 2 A and " > 0, there exists

� = �(x; ") > 0 such that

d(z; w)
�
kdHf(x)k� � "

�
� d(f(z); f(w)) �

�
kdHf(x)k+ "

�
d(z; w) (3.15)

for any z; w 2 Bx;�.

Proof. Let " = 2"1 > 0 and let K � A be a compact neighbourhood of x 2 
, with
dist(K;
c) = 2� > 0. We choose a sequence (sk) �]0; � [, with sk ! 0+ as k ! 1
and we de�ne the open sets

Ok =
�
y 2 Int(K) j d �f(z); f(y) dHf(y)(y�1z)� < "1 d(z; y) for each z 2 By;sk

	
:

We consider the compact set K� = fy 2 
 j dist(y;K) � �g, so dist(K� ;

c) � � .

The function

K� �K 3 (z; y) �! d
�
f(z); f(y)dHf(y)(y

�1z)
�� "1d(z; y)

is uniformly continuous on the compact K� �K, hence for any k 2 N the map

Int(K) 3 y �! max
z2By;sk

�
d
�
f(z); f(y) dHf(y)(y

�1z)
�� "1d(z; y)

	

is continuous, and therefore Ok is an open set for any k 2 N. The di�erentiability of
f in 
 implies that fOk j k 2 Ng is a covering of Int(K), in particular there exists
j 2 N such that x 2 Oj . Now we can choose � 2]0; sj=2[ such that Bx;� � Oj and

kdHf(w)k� � �"1 + kdHf(x)k�; kdHf(w)k � "1 + kdHf(x)k (3.16)

for any w 2 Bx;�. For each couple z; w 2 Bx;� inequalities

d (f(z); f(w)) � d
�
f(z); f(w) dHf(w)(w

�1z)
�
+ d

�
dHf(w)(w

�1z)
�
;
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d (f(z); f(w)) � d
�
dHf(w)(w

�1z)
�� d

�
f(z); f(w) dHf(w)(w

�1z)
�
;

and the fact that w 2 Oj , so d(w; z) < 2� < sj , imply

d (f(z); f(w)) � "1 d(z; w) + d
�
dHf(w)(w

�1z)
� � ("1 + kdHf(w)k) d(z; w) ;

d (f(z); f(w)) � d
�
dHf(w)(w

�1z)
�� "1 d(z; w) �

�kdHf(w)k� � "1
�
d(z; w) :

The latter inequalities together with (3.16) give the assertion (3.15). 2

Theorem 3.3.3 (Inverse mapping theorem) Let f 2 C1
H(
;G), with x0 2 


and suppose that dHf(x0) is invertible. Then there exist neighbourhoods U and V ,
respectively of x0 and f(x0), such that f : U �! V has an inverse function ' : V �!
U which is H-continuously di�erentiable and dH'(f(y)) = dHf(y)

�1 for every y 2 U .
Proof. We know that L = dHf(x0) : G �! G is an isomorphism, in particular

0 < 2� = kLk� � kLk = �=2 :

By Lemma 3.3.2, there exists a positive � < minf�; �=2g such that

�d(z; w) � d(f(z); f(w)) � � d(z; w)

for any z; w 2 Bx0;�. By continuity of di�erential we can also suppose � so small that
dHf(x) is invertible for any x 2 Bx0;�. De�ning V = f(Bx0;�) and U = Bx0;�, we
obtain that f : U �! V is a di�erentiable homeomorphism, with inverse mapping
' : V �! U . Now we choose v; y 2 V , where v = f(u) and y = f(x) with u; x 2 U
and we �x an arbitrary " > 0. Then there exists � > 0, with By;� � V , such that

d
�
'(y)�1'(v); dHf(x)

�1(y�1v)
� � kdHf(x)�1k d

�
dHf(x)

�
'(y)�1'(v)

�
; y�1v

�
= kdHf(x)�1k d

�
dHf(x)(x

�1u); f(x)�1f(u)
� � kdHf(x)�1k " d(x; u)

� "

�
kdHf(x)�1k d(y; v) ;

whenever v 2 By;�. This implies the di�erentiability of ' at y, with di�erential
dH'(y) = dHf(x)

�1. The previous formula gives immediately the continuity of dH'.
So the proof is complete. 2

Remark 3.3.4 Here a remarkable di�erence with the Euclidean case occurs. Indeed,
from Theorem 3.3.3 we cannot recover the Implicit Function Theorem in an easy way.
This is clear already in the simple case of a map u 2 C1

H(H
3;R) with nonsingular

H-di�erential. Indeed, denoting by p1(x) = x1 the canonical projection on the �rst
component, we have that any map ~u 2 C1(H3;R3) such that p1 � ~u = u cannot have
an invertible H-di�erential simply because H3 is not commutative. It turns out that
our intrinsic version of the Inverse Mapping Theorem cannot be applied. However
this does not exclude another more \intrinsic" way to accomplish the extension ~u.



80 CHAPTER 3. CALCULUS ON SUB-RIEMANNIAN GROUPS

3.4 Di�erentiability of Lipschitz maps

In this section we will be concerned with di�erentiability of Lipschitz maps in sub-
Riemannian groups. Here it is crucial assuming that G is a strati�ed group. In fact,
on strati�ed groups the Chow condition holds (see Remark 2.3.21), so the \generating
property" of V1 holds (see Proposition 2.3.22), that is one of the key points in the
proof of Theorem 3.4.11. In our assumptions the map f : A �! M is Lipschitz on
a closed subset A � G, where M is another strati�ed group. Since the target metric
space M is complete and f is a Lipschitz function this assumption does not a�ect
the generality of the domain. We also point out that in view of Proposition 3.2.4 the
last assumption does not modify the di�erential of f . Throughout the section we will
denote by d and � the homogeneous distances of G and M, respectively.

As we have explained in the beginning of the chapter, the lack of a Lipschitz
extension theorem makes important the shape of the domain around the point where
we consider the di�erentiability. A �rst information about the existence of points of
the domain along arbitrary directions is given in the subsequent statements.

Proposition 3.4.1 Consider a summable function g : G �! R and z 2 G. ThenZ
G

jg(y�tz)� g(y)j dHQ
d (y) �! 0 as t! 0 :

Proof. By an isometric change of variable, the map g can be read on G where it
is Lq-measurable. Then we can use the standard density arguments to achieve the
theorem. The density argument works because the Lebesgue measure is preserved
under translations of the group. The isometric change of variable does not change
the value of the integral. 2

Corollary 3.4.2 Let A � G be a compact set and let (�j) be an in�nitesimal se-

quence. Then there exists a subsequence (tl) such that, limtl!0 1A(y�tlz) = 1, for

HQ
d -a.e. y 2 A.

Proof. It is enough to apply Proposition 3.4.1 to g = 1A. 2

The following Lemma is a particular case of Theorem 2.10.1 in [178].

Lemma 3.4.3 Let Z1, Z2 be two subspaces whose direct sum gives G and Z1 with

dimension 1. Then there are open neighbourhoods of the origin 
1 � Z1, 
2 � Z2
and an open U � G, U 3 e, such that the map � : 
2 � 
1 �! U , de�ned as

�(!; z) = exp! exp z, is a di�eomorphism.

Proposition 3.4.4 (Linear density) Let v 2 G and Tx;v = fs 2 R j x exp(sv) 2
Ag, then 0 2 I(Tx;v) for HQ

d -a.e. x 2 A.
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Proof. Consider the map � : 
2 � 
1 �! U of Lemma 3.4.3, where Z1 is the
space spanned by v and Z2 is the complement factor. Covering A with a countable
family of translated neighbourhoods fyi Ug it is not restrictive to assume that A � U .
Thus, identifying 
2 � 
1 with R

q, by 3.1.3(5) of [55] applied to the measurable set
��1(A) � 
2 � 
1 we obtain that for Lq-a.e. (!; z) 2 
2 � 
1 the set f� j (!; �v) =2
��1(A)g has density zero at t. Then the set

T�(!;tv);v = fs j �(!; tv) exp(sv) =2Ag

= fs j � (!; (t+ s)v) =2 Ag = f� j �(!; �v) =2 Ag � t

has density zero at s = 0. 2

Remark 3.4.5 It is important to observe that only when v 2 V1 (v is a horizontal
vector) we have Tx;v = fs 2 R j x exp(sv) 2 Ag = fs 2 R j x �s(exp v) 2 Ag.
This fact will be useful in the proof of Theorem 3.4.11, for the construction of the
approximating path (see discussion before the Theorem).

Lemma 3.4.6 (Horizontal extension) Consider v 2 V1 and a Lipschitz function

f : A � U �! M, with U as in the Lemma 3.4.3. Then there exists a function

fv : U �! M extending f , which is Lip(f)-Lipschitz on any segment fy exp(tv) j
tv 2 
1g � U for any y 2 exp(
2) � U .

Proof. Let � : 
2 � 
1 �! U be as in the Lemma 3.4.3. For any ! 2 
2 we will
extend the map �(!; �) to all of 
1. The set Z! = ftv 2 
1 j �(!; tv) 2 Ag is closed
in 
1, so Z

c
! \
1 is a countable disjoint union of open intervals. Thus, we can de�ne

fv(!; �) on any bounded interval of Zc
!\
1 joining with a geodesic the values of f(!; �)

on the boundary of the interval (Carnot groups are geodesically complete metric
spaces, [86] ) and putting constant values on the unbounded intervals, if they exist.
This extension of fv(!; �) is Lip(f)-Lipschitz on the segment �(!;
1), because we are
using the Carnot-Carath�eodory metric (length metric) and �(!; tv) = exp! exp(tv)
is a radial geodesic in (G; d), being v 2 V1. 2

Remark 3.4.7 Under the hypotheses of Lemma 3.4.6 we make the following two
observations: the extension fv is not necessarily continuous on U and if u = �av, for
some a 2 R, we have fu = fv. The map ln �� : 
2 � 
1 �! G, being di�erentiable,
is locally Lipschitz with respect to the Euclidean metric on 
2 � 
1 and the scalar
product on G. This implies a Lusin property for the map exp ��, that is, Lq-negligible
sets of 
2 � 
1 are mapped into Lq-negligible sets of G. But Lq is proportional to
HQ
d on G, so the Lusin property holds for �.

Using the extension lemma and the H-di�erentiability of recti�able curves proved in
[154] we get the existence of partial derivatives along horizontal directions.
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Proposition 3.4.8 (Horizontal derivatives) Assume that hypotheses of Lemma

3.4.6 hold. then, for HQ
d -a.e. x 2 U there exists

lim
t!0

�1=t
�
fv(x)�1fv(x exp(tv))

�
= @Hf

v(x) (exp(v)) 2 exp(W1):

In particular f has partial derivative along v for HQ
d -a.e. x 2 A.

Proof. Consider fv : U �!M and de�ne the Lipschitz curve

J!(t) = fv (�(!; tv)) for any tv 2 
1 :

The Proposition 4.2 of [154] gives the di�erentiability of J! for L1-a.e. t 2 R (in the
sense of de�nition 3.2.1) and moreover the derivative is in W1. So the derivative is
a horizontal direction of M. Now by a Fubini argument we get the partial di�eren-
tiability of f for Lq-a.e. (!; t) 2 
2 � 
1 and by Remark 3.4.7 the HQ

d -a.e. partial
di�erentiability follows. 2

Proposition 3.4.9 De�ne Tx;v = ft 2 R j x exp(tv) 2 Ag, with v 2 G. Then for

any � 2 R the map � : G �! R [ f+1g de�ned as �(x) = infs2Tx;v js � � j is lower
semicontinuous (where is assumed inf ; = +1).

Proof. Choose � > 0 and x 2 A such that �(x) > �. Fix �1 such that �(x) > �1 >
�, so x exp(tv) =2 A for any t 2 [� � �1; � + �1]. By the closedness of A together with
the continuity of the map x exp(tv) with respect to the variables (x; t), there exists
" > 0 such that y exp(tv) =2 A for any y 2 Bx;" and any t 2 [� � �1; � + �1]. Then for
any y 2 Bx;" it follows �(y) � �1 > �. 2

Corollary 3.4.10 The map � is �nite for HQ
d -a.e. y 2 A and y exp (�(y)v) 2 A.

Proof. This is a straightforward consequence of Proposition 3.4.4. 2

The next theorem constitutes an extension of the classical Rademacher's Theorem to
sub-Riemannian groups.

Theorem 3.4.11 (H-di�erentiability) Let f : A �!M be a Lipschitz map, where

A is a measurable subset of G. Then f is H-di�erentiable HQ
d -a.e.

Proof. Step 1, (Existence and uniform convergence of partial derivatives)

By Proposition 2.3.22 and a suitable rescaling we can �nd an open bounded set
M � R , with 0 2 M , such that E = fQ

s=1 exp(asvis) j (as) �Mg � B1, where
the products of the elements are understood in ordered sense and fvi j i = 1; : : :mg
is a basis of V1. By the �-compactness of G, HQ

d being a Radon measure on G, we
can assume that A is compact. Thus, considering U as in Lemma 3.4.3 we cover A
with a �nite open covering fyiUg and translating f on (yiU) \ A, the invariance of
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di�erentiability under translations allows to assume A � U . Applying Proposition
3.4.8 we have the partial derivatives @Hf

vi(y)(exp(vi)) 2 exp(W1) of the extension f
vi

forHQ
d -a.e. y 2 A � U , for i = 1; : : : ;m. Thus, for any " > 0, Egorov theorem and the

partial di�erentiability of f give a closed subset A1" � A such that HQ
d (AnA1") � "=3

and the limits

lim
t!0

�1=t
�
f(y)�1fvis (y exp(tvis))

�
= @Hf

vis (y) (exp(vis)) ;

with s 2 f1; : : : ; g; y 2 A1", are uniform. De�ning uis = exp(asvis) we have that

lim
t!0

�1=t(f(y)
�1fvis (y�tuis)) = @Hf

vis (y)(uis) = �as@Hf
vis (y) (exp(vis)) ;

for any s 2 f1; : : : ; g and y 2 A1". The uniformity of the limit holds even when
a 2M . In fact, the following equality holds

�
�
�1=t

�
f(y)�1f(y�tuis)

�
; @Hf

vis (y)(uis)
�

= as�
�
�1=(ast)

�
f(y)�1f(y�astvis)

�
; @Hf

vis (y)(exp(vis))
�
:

For any � 6= 0 and any s = 1; : : : ;  we de�ne the map

�(y; �; vis) = inf
t2Ty;vis

jt� �j ;

by Proposition 3.4.9 this map is a measurable function. Proposition 3.4.4 and
Lemma 2.1.15 imply that the quotient j� � �(y; �; vis)j=� tends to zero as � ! 0
for HQ

d -a.e. y 2 A. Then, by Egorov theorem we get a uniform convergence, for

s = 1; : : : ; , in another closed subset A2" � A such that HQ
d (A nA2") � "=3. De�ne

the measurable map
�t(y) = sup

u2By;tnfyg
(d(u;A)=d(u; y))

for t > 0 and use again Lemma 2.1.15 to obtain that �t(y)! 0 as t! 0+ for HQ
d -a.e.

y 2 A. Using Egorov theorem we are able to �nd a closed set A3" � A such that
HQ
d (A n A3") � "=3 and �t(y) goes to zero uniformly on A3" as t! 0. Now consider

A" = A1" \A2" \A3" and x 2 I(A"). Notice that A" does not depend on the vector
a = (as) 2 M , moreover HQ

d (A n A") � ". We want to prove the convergence of the
following limit

lim
x�tz2A; t!0

�1=t(f(x)
�1f(x�tz)) =

Y
s=1

@Hf
vis (x)(uis)

=

Y
s=1

�ais@Hf
vis (x)(exp(vis)) (3.17)
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uniformly with respect to a 2 M and z =
Q

s=1 exp(asvis) =
Q

s=1 uis . By Lem-
ma 2.1.15 with A = A" and y = x�tui1 , we can choose ut 2 A" such that

d(x�tui1 ; u
t) � d(x�tui1 ; x) �ct(x) ; (3.18)

where c = supa2M; l=1;:::; d (exp(a1vi1) � � � exp(alvil)). Representing ut = x�tu
t
i1
, the

left invariance and the homogeneity of the distance give

d
�
ui1 ; u

t
i1

�
=
d
�
x�tui1 ; x�tu

t
i1

�
t

� c �ct(x)! 0 as t! 0

Then the convergence of uti1 to ui1 is uniform with respect to a 2 M . Now by
induction suppose that vectors (wt

ij
) are de�ned for any j � s <  such that

x�tu
t
i1
� � �utij 2 A" and d(utij ; uij ) ! 0, uniformly with respect to a 2 M (for sim-

plicity of notation we have omitted the parenthesis after the symbol of dilation �t,
being understood that all subsequent terms are considered dilated). Again from
Lemma 2.1.15 with A = A" and y = x�tu

t
i1
� � �utisuis+1 , we �nd another family of

points in A", which can be represented as x�tu
t
i1
� � �utisutis+1 for a suitable utis+1 and

with the property

d(x�tu
t
i1 � � �utisuis+1 ; x�tuti1 � � �utisutis+1) � 3c t �3ct(x) ; (3.19)

for t small enough, depending on s. The estimate (3.19) is independent of a 2 M .
From inequality (3.19), by the left invariance and the homogeneity of the distance,
we deduce

d(uis+1 ; u
t
is+1) =

d(x�tu
t
i1
� � �utisuis+1 ; x�tuti1 � � �utisutis+1)

t
� 3c �3ct(x) �! 0

as t! 0+ and uniformly on a 2M . Finally we consider

�1=t
�
f(x)�1f(x�tui1 � � �ui )

�
=
� Y
s=1

Dt
sB

t
s

�
Gt

where z = ui1 � � �ui =
Q1

s=1 exp(asvis) and we have de�ned :

Dt
s = �1=t

�
f(x�tu

t
i1 � � �utis�1)�1fvis (x�tuti1 � � �utis�1uis)

�
;

Bt
s = �1=t

�
fvis (x�tu

t
i1 � � �utis�1uis)�1f(x�tuti1 � � �utis)

�
;

Gt = �1=t

�
f(x�tu

t
i1 � � �uti )�1f(x�tui1 � � �ui )

�
:

We observe that x�tu
t
i1
� � �utis�1 2 A" for s = 1; : : : ; , so Dt

s ! @Hf
vi(uis) as t ! 0

and uniformly when a 2 M . It remains to be seen that Bt
s, s = 1; : : : ;  , and Gt go
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to the unit element as t ! 0, uniformly as a 2 U . Denote yts = x�tu
t
i1
� � �utis�1 2 A"

and !is = lg uis ; in view of Corollary 3.4.10 we see that yts exp(�(y
t
s; t; wis)wis) 2 A,

then we can further decompose Bt
s = F t

s N
t
s, where

F t
s = �1=t

�
fvis (x�tu

t
i1 � � �utis�1uis)�1f

�
x(�tu

t
i1 � � �utis�1) exp(�(yts; t; wis)wis)

��
;

N t
s = �1=t

�
f
�
x(�tu

t
i1 � � �utis�1) exp(�(yts; t; wis)wis)

��1
f(x�tu

t
i1 � � �utis)

�
:

We have seen that �(y; �; vis)=� ! 1 as � ! 0, uniformly in y 2 A", then

�(yts; ast; vis)=ast! 1 ;

when a varies in M . Moreover

as �(y; t; wis) = �(y; ast; vis) ; s 2 f1; : : : ; g

so the following estimates hold

�(F t
s) � Lip(f)

d
�
�tuis ; exp(�(y

t
s; t; wis)wis)

�
t

= Lip(f) d
�
exp(wis); exp

�
(�(yts; t; wis)=t)wis

��
= Lip(f) as d

�
exp(vis); exp ((�(ysl; astl; vis)=(astl))vis)

�

� Lip(f)

�
sup
a2U

jaj
�
d
�
exp(vis); exp ((�(ysl; astl; vis)=(astl))vis)

�
; (3.20)

�(N t
s) � Lip(f)

d
�
�tu

t
is
; exp(�(yts; t; wis)wis)

�
t

= Lip(f) d
�
utis ; exp

�
(�(yts; t; wis)=t)wis

��
= Lip(f) d

�
utis ; exp

�
(�(yts; ast; vis)=(ast))wis

��
: (3.21)

The �rst of these two estimates follows by Lemma 3.4.6, whereas the second is due
to the fact that the points x(�tu

t
i1
� � �utis�1) exp(�(yts; t; wis)wis) and x�tuti1 � � �utis are

in A, where f is Lipschitz. Both last right terms of equations (3.20), (3.21) go to
zero uniformly as a 2M . The same reasoning yields

�(Gt) � Lip(f) d(uti1 � � �uti ; ui1 � � �ui ) �! 0 ; (3.22)

where we have used the uniform convergence of any utis for s = 1; : : : ; . Now we
remember that x 2 I(A") and " is arbitrary, so there exists a null set N � A such
that for any x 2 A nN the equation (3.17) holds uniformly with respect to a 2 U .
Step 2, (H-linearity and construction of di�erential)
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One �nds easily that partial derivatives are 1-homogeneous under dilations. We want
to prove the homomorphism property of partial derivatives, that is @Hf(y)(u!) =
@Hf(y)(u)@Hf(y)(!). To get this equality we use step 1, but we need at least of
an in�nitesimal sequence (tl) � R n f0g, which connects the three directions in the
following sense : for HQ

d -a.e. y 2 A we have y�tl(u!); y�tlu; y�tl! 2 A. In fact,
equation (3.17) is not trivial when we have directions z 2 E such that x�tjz 2 A and
tj ! 0. To obtain the sequence (tl) it is enough to consider the three arbitrary direc-
tions u!; u; ! 2 G and iterate Corollary 3.4.2 for any direction, extracting further
subsequences. In this situation, with u =

Q1
s=1 exp(bsvis) and ! =

Q2
s=1 exp(csvis),

applying twice step 1 it follows

lim
x�t(u!)2A; t!0

�1=t

�
f(x)�1f(x�t(u!))

�

=

1Y
s=1

�bs

�
@Hf(x) (exp(vis))

� 2Y
s=1

�cs

�
@Hf(x) (exp(vis))

�
;

it follows

@Hf(x)(u!) = lim
x�tz2A; t!0

�1=t

�
f(x)�1f(x�t(u!))

�
= @Hf(x)(u)@Hf(x)(!) (3.23)

and directly from equation (3.17) we infer

lim
x�tz2A; t!0

�1=t

�
f(x)�1f(x�t(u

�1))
�
= (@Hf(x)(u))

�1 : (3.24)

Now we want to de�ne the di�erential map dHf(y) globally on G for HQ
d -a.e. y 2 A.

Consider the countable dense subset D0 = fQ
s=1 exp(bsvis) j (bs) 2 Qg � G. De�ne

the countable set given by D = f!1 � � �!j j j 2 N; !i 2 D0; i = 1; : : : ; jg. For any
! 2 D, in view of Corollary 3.4.2 we get a sequence (depending on !) which allows
us to apply step 1, de�ning the partial derivative of f on direction ! for any y 2 AnN!,
where HQ

d (N!) = 0. In fact, for all ! 2 D we have at least an in�nitesimal sequence
of points (tj) such that y�tj! 2 A for all y 2 A nS!02DN!0 and the limit (3.17) with
x = y and z = ! is taken on the nonempty set fy�tj!g with y as accumulation point.
Thus, for HQ

d -a.e. y 2 A and ! 2 D, the partial derivative
Ly(!) = lim

t!0; A3x�t!
�1=t

�
f(y)�1f(y�t!)

�
is well de�ned. By density we extend Ly to all of G, setting Ly(z) = liml!1 Ly(!l)
whenever (!l) � D and !l ! z. In view of equations (3.23) and (3.24) the sequence
Ly(!l) is convergent and the extension is well de�ned, so choosing another sequence
(zl) � D which converges to z we obtain

�
�
Ly(!l)

�1Ly(zl)
�
= �

�
Ly(!

�1
l )Ly(zl)

�
= �

�
Ly(!

�1
l zl)

� � Lip(f) d(!�1l zl)! 0
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as l ! 1, because !lzl 2 D. The latter inequality also proves that Ly(!l) is a
Cauchy sequence whenever (!l) is convergent. We have de�ned Ly : G �! M for

HQ
d -a.e. y 2 A. By de�nition of Ly and equations (3.23), (3.24) the H-linearity of Ly

follows.
Step 3, (Di�erentiability)

In step 1 we have proved that for HQ
d -a.e. y 2 A it follows

�
�
�1=t

�
f(y)�1f(y�tz)

�
;

Y
s=1

�as@Hf
vis (y) (exp(vis))

�
�! 0 as t! 0 ; (3.25)

uniformly when z =
Q1

s=1 �asvis , a 2M , and y�tz 2 A.
We want to prove that the uniform limit (3.25) implies the di�erentiability. As-

sume by contradiction the existence of � > 0 and (zl) � G such that zl ! 0 and

�
�
f(y)�1f(yzl); Ly(zl)

� � �d(zl) ;

de�ne zl = �tlwl, with tl = d(zl), obtaining

�
�
�1=tl

�
f(y)�1f(y�tlwl)

�
; Ly(wl)

� � � : (3.26)

Represent wl =
Q

s=1 exp(b
l
svis), (d(wl) = 1), and consider rational vectors (bljs ) 2

Q \M such that !lj =
Q

s=1 exp(b
lj
s vis) 2 D0 and !lj ! !l as j !1. The explicit

de�nition of Ly implies Ly(!lj) =
Q

s=1 �bljs
(@Hf

vis (y)(exp(vis))). As we have seen
in Subsection 3.1, any H-linear map is continuous, then

Ly(!l) = lim
j!1

Ly(!lj)

= lim
j!1

Y
s=1

�
bljs

�
@Hf

vis (x)
�
exp(vis)

��
=

Y
s=1

�bls

�
@Hf

vis (x)(vis)
�
:

Replacing Ly(!l) in equation (3.26) we have

�

 
�1=tl

�
f(y)�1f(y�tlwl)

�
;

Y
s=1

�bls

�
@Hf

vis (x)
�
exp(vis)

��!
� � ;

so from uniform convergence of equation (3.25) it follows

�

 
�1=tl

�
f(y)�1f(y�tlwl)

�
;

Y
s=1

�bls

�
@Hf

vis (x)
�
exp(vis)

��!
�! 0 ;

which is a contradiction. This concludes the proof of di�erentiability. 2

Remark 3.4.12 By Proposition 3.2.4 the di�erential does not depend on the explicit
construction we have done in Theorem 3.4.11, where the basis (vi) and the extensions
fvi were involved. Our choice of (vi) can be interpreted as the choice of a �xed
coordinate system where the di�erential is represented.
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3.5 Recti�ability

By means of real valued C1
H maps we can de�ne an intrinsic de�nition of regular

hypersurface and of recti�ability. These notions are due to B. Franchi, R. Serapioni
and F. Serra Cassano, [71], [72], [73].

In this section G and M will denote two sub-Riemannian groups and 
 will be
assumed to be an open subset of G.

De�nition 3.5.1 (G-regular hypersurface) We say that � � 
 is a G-regular
hypersurface if there exists a map f 2 C1

H(
) such that � = f�1(0) and

dHf(p) : G �! R

is a nonvanishing H-linear map for any p 2 �.

De�nition 3.5.2 (G-recti�ability) We say that a subset S � 
 is G-recti�able, if
there exists a sequence of G-regular hypersurfaces f�jg such that

HQ�1
�

�
S n

[
j2N

�j

�
= 0 ;

where � is the CC-distance of the group.

Notice that the previous de�nition in the terminology introduced by Federer in 3.2.14
of [55] would have been translated as \countably (Q-1) G-recti�ability". But for the
aims of the thesis, we do not need to make any distinction between G-recti�ability
and the countably (Q-1) G-recti�ability.

Remark 3.5.3 It is important to emphasize the lack of an equivalent notion of G-
recti�ability by means of Lipschitz parametrizations de�ned on subsets of Euclidean
spaces, as it is done classically, see De�nitions in 3.2.14 of [55]. For instance, the
Heisenberg group H3 is purely k-unrecti�able whenever k � 2 (see [7] and the char-
acterization of pure unrecti�ability given in Section 4.4 of the present thesis).

However, in [156] a notion of recti�ability \modeled" on the group is proposed, as it
is stated in the next de�nition.

De�nition 3.5.4 ((N;G)-recti�ability) Let P be a sub-Riemannian group and let
N � P be a subgroup. A subset S � 
 is (N;G)-recti�able if there exist a Lipschitz
map f : A �! G, with A � N and such that S = f(A).

The previous de�nition clearly generalizes the classical one, where N is an Euclidean
space, but several questions arise. In fact, the subgroup N is graded, but it may not
be strati�ed. It is not presently clear whether a di�erentiability theorem of Lipschitz
maps can be proved when the domain is only a graded group. This fact is of crucial
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importance, because if N is strati�ed the a.e. H-di�erentiability of Lipschitz maps,
that we have proved in Theorem 3.4.11, can be used to get information on the (N;G)-
recti�able set, obtaining for instance the existence HQ

d -a.e. of tangent spaces, where
Q is the Hausdor� dimension of N and one could go on as in [7], [110]. Moreover
the area formula (4.20) gives a way to compute the intrinsic measure of the set (see
Example 4.3.7). The easiest example where subgroups are not strati�ed occurs for
\vertical" subgroups H3, i.e. all subgroups of topological dimension 2. It is not
di�cult to see that these groups are not strati�ed and not connected by recti�able
curves with respect to the CC-distance of H3. However, this situation has its own
interest due to the fact that H3 has a rich family of H3-regular hypersurfaces and
it is a hard question to establish if they are (N;H3)-recti�able for some suitable N .
It is natural to expect that N is a vertical subgroup due to the fact that it has the
same topological and Hausdor� dimensions of H3-regular hypersurfaces. Notice also
that vertical subgroups form a particular class of H3-regular hypersurfaces without
characteristic points.

Next, we present novel de�nitions of regular surfaces and recti�able surfaces, that
somehow extend De�nition 3.5.1 and De�nition 3.5.2 to higher codimension.

De�nition 3.5.5 ((G;M)-regular surface) A subset � � 
 is a (G;M)-regular
surface if there exist f 2 C1

H(
;M) such that f�1(e) = � and

dHf(p) : G �!M

is a surjective H-linear map for any p 2 �.

It is apparent that the notion of (G;M)-regularity in higher codimension allows us a
certain amount of freedom in the choice of M, but not all codomains are \good" to
be considered. For instance, the family of (H2n+1;H2m+1)-regular surfaces is empty
whenever n > m. This follows by the fact that there are no surjective H-linear maps
between H2n+1 onto H2m+1, see Proposition 6.3.3.

As soon as we have a surjective H-linear map L : G �! M a canonical example
of (G;M)-regular surface can be given by choosing the subgroup N = L�1(0) � G

which is clearly a (G;M)-regular surface. Furthermore, in view of Proposition 6.1.5
the Hausdor� dimension of N is Q�P , where Q and P are the Hausdor� dimensions
of G and M, respectively.

These observations suggest that (G;M)-regular surfaces must possess topological
dimension q � p and Hausdor� dimension Q� P , where q and p are the topological
dimensions of G and M, respectively. As a result, in the Heisenberg group H3 there
is no hope to recover smooth horizontal curves (which are recti�able) as (H3;M)-
regular curves, for some M. In fact, the topological dimension of M has to be 2, then
M = R2 and the Hausdor� dimension of the curve is forced to be Q� P = 2, but all
horizontal curves have Hausdor� dimension 1 with respect to the CC-distance. From
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the other side, recti�able curves can be seen as (R;H3)-recti�able objects, according
to De�nition 3.5.4, where the Lipschitz parametrization is given by the curve itself.
So, somehow both De�nition 3.5.4 and the following De�nition 3.5.6 are able to
supply a suitable notion of recti�able surface in higher codimension.

De�nition 3.5.6 ((G;M)-recti�ability) We say that S � 
 is (G;M)-recti�able,
if there exists a sequence of (G;M)-regular surfaces f�jg such that

HQ�P
�

�
S n

[
j2N

�j

�
= 0 ;

where � is the CC-distance of the group.

It would be very interesting to investigate to what extent the previously mentioned
de�nitions are able to cover all \recti�able objects" of the group.

3.6 A counterexample

In this section we present a counterexample to Lipschitz di�erentiability (Theo-
rem 3.4.11), when slightly general distances on the target are considered. We notice
that di�erentiability between sub-Riemannian groups implies metric di�erentiability
(De�nition 3.6.2), when one consider the target group as a metric space. So we will
build the counterexample proving that metric di�erentiability fails for a suitable non
homogeneous left invariant distance on the target.
We begin with the following de�nitions.

De�nition 3.6.1 Let G be a graded group. We say that a map � : G �! [0;+1[
is a homogeneous seminorm if for each x; y 2 G and r > 0 we have

1. �(�rx) = r �(x) ;

2. �(xy) � �(x) + �(y) :

De�nition 3.6.2 Let (Y; �) and (G;d) be a metric space and a graded group, re-
spectively. We say that a map f : A �! Y , where A is an open subset of G, is
metrically di�erentiable at x 2 A, if there exists a homogeneous seminorm �x such
that

� (f(x�tv); f(x))

t
�! �x(v) as t! 0+ ;

uniformly in v which varies in a compact neighbourhood of the unit element.

Remark 3.6.3 We point out that in [155] it is shown that bilipschitz maps are a.e.
metric di�erentiable on strati�ed groups if one allows the direction v to vary only
on the elements of V1, namely the horizontal directions. The latter result directly
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applies also to Lipschitz maps. In fact, if f : G �! Y is a metric valued Lipschitz
map, we consider the bilipschitz map F : G �! G � Y , with F (x) = (x; f(x)).
Hence the metric di�erentiability of F along horizontal directions, with the product
distance on G � Y , implies the same type of di�erentiability for f . From this fact,
it is clear that we will consider a nonhorizontal direction in order to show that the
metric di�erentiability does not hold in general.

We consider the 3-dimensional Heisenberg group H3, which can be linearly identi�ed
with R3. Elements �; � 2 H3 are represented as � = (z; t), � = (w; �), where z =
(z1; z2), w = (w1; w2) belong to R

2. The nonabelian operation on H3 reads as follows

(z; t)(w; �) = (z + w; t+ � + 2(z1w2 � z2w1)) :

In this case the nonhorizontal directions are of the type (0; 0; s), with s 6= 0. We
consider G : H3 �! R, de�ned as G(z; t) = jzj _ pjtj, where the symbol _ de-
notes the \maximum" operation. It is known that d(�; �) = G(��1�), for �; � 2 H3,
yields a left invariant distance on the Heisenberg group, see for instance [71]. The
dilations �r : H

3 �! H3 are de�ned as �r ((z; t)) = (rz; r2t). It is clear that these
dilations scale homogeneously with the distance d, so (H3; d) is a strati�ed group
with a homogeneous distance d.

Our aim is to build a left invariant distance � on H3 such that the identity map
I : (H3; d) �! (H3; �) is a 1-Lipschitz function and the metric di�erentiability fails.
We have seen that a homogeneous distance in the Heisenberg group can be de�ned
as d(�; �) = G(��1�), where G(z; t) = jzj _pjtj. We obtain our counterexample
replacing the square root function in the de�nition of G with a concave map g :
[0;+1[�! [0;+1[ such that the function S : H3 �! R, S(z; t) = jzj_g(jtj) satis�es
the following three claims:

1. the function S : H3 �! R yields a left invariant metric on H3 which is de�ned
as �(�; �) = S(��1�), �; � 2 H3.

2. the map I : (H3;d) �! (H3; �) is 1-Lipschitz,

3. if we consider the nonhorizontal direction v = (0; 0; 1) 2 H3, then for any � 2 H3

there does not exist the limit of

�(I(��tv); I(�))

t
=
�(�tv; 0)

t
as t! 0+ ;

in fact, we reach the maximal possible oscillation of the quotient

lim sup
t!0+

�(I(��tv); I(�))

t
= 1 ; lim inf

t!0+

�(I(��tv); I(�))

t
= 0 :
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Claim 3 says in particular that the 1-Lipschitz map I : (H3; d) �! (H3; �) is not
metrically di�erentiable at any point of H3. The following two theorems will prove
the existence of a map g : [0;+1[�! [0;+1[ such that our claims are satis�ed and
in this way establish the counterexample.

Theorem 3.6.4 Let � : [0;+1[�! [0;+1[ be a convex, strictly increasing function,
which is continuous at the origin and satis�es �(0) = 0. Then, de�ning h(t) =
�(t) + t2, the concave map g = h�1 yields a function S(z; t) = jzj _ g(jtj) which

satis�es claims 1 and 2.

Proof. The convexity and the continuity at the origin of � imply �(t)+�(s) � �(t+s)
for any t; s � 0, hence

h(t+ s) � h(t) + h(s) + 2ts for t; s � 0 : (3.27)

The function h(t) = �(t) + t2 is strictly monotone, thus g = h�1 is well de�ned and
S(z; t) = jzj _ g(jtj) also. The triangle inequality for the function �(�; �) = S(��1�)
is equivalent to S(��) � S(�) + S(�), for every �; � 2 H3. We denote � = (z; t),
� = (w; �), where z = (z1; z2) and w = (w1; w2), then

S(��) = jz + wj _ g(jt+ � + 2(z1w2 � z2w1)j) :

If jz + wj � g(jt+ � + 2(z1w2 � z2w1)j), then we clearly have

S(��) = jz + wj � jzj+ jwj � S(�) + S(�) :

So, our inequality holds if we prove that

g(jt+ � + 2(z1w2 � z2w1)j) � S(�) + S(�) : (3.28)

We have

jt+ � + 2(z1w2 � z2w1)j � jtj+ j� j+ 2j(z1; z2) � (w2;�w1)j � jtj+ j� j+ 2jzjjwj

and jtj = h(g(jtj)) � h(S(�)), j� j = h(g(j� j)) � h(S(�)), hence

jt+ � + 2(z1w2 � z2w1)j � h(S(�)) + h(S(�)) + 2S(�)S(�) :

The latter inequality and property (3.27) give jt+�+2(z1w2�z2w1)j � h(S(�)+S(�)),
which corresponds to g(jt+ � + 2(z1w2 � z2w1)j) � S(�) + S(�). It remains to prove
I : (H3; d) �! (H3; �) is 1-Lipschitz. This fact is equivalent to show that S � G
which is true if g(jtj) � p

t, that is jtj � h(
pjtj) = �(

p
t) + jtj. So the proof is

complete. 2

Now, among all the maps � which enjoy the properties assumed in the preceding
lemma, we want to �nd a particular one which produces the oscillation required in



3.6. A COUNTEREXAMPLE 93

Claim 3. We notice that if v = (0; 0; 1) 2 H3, then �(I(��tv); I(�)) = �(�tv; 0) = g(t2),
so Claim 3 is equivalent to require the following

lim sup
t!0+

g(t2)

t
= 1 ; lim inf

t!0+

g(t2)

t
= 0 ; (3.29)

where g = h�1 and h(t) = �(t) + t2.

Theorem 3.6.5 There exists � : [0;+1[�! [0;+1[, which is continuous, strictly

increasing and convex, with �(0) = 0, such that, de�ning g = h�1, with h(t) =
�(t) + t2, t � 0, the upper and lower limits as given in (3.29) hold.

Proof. It is easy to see that the requirement (3.29) for g is equivalent to the
condition

lim sup
t!0+

�(t)

t2
= +1 and lim inf

t!0+

�(t)

t2
= 0 ; (3.30)

on the corresponding function �. To �nd such a �, we use the following simple obser-
vation. If we are given an a�ne, increasing function � that vanishes at some positive
number t0 very close to zero, then the quotient �(t)=t2 oscillates a lot. Indeed, if t
declines from 1 towards t0 then the quotient �rst gets very large and then approaches
zero. Stopping shortly before t0, we can connect � to another a�ne function with
smaller but still positive slope that vanishes much closer to zero. Thus, the quotient
considered oscillates along the new function even more and the combined function is
convex.

To make this argument precise, we �x two positive sequences ("l) �]0; 1[, (ml) �
]0;+1[, with "l ! 0 and ml ! +1 as l ! 1. We consider an arbitrary number
b0 > 0 and choose t0; a0 > 0 such that t0"0 < b0, a0 < "0t

2
0. Then, we de�ne �0(t) =

a0 + b0(t � t0), observing that �0(t0)=t
2
0 < "0. We consider �1 = a0=t0 < t0"0 < b0

and �x �1 2]0; t0[ such that �1=�1 > m1. We observe that

lim
b!�+

1

b

�1
+
(�1 � b)t0

�21
=
�1
�1

> m1 ; lim
b!�+

1

t0(b� �1)

b2
= 0

hence we can choose b1 2]�1; b0[ such that

b1
�1

+
(�1 � b1)t0

�21
> m1 and

t0(b1 � �1)

b21
<

1

2
: (3.31)

Now, we de�ne �1(t) = t0(�1 � b1) + b1t, so by the �rst inequality (3.31) we have
�1(�1)=�

2
1 > m1 and �1(t0) = �1t0 = a0 = �0(t0). We note that �1(t) = 0 if and only

if t = t0(b1 � �1)=b1 > 0. By the second inequality of (4) we get t < b1=2 and since
�1(�1) > 0 we infer that t < �1. Thus, we can choose t1 2]t;min(�1; b1=2)[ such that
�1(t1) < "1t

2
1 and t1"1 < b1. De�ning a1 = �1(t1), we see that �1(t) = a1 + b1(t� t1)
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and we have shown that for every b0; a0; t0;m1 > 0, with a0=t0 < b0, for each "1 > 0
and m1 2 R there exist t1 < �1 in ]0; t0[ and a1 > 0, b1 2]0; b0[ such that�

�1(t0) = �0(t0) ; �1(�1)=�
2
1 > m1 ;

�1(t1)=t
2
1 < "1 ; �1(t1)=t1 < b1 < b0 ; t1 < b1=2 :

This procedure can be iterated by induction, obtaining for each j � 1 that there
exists �j ; tj > 0, �j 2]tj ; tj�1[, and aj ; bj > 0 such that the map �j(t) = aj + bj(t� tj)
satis�es �

�j(tj�1) = �j�1(tj�1) bj < bj�1
�j(�j)=�

2
j > mj �j(tj)=t

2
j < "j ; tj < 2�jbj :

(3.32)

We de�ne

�(t) = �0(t)1[t0;+1[(t) +
1X
j=1

�j(t)1[tj ;tj�1[(t) ;

observing that tj < bj=2
j < b0=2

j ! 0 as j ! 1, so by conditions (3.32) � is a
strictly increasing convex map de�ned on ]0;+1[. The convexity follows from the
continuity and from the fact that the sequence of slopes (bj) decreases as the intervals
get close to the origin. By the construction of � we have that

lim inf
t!0+

�(t)

t2
� lim sup

j!1

�(tj)

t2j
� lim

j!1
"j = 0 ; (3.33)

lim sup
t!0+

�(t)

t2
� lim inf

j!1

�(�j)

�2j
� lim

j!1
mj = +1 : (3.34)

The sequence (�(tj)) converges to zero as j ! 1 and � is monotone, so �(t) ! 0
as t ! 0+ and � is continuous at the origin. Thus, we have proved the existence of
a strictly increasing convex map � : [0;+1[�! [0;+1[ which is continuous at the
origin with �(0) = 0 and which satis�es (3.33) and (3.34). These two conditions are
of course just (3.30), so our proof is �nished. 2



Chapter 4

Area formulae

In this chapter we present the area formula for Lipschitz maps both in a general
metric context and in the sub-Riemannian one. As an application, we characterize a
wide class of sub-Riemannian groups that are purely unrecti�able and we prove that
nonisomorphic sub-Riemannian groups cannot have bilipschitz equivalent pieces of
positive measure.

We mention some related results in the literature. If f : X �! Y is a Lipschitz
map, where X is a subset of Rn, it was proved in [7], [110], [115] that the map is a.e.
metrically di�erentiable (according to De�nition 3.6.2). In papers [7], [110], it was
also proved that the area formula holds, with a suitable notion of jacobian. When X
and Y are sub-Riemannian groups the area formula has been proved in [124], [156],
[184]. A �rst example of purely unrecti�able sub-Riemannian group was given in [7].
About the nonexistence of bilipschitz parametrizations for di�erent strati�ed groups
we mention results of [154] and [168].

In Section 4.1 we present the general metric setting to organize the area formula
for Lipschitz maps. One of the main reasons of this abstract presentation is to em-
phasize that the core of area formula is the notion of jacobian. We adopt a notion of
\metric jacobian" (De�nition 4.1.4) that was already considered in [154], when X and
Y are sub-Riemannian groups. With this notion we obtain a general metric formula-
tion of the area formula (Theorem 4.1.7). This result could appear a bit tautological,
because it consists in the integration of the density of f ]Hk

� (De�nition 4.1.2) with

respect toHk
d, where the density is by de�nition the jacobian of f . On the other hand,

it is curious to notice that the minimal conditions on f , X and Hk
d in Section 4.1

are su�cient to formulate the area formula in a purely metric context. Furthermore,
this approach also provides a novel and uni�ed method to prove the area formula
in several contexts, simply by proving that the jacobian coincides with the \metric"
one. Notice that we do not assume any di�erentiability-type theorem for f , but we
suppose that there exists a countable covering fEig of the set of points where the
jacobian is positive, such that the restriction fjEi is injective. This last condition in

95
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general can be deduced from some di�erentiability-type theorem, see Remark 4.3.5.

In Section 4.2 we study another de�nition of jacobian for H-linear maps of sub-
Riemannian groups. This notion is well adapted to the geometry of the groups, taking
into account the algebraic structure and the metric structure (De�nition 4.2.1). We
can view this notion as a natural extension of the one introduced in [7]. Basically
this de�nition requires that the area formula holds in principle for any H-linear map.
We also show that the H-jacobian is proportional to the classical jacobian (4.13).

In Section 4.3 we prove the area formula for Lipschitz maps between sub-Rieman-
nian groups. We will present two proofs of this formula. The �rst one, based on the
general area formula in metric spaces and the second one, based on a more classical
approach. In both proofs we will need of Proposition 4.3.1 and Proposition 4.3.3
that represent the core of the sub-Riemannian area formula. Concerning the more
classical approach, we utilize the notion of jacobian given in Section 4.2, that provides
also a way to either compute or represent the measure of the image of an injective
Lipschitz map (see Example 4.3.7). Notice that if the Lipschitz map takes values in
the same sub-Riemannian group, the area formula reduces to a change of variable,
that it was �rst proved in [177]. Concerning this classical approach, we mention that
our de�nition of jacobian (De�nition 4.2.1) allows us to avoid the decomposition of
the di�erential as a product of a symmetric linear map and an isometry, and to follow
a bit more intrinsic computation. A delicate part in the proof of the area formula is
to show that the image of points with noninjective di�erential is negligible. To do
this, we generalize the method used in [6] for the Euclidean case. We get an estimate
on the number of balls we need to cover f(Bx;r), exploiting the fact that the image
of dHf(x) at a singular point x is a subgroup of Hausdor� dimension smaller than
Q, where Q is the Hausdor� dimension of G.

In Section 4.4 we provide a general criterion to characterize nonabelian sub-
Riemannian groups which are purely unrecti�able (Theorem 4.4.4), according to the
de�nition given in 3.2.14 of [55]. We mention that �rst examples of purely unrec-
ti�able sub-Riemannian groups were given in [7], considering the three dimensional
Heisenberg group. Our approach relies on the area estimate (4.29) applied to Lip-
schitz maps f : A �! M, where A � Rk. Observing that H-linear maps are in
particular group homomorphisms, they may be injective maps only if there exist
abelian subgroups of M with topological dimension k. If this is not allowed by the
nonabelian structure, then any H-linear map has nontrivial kernel and we always
have JQ(dHf(x)) = 0 in formula (4.29), whence the purely k-unrecti�ability follows.
With an analogous procedure, in Theorem 4.4.6 we show that two nonisomorphic
sub-Riemannian groups cannot be bilipschitz equivalent, even if we consider two
arbitrary measurable subsets with positive measure. This is basically a \rigidity the-
orem", namely, bilipschitz classes of sub-Riemannian groups contain only one group
up to isomorphisms.
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4.1 Area formula in metric spaces

In this section we present the general metric setting to organize the metric area
formula. Let (X; d) and (Y; �) be complete metric spaces and let f : X �! Y be a
Lipschitz map. Throughout the section we will also assume that (X; d) is separable.
Our basic assumptions are the following:

(A1) the measure Hk
d is �nite on bounded sets,

(A2) for Hk
d-a.e. x 2 X we have lower density estimate

lim inf
r!0+

Hk
d(Dx;r)

rk
> 0 :

Theorem 2.10.18(3) of [55] yields

lim sup
r!0+

Hk
d(Dx;r)

rk
� !k ; (4.1)

for Hk
d-a.e. x 2 X. Then estimate (4.1) and assumption (A2) imply that the measure

Hk
d is a.e. asymptotically doubling, i.e.

lim
r!0+

Hk
d(Dx;2r)

Hk
d(Dx;r)

< +1 (4.2)

for Hk
d-a.e. x 2 X. This last property of Hk

d is crucial in order to di�erentiate the
pull-back measure (De�nition 4.1.2) with respect to Hk

d.

Remark 4.1.1 Notice that if (X; d) is a k-recti�able metric space, then for Hk
d-a.e.

x 2 X we have

lim
r!0+

Hk
d(Dx;r)

rk
= !k ;

(see [110]), then condition (A2) holds. When (X; d) is a sub-Riemannian group of
homogeneous dimension k = Q, we simply have HQ

d (Dx;r) = rQHQ
d (D1) and (A2)

trivially holds.

Our �rst observation is that a Lipschitz map f : X �! Y induces a new measure on
X which is absolutely continuous with respect to Hk

d.

De�nition 4.1.2 Let f : X �! Y be a Lipschitz map. We de�ne the pull-back

measure on X as follows

f ]Hk
� (A) = Hk

� (f(A))

for any A � X.
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It is a standard fact that

f ]Hk
� (A) � Lip(f)k Hk

d(A) ; (4.3)

then f ]Hk
� is absolutely continuous with respect to Hk

d. The metric notion of jaco-
bian in De�nition 4.1.4 is motivated by Theorem 2.9.5 and Theorem 2.9.7 of [55],
which concern di�erentation of measures and integration of densities, respectively.
Besides the asymptotically doubling property (4.2), these theorems also require that
the measure f ]Hk

� is both �nite on bounded sets and Borel regular. The �rst con-
dition follows from (A1) and (4.3). The second condition follows by the so-called
\Carath�eodory's criterion" (see 2.3.2(9) of [55]): a measure � on a metric space X
such that it is additive on open sets with positive distance is a Borel measure.

By virtue of the result 2.2.13 in [55] we know that every Borel set A is mapped into
an Hk

�-measurable set f(A). In the case when f is injective the additivity property

holds, hence f ]Hk
� is a Borel measure. Finally, the Borel regularity of Hk

d and the

estimate (4.3) imply the Borel regularity of f ]Hk
�. The previous arguments can be

summarized in the following proposition.

Proposition 4.1.3 Let f : X �! Y be an injective Lipschitz map. Under the

assumption (A1) the measure f ]Hk
� is a Borel regular measure on X and it is both

absolutely continuous with respect to Hk
d and �nite on bounded sets.

De�nition 4.1.4 (Metric jacobian) Let f : X �! Y be a Lipschitz map and let
x 2 X. The metric jacobian of f at x is de�ned as follows

Jf (x) = lim inf
r!0+

f ]Hk
�(Dx;r)

Hk
d(Dx;r)

: (4.4)

Remark 4.1.5 Notice that in view of (4.3) we have Jf (x) < +1 for any x 2 X.

Theorem 4.1.6 Let f : X �! Y be an injective Lipschitz map and assume (A1)

and (A2). Then for any Hk
d-measurable subset A � X the following formula holdsZ
A
Jf (x) dHk

d(x) = Hk
� (f(A)) : (4.5)

Proof. We have seen in the above discussion that assumption (A2) yields the
estimate (4.2) for Hk

d-a.e. x 2 X. Due to Theorem 2.1.22, the family of closed balls
in X is an Hk

d-Vitali relation. Moreover, by Proposition 4.1.3 the measure f ]Hk
� is

Borel regular and absolutely continuous with respect to Hk
d. Hence we are in the

position to apply Theorem 2.9.5 and Theorem 2.9.7 of [55], obtaining

lim sup
r!0+

f ]Hk
�(Dx;r)

Hk
d(Dx;r)

= lim inf
r!0+

f ]Hk
�(Dx;r)

Hk
d(Dx;r)

= Jf (x)

for Hk
d-a.e. x 2 X and the integration formula (4.5). 2
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Theorem 4.1.7 (Area formula) Let f : A �! Y be a Lipschitz map, where A is

a closed subset of X and assume (A1) and (A2). If there exists a disjoint family of

Hk
d-measurable subsets fEigi2N which covers A, such that

Hk
d

 
A n

[
i2N

Ei

!
= 0 ;

fjEi is injective for every i � 1 and for Hk
d-a.e. x 2 E0 we have Jf (x) = 0, then the

following formula holdsZ
A
Jf (x) dHk

d(x) =

Z
Y
N(f;A; y) dHk

�(y) ; (4.6)

where the jacobian Jf is referred to the complete metric space A.

Proof. For every closed subset F � X we will use the notation DF
x;r = F \ Dx;r

to indicate the closed ball relative to the complete metric space F . Let us �x " > 0
and consider a sequence of closed sets Ci � Ei such that Hk

d(Ei n Ci) � "2�i for any
i 2 N. In order to apply Theorem 4.1.6 to the maps fi = fjCi : Ci �! Y , we have to
make sure that (A2) holds replacing X with the complete metric space Ci. In view
of our assumptions the estimate (4.2) holds Hk

d-a.e. in X. Thus, by Theorem 2.1.22
closed balls of X form an Hk

d-Vitali relation, hence Theorem 2.9.8 of [55] applied to
1Ci yields

Hk
d(D

Ci
x;r)

Hk
d(Dx;r)

�! 1 as r ! 0+ ; (4.7)

for Hk
d-a.e. x 2 C, that implies

lim inf
r!0+

Hk
d(D

Ci
x;r)

rk
= lim inf

r!0+

Hk
d(D

Ci
x;r)

Hk
d(Dx;r)

Hk
d(Dx;r)

rk
= lim inf

r!0+

Hk
d(Dx;r)

rk
> 0 ;

for Hk
d-a.e. x 2 Ci. Next, we check that Jf (x) = Jfi(x) for Hk

d-a.e. x 2 Ci. By (4.7)
and (4.3) we have

Jfi(x) = lim inf
r!0+

f ]iHk
�(D

Ci
x;r)

Hk
d(D

Ci
x;r)

� lim inf
r!0+

f ]Hk
�(D

A
x;r)

Hk
d(D

Ci
x;r)

= lim inf
r!0+

f ]Hk
�(D

A
x;r)

Hk
d(D

A
x;r)

= Jf (x) � lim inf
r!0+

 
f ]Hk

�(D
A
x;r nDCi

x;r)

Hk
d(D

Ci
x;r)

+
f ]Hk

�(D
Ci
x;r)

Hk
d(D

Ci
x;r)

!

� lim inf
r!0+

 
Lip(f)k

Hk
d(D

A
x;r nDCi

x;r)

Hk
d(D

Ci
x;r)

+
f ]iHk

�(D
Ci
x;r)

Hk
d(D

Ci
x;r)

!
= Jfi(x);
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for Hk
d-a.e. x 2 Ci. Then Theorem 4.1.6 applied to fi yieldsZ

Ci

Jf (x) dHk
d(x) =

Z
Ci

Jfi(x) dHk
d(x) =

Z
Y
1f(Ci)(y) dHk

�(y) ; (4.8)

for any i 2 N. Adding formula (4.8) over all i � 1 we obtainZ
F
Jf (x) dHk

d(x) =

Z
Y
N(f; F; y) dHk

�(y) (4.9)

where F =
S
i�1Ci. From the hypothesis A =

S
i2NEi we conclude that

Hk
d

�
(A n E0) n F

�
� 2" :

From estimate 2.10.25 of [55] we conclude thatZ
Y
N(f; Z; y) dHk

�(y) = 0

whenever Hk
d(Z) = 0, hence by virtue of Beppo Levi Convergence Theorem for non-

negative increasing sequences of maps, taking an increasing sequence of Borel sets
(Fj) constructed as above such that (4.9) holds and which are associated to an in-
�nitesimal sequence ("j), we obtainZ

A
Jf (x) dHk

d(x) =

Z
AnE0

Jf (x) dHk
d(x) =

Z
Y
N(f;A n E0; y) dHk

�(y)

If we prove that Hk
�(f(E0)) = 0, then

Z
Y
N(f;A n E0; y) dHk

�(y) =

Z
Y
N(f;A; y) dHk

�(y) ;

and the set additive property of the multiplicity function N(f; �; y) leads us to (4.6).
We use again the fact that the family of closed balls in X is an Hk

d-Vitali relation.
Thus, by Lemma 2.1.24 applied to � = Hk

d and � = f ]Hk
� we obtain that

f ]Hk
�(F ) � �Hk

d(F )

whenever F is an Hk
d-measurable subset of fx 2 A j Jf (x) � �g. By de�nition of

metric jacobian and the fact that Jf (x) = 0 for any x 2 E0 we can choose � arbitrarily
small and F = E0\Dp;n for some �xed p 2 X and n 2 N. Letting �! 0+ we obtain
Hk
� (f(E0 \Dp;n)) = 0, where n 2 N is arbitrary. Then, considering n ! 1 we

conclude that Hk
� (f(E0)) = 0 and the thesis follows. 2
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Remark 4.1.8 Note that under the assumptions (A1) and (A2) the metric jacobian
is uniquely de�ned up to sets of Hk

d-negligible measure. In fact, if formula (4.6) holds
with another notion of jacobian ~Jf , then we haveZ

DA
p;r

Jf (x) dHk
d(x) =

Z
DA
p;r

~Jf (x) dHk
d(x)

for any p 2 A and r > 0, where DA
p;r = Dp;r \ A. By Theorem 2.1.22 the family of

closed balls forms a Hk
d-Vitali relation, hence Theorem 2.9.8 of [55] referred to implies

that for Hk
d-a.e. p 2 A we have

Jf (p) = lim
r!0+

1

Hk
d(Dp;r)

Z
DA
p;r

Jf (x) dHk
d(x)

= lim
r!0+

1

Hk
d(Dp;r)

Z
DA
p;r

~Jf (x)dHk
d(x) =

~Jf (p) :

We also point out that the assumption on closedness of the domain A in Theorem 4.1.7
is not restrictive. In fact, a Lipschitz map de�ned on an arbitrary subset and with
values in a complete metric space can always be extended to the closure of its domain.

Next, we present an example where the abstract conditions of Theorem 4.1.7 are
satis�ed. To do this, we will need of both results in [7] and [110]. We will utilize the
following notion of jacobian, taken from [7].

De�nition 4.1.9 (Normed jacobian) Let � be a seminorm on Rk. The normed

jacobian of � is de�ned as follows

Jk(�) =
!k

Hk
j�j (fv 2 Rk j �(v) � 1g) ;

where j � j denotes the Euclidean norm of Rk.

Proposition 4.1.10 Let f : A �! Y be a Lipschitz map, where A is a closed subset

of Rk and Y is a metric space. Then hypotheses of Theorem 4.1.7 are satis�ed.

Proof. It is known that f is a.e. metrically di�erentiable on A, see [7], [110], [115].
As a consequence, by Lemma 4 of [110] the set where f is metrically di�erentiable and
the metric di�erential is a norm admits a partition fEjgj�1, where fjEj is injective
for any j � 1. We de�ne E0 = A nSj�1Ej . It remains to prove that Jf (x) = 0 for

Hk
d-a.e. x 2 E0. The validity of area formula with respect to the notion of normed

jacobian of De�nition 4.1.9 (see Theorem 5.1 of [7]) and Remark 4.1.8 imply that the
metric jacobian coincides with the normed jacobian. By the fact that mdf(x) is not
a norm for Hk

d-a.e. x 2 E0 we conclude that Hk
j�j

�fv 2 Rk j mdf(x; v) � 1g� =1 for

Hk
d-a.e. x 2 E0. Thus, De�nition 4.1.9 leads us to the conclusion. 2
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Remark 4.1.11 It is curious that in Proposition 4.1.10 we have proved assumptions
of Theorem 4.1.7 using the validity of area formula of [7]. It would be interesting to
prove Proposition 4.1.10 using directly the notion of metric jacobian.

4.2 Jacobians

This section is devoted to the notion of H-jacobian for H-linear maps. This notion is
essentially inspired by the work [7]. We will show an explicit formula that connects
the H-jacobian and the classical one (4.13). In the sequel, we suppose that G and
M are sub-Riemannian groups and a system of graded coordinates (F;W ) will be
assumed on M.

De�nition 4.2.1 (H-jacobian) Let L 2 HL(G;M). The horizontal jacobian JQ(L)
of L is de�ned as follows

JQ(L) =
HQ
� (L(B1))

HQ
d (B1)

:

We will also say in short H-jacobian.

A covering argument together with the homogeneity and the homomorphism property
of L shows that the above de�nition is independent of the set we consider, hence we
can replace the set B1 with any measurable set with positive �nite measure.

In the next proposition we show that the H-jacobian is zero for noninjective H-
linear maps and we provide a formula for the Hausdor� dimension of its image.

Proposition 4.2.2 Let � be a homogeneous distance of M and let L 2 HL(G;M).
We denote by q0 the topological dimension of S = L(G). Then, the Hausdor� dimen-

sion of S in the metric � is Q0 =
P�

j=1 j dim (L(Vj)) and

HQ0
� xS = �S Hq0

j�jxF
�1(S) (4.10)

where �S = HQ0
� (S \ B�

1)=Hq0
j�j

�
F�1(S \B�

1)
�
and dim (L(Vj)) is the topological di-

mension of L(Vj).

Proof. We de�ne ~L = F�1 � L � F : Rq �! Rp, observing that

~S = ~L(Rq) = ~L(Rn1)� � � � � ~L(Rn�) � Rp

where Rnj = F�1(Vj) and the variables in Rnj have degree j for every j = 1; : : : ; �.
It follows that the restriction of the coordinate dilation �r to ~S has jacobian

Jq0
�
�r j~S

�
= r
P�

j=1 j dim(L(Vj)) = rQ0 ; (4.11)
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where we have de�ned Q0 =
P�

j=1 j dim (L(Vj)). By de�nition of coordinate dila-
tions we have

B�
r \ S = �r (B

�
1 \ S) = F � �r

�
F�1 (B�

1 \ S)
�
:

We denote by ~vg the Riemannian volume restricted to S. Thus, Proposition 2.3.47
and the previous formula yields

~vg(S \B�
r ) = F�1

] ~vg
�
�r
�
F�1 (B�

1 \ S)
��

= Hq0
j�j

�
�r
�
F�1 (B�

1 \ S)
��
:

Due to (4.11) the previous relation becomes

~vg(S \B�
r ) = rQ0 Hq0

j�j

�
F�1 (B�

1 \ S)
�

(4.12)

and observing that for every x 2 S the translation lx : S �! S is an isometry, it
follows that

~vg(S \B�
x;r) = ~vg(S \B�

r ) = rQ0 Hq0
j�j

�
F�1 (B�

1 \ S)
�
:

From the last formula we deduce that HQ0
� xS is a locally �nite measure that is also

left invariant. Thus, the measures HQ0
� xS and Hq0

j�jxF
�1(S) are proportional and the

thesis follows. 2

Proposition 4.2.3 Let L : G �! M be an injective H-linear map, with S = L(G).
Then the H-jacobian of the map is given by the formula

JQ(L) = �S �Q Jq
�
F�1� L� F � ; (4.13)

where �S = HQ
� (S \B�

1) =Hq
j�j

�
F�1 (S \B�

1)
�
, �Q = Lq( ~B1)=HQ

d (B1), ~B1 = F�1(B1)
and Jq denotes the classical jacobian according to De�nition 2.3.40.

Proof. From Proposition 4.2.2 and the injectivity of L the space S has topological
dimension q and Hausdor� dimension Q, moreover we have

HQ
� (L(B1)) = �SHq

j�j(F
�1 � L(B1)) :

The Euclidean area formula for linear maps yields

Hq
j�j

�
F�1 � L � F ( ~B1)

�
= Jq

�
F�1� L� F � Lq( ~B1) ;

so the proof is complete. 2

Remark 4.2.4 The coe�cient

�S �Q =
HQ
� (S \B�

1) Lq( ~B1)

Hq
j�j (F

�1 (S \B�
1)) HQ

d (B1)

represents a \distortion factor", which depends on both the measures HQ
d , HQ

� and
on the subspace S we consider. Notice that if G = M and then d=�, S = G, we get
HQ
� (S \B�

1) = HQ
d (B1) and Hq

j�j

�
F�1 (S \B�

1)
�
= Lq( ~B1) and the distortion factor

reduces to one.



104 CHAPTER 4. AREA FORMULAE

4.3 Sub-Riemannian area formula

In this section we prove the sub-Riemannian area formula for Lipschitz maps. We
denote by G and M two sub-Riemannian groups.

Proposition 4.3.1 Let f : A � G �!M be a measurable function, � > 1, and

E = fx 2 I(A) j there exists dHf(x) : G �!M and is injectiveg :

Then E has a measurable countable partition F , such that for any T 2 F there is an

injective H-linear map ' : G �!M with the following properties

��1�('(z)) � �(dHf(x)(z)) � � �('(z)) for any z 2 G and any x 2 T (4.14)

Lip
�
fjT � ('jT )

�1
� � � and Lip

�
'jT � (fjT )

�1)
� � �: (4.15)

Proof. By linearity of H-linear maps when represented between Lie algebras (Corol-
lary 3.1.11) we get a countable dense subset ~K of HL(G;M). The set ~K has the
isometric correspondent K = f' 2 HL(G;M) j ' = exp � ~' � ln : G �! M; ~' 2 ~Kg:
Choose " > 0 such that ��1 + " < 1 < � � " and de�ne the measurable set
S('; k) = fy 2 E j (?) holdsg with ' 2 K and k 2 N, where

(?)

�
(��1+ ") � ('(z)) � � (dHf(y)(z)) � (�� ") � ('(z)) 8z 2 G
�
�
f(z); f(y) dHf(y)(y

�1z)
� � " �('(y�1z)) 8z 2 By;1=k:

We will prove that every y 2 E is contained in S('; k) for some k 2 N and ' 2 K.
De�ne ~L = ln � dHf(y)� exp and choose a positive "1 < minjwj=1 j~Lj, where j � j is the
norm of the �xed scalar product on the Lie algebras. We can �nd ~' 2 ~K such that
k~L� ~'k � "1 as linear maps, so ~' has to be injective on g. The maps ~' : G �!M and
~L : G �!M are injective, so by Corollary 3.1.9 the maps ~'�1 and ~L�1 are H-linear.
We accomplish our calculations for ~' due to the equality �( ~'(ln z)) = �('(z)), for
any z 2 G, where ' = exp � ~' � ln 2 K. By estimate (2.11) we obtain

�(~L; ~') � C k~L� ~'k1=� � C "
1=�
1 ;

where � is the degree of nilpotency of M. The estimates (3.2) imply

�(~L� ~'�1) = �
�
( ~' � (� ~') � ~L)� ~'�1)

�
� 1 + �( ~'; ~L) d( ~'�1) ;

d( ~'�1) = �(~L�1� ~L � ~'�1) � d(~L�1) �(~L� ~'�1) ;

hence, choosing "1 small enough, depending on ~L;C; " and �, we have

�(~L� ~'�1) � 1

1� �( ~'; ~L)d(~L�1)
� 1

1� C"
1=m
1 d(~L�1)

< �� " ;
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�( ~'�~L�1) = �
�
(~L � (�~L) � ~')�~L�1)

�
� 1 + �(~L; ~') d(~L�1)

� 1 + C"
1=m
1 d(~L�1) < (��1 + ")�1

and the last two inequalities prove the �rst estimate of (?). The de�nition of dif-
ferentiability and the Lipschitz property of '�1 leads to the second estimate of (?)
for k large depending on ' and ". From the �-compactness of G the set S('; k) has
a countable partition of measurable sets T � S('; k) with diam(T ) � 1=k, so if we
prove properties (4.14) and (4.15) for any T , we have �nished the proof. Consider
two points u; y 2 T � S('; k), by the de�nition of S('; k), the �rst equation of (?)
leads to (4.14). The second equation of (?) relatively to y gives

�(f(u); f(y)) � �(dHf(y)(y
�1u)) + " �('(y�1u)) ; (4.16)

�(f(u); f(y)) � �(dHf(y)(y
�1u))� " �('(y�1u)) ; (4.17)

adding the �rst one of (?), with z = y�1u, to both equations (4.16) and (4.17) we
get (4.15). 2

An important tool for Proposition 4.3.3 is the following, see for instance [45].

Lemma 4.3.2 Let (X; d; �) be an Ahlfors regular space of dimension Q. Then, any
ball B of radius R can be covered by at most C (R=r)Q balls of radius r, with C
depending only on the regularity constants for X.

The next proposition is an extension of the Sard Theorem in strati�ed groups when
the dimension of the target is larger than that of the domain.

Proposition 4.3.3 Let f : A �!M be a Lipschitz map and A � G a measurable set.

If the di�erential of f is non-injective at HQ
d -a.e. point of A, then HQ

� (f(A)) = 0.

Proof. Clearly it is not restrictive to assume that A contains only the points where
f is di�erentiable and the di�erential is singular. So, let consider a point x 2 A where
dHf(x) is not injective and let Mx = dHf(x)(G) be the corresponding subgroup of
M. From Proposition 4.2.2 it follows in particular that Mx is an Ahlfors regular
space of dimension Qx. The singularity of dHf(x) implies Qx � Q� 1. Denote with
Cx the constant of Lemma 4.3.2 applied to X =Mx and de�ne the family of sets

Ej = fx 2 A j Cx � j g \Bj with j 2 N

Consider x 2 Ej and " > 0; denote with I�r (E) the open set of points with distance
from E less than r in the metric �. By di�erentiability we obtain

f(Bx;r) � f(x)I�"r(dHf(x)(Br)) (4.18)
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for any r � rx;". Observe that dHf(x)(Br) � B�
cr \Mx, where c = 2Lip(f), then

using Lemma 4.3.2 we �nd N � Cx"
�Qx balls Bl

" � Mx of radius c"r which cover
B�
cr \Mx. De�ning cQ = HQ

� (B
�
1) we see that the inclusion

I�"r(B
�
cr \Mx) �

N[
l=1

I�"r(B
l
")

implies

HQ
�;1 (I�"r(B

�
cr \Mx)) � j"�QxcQ(c+ 1)Q("r)Q � j"cQ(c+ 1)QrQ = j"CQHQ

d (Br)

then for any r � rx;" and x 2 Ej it follows

HQ
� (f(Bx;r)) � j"CQHQ

d (Br): (4.19)

Now we �x j 2 N and consider the covering fBx;r j x 2 Ej and (4.18) holds for some
r � rx;"=5 � 1g. By a Vitali procedure we can extract a disjoint family of balls Bxl;rl

contained in Id1 (Ej) and such that Ej �
S1
l=1Bxl;5rl (see [45]). The estimate (4.19)

proves

HQ
� (f(Ej)) � j"CQHQ

d (I
d
1 (Ej))

The free choice and the independence of " and j lead us to the conclusion. 2

Now we prove the area formula as a corollary of the general formulation we have
given in metric spaces (Theorem 4.1.7).

Theorem 4.3.4 (Area formula) Let A � G be a measurable set and f : A �! M

be a Lipschitz map. Then the following formula holdsZ
A
JQ(dHf(x)) dHQ

d (x) =

Z
M

N(f;A; y) dHQ
� (y) : (4.20)

Proof. According to Remark 4.1.1, condition (A2) is trivially satis�ed and the
measure HQ

d is �nite on bounded sets. By Proposition 4.3.1 referred to some � > 1
we obtain a decomposition of the domain F [ fE0g, where E0 is the set of points
where the di�erential is not injective and for any T 2 F the restriction fjT is injective.

Moreover, in view of estimate (4.19) in Proposition 4.3.3 we have Jf (x) = 0 for HQ
d -

a.e. in x 2 E0. Then hypothesis of Theorem 4.1.7 are satis�ed and the metric area
formula follows. In order to achieve (4.20), it remains to prove that metric jacobian
and H-jacobian coincide HQ

d -a.e.

To do this, �rst of all we can assume that up to a negligible set our map is
H-di�erentiable everywhere, due to the fact that negligible sets are mapped into
negligible sets. So we can decompose the domain A by the covering F� [ fE0g,
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where F� = fT�g is the covering F in Proposition 4.3.1 referred to � > 1. De�ne
A1 = A n E0 and take a sequence �n ! 1+. Notice that

HQ
d

� [
n2N

�
A1 n

[
T�n2F�n

I(T�n)
��

= 0 ;

it follows that for a.e. x 2 A1 there exists a sequence of sets fT�n(x)gn2N such that
x 2 I (T�n(x)). By Proposition 4.3.1 there exist H-linear maps 'n : G �! M such
that conditions (4.14) and (4.15) with ' and T replaced by 'n and T�n(x) hold,
respectively. For ease of notation we write T�n = T�n(x). Then we get

��Qn JQ('n) = lim
r!0+

��Qn
HQ
� ('n(Dx;r))

HQ
d (Dx;r)

(4.21)

= lim
r!0+

��Qn
HQ
� ('n(Dx;r \ T�n))

HQ
d (Dx;r)

� lim sup
r!0+

HQ
� (f(Dx;r \ T�n))
HQ
d (Dx;r)

(4.22)

� lim sup
r!0+

HQ
� (f(Dx;r \A))
HQ
d (Dx;r \A)

= Jf (x) (4.23)

� lim sup
r!0+

HQ
� (f(Dx;r \ T�n))
HQ
d (Dx;r)

� lim
r!0+

�Qn
HQ
� ('n(Dx;r \ T�n))

HQ
d (Dx;r)

(4.24)

= �Qn JQ('n) : (4.25)

The �rst equality of (4.22) follows observing that x 2 I (T�n(x)) and

HQ
� ('n(Dx;r \ T�n)) = JQ('n)HQ

d (Dx;r \ T�n) :

The inequality of (4.22) follows by (4.15) replacing ' and � by 'n and �n, respectively.
From the fact that x 2 I(A) and T�n � A we deduce the �rst inequality of (4.23).
Observing that

HQ
� (f(Dx;r \A)) � HQ

� (f(Dx;r n T�n)) +HQ
� (f(Dx;r \ T�n))

� Lip(f)QHQ
d (Dx;r n T�n) +HQ

� (f(Dx;r \ T�n))

and using the fact that x 2 I (T�n) � I(A) the �rst inequality of (4.24) follows. We
can deduce the second inequality of (4.24) from the analogous argument used for
the inequality (4.22). By (4.14) applied to the sequence ('n) we get a subsequence
('�(n)) uniformly converging to an H-linear map ' : G �! M such that � ('(z)) =
� (dHf(x)(z)) whenever z 2 G and JQ(dHf(x)) = JQ('), therefore the convergence
of JQ('n) to JQ(') yields Jf (x) = JQ(dHf(x)). Thus, we have proved that Jf (x) =
JQ(dHf(x)) for a.e. x 2 A and our claim follows. 2
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Remark 4.3.5 Theorem 4.1.10 and Theorem 4.3.4 con�rm the general fact accord-
ing to which whenever a di�erentiability type theorem holds, it is possible to get
a partition fEig with the properties required in Theorem 4.1.7. We can say that
Theorem 4.1.7 moves the di�culty in the proof of Area formula into the di�culty of
obtaining the existence of the covering fEjg required in the same theorem. When
the metric space has a di�erentiable structure, as for sub-Riemannian groups, there
are natural notions of jacobian, as we have seen. In this case one has also to check
that the notion of metric jacobian coincides with the one given by the di�erentiable
structure. This is done in the proof of Theorem 4.3.4.

Now, for the sake of completeness we present the proof of Theorem 4.3.4, following
path close to the classical one adopted in Euclidean spaces, see [124].

Proof of Theorem 4.3.4 We start observing that (4.20) holds when A is negligible,
because Lipschitz map have the Lusin property, i.e. it maps negligible sets into neg-
ligible sets. Thus, in view of Theorem 3.4.11, we can exclude from the beginning the
null subset of A where the function is not di�erentiable, assuming the di�erentiabil-
ity at any point of A. We de�ne the set A0 = fx 2 A j dHf(x) is injective g and
Z = A nA0. The set additivity of N(f; �; y) givesZ

P

N(f;A0; y) dHQ
� (y) +

Z
P

N(f; Z; y) dHQ
� (y) =

Z
P

N(f;A; y) dHQ
� (y) ;

so the proof is achieved if we show the following equalitiesZ
P

N(f;A0; y) dHQ
� (y) =

Z
A
JQ(dHf(x)) dHQ

d (x) ; (4.26)

Z
P

N(f; Z; y) dHQ
� (y) = 0 : (4.27)

We start from (4.26), applying Proposition 4.3.1 we get a measurable countable
partition F of A0 where we have an approximation of f controlled by a parameter
� > 1. Consider an element T 2 F contained in some S('; k); the equation (4.14)
implies

��QHQ
� ('(T )) � HQ

� ((dHf(x)�'
�1
�')(T )) � �QHQ

� ('(T )) for anyx 2 T
By de�nition of H-jacobian, taking the average on T of the above inequality we �nd

��QHQ
� ('(T )) �

Z
T
JQ(dHf(x)) dHQ

d (x) � �QHQ
� ('(T ))

using (4.15)

��2QHQ
� (f(T )) �

Z
T
JQ(dHf(x))dHQ

d (x) � �2QHQ
� (f(T )): (4.28)
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The map f is injective on T , so adding (4.28) on all these sets it follows

��2Q
Z
P

N(f;A0; y)dHQ
� (y) �

Z
A0
JQ(dHf(x)) dHQ

d (x) � �2Q
Z
P

N(f;A0; y)dHQ
� (y):

Letting �! 1+ we have (4.26). The equation (4.27) follows directly from Proposition
4.3.3. 2

Corollary 4.3.6 Given a Lipschitz map f : A � G �! P and a summable function

u : A � G �! R we haveZ
A
u(x) JQ(dHf(x)) dHQ

d (x) =

Z
P

X
x2f�1(y)

u(x) HQ
� (y) :

Proof. We use the standard argument of approximating u with �nite linear combi-
nations of characteristic functions, see for example [53]. 2

Example 4.3.7 We consider the Heisenberg group H5, with horizontal vector �elds

Xi = @xi � yi

2 @z and Yi = @yi +
xi

2 @z, for i = 1; 2. We have [Xi; Yi] = Z = @z for
i = 1; 2, getting a basis of R5, which can be identi�ed with the Lie algebra of H5.

Thus, an element of H5 can be written as exp
�P2

i=1(x
iXi + yi Yi) + z Z

�
, where

exp : R5 �! H5. Then, we represent an element of H5 as (x; y; z) 2 R5, with
x = (x1; x2) and y = (y1; y2). The BCH formula (2.18) gives the explicit group
operation (denoted with }) in our coordinates

(x; y; z)} (�; �; �) =

�
x+ �; y + �; z + � +

(x1�1 + x2�2 � y1�1 � y2�2)

2

�
:

The restriction of the operation to the subset G = f(x; y; z) 2 H5 j x2 = 0g gives

(x1; y; z)} (�1; �; �) =

�
x1 + �1; y + �; z + � +

(x1�1 � y1�1)

2

�
;

so G is a subgroup of H5. Moreover G is a strati�ed group. In fact, the horizontal
space V1 = span(X1; Y1; @y2) is left invariant under the translations of the subgroup
and [X1; Y1] = Z, so the generating condition is achieved with V2 = span(Z).

Consider an injective Lipschitz map f : A � G �! H5 and �x S = f(A). The
set S � H5 can be seen as a hypersurface of H5 with Hausdor� dimension 5 (H5 has
Hausdor� dimension 6). In view of the di�erentiability (Theorem 3.4.11), there exists
a tangent hyperplane to S in H5

d-a.e. y 2 S, Ty(S) = dHf(x)(G), with y = f(x) and
the Area formula gives

H5
d(S) =

Z
A
J5(dHf(x)) dH5

d(x) :



110 CHAPTER 4. AREA FORMULAE

Remark 4.3.8 It is worth to observe that even if either the Hausdor� dimension or
the topological dimension of G is less than the Hausdor� dimension of the target M,
it may happen that there does not exist a Lipschitz map f : G �!M with injective
di�erential at some di�erentiability point. In fact, recalling that G = V1�V2�� � ��Vn
and M =W1 �W2 � � � � �Wm; it su�ces that the geometric constraint dim(Vj0) >
dim(Wj0) holds for some j0 � minfm;ng, so the contact property of any H-linear
maps L : G �! M implies the inclusion L(Vj0) � Wj0 , therefore L cannot be
injective. In this case the area formula is a straightforward consequence only of
Proposition 4.3.3. This remark points out the typical rigidity of strati�ed geometry.
In other words the conditions we assumed on the strati�cation prevent any Lipschitz
embedding of G into M.

4.4 Unrecti�able metric spaces and rigidity

In this section we apply the area formula to characterize purely k-unrecti�able sub-
Riemannian groups. We will also prove that bilipschitz equivalent sub-Riemannian
groups are isomorphic. This shows how the algebraic structure of the group a�ects
its metric structure, and viceversa.

De�nition 4.4.1 We say that a metric space (X; d) is purely k-unrecti�able if for
any Lipschitz map f : A �! X with A � Rk, we have Hk

d(f(A)) = 0.

Our target metric space is a �xed sub-Riemannian group (M; d). Let us consider a
Lipschitz map f : A �!M, where A is a subset of Rk. The Lipschitz condition on f
and the completeness of M allow us to assume that A is a closed set.

The area formula (4.20) easily gives

HQ
� (f(A)) �

Z
A
JQ (dHf(x)) dHQ

d (x) : (4.29)

Therefore, if we prove that under suitable algebraic conditions on M any H-linear
map L : Rk �! M has nontrivial kernel, then JQ(L) = 0 and the estimate (4.29)
implies that M is purely k-unrecti�able.

We �x the grading M = W1 �W2 � � � � �W� for the group M. Notice that the
Euclidean space Rk can be seen as an abelian sub-Riemannian group with the easiest
grading Rk = V1. Now, let us consider an H-linear map L : Rk �! M read in the
Lie algebras. In view of Theorem 3.1.12 it follows that L(Rk) � W1, so if W1 does
not contain k-dimensional subalgebras of M then L cannot be injective. We have
proved the following theorem.

Proposition 4.4.2 Let M be a sub-Riemannian group withM =W1�W2�� � ��W�

and suppose that there do not exist k-dimensional Lie subalgebras contained in W1.

Then M is purely k-unrecti�able.
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For instance whenever dim(W1) < k hypothesis of Proposition 4.4.2 is ful�lled. Let us
read the unrecti�ability result of [7] with this criterion. We consider the Heisenberg
group H3 where the grading is h3 = V1 � V2, with dim(V1) = 2 and dim(V2) = 1.
From Proposition 4.4.2 it follows that H3 is purely unrecti�able for any k > 2. Now,
observing that V1 is not a subalgebra of h3, because [X;Y ] =2 V1 whenever X;Y are
linearly independent vectors of V1, we obtain that H3 is also purely 2-unrecti�able.

Let us give the following converse of Proposition 4.4.2.

Proposition 4.4.3 In the assumptions of Proposition 4.4.2, if there exists a k-
dimensional subalgebra S of W1, then M is not purely k-unrecti�able.

Proof. We recall that any subalgebra S induces a subgroup S of M, whose Lie
algebra is exactly S. This is easily seen de�ning expS = S and using the BCH
formula (2.18), see also Theorem 2.5.2 of [178]. Moreover, the condition S � W1

implies [S;S] = 0, so S is an abelian subgroup M, then it can be identi�ed with Rk

and the identi�cation i : Rk ,! S � M is an injective H-linear map. Thus, the area
formula (4.20) yields

Hk
� (i(A)) = Jk(L)Hk

j�j(A) > 0 ;

whenever Hk
j�j(A) > 0, where Hk

j�j indicates the k-dimensional Hausdor� measure in

Rk with respect to the Euclidean norm. 2

Joining Propositions 4.4.2 and 4.4.3 we get the following characterization.

Theorem 4.4.4 Let M be a sub-Riemannian group with M =W1 �W2 � � � � �W�.

Then M is purely k-unrecti�able if and only if there do not exist k-dimensional Lie
subalgebras contained in W1.

Notions of recti�ability and pure unrecti�ability according to 3.2.14 of [55] can natu-
rally be extended to the sub-Riemannian setting replacing the Euclidean space Rk

with some sub-Riemannian group. This approach is followed in [156]. With these
notions Theorem 4.4.4 could be analogously extended replacing Rk with another
sub-Riemannian group as a model space.

De�nition 4.4.5 We say that two sub-Riemannian groups are isomorphic if there
exists an invertible H-linear map between them.

The next application is a \rigidity result" for sub-Riemannian groups.

Theorem 4.4.6 Let G and M be two nonisomorphic sub-Riemannian groups and let

A � G and B � M be two subsets with positive measures with respect to the Haar

measure of the groups. Then there does not exist a bilipschitz map f : A �! B.

Proof. By contradiction, we suppose that there exists a bilipschitz map f : A �! B,
where A � G and B � M are both subset with positive measure. We divide A into
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three disjoint subsets A0, A1 and A2, where A0 is the subset of points where f is not
H-di�erentiable, A1 is the subset of points where the H-di�erential of f is surjective
and A2 is the subset of points where the H-di�erential of f is not surjective. As
a consequence of Theorem 3.4.11 we know that HQ(A0) = 0. We �x x 2 A1 and
L = dHf(x) : G �! M. In view of our assumption we know that L cannot be
an isomorphism, hence it cannot be injective. By the expression of the gradings
G = V1 � � � � � V� and M = W1 � � � � �W� together with the surjectivity of L we
can establish the condition � � �. Moreover, the contact property of Theorem 3.1.12
yields L : Vi �!Wi for any i = 1; : : : ; �. The Hausdor� dimension of G is given by
Q =

P�
j=1 j dim(Vj), as it has been shown in Subsection 2.3.2, hence the equalities

L(Vi) =Wi for any i = 1; : : : ; � imply

Q =
�X

j=1

j dim(Vj) >
�X

j=1

j dim(L(Vj)) = P ;

where P is the Hausdor� dimension of M. As a consequence of De�nition 4.2.1 we
obtain JQ(L) = 0, hence JQ(dHf(x)) = 0 for any x 2 A1 and the area formula (4.20)
yields

HQ
� (B1) =

Z
A
JQ (dHf(x)) dHQ

d (x) = 0 ;

where B1 = f(A1). The bilipschitz property of f gives HQ
d (A1) = 0. Now we de�ne

g = f�1 : B2 �! A2, where B2 = f(A2) and consider the subset B0
2 � B2 where

g is H-di�erentiable. Theorem 3.4.11 implies that HQ
d (B2 n B0

2) = 0, hence we have

HQ
d (A2 n A02) = 0, where we have de�ned A02 = g(B0

2). By di�erentiating the map
idA = g�f : A02 �! A02 and using Proposition 3.2.5 we obtain

idG = dHg(f(x))�dHf(x) ; (4.30)

for any x 2 A02. The non surjectivity of dHf(x) and relation (4.30) imply that dHg(y)
is non injective for any y 2 B0

2. Then, reasoning as before we obtain HQ(A02) = 0.
As a consequence, we have proved that HQ(A) = 0, that contradicts our hypothesis,
then the map f cannot exist. 2

Remark 4.4.7 Note that G and M may have the same Hausdor� dimension even if
they are not isomorphic. The statement of Theorem 4.4.6 can also be read as follows:
let A � G and B � M be subsets with positive measure such that there exists a
bilipschitz map f : A �! B. Then G and M are isomorphic.



Chapter 5

Rotations in sub-Riemannian

groups

In this chapter we introduce some novel concepts on sub-Riemannian groups �rst
introduced in [126] and which are strictly related to the graded metric of the group.
Through these concepts it will be apparent that not all graded metrics are really
\suitable" for the geometry of the group. A key notion of the chapter is that of
\horizontal isometry", e.g. an H-linear map that is also an isometry with respect to
the graded metric (De�nition 5.1.1). So, a good graded metric should yield a large
group of horizontal isometries that, roughly speaking, amounts to a space with many
symmetries. With the notion of \R-rotational group" (De�nition 5.1.4) we single
out all sub-Riemannian groups that have enough symmetries. In fact, we will see
in Chapter 6 and Chapter 7 that the generalized coarea formulae (6.42) and (7.19)
take a particular simpli�ed form in rotational groups with R-invariant distances, see
(6.45), (7.23) and De�nition 5.1.10. We also point out that by Proposition 5.1.12 any
class R of horizontal isometries admits a corresponding R-invariant distance, that is
the CC-distance with respect to the graded metric.

The previous notions were motivated by the question of �nding a class of sub-
Riemannian groups where the \metric factor" (De�nition 5.2.2) is a geometrical con-
stant independent from the direction to which is referred. The metric factor appears
in the generalized coarea formulae (6.42) and (7.19), in the expression of the perime-
ter measure (6.31) and in the formula for the spherical Hausdor� measure of C1

hypersurfaces (7.17). It amounts to the measure of the unit ball of codimension one
in a sub-Riemannian group. For instance, in the n-dimensional Euclidean space it
coincides with the measure !n�1 of the (n�1)-dimensional Euclidean unit ball. Due
to the anisotropy of a general homogeneous distance the metric factor may depend on
the direction in which is calculated. In Proposition 5.2.5 we prove that R-rotational
groups admit an R-invariant distance where this dependence does not occur.

Let us give a brief summary of the chapter. In Section 5.1 we introduce the

113
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de�nition of horizontal isometry, R-rotational group and R-invariant distance. In
Proposition 5.1.8 we prove that there exists a graded metric on H2n+1 such that it
is an R-rotational group. In Remark 5.1.9 we point out that, using sophisticated
results in the literature it is possible to show that all H-type groups are R-rotational.
In Proposition 5.1.12 we prove that for any given class R of horizontal isometries the
associated CC-distance is R-invariant.

In Section 5.2 we introduce the notion of metric factor, showing that in some
examples it can be explicitly calculated. In Proposition 5.2.5 we prove that the
metric factor of R-rotational groups with respect to an R-invariant distance is a
dimensional constant only related to the graded metric of the group and to the
homogeneous distance to which is referred.

5.1 Horizontal isometries and rotational groups

In this chapter we will assume that G is a graded group endowed with graded metric.

De�nition 5.1.1 (Horizontal isometry) Let T 2 HL(G;G) be an H-linear map.
We say that T is a horizontal isometry if the di�erential dT (e) : G �! G is an
isometry.

Notice that any horizontal isometry is in particular an isometry of G in the classical
sense of Riemannian Geometry.

De�nition 5.1.2 Let G be a simply connected nilpotent Lie group. We mean by a
subspace of G the image of a subspace of G under the exponential map.

By Theorem 2.3.10 there is a bijective correspondence between subspaces of G and
the ones of G. Note that in general subspaces of G are not subgroups.

De�nition 5.1.3 We say that � is a vertical hyperplane of G if it is the orthogonal
space of some horizontal vector. A vertical hyperplane L of G is the image of a vertical
hyperplane of G under the exponential map.

De�nition 5.1.4 (R-rotational group) We say that a sub-Riemannian group G
is R-rotational, if there exists a graded metric g and a class R of horizontal isometries
with respect to g such that for any couple of vertical hyperplanes L and L0 of G we
have some T 2 R such that T (L) = L0. We will simply say rotational group, when
the class R is understood.

Remark 5.1.5 Notice that in the above de�nition we could have required equiva-
lently that for any couple of vertical hyperplanes � and �0 of G there exists T 2 R
such that dT (e)� = �0.
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Example 5.1.6 The Euclidean space En endowed with the canonical Riemannian
metric is a rotational group. In fact, any hyperplane is vertical, then we can choose
R as the class of all Euclidean isometries of En. It follows that Euclidean spaces are
R-rotational.

We point out that the existence of horizontal isometries in a graded group is a rather
delicate question. In Example 5.1.7 we show that horizontal isometries cannot always
be obtained by isometries of G. In other words, if we consider an isometry I : G �! G
it may happen that there not exist an H-linear map T : G �! G such that dT (e) = I.
This fact strongly depends on the compatibility of the left invariant Riemannian
metric with the algebraic structure of the group.

Example 5.1.7 We consider the Heisenberg algebra h3 and ~T : h3 �! h3. We take
the following matrix representation of ~T

[ ~T ] =

0
@ 1 0 1

0 0 0
0 1 0

1
A (5.1)

with respect to a basis (X;Y; Z) of h3 with [X;Y ] = Z. A left invariant metric
that makes (X;Y; Z) orthonormal is a graded metric (see De�nition 2.3.30). Now
we de�ne exp �T � exp�1 : H3 �! H3, observing that dT (e) = ~T . Then dT (e) is an
isometry, but from Example 3.1.14 the matrix representation of T contradicts the
H-linearity.

In the same notation of the previous example we can show easily an example of H-
linear map that cannot be a horizontal isometry. It su�ces to consider the following
matrix representation

[~L] =

0
@ � 0 1

0 � 0
0 0 �2

1
A (5.2)

with j�j =2 f0; 1g. Clearly we have jZj 6= �2jZj = jT (Z)j for any graded metric g,
where jW j =pg(W;W ), therefore T is not an isometry.

However, in the following proposition we will show that Heisenberg groups are
important examples of rotational sub-Riemannian groups.

Proposition 5.1.8 (Rotational Heisenberg group) There exist a graded metric

and a class R of horizontal isometries that make H2n+1 an R-rotational group.
Proof. We will refer to the basis (X1; : : : ; Xn; Y1; : : : Yn; Z) of Remark 2.3.27, where
H2n+1 can be thought of as Cn � R, where the group operation in exponential coor-
dinates (De�nition 2.3.13) is given as follows

(z; s) � (w; t) =
�
z + w; s+ t+ 2Imhz; wi

�
: (5.3)
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We will �nd a class of horizontal isometries represented in this system of exponential
coordinates. Notice that our basis is adapted to the grading of G, so if we choose a
metric such that the basis is orthonormal, then the metric is graded and our coordi-
nates are indeed graded coordinates (De�nition 2.3.43). In the sequel we will refer
to this graded metric. We consider a unitary operator U : Cn �! Cn and de�ne the
map

~T : Cn � R �! Cn � R ; (z; s) �! (U(z); s) :

Directly from the de�nition of ~T it is clear that it is 1-homogeneous with respect to
the group of dilations. Now we check that ~T is a group homomorphism. By the fact
that U preserves the Hermitian product we have

~T
�
(z; s)�(w; t)

�
= ~T

�
z + w; s+ t+ 2Imhz; wi

�
=
�
U(z) + U(w); s+ t+ 2Imhz; wi

�
=
�
U(z) + U(w); s+ t+ 2ImhU(z); U(w)i

�
= (U(z); s) � (U(w); t) = ~T (z; s) � ~T (w; t) :

Denoting by F : R2n+1 �! H2n+1 the system of graded coordinates de�ned by

F (�) = exp
h� nX

j=1

�j Xj + �n+j Yj

�
+ �2n+1Z

i

we de�ne T = F � ~T �F�1 : H2n+1 �! H2n+1. We can check immediately that dT (e)
is represented by ~T with respect to our orthonormal basis, then it is an isometry, due
to the fact that ~T is an Euclidean isometry on R2n+1 with respect to the standard
real scalar product. We have proved that T is a horizontal isometry.

It remains to prove that this class of horizontal isometries is su�ciently large to
give the rotational property of De�nition 5.1.4. Vertical hyperplanes in H2n+1 can
be characterized in our coordinates as products � � R, where � is a real 2n � 1
dimensional space of Cn. We consider hyperplanes � and �0 of Cn and observe that
they can be characterized by two unit vectors of Cn. Then there exists a unitary
transformation U : Cn �! Cn such that U(�) = �0, so

~T (�� R) = �0 � R

where and ~T is de�ned as above. Since the hyperplane � and �0 are arbitrary,
de�ning L = F (�� R), L0 = F (�0 � R) we get T (L) = L0 , where T = F � ~T � F�1

is a horizontal isometry. 2

Remark 5.1.9 (Rotational H-type group) The result of Proposition 5.1.8 can
be achieved also in general groups of Heisenberg type. These are 2-step groups
endowed with a scalar product h ; i and a linear map J : V2 �! End(V1) with the
following properties
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1. hJZX;Y i = hZ; [X;Y ]i for any X;Y 2 V1 and Z 2 V2
2. J2Z = �jZj2I,

see [104], [105], [106] for more information. Let us consider the group

G =
n
(�;  ) 2 O(V2)�O(V1) j J�(v)( (x)) =  (Jv(x))

o
;

where O(V1) and O(V2) denote the group of isometries in V1 and V2, respectively.
In Proposition 5 of [162], C. Riehm proves that the maps of (�;  ) of G are homo-
morphisms, hence G corresponds to a group of horizontal isometries according to our
de�nition. Furthermore, denoting by GV1 the projection of G in O(V1), in [161] there
is a precise characterization of H-type groups where GV1 is transitive on the sphere
V �
1 = fv 2 V1 j jvj = 1g. In view of De�nition 5.1.4, groups with this transitive

property on V �
1 are R-rotational with R = G.

De�nition 5.1.10 (R-invariant distance) Let R be a set of horizontal isometries
and let B1 be the open unit ball with respect to a �xed homogeneous distance d. We
say that d is R-invariant if for any T 2 R we have T (B1) = B1.

Example 5.1.11 Let us consider the homogeneous distance d1 of H2n+1 introduced
in Example 2.3.38. We recall that this distance was de�ned by means of graded
coordinates associated to the basis (2.23) with � = �4. In Proposition 5.1.8 we have
seen that horizontal isometries with respect to these coordinates can be represented
as T (z; t) = (U(z); t), where U is a unitary operator. Here the graded metric is the
one which makes the basis (2.23) orthonormal. Thus, by de�nition of d1 we have

d1 (F (T (z; t))) = d1 (F (z; t)) ; (5.4)

where F is the transformation relative to the graded coordinates. The formula (5.4)
yields the R-invariance of d1.

In the following proposition we show that whenever we have a class R of horizontal
isometries we can always de�ne an R-invariant distance.

Proposition 5.1.12 Let g be the graded metric of a sub-Riemannian group G and let

� be the CC-distance of G with respect to g. We consider the class R of all horizontal

isometries with respect to g. Then � is R-invariant.

Proof. It su�ces to notice that horizontal isometries bring horizontal curves into
horizontal curves and preserve their length. Then any T 2 R is an isometry of G
with respect to the CC-distance. In particular, the R-invariance of � follows. 2
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5.2 Metric factor

Lemma 5.2.1 Let L be a hyperplane of G and let B1 be the open unit ball with

respect to a homogeneous distance d. Then, for any couple of graded coordinates

(F1;W ) and (F2; V ) we have

Hq�1
j�j

�
F�1
1 (L \B1)

�
= Hq�1

j�j

�
F�1
2 (L \B1)

�
:

Proof. In view of De�nition 2.3.43 we have

F1(x) = exp
� qX
j=1

xjWj

�
; F2(y) = exp

� qX
j=1

yjVj

�
;

where (Wj) and (Vj) are adapted orthonormal bases of G. Then we can write F1 =
F2 � I�1, where I is an isometry of Rq. It follows

F�1
1 (L \B1) = I � F�1

2 (L \B1)

that yields our claim. 2

De�nition 5.2.2 (Metric factor) Consider a vector � 2 Gnf0g and its orthogonal
hyperplane L in G. We �x a system of graded coordinates (F;W ) and de�ne

�gQ�1(�) = Hq�1
j�j

�
F�1(L \B1)

�
: (5.5)

We call �gQ�1(�) the metric factor of the homogeneous distance d with respect to the
direction �.

Remark 5.2.3 In view of the Lemma 5.2.1, the above de�nition does not depend
on the choice of graded coordinates. So the number �gQ�1(�) depends only on the
homogeneous distance d, the direction of � and the graded metric. We can also easily
observe that the function � ! �gQ�1(�) is uniformly bounded from above and below
by positive constants.

In order to emphasize the dependence of the metric factor on the direction �, we
present a simple example where � a�ects the metric factor.

Example 5.2.4 Let us consider the Euclidean space E2, with homogeneous distance
�(x) = maxfjx1j; jx2jg, where (x1; x2) are Euclidean coordinates. We observe that E2

is an abelian 2-dimensional strati�ed group, where the canonical Riemannian metric
is trivially graded. We denote by L(�) the straight line which contains the origin
and whose direction is � 2 T1, where T1 is the 1-dimensional torus. In this case, by
de�nition of �1(�), we have

�1(�) = H1
j�j

�
L(�+

�

2
) \ fx 2 E2 j maxfjx1j; jx2jg < 1g

�
;
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By a direct computation we have

�1(�) =

8>><
>>:

2(cos�)�1 ��
4 � � � �

4
2(sin�)�1 �

4 � � � 3
4�

2j cos�j�1 �3
4� � � � 5

4�
2j sin�j�1 5

4� � � � 7
4�

:

In the following proposition we show that an R-invariant distance of an R-rotational
group has a constant metric factor.

Proposition 5.2.5 Let G be an R-rotational group and let d be an R-invariant
distance of G. Then there exists �Q�1 > 0 such that

�gQ�1(�) = �Q�1

for any � 2 V1 n f0g.
Proof. Let g be the graded metric that gives the rotational property of G and
let F : Rq �! G be the map associated to a system of graded coordinates (F;W )
relatively to the metric g. Let � and � 0 be two horizontal directions of G with the
corresponding vertical hyperplanes L and L0 in G. By de�nition of metric factor we
have only to prove that

Hq�1
j�j

�
F�1(L \B1)

�
= Hq�1

j�j

�
F�1(L0 \B1)

�
: (5.6)

In view of the rotational assumption on G there exists a horizontal isometry T 2 R
such that T (L) = L0. By virtue of the R-invariance of d we have

F�1(L0 \B1) = F�1� T (L \B1) ;

then de�ning I = F�1� T � F and observing that I is an isometry of Rq equation
(5.6) follows. 2

Remark 5.2.6 The number �Q�1 in Proposition 5.2.5 amounts to the measure of
the intersection between the unit ball and a vertical hyperplane, that is independent
of the vertical section we consider. We can consider �Q�1 as a geometrical constant
associated to the R-invariant distance.

Example 5.2.7 Let us consider En with standard coordinates x = (xi) and the

classical Euclidean norm �(x) = jxj =
qPn

i=1 x
2
i : In this case we have

�n�1(�(x)) = Hn�1
j�j (�x \ fy 2 En j jyj < 1g) = Hn�1

j�j

�fy 2 En�1 j jyj < 1g� = !n�1

Example 5.2.8 Let us consider the distance d of Example 5.1.11. By calculations of
Lemma 4.5 (iii) in [71] we have that the corresponding metric factor is �Q�1 = 2!2n�1.
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Chapter 6

Coarea type formulae

This chapter is devoted to the problem of coarea formula for Lipschitz maps between
sub-Riemannian groups and to some related consequences. It is well known that this
formula holds for Lipschitz maps of Euclidean spaces, see Theorem 3.2.11 of [55].
In the proof of the classical result the relevant aspect consists in the fact that any
Euclidean space can be regarded as an isometric product of two orthogonal subspaces.
Such a decomposition enters into the proof when one considers the tangent space of
the level set and its orthogonal space. This fact in turn allows us to parametrize the
level set by a Lipschitz map between the two subspaces and to apply the Euclidean
area formula. Nonabelian sub-Riemannian groups in general do not possess such an
isometric decomposition (see Proposition 2.3.28 and Remark 3.3.4) and our approach
follows a genuinely di�erent method. Here we emphasize a basic distinction between
the coarea formula for real valued maps and for group valued maps.

In the �rst case, we have very general \variational" coarea formulae for functions
of bounded variation of both CC-spaces and metric spaces, where the perimeter
measure of upper level sets represents the surface measure of level sets, see [69],
[79], [134], [141]. So it is natural to wonder whether one is allowed to replace the
perimeter measure with a \suitable" Hausdor� measure in the case of Lipschitz maps,
as it was raised in Remark 4.9 of [141]. We answer this question through the theory
of sets of H-�nite perimeter, obtaining the coarea formula (6.42) in all groups where
a recti�ability theorem for the perimeter measure holds, namely generating groups
(De�nition 6.4.8). Due to results of [73], the class of generating groups encompasses
all sub-Riemannian groups of step 2.

In the second case, we are able to prove a general inequality for group valued
Lipschitz maps f : A �!M, namelyZ

M

HQ�P
�
A \ f�1(�)� dHP (�) �

Z
A
CP (dHf(x)) dHQ(x) ; (6.1)

where A � G is measurable andG,M are sub-Riemannian groups, [125]. Actually, the
validity of the equality in (6.1) is a completely open question and it seems that none

121
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of the classical methods can be used to solve this problem. The philosophical reason
for this di�culty is that we are considering Lipschitz maps between di�erent types of
geometries. So the validity of the coarea formula for group valued maps would imply
a huge family of coarea formulae, where the Euclidean one would correspond to the
simplest case of abelian geometries. Due to this general formulation we emphasize the
existence of cases where the group valued coarea formula holds, but it is trivial. This
is shown in Theorem 6.3.4, considering two di�erent Heisenberg groups. This strange
phenomenon indeed agrees perfectly with the fact that there are no (H2n+1;H2m+1)-
recti�able surfaces in H2n+1 when n > m, (Section 3.5). In a way, this con�rms the
compatibility between the formulation of the general coarea formula and our notion
of recti�ability in higher codimension. Now we give a brief summary of the chapter.

In Section 6.1 we utilize the general Carath�eodory construction to introduce the
measure �a that includes a family of possible measures, as the Hausdor� measure and
the spherical Hausdor� measure, according to De�nition 6.1.1. In this way we are
able to obtain a general version of the coarea inequality (6.1), namely (6.14). Another
element of this inequality is the H-coarea factor CP (L) for H-linear maps. Basically
we extend the notion of H-coarea factor given in [7] to the sub-Riemannian context.
In De�nition 6.1.3 we introduce this notion, that replaces the classical one of coarea
factor Cp(L) for linear maps of Hilbert spaces (De�nition 2.3.41). In Proposition 6.1.5
we show that CP (L) and Cp(L) are indeed proportional by a dimensional constant
that takes into account the homogeneous distances of the groups (6.4).

In Section 6.2 we prove the coarea inequality (6.14). This is an important result
of the chapter and its consequences will be used in Sections 6.3, 6.4 and 6.6. Our
technique is based on di�erentation theorems for measures. Precisely, we extend the
blow-up method used in Lemma 2.96 of [6], reaching explicit estimates. The main
result that leads to (6.14) is Theorem 6.2.4, where we obtain the upper estimate of
the density for the family of \coarea measures" �t (De�nition 6.2.1), with a constant
independent of t > 0. We show that this constant is exactly the H-coarea factor of
the di�erential of the map at the point of blow-up. Integrating the upper density
estimate (6.8) and letting t! 0+ the coarea inequality (6.14) follows.

Section 6.3 is devoted to some direct applications of (6.14). In Theorem 6.3.1 we
obtain a weak version of the classical Sard Theorem, proving that for HP -a.e. level
set of a Lipschitz map between strati�ed groups the set of singular points is HQ�P -
negligible, [125]. We point out that also in the Euclidean case it is not possible
to get more information on level sets of Lipschitz maps. Theorem 6.3.1 will be an
important tool in Chapter 7 in order to prove the coarea formula (7.19). Another
consequence of (6.14) is Theorem 6.3.4, where we obtain the trivial coarea formula
(6.17) for Lipschitz maps between di�erent Heisenberg groups. Notice that to obtain
Theorem 6.3.4 we follow the same principle adopted in Section 4.4, i.e. from algebraic
conditions given by the groups we obtain information on their \metric compatibility".
As the algebraic conditions on the group a�ect the H-jacobian of the di�erential, here
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the same phenomenon happens to the H-coarea factor.
In Section 6.4 we extend the representation of the perimeter measure with the

spherical Hausdor� measure to any homogeneous distance. This is done in Theo-
rem 6.4.11 which starts from the result of Theorem 6.4.7, proved in [73], which is
referred to the CC-distance. The proof of Theorem 6.4.11 has the interesting fea-
ture of not relying on an explicit form of the homogeneous distance, but only on its
abstract properties. Our formula is as follows

j@EjH =
�gQ�1(�E)

!Q�1
SQ�1x@�HE ; (6.2)

where �gQ�1(�E) is the metric factor introduced in Chapter 5. Formula (6.2) is ob-
tained for all generating groups.

The main result of Section 6.5 is the generalized coarea formula (6.42) for locally
Lipschitz maps u : G �! R. Its validity rests on di�erent results. We �rst consider
the coarea formula for H-BV functions (2.49) where the perimeter measure of the
upper level sets Et = fx 2 G j u(x) > tg is considered. Clearly for a.e. t the set
Et has locally H-�nite perimeter, then it is possible to replace its perimeter measure
with the spherical Hausdor� measure according to (6.2). Here a crucial point of the
proof occurs: we have to prove that the H-reduced boundary @�HEt covers HQ�1

almost all of the level set u�1(t). This is done in Theorem 6.5.1 where it is proved
that for a.e. t 2 R we have HQ�1(u�1(t)n@�HEt) = 0. In the same theorem a natural
relation between the H-di�erential of u and the generalized inward normal to Et is
also provided, namely

�Et(p) =
rHu(p)

jrHu(p)j ;

for HQ�1-a.e. p 2 u�1(t) and a.e. t 2 R. We mention that the proof of this theorem
stems from a careful application of several results, as Theorem 6.3.1 of Section 6.3,
formula (2.48), Theorem 4.2 of [5] and Lemma 2.31 of [73]. By this theorem the
coarea formula is easily proved. The subsequent coarea formulae (6.45), (6.46) and
(6.47) follow applying results of Section 5.2, where it is proved that the metric factor
of rotational groups is constant. We mention that in this particular case another
proof of the coarea formula can be given using directly the coarea inequality (6.14),
without exploiting Theorem 6.5.1, [125].

In Section 6.6 we are concerned with the estimate of the characteristic set of C1

hypersurfaces. We mention that the size of the characteristic set is of great impor-
tance in the study of trace theorems in the sub-Riemannian setting. For instance,
M.Derridj proved in [51] that the characteristic set of a C1 hypersurface is negligi-
ble with respect to the Euclidean surface measure and by this result he proved the
existence of a measurable trace on @
 for Sobolev maps with respect to horizontal
vector �elds. In this picture, characteristic points play the role of cusps where it is
not possible to consider the trace map. In the theory of sets of H-�nite perimeter a
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precise estimate of the size of the characteristic set allows us to answer the following
natural question, raised in [71] and [73]: are all C1 hypersurfaces G-recti�able? The
answer to this question follows essentially by proving that the set of characteristic
points is HQ�1-negligible. This fact was �rst proved in [12] for Heisenberg groups
and subsequently generalized in [73] to sub-Riemannian groups of step 2. In both
cases the proofs are based on covering arguments. In Theorem 6.6.2 we extend these
results to any sub-Riemannian group using a di�erent argument. Our proof relies
on the weak Sard-type Theorem proved in Section 6.3 and on the observation that
characteristic points of regular level sets can be regarded as those points where the H-
di�erential of the map vanishes, Lemma 6.6.1. As a result, in every sub-Riemannian
group the hypersurfaces of class C1 are G-recti�able, according to De�nition 3.5.2.
Another important consequence of Theorem 6.6.2 is the estimate (7.52) that answers
a conjecture raised by D. Danielli, N. Garofalo and D.M. Nhieu in [42]. More details
on this major consequence are given in Chapter 7.

6.1 Carath�eodory measures and coarea factor

In this section we introduce some additional notions that will be used throughout
the chapter. We will assume that G and M are strati�ed groups with homogeneous
distances d and � and Hausdor� dimension Q and P , respectively.

De�nition 6.1.1 We �x a compact neighbourhood D � G of the unit element and
de�ne the family F0 = fx�rD j x 2 G; r > 0g. Given a � 0 we apply the construc-
tion of De�nition 2.1.17 with F equal to either F0 or P(G), denoting with �a the
corresponding measure on G.

Proposition 6.1.2 The measure �a de�ned above satis�es the estimate (2.4) and

the following ones

1. �a(�rE) = ra�a(E) for E � G, r > 0

2. �a
t (�rE) � ra�a

t (E), for E � G, r; t > 0 and r < 1

3. �a(xE) = �a(E), for any x 2 G (left invariance)

Proof. In case F = P(G) clearly �a = Ha, so (2.4) is trivial. If F = F0 it is enough
to observe that there exist two positive constants c1 and c2 such that Bc1 � D � Bc2

and compare �a with Sa. Properties 1 and 2 follow from the fact that for any s; r > 0
and x 2 G one has diam(�rE) = r diam(E) and �s(x�rD) = �sx�srD 2 F . Finally,
by the left invariance of the homogeneous metric Property 3 follows. 2

The following de�nition is essentially taken from [7].
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De�nition 6.1.3 (H-coarea factor) Consider an H-linear map L : G �!M, with
Q � P . The horizontal coarea factor CP (L) of L is the unique constant such that

�Q(B1)CP (L) =

Z
M

�Q�P
�
B1 \ L�1(�)

�
d�P (�) : (6.3)

We will also say in short H-coarea factor.

Remark 6.1.4 Notice that measures �P , �Q and �Q�P can be built independently,
choosing di�erent families F0, according to De�nition 6.1.1.

In view of the following proposition the de�nition of H-coarea factor is well posed.

Proposition 6.1.5 Let L 2 HL(G;M) and let (F;W ) and ( ~F ; ~W ) be two systems of

graded coordinates on G and M, respectively. Then there exists a unique nonnegative

constant CP (L) such that (6.3) holds and the number CP (L) is positive if and only

if L is surjective. In this case we have

CP (L) =
�Q�P �P

�Q
Cp( ~F�1 � L � F ) ; (6.4)

where posing N = L�1(0) we have de�ned �Q�P = �Q�P
xN(Bd

1)=F]Hq�p
j�j xN(Bd

1),

�P = �P (B�
1)=

~F]Lp(B�
1) and �Q = �Q(Bd

1)=F]Lq(Bd
1).

Proof. Let us �x a system of graded coordinates (F;W ), according to De�ni-
tion 2.3.43. We proceed similarly to the proof of Proposition 4.2.2. If we read the di-
lation �r restricted to the subspace L(G) as coordinate dilation with respect to graded
coordinates it is easy to see that its jacobian is rP

0
, where P 0 =

Pm
i=1 i dim (L(Vi)).

It follows that

F]Hp0

j�j (B
�
r \ L(G)) = rP

0
F]Hp0

j�j (B
�
1 \ L(G)) ;

where p0 is the topological dimension of L(G). In the case L is not surjective it follows
that

P 0 =
mX
i=1

idim (L(Vi)) <
mX
i=1

i dim(Wi) = P ;

hence the Hausdor� dimension of L(G) is less than P and by (2.4) and (6.3) it follows
that CP (L) = 0. Now assume that L is surjective. We start proving that �Q�P is
proportional to F]Hq�p

j�j on the subgroup N = L�1(0). Note that N has topological
dimension q�p and a graded structure N = U1�U2�� � ��U�, where Ui is a subspace
of Vi for any i = 1; : : : ; �. Reasoning as above we have that

F]Hq�p
j�j

�
Bd
r \N

�
= rQ

0
F]Hq�p

j�j

�
Bd
1 \N

�
; (6.5)
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where Q0 =
Pn

i=1 i dim(Ui). The fact that L is surjective implies that n � m,
dim(Vi) � dim(Wi) and dim(Ui) = dim(Vi)� dim(Wi), i = 1; : : : ;m, so

Q0 =
nX
i=1

idim(Ui) =
mX
i=1

i (dim(Vi)� dim(Wi)) +
nX

i=m+1

i dim(Vi) = Q� P :

It is clear that �Q�P
xN is a left invariant measure on N , because the metric d

restricted to N is still left invariant. We have to check that it is also locally �nite. It
is clear that F]Hq�p

j�j xN is locally �nite. Moreover it is left invariant due to the fact

that coordinate translations (De�nition 2.3.54) restricted to the subspace F�1(N)
preserve the Lebesgue measure. This in turn follows by Proposition 2.3.47 observing
that translations of G restricted to N preserve the Riemannian volume restricted to
N . By (6.5) it follows that �Q�P

xN is locally �nite and hence it is proportional to
Hq�p
j�j xN , namely

�Q�P
xN = �Q;P F]Hq�p

j�j xN ; (6.6)

where �Q�P = �Q�P
xN(Bd

1)=F]Hq�p
j�j xN(Bd

1). Notice that for any � 2 M we can

write L�1(�) = xN , where L(x) = �, so taking into account that left translations are
isometries, one concludes that the constant �Q;P remains unchanged if one replaces
N with L�1(�) in formula (6.6). As a result we �nd that the measure

�(A) =

Z
M

�Q�P
�
A \ L�1(�)� d�P (�)

is positive on open bounded sets, while inequality (2.7) guarantees that � is �nite
on the sets A � G with �Q-�nite measure. By a change of variable involving left
translations it is not di�cult to see that � is a left invariant measure on G, so
there exists a positive constant CP (L) such that � = CP (L)�

Q. Now we want to
compute explicitly the H-coarea factor CP (L). We know that �P is proportional to
the Lebesgue measure Lp on M. Thus, we obtainZ

M

�Q�P
�
Bd
1 \ L�1(�)

�
d�P (�) = �Q�P �P

Z
M

F]Hq�p
j�j

�
Bd
1 \ L�1(�)

�
dLp(�) ;

where �P = �P (B�
1)=

~F]Lp(B�
1). From the classical coarea formula we getZ

M

�Q�P
�
Bd
1 \ L�1(�)

�
d�P (�) =

�Q�P �P
�Q

Cp(L) �Q(Bd
1) ;

where �Q = �Q(Bd
1)=Lq(Bd

1). Finally, formula (6.3) leads us to the claim. 2

Remark 6.1.6 If G and M are Euclidean spaces it follows

CP (L) = det(LL�)1=2 = Cp(L) ;
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where L is a linear map. Therefore, the H-coarea factor coincides with the classical
coarea factor of De�nition 2.3.41. For H-linear maps, by (2.7), we always have

CP (L) � !Q�P !P �Q�P �P �Q

!Q�Q(B1)
Lip(L) : (6.7)

6.2 Coarea inequality

This section is devoted to the proof of coarea inequality. In the sequel the set A � G
will be assumed to be closed and f : A �! M will be a Lipschitz map. Notice that
the map � �! �Q�P

t

�
A \ f�1(�)� is a Borel map for any t > 0, hence we can state

the following de�nition.

De�nition 6.2.1 Let t be a positive number. We de�ne the measure �t on G as
follows: for any D � G

�t(D) =

Z
M

�Q�P
t

�
D \A \ f�1(�)� d�P (�) :

By the general coarea estimate (2.7) the measure �t is locally �nite uniformly in t > 0.

De�nition 6.2.2 For each map f : A �!M and x0 2 A, we de�ne the r-rescaled of

f at x0 as the map fx0;r : �1=r(x
�1
0 A) �!M de�ned as

fx0;r(y) = �1=r
�
f(x0)

�1f(x0�ry)
�
:

Proposition 6.2.3 Consider a map f : A �!M, a di�erentiability point x0 2 I(A)
and a sequence of positive numbers (rj) which tends to zero. For every � 2M, j 2 N
de�ne the compact set

Kj(�) =
[
m�j

�
D1 \ f�1x0;rm(�) \ �1=rm(x�10 A)

�
:

Then it follows
T
j�1Kj � D1 \ dHf(x0)�1(�).

Proof. Pick an element y 2 T
j�1Kj , getting a subsequence (�l) of (rj) and a

sequence (yl) such that yl 2 D1 \ f�1x0;�l
(�)\ �1=�l(x�10 A), yl ! y. Thus, by de�nition

of di�erentiability it follows

fx0;�l(yl)! dHf(x0)(y) ;

so fx0;�l(yl) = � for every l 2 N yields � = dHf(x0)(y). 2

Theorem 6.2.4 (Density estimate) In the above assumptions, for any t > 0 we

have

lim sup
r!0

�t(Dx0;r)

�Q(Dx0;r)
� CP (dHf(x0)) : (6.8)
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Proof. We start considering the quotient

�t(Dx0;r)r
�Q =

Z
M

�Q�P
t

�
A \Dx0;r \ f�1(�)

�
r�Q d�P (�):

The map Tx0;r : G �! G, y �! x0�ry is the composition of an isometry and a
dilation �r. Thus, choosing r < 1, by property 2 of Proposition 6.1.2 it follows

�Q�P
t

�
A \Dx0;r \ f�1(�)

�
= �Q�P

t

�
Tx0;r (Ax0;r(�))

�
� rQ�P �Q�P

t (Ax0;r(�)) ;

where Ax0;r(�) = fy 2 D1 j f(x0�ry) = �g \ �1=r(x�10 A). This implies

�t(Dx0;r)r
�Q �

Z
M

�Q�P
t (Ax0;r(�)) r

�P d�P (�):

De�ning Rx0;r : M �! M, � �! �1=r(f(x0)
�1�) = � and using property 1 of Propo-

sition 6.1.2 we obtain (Rx0;r)](�
P ) = rP �P , hence

�t(Dx0;r)r
�Q �

Z
M

�Q�P
t

�
Ax0;r(R

�1
x0;r(�)

�
d�P (�) :

By the de�nition of r-rescaled function we have

Ax0;r

�
R�1x0;r(�)

�
=
n
y 2 D1 j f(x0�ry) = f(x0)�r�

o
\ �1=r(x�10 A)

= D1 \ f�1x0;r(�) \ �1=r(x�10 A) :

Now we notice that the family of functions ffx0;rgr>0 is uniformly Lipschitz with
bound Lip(f) = h on the Lipschitz constants, hence we have fx0;r(D1) � Dh for any
r > 0 and

�t(Dx0;r)r
�Q �

Z
Dh

�Q�P
t

�
D1 \ f�1x0;r(�) \ �1=r(x�10 A)

�
d�P (�) : (6.9)

We choose a sequence (rj) such that rj ! 0 and for each j 2 N de�ne the functions

gtj(�) = �Q�P
t

�
D1 \ f�1x0;rj (�) \ �1=rj (x�10 A)

�
(6.10)

and the following decreasing sequence of compact sets

Kj(�) =
[
m�j

�
D1 \ f�1x0;rm(�) \ �1=rm(x�10 A)

�
:

In view of Proposition 6.2.3 we obtain\
j�1

Kj(�) � D1 \ L�1(�) ;
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where L = dHf(x0) is the di�erential of f at x0. By results of paragraph 2.10.20 in
[55] it follows

lim sup
j!1

gtj(�) � lim
j!1

�Q�P
t (Kj(�)) � �Q�P

�

�\
j�1

Kj(�)
�
� �Q�P

�

�
D1 \ L�1(�)

�
(6.11)

with � < t. Each measure �a
� , with �; a > 0, is �nite on bounded sets, then the

sequence of nonnegative functions (gtj)j2N is uniformly bounded by �Q�P
� (D1) on

Dh. This fact together with the Fatou Theorem and inequality (6.11) implies

lim sup
j!1

Z
Dh

gtj(�) d�
P (�) �

Z
Dh

�Q�P
�

�
D1 \ L�1(�)

�
d�P (�) : (6.12)

Joining inequalities (6.9), (6.10), (6.12) and taking into account the inequality �a
� �

�a it follows

lim sup
j!1

�t(Dx0;rj )r
�Q
j �

Z
M

�Q�P
�
D1 \ L�1(�)

�
d�P (�) :

The arbitrary choice of the sequence (rk) and De�nition 6.1.3 yield

lim sup
r!0

�t(Dx0;r)r
�Q � CP (dHf(x0)) �

Q(D1) ; (6.13)

�nally, by inequality (6.13) and the property 1 of Proposition 6.1.2 the proof is
complete. 2

Theorem 6.2.5 (Coarea inequality) Let A � G be a measurable set and consider

a Lipschitz map f : A �!M . Then we haveZ
M

�Q�P
�
A \ f�1(�)� d�P (�) �

Z
A
CP (dHf(x)) d�

Q(x) : (6.14)

Proof. We start proving the measurability of g(x) = CP (dxf). For any t > 0 we
consider the Borel function de�ned on H-linear maps

L �! �Q�P
t

�
L�1(0) \D1

�
:

The limit as t! 0 is a measurable function, so by the measurability of x �! dxf and
the representation (6.4) one concludes this veri�cation. Furthermore, in view of (6.7)
the map g is bounded. Now we de�ne A0 � I(A) \ A as the set of di�erentiability
points, hence by Theorem 3.4.11 we have �Q(A nA0) = 0 and by (2.7) it followsZ

M
�Q�P

�
A \ f�1(�)� d�P (�) �

Z
M
�Q�P

�
A0 \ f�1(�)� d�P (�) : (6.15)
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Consider a measurable step function ' =
Pk

i=1 �i1Ai � g, �i � 0,
Fk
i=1Ai = A0

(disjoint union). By estimate (6.8), for any i = 1; : : : ; k we have

lim inf
r!0

�t(Dx;r)

�Q(Dx;r)
� �i

for each x 2 Ai. Inequality (2.7) implies the absolute continuity of the measure �t
with respect to �Q, so for every i = 1; : : : ; k we can apply Lemma 2.1.24, getting

�t(Ai) � �i�
Q(Ai) :

Since our estimates are independent of t > 0, we can allow t! 0. Therefore, summing
over i = 1; : : : ; k we �ndZ

M
�Q�P

�
A0 \ f�1(�)� d�P (�) �

Z
A0
'(x) d�Q(x) :

By (6.15) and the measurability of g the proof is complete. 2

6.3 Some applications

The classical Sard Theorem states that for su�ciently smooth maps, almost every
level set has an empty set of singular points. An analogous statement for Lipschitz
maps is to require that for a.e. level set the subset of singular points is negligible with
respect to the surface measure. In the following theorem we prove this statement for
Lipschitz maps of sub-Riemannian groups.

Theorem 6.3.1 (Sard-type Theorem) Let f : A �! M be a Lipschitz map,

where A is a closed subset of G. We denote the set of singular points as follows

S = fx 2 A j dHf(x) is not surjectiveg :
Then, for HP -a.e. � 2M we have HQ�P

�
S \ f�1(�)� = 0.

The proof follows immediately from coarea inequality (6.1), by taking A = S. Indeed,
we get Z

M

HQ�P
�
S \ f�1(�)� dHP (�) = 0 :

As a result, in almost every �ber the set of non-singular points has full measure.
To better understand the meaning of \singular point" we consider the C1 case.

Let u 2 C1(
) and t 2 R be a regular value of u, where 
 is an open subset of
G. In Lemma 6.6.1 we will prove that singular points coincide with characteristic
points: we will precisely show that S \ u�1(t) = C

�
u�1(t)

�
, where C

�
u�1(t)

�
is the

characteristic set of the hypersurface u�1(t). It turns out that singular points, e.g.
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those points where the H-di�erential vanishes, represent the class of characteristic
points even when the surface is less regular, since it can be the level set of a Lipschitz
map with respect to the CC-distance.

We also notice that C1 real valued maps are in particular Lipschitz with respect to
the CC-distance, hence we can apply our weak version of Sard's Theorem, obtaining
that in a.e. �ber the set of characteristic points is negligible for the Q� 1 Hausdor�
measure. We will use this simple observation in Theorem 6.6.2 to prove that the
set of characteristic points of a C1 hypersurface is HQ�1-negligible. Our Sard type
theorem will be also crucial in the proof of Theorem 6.5.1 that provides the main
tool to prove the coarea formula (6.42).

The coarea inequality (6.1) can be also used to know if there exists only a trivial
coarea formula for two given strati�ed groups. In the next proposition we show that
if all H-linear maps between the groups are not surjective, then only a trivial coarea
formula holds between the groups, namely a vanishing identity.

Proposition 6.3.2 Let G and M be strati�ed groups such that any H-linear map

L 2 HL(G;M) is not surjective. Then for any Lipschitz map f : A �! M, where A
is a measurable subset of G, the coarea formula holds and it is trivialZ

A
CP (dHf(x)) dHQ(x) = 0 =

Z
M

HQ�P
�
A \ f�1(�)� dHP (�) :

Proof. By Theorem 3.4.11 the map f is di�erentiable a.e. in A and the di�erential
dHf(x) : G �! M is an H-linear map. Our assumption yield that any H-linear map
of HL(G;M) is not surjective, hence by Proposition 6.1.5 we have CP (dHf(x)) = 0
for HQ-a.e. x 2 A. Thus, the coarea inequality (6.14) impliesZ

M

HQ�P
�
A \ f�1(�)� dHP (�) �

Z
A
CP (dHf(x)) dHQ(x) = 0 : 2

The hypotheses of the previous proposition are satis�ed when G = H2n+1 and M =
H2m+1 with n > m.

Proposition 6.3.3 Any H-linear map T 2 HL(H2n+1;H2m+1), with n > m, is not

surjective.

Proof. We use the exponential coordinates of Remark 2.3.27, then the product
operation is as follows

(z; s) � (w; t) = (z + w; s+ t+ 2Imhz; wi) ;

where (z; s), (w; s) 2 Cn � R. By Remark 3.1.15 we have T (z; s) = (Az; �s), where
A : Cn �! Cm is a linear map with respect to the �eld of real numbers and � 2 R.
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The homomorphism property implies that

T (z + w; s+ t+ 2Imhz; wi) = (Az +Aw; �(s+ t) + 2�Imhz; wi)
= T (z; s) � L(w; t) = (Az +Aw; �s+ �t+ 2ImhAz;Awi) ;

then
� Imhz; wi = ImhAz;Awi (6.16)

for any z; w 2 Cn. By the fact that n > m we can take a non vanishing u in the
kernel of A. Replacing z = u and w = iu in (6.16) we obtain that � = 0, this in turn
implies that T is not surjective. 2

Proposition 6.3.2 and Proposition 6.3.3 yield the following theorem.

Theorem 6.3.4 Let f : A �! H2m+1 be a Lipschitz map, where A is a measurable

subset of H2n+1 and n > m. Then the coarea formula holds and it is trivialZ
A
CP (dHf(x)) dH2n+2(x) = 0 =

Z
H2m+1

H2(n�m)
�
A \ f�1(�)� dH2m+2(�) : (6.17)

6.4 Representation of the perimeter measure

In this section we �nd the representation of the perimeter measure with respect to
the spherical Hausdor� measure built with an arbitrary homogeneous distance. This
is done in all groups where a Blow-up Theorem holds, namely generating groups.
This general representation will be used in Section 6.5 in order to obtain a general
formulation of the coarea formula for real valued Lipschitz maps.

De�nition 6.4.1 Let G be a graded group and let E � G and p 2 G. The r-rescaled
of E at p is the set

Ep;r = �1=r(p
�1E) :

In formula (6.34) we will see the connection between the notion of rescaled set and
the one of rescaled map (De�nition 6.2.2).

Remark 6.4.2 It is not di�cult to check that if E is a set of H-�nite perimeter in
G, then for any p 2 G and r > 0 the set Ep;r is also and the following formula holds�

�1=r � l�1p
�
]
j@EjH = rQ�1 j@Ep;rjH (6.18)

In the next de�nition we introduce the notion of vertical half spaces.

De�nition 6.4.3 Let p 2 G and � 2 V1 n f0g. The vertical half spaces at p 2 G
relative to � are de�ned as follows

S+g (p; �) = exp
�n
v 2 TpG

��� g(p)(�(p); v) > 0
o�

S�g (p; �) = exp
�n
v 2 TpG

��� g(p)(�(p); v) < 0
o�

:
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When p = e we will simply write S+g (�) and S
+
g (�).

Remark 6.4.4 Note that the notion of half space is strictly related to the graded
metric we consider. We also point out that by de�nition of vertical half space we get
the following equalities

S+g (p; �) = lp
�
S+g (�)

�
S�g (p; �) = lp

�
S�g (�)

�
:

The previous relations follow observing that

dlp

�n
v 2 TeG

��� g(e)(�(e); v) > 0
o�

=
n
v 2 TpG

��� g(p)(�(p); v) > 0
o

and lp = exp �dlp � exp�1.
Now one can wonder whether the notion of half space yields two di�erent notions of
intrinsic normal. In fact, if we look at S+g (X), with X 2 V1 n f0g, as a set of H-�nite
perimeter we have a natural notion of normal to S+g (X) by taking the generalized
inward normal �S+g (X). On the other hand, if we consider @S+g (X) as a regular

hypersurface of G we can also adopt the notion of horizontal normal to @S+g (X)
at the unit element e 2 @S+g (X) given in De�nition 2.2.9, that clearly yields the
direction X. In the following lemma we check that these two notions do coincide.

Lemma 6.4.5 Let X 2 V1 n f0g. Then we have

�S+g (X)(p
0) =

X

jXj
for any p0 2 @S+g (X) and �S+g (X)(p

0) = 0 otherwise.

Proof. Let (F;W ) be a system of graded coordinates, where (W1; : : : ;Wm) is an
orthonormal basis of the �rst layer V1 and W1 = X=jXj. For any i = 1; : : : ;m we
consider the vector �elds ~Wi = F�1

� Wi 2 �(TRq) and the maps ~'i = 'i � F , where
' =

Pm
j=1 '

jWj . For ease of notation we denote S+g (X) = S+. Proposition 2.3.47
and formula (2.1) giveZ

S+
divH' dvg =

Z
S+
divH' dF]Lq =

Z
F�1(S+)

(divH') � F dLq :

By our choice of W1, we obtain S
+ = F (�+

1 ), where

�+
1 =

n
x 2 Rq

��� x1 > 0
o
;

therefore, exploiting formula (2.43) and Proposition 2.3.47 we getZ
S+
divH' dvg =

Z
�+
1

mX
j=1

~Wj ~'
j dLq = �

Z
@�+

1

mX
j=1

~'j h ~Wj ; e1i dHq�1
j�j ;
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where (ej) is the canonical basis of R
q. Hence, formulae (2.1) and (2.42) imply

Z
@�+

1

~'1 dHq�1
j�j =

Z
G

h'; �S+i dj@S+jH =

Z
Rq

mX
j=1

~'j ~�j dF�1
] j@S+jH ; (6.19)

where ~�j = �j �F and �j = h�S+ ;Wji for any i = 1; : : : ;m. The validity of (6.19) for
any test function ' yields the equality of vector measures on Rq

e1Hq�1
x@�+

1 =
� mX
j=1

~�j ej

�
F�1
] j@S+jH : (6.20)

In particular, ~�j = 0 for any i = 2; : : : ;m and

~�1 � F�1 = h�S+ ;W1i = h�S+ ;
X

jXj i = 1 :

By the fact that j�S+ j = 1 the thesis follows. 2

Remark 6.4.6 Notice that formula (6.20) also yields

j@S+g (X)jH(B1) = Hq�1
j�j

�
F�1

�
B1 \ @S+g (X)

��
= �gQ�1(X) : (6.21)

Now we state the Blow-up Theorem for the perimeter measure. This result corre-
sponds to Theorem 3.1 of [73].

Theorem 6.4.7 (Blow-up of perimeter measure) We consider a set of locally

H-�nite perimeter E � G and a point p 2 @�HE. If G is a 2 step sub-Riemannian

group, we have

lim
r!0+

j@Ep;rjH(UR) = j@S+g (�E(p)) jH(UR) (6.22)

for any R > 0 and the following weak � convergence of vector valued Radon measures

holds

�Ep;r j@Ep;rjH * �E(p) j@S+g (�E(p)) jH as r ! 0 : (6.23)

We have denoted by Up;r the open ball in the CC-distance associated to the graded

metric g.

In order to emphasize that our representation of the perimeter measure with respect
to a homogeneous distance is valid whenever the previous Blow-up Theorem holds
we give the following de�nition.

De�nition 6.4.8 We say that a sub-Riemannian group is generating if the statement
of Theorem 6.4.7 holds for this group.
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Remark 6.4.9 Due to results of [73] all 2-step groups are generating. In Section 6.5
we will prove a general coarea formula for real valued Lipschitz maps de�ned on
generating groups.

Remark 6.4.10 Notice that the notation S+g (�E(p)) in Theorem 6.4.7 must be pro-
perly interpreted. Indeed, according to De�nition 6.4.3 one has to consider the left
invariant vector �eld Z 2 V1 such that Z(p) = �E(p), obtaining S

+
g (�E(p)) = S+g (Z).

The point p only indicates that the direction of the horizontal normal depends on
the point we consider in @E.

The following theorem is the main result of the section. We will see that Theo-
rem 6.4.12 is its straightforward consequence.

Theorem 6.4.11 Let d be a homogeneous distance on a generating group G and

assume that E is a set of locally H-�nite perimeter. Then for j@EjH-a.e. p 2 G we

have

lim
r!0+

j@Ep;rjH(B1) = lim
r!0+

j@EjH(Bp;r)

rQ�1
= �gQ�1 (�E(p)) (6.24)

where the open balls Bp;r are de�ned with respect to the metric d and �gQ�1 (�E(p))
is the metric factor of d with respect to the horizontal direction �E(p), according to

De�nition 5.2.2.

Proof. In view of the discussion of Section 2.4, concerning the independence of @�HE
with respect to the homogeneous distance to which is referred (De�nition 2.4.10),
relation (2.48) holds when the reduced boundary is referred to d. Thus, it su�ces to
prove that limit (6.24) holds for each point p 2 @�HE. By formula (6.21) we see that
j@S+g (�E(p)) jH is �nite on compact sets, then by (6.22) we can choose R > 0 such
that for some � > 0 we have

sup
0<r<�

j@Ep;rjH(UR) < +1

By the weak �-compactness of Radon measures, see Theorem 1.59 of [6], there exists
an in�nitesimal sequence (rk) �]0; �[ and a Radon measure � such that

j@Ep;rk jHxUR * � as rk ! 0+ :

Since the measure � is �nite, then for a.e. t 2]0; T [ such that BT � UR we have
�(@Bt) = 0. We choose � 2]0; T [ such that �(@B� ) = 0. Since p 2 @�HE we can use
(6.23) and observing that the test function �(w) = �E(p)1B� (w) has discontinuities
in @B� , that is �-negligible, then we can utilize Proposition 1.62(b) of [6] that impliesZ

B�

g
�
�Ep;rk ; �E(p)

�
dj@Ep;rk jH �! g (�E(p); �E(p)) j@S+g (�E(p)) jH(B� )
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as rk ! 0. From the de�nition of H-reduced boundary we know that �E(p) is a unit
vector and from (6.18) and (6.21) we deduce that

j@S+g (�E(p)) jH(B� ) = �Q�1 �gQ�1(�E(p)) ;

where the factor �Q�1 is the jacobian of dilation �� restricted to the vertical hyper-
plane �p. Thus, we obtainZ

B�

g
�
�Ep;rk ; �E(p)

�
dj@Ep;rk jH �! �Q�1 �gQ�1(�E(p)) : (6.25)

Now we �x 0 < � < �0 < � such that �(@B�) = 0 and choose a cut-o� function  
such that

1B�
�  � 1Bc

�0
:

By a direct calculation, using formula (2.45) and the property of homogeneous di-
stances Btr = �rBt, we obtainZ

B�

g
�
�Ep;rk ; � 

�
d j@Ep;rk jH =

1

rQ�1k

Z
Bp;�rk

g(�E ; �p;k p;k) d j@EjH ; (6.26)

where �p;k = � � �1=rk � lp�1 and  p;k =  � �1=rk � lp�1 . Since p 2 @�HE we have

lim
rk!0+

Z
Bp;�rk

g(�E ; �E(p)) d j@EjH = 1

then, by properties (2.46)

lim sup
rk!0+

1

rQ�1k

Z
Bp;�rk

g(�E ; �E(p)) d j@EjH = �Q�1 lim sup
rk!0+

j@EjH(Bp;rk)

rQ�1k

: (6.27)

We de�ne  = 1�  . Then, observing that �p;k p;k = �E(p) on Bp;�rk and applying
(6.26) we obtain

1

rQ�1k

Z
Bp;�rk

g(�E ; �E(p)) d j@EjH =

Z
B�

g
�
�Ep;rk ; �E(p)

�
dj@Ep;rk jH

�
Z
B�

g
�
�Ep;rk ; � 

�
d j@Ep;rk jH � 1

rQ�1k

Z
Bp;�rk

nBp;�rk

g(�E ; �p;k p;k) d j@EjH :

Hence, by equality (6.27) and (6.25) it follows

�Q�1 lim sup
rk!0+

j@EjH(Bp;rk)

rQ�1k

� �Q�1 �gQ�1(�E(p)) + lim sup
rk!0+

j@Ep;rk jH(B� nB�)

+ lim sup
rk!0+

j@EjH (�rk(Bp;� nBp;�))

rQ�1k

:
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By virtue of the choice of � and properties (2.46) we have

lim sup
rk!0+

j@EjH(Bp;rk)

rQ�1k

�
��
�

�Q�1
�gQ�1(�E(p)) + �1�Q �(B� nB�)

+�1�Q j@EjH
�
Bp;� nBp;�

�
: (6.28)

It is possible to choose a sequence (�k) �]0; � [ such that �(@B�k) = 0 and �k ! � .
Hence, from the last inequality it follows

lim sup
rk!0+

j@EjH(Bp;rk)

rQ�1k

� �gQ�1(�E(p)) : (6.29)

It is a straightforward calculation from de�nition of the perimeter measure to notice
that

j@Ep;rjH(B1) =
j@EjH(Bp;r)

rQ�1
;

therefore by (6.23) and the semicontinuity of the total variation with respect to the
weak� convergence of measures we have

lim inf
r!0+

j@EjH(Bp;r)

rQ�1
� Hq�1

j�j (F�1(B1) \�p) = �gQ�1(�E(p)) : (6.30)

By virtue of (6.29) and (6.30) we can conclude that

lim
r!0+

j@EjH(Bp;r)

rQ�1
= �gQ�1(�E(p)) ;

so the thesis follows. 2

Theorem 6.4.12 (Representation) Let E � G be a set of locally H-�nite perime-

ter and let G be a generating group. Then we can represent the perimeter measure

as follows

j@EjH =
�gQ�1(�E)

!Q�1
SQ�1x@�HE ; (6.31)

where SQ�1 and �gQ�1(�E) refer to the same homogeneous distance.

Proof. The perimeter measure is �nite on bounded sets, then for a.e. r > 0 we
have j@EjH(@Bp;r) = 0 and j@EjH(Bp;r) = j@EjH(Dp;r). Then the family C = fBp;r j
j@EjH(Bp;r) = j@EjH(Dp;r)g is �ne at each p 2 G, i.e. de�ning Ip = fr j Bp;r 2 Cg
we have inf Ip = 0. In view of Theorem 6.4.11 it follows

lim
r2Ip;r!0+

j@EjH(Dp;r)

rQ�1
= �gQ�1(�E(p)) ;
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for j@EjH -a.e. p 2 G. Now we note that any homogeneous distance has the property
diam(Br) = 2r, for any r > 0. In fact, for any point p 2 exp(V1) we have �2p =
exp(2 ln p), hence the homogeneity of dilations allows us to get the required property.
Taking into account (2.48), we can apply Theorems 2.10.17(2) and 2.10.18(1) of [55] to
the measure j@EjH restricted to @�HE, so the proof follows by a standard argument,
observing that � �! �gQ�1(�) is measurable and then it can be approximated by
measurable steps functions. 2

6.5 Coarea formula

This section is devoted to the proof of the coarea formula for real valued Lipschitz
maps on generating groups.

Theorem 6.5.1 Let G be a sub-Riemannian group and let u : G �! R be a locally

Lipschitz map. Then for a.e. t 2 R we have

HQ�1(u�1(t) n @�HEt) = 0 and (6.32)

�Et(p) =
rHu(p)

jrHu(p)j ; (6.33)

for HQ�1-a.e. p 2 u�1(t), where Et = fx 2 G j u(x) > tg.
Proof. For every t 2 R we denote by Dt the set of points p 2 u�1(t) such that u
is H-di�erentiable at p and dHu(p) is nonvanishing. In view of Theorem 6.3.1 and of
(2.49) we derive that for a.e. t 2 R we have HQ�1(u�1(t) n Dt) = 0 and the set Et

has locally H-�nite perimeter. Now we pick one of these t. The �rst thing we want
to prove is that Dt � @�Et, where @

�Et is the essential boundary (De�nition 2.1.16).
To see this we �x p 2 Dt and observe that De�nition 6.2.2 and De�nition 6.4.1 yield

(Et)p;r =
n
x 2 G j up;r(x) > 0

o
: (6.34)

The H-di�erentiability at p implies the uniform convergence on compact sets of up;r
to dHu(p) and this in turn yields the following L1loc-convergence

(Et)p;r �! S+g (rHu(p)) : (6.35)

From previous limit we deduce the following

vg(Bp;r \ Et)

rQ
= vg (B1 \ (Et)p;r) �! vg

�
B1 \ S+g (rHu(p))

�
> 0

and analogously

vg(Bp;r n Et)

rQ
= vg (B1 n (Et)p;r) �! vg

�
B1 \ S�g (rHu(p))

�
> 0 ;
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so our �rst claim is achieved. Using the fact that HQ�1(u�1(t) n Dt) = 0 we also
obtain

HQ�1(u�1(t) n @�Et) = 0 : (6.36)

Now we recall the general representation of the perimeter measure for a set E of
H-�nite perimeter

j@EjH(A) =
Z
A\@�E

� dHQ�1 (6.37)

where � � c > 0 is a Borel map and A is an arbitrary Borel set. This formula
is proved in Theorem 4.2 of [5], where the more general context of metric measure
spaces is considered. By formulae (2.48) and (6.37) we get

cHQ�1(@�Et n @�HEt) � j@EtjH (@�Et n @�HEt) = 0 ;

then HQ�1(@�Et n @�HEt) = 0 and by (6.36) we obtain (6.32). In order to establish
(6.33) for HQ�1-a.e. p 2 u�1(t) we can limit ourselves to prove the formula for a
point p 2 Dt \ @�HEt. From now on, we denote by E the set Et. Now we use the
fact that p 2 @�HE. By Lemma 2.31 of [73] we obtain a constant c0, only depending
on the group, such that

j@EjH(Up;r) � c0 r
Q�1 (6.38)

for any r 2 (0; r0), where r0 > 0 depends on p. We recall that Up;r represents the
open ball with respect to the CC-distance. Due to the fact that the CC-distance is
a homogeneous distance there exists a constant c1 > 1 such that D1 � Uc1 (Proposi-
tion 2.3.37), then from formulae (6.18) and (6.38) we deduce that

j@Ep;rjH(D1) =
j@EjH(Bp;r)

rQ�1
� j@EjH(Up;c1r)

rQ�1
� c0 c

Q�1
1 (6.39)

for any 0 < r < r0=c1, where D1 is the closed unit ball with respect to the homoge-
neous distance d. By the weak �-compactness of Radon measures, see Theorem 1.59
of [6], there exists an in�nitesimal sequence (rk) � (0; r0=c1) and a Radon measure
� such that

j@Ep;rk jHxD1 * � as rk ! 0+ :

By the �niteness of � there exists � 2 (0; 1) such that �(Fr(B� )) = 0. By the uni-
form estimate (6.39) and the L1loc convergence (6.35) we derive the following weak

�-
convergence

�Ep;rk j@Ep;rk jHxD1 *
rHu(p)

jrHu(p)j j@S
+
g (rHu(p)) jHxD1 as rk ! 0+ :

By Proposition 1.62(b) of [6] it follows thatZ
B�

h�Ep;rk ; �E(p)i dj@Ep;rk jH �!
� rHu(p)

jrHu(p)j ; �E(p)
�
j@S+g (rHu(p)) jH(B� ): (6.40)
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Using formula (2.45) and the homogeneity of d, it is a direct calculation to obtainZ
B�

h�Ep;rk ; �E(p)i dj@Ep;rk jH =
1

rQ�1k

Z
Bp;�rk

h�E ; �E(p)i dj@EjH : (6.41)

By de�nition of H-reduced boundary we know that

lim
rk!0+

Z
Bp;�rk

h�E ; �E(p)i dj@EjH = 1;

hence the limit (6.40) and equality (6.41) imply

Z
B�

h�Ep;rk ; �E(p)i dj@Ep;rk jH =

 Z
Bp;�rk

h�E ; �E(p)i d j@EjH
!
j@EjH(Bp;�rk)

rQ�1k

=
�
�Q�1 + o(1)

� j@Ep;rk jH(B1) �!
� rHu(p)

jrHu(p)j ; �E(p)
�
j@S+g (rHu(p)) jH(B� ):

By the invariance of S+g (rHu(p)) under dilations we get

lim
rk!0+

j@Ep;rk jH(B1) =

� rHu(p)

jrHu(p)j ; �E(p)
�
j@S+g (rHu(p)) jH(B1) ;

and the lower semicontinuity of the perimeter measure yields

lim inf
rk!0+

j@Ep;rk jH(B1) � j@S+g (rHu(p)) jH(B1) :

By the last two limits we obtain that

1 �
� rHu(p)

jrHu(p)j ; �E(p)
�

then the thesis follows. 2

Theorem 6.5.2 (Generalized coarea formula) Let u : G �! R be a locally Lip-

schitz map, where G is a generating group. Then for any nonnegative measurable

map h : G �! R we have

Z
G

h(w) jrHuj(w) dvg(w) =
Z
R

Z
u�1(t)

�gQ�1(�Et(w))

!Q�1
h(w) dSQ�1(w) dt ; (6.42)

where SQ�1, �gQ�1 refer to the same homogeneous distance and �Et is the generalized
inward normal to the set Et = fx 2 G j u(x) > tg.
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Proof. By the a.e. di�erentiability of Lipschitz maps it is not di�cult to see that
jDHuj = jrHuj vg, where DHu is the distributional derivative of u regarded as a
measure. Thus, formulae (2.49) and (6.31) immediately yieldZ

U
jrHuj dvg =

Z
R

Z
@�HEt\U

�gQ�1(�Et)

!Q�1
dSQ�1 dt (6.43)

Now, by (6.32) the previous formula becomesZ
U
jrHuj dvg =

Z
R

Z
u�1(t)\U

�gQ�1(�Et)

!Q�1
dSQ�1 dt (6.44)

The Borel regularity of the spherical Hausdor� measure yieldsZ
A
jrHuj dvg =

Z
R

Z
u�1(t)\A

�gQ�1(�Et)

!Q�1
dSQ�1 dt

for any measurable set A � G. Finally, taking an increasing sequence of nonnegative
step functions which converges pointwise to a nonnegative measurable map h and
applying the Beppo Levi Convergence Theorem, the thesis follows. 2

In the next theorem we show that the general coarea formula (6.42) has a simpler
form in rotational groups.

Theorem 6.5.3 Let G be an R-rotational group endowed with an R-invariant ho-
mogeneous distance and let u : G �! R be a locally Lipschitz map. Then for any

nonnegative measurable map h : G �! R we haveZ
G

h(w) jrHuj(w) dvg(w) = �Q�1
!Q�1

Z
R

Z
u�1(t)

h(w) dSQ�1(w) dt ; (6.45)

where �Q�1 is given by Proposition 5.2.5 and it is referred to the R-invariant distance
together with SQ�1.
Proof. Since the generalized inward normal of a set of H-�nite perimeter takes
values in HG, then formula (6.45) follows from Proposition 5.2.5 and (6.42). 2

The coarea formula can be particularized in Heisenberg groups, which are rotational
groups and possess the homogeneous distance d1 where the factor �Q�1 is computed
explicitly.

Corollary 6.5.4 Let � be the CC-distance in H2n+1 and let u : H2n+1 �! R be a

locally Lipschitz map. We consider the graded metric g associated to the basis of

Proposition 5.1.8. Then for any nonnegative measurable map h : H2n+1 �! R we

have Z
H2n+1

h(w) jrHuj(w) dvg(w) = �Q�1
!Q�1

Z
R

Z
u�1(t)

h(w) dSQ�1� (w) dt ; (6.46)

where �Q�1 is given by Proposition 5.2.5 and it is referred to �.
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Proof. By Proposition 5.1.8 the group H2n+1 is R-rotational and the class R of
horizontal isometries is described in the same proposition. By Proposition 5.1.12 the
CC-distance with respect to g is R-invariant, then we can apply Theorem 6.5.3 and
obtain formula (6.46). 2

Corollary 6.5.5 Let d1 be the distance introduced in Example 5.1.11 and consider

a locally Lipschitz map u : H2n+1 �! R. We refer to the graded metric g on H2n+1

associated to the basis of Remark 2.3.27. Then for any nonnegative measurable map

h : H2n+1 �! R we haveZ
H2n+1

h(w) jrHuj(w) dvg(w) = 2!2n�1
!Q�1

Z
R

Z
u�1(t)

h(w) dSQ�1d (w) dt : (6.47)

Proof. As we have observed in the proof of Corollary 6.5.4 the Heisenberg group
with the metric g is R-invariant. From Example 5.1.11 we know that our distance d
is R-invariant, so by Proposition 5.2.5 we get a constant metric factor �Q�1. In view
of Example 5.2.8 we know that �Q�1 = 2!2n�1, so applying (6.45) we get (6.47). 2

6.6 Characteristic set of C1 hypersurfaces

In this section we utilize the weak Sard-type Theorem of Section 6.3 in order to study
the characteristic set of C1 hypersurfaces on sub-Riemannian groups.

Let us �x some notation that will be used throughout the section. We consider an
adapted orthonormal basis (W1; : : : ;Wq) of the strati�ed algebra G and we de�ne the
associated graded coordinates by F : Rq �! G (see De�nition 2.3.43). We denote
by � the CC-distance of G (see De�nition 2.3.33). We �x a map u : O �! R of
class C1 on the open bounded set O � G, with e 2 O and u(e) = 0. We assume
that there exists j0 such that Wj0u(p) 6= 0 for any p 2 O. Hence � = u�1(0) is a
C1 hypersurface in O and e 2 �. We recall that for any j = 1; : : : ; � the subspace
Hj
pG � TpG is a translation of HeG at p 2 G (De�nition 2.3.16).

Lemma 6.6.1 In the notation above, we have

C(�) = fp 2 � j dHu(p) : TpG �! R is the null mapg :

Proof. By de�nition of � it follows that du(p)(�) = 0 if and only if � 2 Tp�. Now
assume that p 2 C(�). Then HpG � Tp�, so du(p)(v1) = 0 for any v1 2 V1(p). By
Proposition 3.2.8 it follows that dHu(p)(v) = du(p)(v1) whenever v =

P�
j=1 vj and

vj 2 Hj
pG for any j = 1; : : : �. Therefore dHu(p) is the null map. Viceversa, if dHu(p)

is the null map, then du(p)(v1) = 0 whenever v1 2 HpG, namely HpG � Tp�. 2

Theorem 6.6.2 Let G be a sub-Riemannian group. Then, for any C1 hypersurface

� of an open subset 
 � G we have HQ�1
� (C(�)) = 0, where � is the CC-distance.
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Proof. Notice that any C1 hypersurface of 
 can be written as a countable union of
C1 bounded pieces Si, with i 2 N. In view of Proposition 2.3.39 the translations are
isometries with respect to � and it is also easy to observe that lpC(Si) = C(lp(Si))
for any p 2 G. It follows that

HQ�1
� (C(Si)) = HQ�1

� (lpC(Si)) = HQ�1
� (C(lpSi)) :

So the thesis follows if we prove that for a suitable small hypersurface � 3 e we
have HQ�1

� (C(�)) = 0. To do this, it is not restrictive to assume the hypotheses
and the notation �xed in the beginning of the section. Let ~O = F�1(O) � Rq and
~� = F�1(�) � Rq and observe that ~u�1(0) = ~� where ~u = u � F : ~O �! R is a C1

map. We de�ne the hyperplane

�0 =
n
x 2 Rq j xj0 = 0

o
:

By the implicit function theorem there exists an open subset A � �0 containing the
origin and a C1 map ' : A �! R such that ~u(�; '(�)) = 0 for any � 2 A, where
we have posed � =

P
j 6=j0

xj ej , (�; '(�)) =
P

j 6=j0
�j ej + '(�) ej0 and (ej) is the

canonical basis of Rq. The map � : A �! ~O, de�ned by � �! (�; '(�)) has the image
contained in ~�.

Now we de�ne G : R�A �! G by (t; �) �! lexp tWj0
(F (�(�))) and we note that

@tG(0) =Wj0(e) and @�jG(0) =Wj(e) + '�j (0)Wj0(e) ;

for any j 6= j0. It follows that there exist " > 0, ~A � A and U � G, with 0 2 ~A and
e 2 U , such that

G : (�"; ")� ~A �! U

is invertible. Let us consider the projection p1(x) = x1 for any x 2 Rq and de�ne
the C1 map � : U �! (�"; ") by �(p) = p1

�
G�1(p)

�
. The map � � F�1 is clearly

Lipschitz with respect to the Euclidean distance. It follows that � is Lipschitz with
respect to the Riemannian distance of G. Observing that in general � � dg, where
dg is the Riemannian distance, we obtain that � is Lipschitz with respect to �. Up to
a choice of a smaller neighbourhood of the origin ~O we can suppose that �( ~A) = ~�.
Now, in view of Theorem 6.3.1 for a.e. t 2 (�"; ") we have HQ�1

� (��1(t) \ S) = 0,
where

S = fp 2 U j dH�(p) is vanishingg :
By the fact that G is invertible it follows that d�(p) is nonvanishing at any p 2 U
and by Lemma 6.6.1 we have C

�
��1(t)

�
= ��1(t) \ S, therefore it follows

HQ�1
�

�
C(��1(t))

�
= 0 ;
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for a.e. t 2 (�"; "). By de�nition of ��1(t) we have

��1(t) =
n
p 2 U j G�1(p) 2 ftg � ~A

o
= lexp tWj0

�
F (�( ~A))

�
= lexp tWj0

(�) :

Thus, for a.e. t 2 (�"; ") we have

0 = HQ�1
�

�
C(��1(t))

�
= HQ�1

�

�
C
�
lexp tWj0

�
��

= HQ�1
�

�
lexp tWj0

(C(�))
�
= HQ�1

� (C(�))

and the thesis follows. 2



Chapter 7

Blow-up Therems on regular

hypersurfaces

In the previous chapter we have seen how the validity of a Blow-up Theorem implies
the representation of the perimeter measure by the spherical Hausdor� measure built
with respect to any homogeneous distance. By this fact and Theorem 6.5.1 we have
also established a generalized coarea formula for scalar Lipschitz maps with respect
to the CC-distance. All these results hold in generating groups (De�nition 6.4.8),
so if we want to extend their validity to every sub-Riemannian group we have to
prove that any sub-Riemannian group is generating. Unfortunately, this seems to be
a di�cult open issue.

In this chapter we tackle this problem considering more regular domains and
hypersurfaces. Under these strengthened conditions we will prove a Blow-up Theorem
for the Riemannian measure of C1 hypersurfaces of arbitrary sub-Riemannian groups
(Theorem 7.1.2). This leads us to a formula to represent the spherical Hausdor�
measure of a C1 hypersurface � � G, where G is an arbitrary sub-Riemannian
group. Our formula is as follows

SQ�1(�) =
Z
�

!Q�1
�gQ�1(�H(x))

j�H(x)j d�g(x) ; (7.1)

where both the spherical Hausdor� measure SQ�1 and the metric factor �gQ�1(�H(x))
are considered with respect to the same homogeneous distance, �g = Hq�1

dg
and dg is

the Riemannian distance associated to the graded metric g. Formula (7.1) has been
obtained in [126] through the limit

lim
r!0

�g(� \Bp;r)

rQ�1
=
�gQ�1(�H(p))

j�H(p)j (7.2)

at noncharacteristic points p 2 C(�), hence its validity holds in principle for hy-
persurfaces where the characteristic set is HQ�1-negligible. By Proposition 2.2.10

145
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we notice that (7.1) formally suggests that the set of characteristic points must be
HQ�1-negligible, as we have proved in Theorem 6.6.2. Just by this last result in
Theorem 7.1.3 we are able to extend the validity of (7.1) to any C1 hypersurface of
an arbitrary sub-Riemannian group. Formula (7.1) also �ts a general estimate for
the Hausdor� dimension of hypersurfaces in CC-spaces proved by M. Gromov in [86].
Precisely, if Q is the Hausdor� dimension of an equiregular CC-space with topological
dimension q, then the Hausdor� dimension of a compact subset with topological di-
mension q�1 is always greater than or equal to Q�1, see formula (�) at p.152 of [86].
By virtue of (7.1) the previously mentioned estimate becomes an equality when the
equiregular CC-space is a sub-Riemannian group and the compact subset of topolog-
ical dimension q�1 is of class C1. In fact, formula (7.1) implies that these compact
subsets have SQ�1- �nite measure. In particular we have proved that the intrinsic
Hausdor� dimension of C1 hypersurfaces of sub-Riemannian groups is exactly Q�1.

A further consequence of Theorem 7.1.2 is a version of the Riemannian coarea
formula in sub-Riemannian groupsZ

G

h(w) jrHuj(w) dvg(w) =
Z
R

Z
u�1(t)

�gQ�1(�H(w))

!Q�1
h(w) dSQ�1(w) dt ; (7.3)

where u : G �! R is a locally Lipschitz map with respect to the Riemannian distance
dg and h : G �! R is a nonnegative measurable map. Another important tool to
get (7.3) is Theorem 6.3.1, by which the set of characteristic points of a.e. level
set is HQ�1-negligible. The coarea formula (7.3) was �rst obtained by P. Pansu in
the Heisenberg group, using the Carnot-Carath�eodory distance, [152], and it was
extended to general strati�ed groups for smooth functions by J. Heinonen, [92]. In
the case G is an Euclidean space En, with the classical Riemannian metric, formula
(7.3) yields an extension of the classical Euclidean coarea formulaZ

En

h(x) jruj(x) dx =
Z
R

Z
u�1(t)

�n�1(�(x))

!n�1
h(x) dHn�1

k�k (x) dt ;

where �n�1(�(x)) andHn�1
k�k are considered with respect to the same Banach norm, ru

is the Euclidean gradient and � is the unit normal to the level set. We stress the fact
that our Blow-up Theorem for C1 hypersurfaces yields (7.3) in any sub-Riemannian
group, provided that the map u is Lipschitz with respect to the Riemannian distance.
However, in the sub-Riemannian context it would be natural to assume that u is Lip-
schitz with respect to the CC-distance (or equivalently any homogeneous distance).
As we have seen in Chapter 6, the coarea formula under this weaker conditions holds
for generating groups, where a Blow-up Theorem for the perimeter measure holds.
We also mention that another type of coarea formula for metric space valued Lips-
chitz maps on Euclidean normed spaces (or recti�able subsets) is proved in [7], where
the role of the metric factor is replaced by the notion of coarea factor, correspond-
ing to De�nition 6.1.3. In Theorem 7.3.1, using the same technique of the Blow-up
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Theorem for C1 hypersurfaces, we obtain di�erent blow-up estimates adapted to the
case of C1;1 hypersurfaces. As a result, we derive a sharp upper estimate of the
Hausdor� dimension of the characteristic set of C1;1 hypersurfaces in 2-step graded
groups endowed with a homogeneous distance. This result �ts the ones obtained in
[12] for the class of Heisenberg groups.

A further application of the blow-up technique together with the method used
to prove Theorem 6.4.11 allows us to achieve Theorem 7.4.2, where we obtain the
Blow-up Theorem for the perimeter measure of C1 domains. Here the C1 regularity
of the set permits us to avoid the use of any isoperimetric inequality, which is an
essential tool when the set is of H-�nite perimeter, [47], [71] and [73]. Precisely,
Theorem 7.4.2 holds in graded groups endowed with a homogeneous distance. This
class of groups clearly encompasses all sub-Riemannian groups, where it is always
possible to consider the CC-distance as a homogeneous distance. A �rst important
consequence of Theorem 7.4.2 arises in connection with a conjecture stated in [42].
In this paper it is shown that every C2 compact domain E of the Heisenberg group
satis�es the following estimates

c HQ�1(@E) � PH(E;H
2n+1) � CHQ�1(@E) ; (7.4)

where Q is the Hausdor� dimension of H2n+1 and c; C > 0 are dimensional con-
stants. Here the authors of [42] conjecture the validity of estimates (7.4) for any
sub-Riemannian group, under suitable regularity assumptions on the domain E. By
the Blow-up for the perimeter measure of C1 domains (Theorem 7.4.2) and the fact
that characteristic points are HQ�1-negligible for C1 hypersurfaces (Theorem 6.6.2)
we positively answer the conjecture extending (7.4) to any sub-Riemannian group
and any C1 closed set E as follows

�Q�1
!Q�1

HQ�1(@E \ 
) � PH(E;
) � 2Q �Q�1
!Q�1

HQ�1(@E \ 
) ; (7.5)

where 
 � G is an arbitrary bounded open set. In addition, we can provide explicit
formulae for the dimensional constants �Q�1, �Q�1, which are related to the graded
metric used for the perimeter measure and to the homogeneous distance used to build
the Hausdor� measure:

�Q�1 = inf
�2V1

�gQ�1(�) and �Q�1 = sup
�2V1

�gQ�1(�) :

Formula (7.5) is a straightforward consequence of a more precise result, corresponding
to Theorem 7.4.4, where we obtain the following representation of the perimeter
measure

j@EjH =
�gQ�1(�H)

!Q�1
SQ�1x@E (7.6)
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for any C1 closed subset E of a sub-Riemannian group. We mention that in the
particular case G = H2n+1 and d = d1 (see Example 2.3.38), the representation
(7.6) �rst appeared in [71]. The general validity of (7.6) for any C1 closed subset of
an arbitrary sub-Riemannian group and with respect to an arbitrary homogeneous
distance answers a question that has been raised in [72] and [73]. This is the ques-
tion of �nding a relation between the perimeter measure of a set and the spherical
Hausdor� measure of its boundary in general sub-Riemannian groups, under suitable
regularity assumptions. By Theorem 6.6.2, Proposition 7.4.3 and formulae (2.45),
(7.6) we obtain an intrinsic version of the divergence theorem for C1 subsets (7.54),
that becomes Z

E
divH� dvg = ��Q�1

!Q�1

Z
@E

D
�;

�H
j�H j

E
dSQ�1� :

on R-rotational groups, where � is the CC-distance with respect to the graded metric
that makes the group R-rotational, �Q�1 is the constant metric factor (see Proposi-
tion 5.2.5) and �H is the horizontal normal. Another immediate consequence of (7.6)
joined with (7.16) is the relation

j@EjH = j�H j�gx@E ; (7.7)

that connects the perimeter measure of a C1 set with the Riemannian surface measure
of its boundary. It is interesting to notice that the previous formula depends only on
the graded metric of G and the horizontal subbundle HG. We point out that if we
consider the set E as a subset of Rq with respect to a system of graded coordinates
we can exploit the classical divergence theorem for C1 sets obtaining a version of
(7.7), as it is shown in [31] concerning the general context of CC-spaces. In this case
the integration by parts in Rq yields the following term in place of the right hand
side of (7.7)

Z
@E

� mX
j=1

h�;Xji2
�1=2Hq�1

j�j (7.8)

whereHq�1
j�j is the q�1 dimensional Euclidean Hausdor� measure, � is the unit normal

to E and Xi are the vector �elds in R
q which span the horizontal subbundle HG. But

the term (7.8) is not immediately recognizable as an intrinsic object of the group,
due to the presence of the Euclidean scalar product and the measure Hq�1

j�j . We also

point out that (2.45), (7.7), Proposition 7.4.3 and Theorem 6.6.2 imply the following
version of the intrinsic divergence theorem for C1 sets of sub-Riemannian groupsZ

E
divH� dvg = �

Z
@E
h�; �Hi d�g : (7.9)

Let us give a synthetic overview of the chapter.
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The main result of Section 7.1 is Theorem 7.1.2, where the blow-up with respect
to the Riemannian measure of C1 hypersurfaces is proved in any graded group en-
dowed with a homogeneous distance. As a consequence, in Theorem 7.1.3 we obtain
the relationship between the Q�1 dimensional spherical Hausdor� measure and the
Riemannian measure of C1 hypersurfaces, (7.16), (7.17). We recall that the validity
of the previously mentioned formulae also relies on Theorem 6.6.2, where we have
proved that characteristic points are HQ�1-negligible.

In Section 7.2 we prove the coarea formula (7.3). The main results used for its
proof are the representation formula (7.16) and Theorem 6.3.1. In Corollary 7.2.3 we
extend the classical Euclidean coarea formula to the case when the n�1 dimensional
Hausdor� measure is built with a Banach norm on En. As we have seen in the previous
chapter the coarea formula takes a simpler form in rotational groups. Here the same
simpli�cation occurs in Theorem 7.2.4 and analogous theorems could be stated for
Heisenberg groups. Finally, in (7.24) we present a formulation of coarea formula
where only the restriction of the graded metric onto the horizontal subbundle is
involved. This presentation agrees with the philosophical principle of sub-Riemannian
Geometry according to which all information is contained in the horizontal subbundle
and in all its related structures.

The relevant result of Section 7.3 is the application of the blow-up technique
developed in Theorem 7.1.2 to the characteristic points of the hypersurface. This is
done in Theorem 7.3.1, where C1;1 hypersurfaces in groups of step 2 are considered.
By this theorem it is easily proved that the Q�2 dimensional Hausdor� measure of
the characteristic set is comparable with its Riemannian surface measure (7.34) and
the upper estimate (7.35) of its Hausdor� dimension follows. Finally, by results of
[12] for any � > 0 it is possible to �nd a C1;1 hypersurface �� in the Heisenberg group
with Hausdor� dimension greater than or equal to Q�2��, this in turn implies that
our upper estimate (7.35) is sharp.

In Section 7.4 we prove that noncharacteristic points of the boundary of a C1

set are in the H-reduced boundary. This is obtained by Proposition 7.4.1 and The-
orem 7.4.2, where we also show that at these points the Blow-up Theorem holds,
namely, limits (7.41) and (7.42) hold. The proof of these limits is the main result
of the section. The C1 regularity of the set E allows us to use also the notion of
horizontal normal �H to @E. In Proposition 7.4.3 we check that �H has the same
direction of the generalized inward normal �E , as one can expect. By the previously
mentioned Blow-up Theorem and the key result of Theorem 6.6.2 we easily achieve
Theorem 7.4.4, where formula (7.6) is proved. This formula joined with Theorem 6.6.2
yields (7.5), and joined with (7.16), yields (7.7). As an immediate consequence, we
obtain the divergence theorems (7.54), (7.55) and (7.56).
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7.1 Blow-up of the Riemannian surface measure

Throughout the chapter we will denote by M a graded group endowed with both
a homogeneous distance and a graded metric. The symbol G will denote a sub-
Riemannian group. The Riemannian measure of hypersurfaces is �g = Hq�1

dg
, where

dg is the Riemannian distance corresponding to the graded metric g.

Lemma 7.1.1 Let O �M be an open bounded neighbourhood of e 2 G. We consider

a C1 map u : O �! R such that u(e) = 0 and we assume that du(p) : TpM �! R is

surjective for every p 2 O. Then, for every p 2 � = u�1(0) and Z 2 TpM we have

dHu(p)(Z) = jru(p)j h�H(p); Zip and �H(p) =
rHu(p)

jru(p)j ; (7.10)

where �H(p) is the orthogonal projection of �(p) onto HpM and �(p) is the unit

normal to �.

Proof. By Proposition 3.2.8 we know that dHu(p)(v) = du(p)(v1) for every v =P�
j=1 vj , where vj 2 Hj

pG. It is standard to recognize that �(p) = ru(p)=jru(p)j,
where �(p) is the unit normal to �. Now, by de�nition of horizontal normal �H(p)
(De�nition 2.2.9) and horizontal gradient rHu(p) (De�nition 2.2.7), equations of
(7.10) easily follow. 2

Theorem 7.1.2 (Blow-up) Let � be a hypersurface of class C1 in 
 � M and let

p 2 � such that �H(p) 6= 0. Then we have

lim
r!0

�g(� \Bp;r)

rQ�1
=
�gQ�1(�H(p))

j�H(p)j ; (7.11)

Proof. Up to a translation we can suppose that p is the unit element e 2 G. By
Lemma 7.1.1 we can represent � by a C1 map u : O �! R, where O � 
 is an
open bounded neighbourhood of e and dHu(p) is surjective for any p 2 O. We �x
a system of graded coordinates (F;W ) where W1(e) = �H(e)=j�H(e)j. Then, taking
into account that (W1; : : : ;Wm) spans HeG and formulae (7.10), we have

W1u(e) = dHu(e)(W1) = jru(e)j j�H(e)jhW1;W1i = jrHu(e)j (7.12)

Wju(e) = dHu(e)(Wj) = jru(e)j j�H(e)jhW1;Wjie = 0 (7.13)

for any j = 2; : : : ;m. Let us de�ne ~u = u � F : ~O �! R, where ~O = F�1(O) � Rq.
We note that ~u�1(0) = ~� with ~� = F�1(�) � Rq. We de�ne the hyperplane

�1 =
n
x 2 Rq j x1 = 0

o
:

By the implicit function theorem there exists an open subset A � �1 containing the
origin and a C1 map ' : A �! R such that ~u ('(�); �) = 0 for any � 2 A, where we
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have posed � =
Pq

j=2 xj ej and (ej) is the canonical basis of R
q. Now we consider

the parametrization ~� : A �! ~�, � �! ('(�); �) and the map � = F � ~�. Denoting
~Br = F�1(Br), for a suitable small r0 > 0 we have

�g(� \Br) = �g

�
�
�
A \ ~��1( ~Br)

��
=

Z
~��1( ~Br)

r
det
�
hij(~�(�))

�
d� ;

for any r < r0, where hij denotes the graded metric g restricted to � with respect to
the coordinates �. Now we consider the restriction of the coordinate dilation �r to
the hyperplane �1 and we denote it by ~�r. We make the change of variable � = ~�r�

0,
observing that the jacobian of ~�r is r

Q�1. We obtain

�g(� \Br) = rQ�1
Z
~�1=r ~��1( ~Br)

r
det
�
hij(�(~�r�0))

�
d�0 : (7.14)

Now, we analyze the domain of integration ~�1=r�
�1( ~Br) � �1 as r ! 0. We have

the representation

~�1=r
~��1( ~Br) = f� 2 �1 j

�
'(~�r�) r

�1; �
�
2 ~B1 g :

By (7.13) it follows that

@xj'(0) = �@xj ~u(0)
@x1 ~u(0)

= 0 for j = 2; : : : ;m ;

hence, by Taylor formula we get

'(~�r�)r
�1 =

qX
i=m+1

@xi ~u(0)r
di�1�i +R(�r�)r

�1 ;

where R(v)jvj�1 ! 0 as jvj ! 0 and j � j is the Euclidean norm on �1. For any i > m
we have di � 2, then '(�r�)r

�1 ! 0 as r ! 0, uniformly in �, which varies in a
bounded set. Hence, for any � 2 ~B1 \�1 we have

1~�1=r��1(Br)
(�) �! 1 as r ! 0 ;

whereas for any � 2 �1 n ~B1 we get

1~�1=r��1(Br)
(�) �! 0 as r ! 0 ;

so by (7.14) and The Lebesgue Convergence Theorem it follows

lim
r!0

�g(� \Br)

rQ�1
=

Z
~B1\�1

q
det (hij(e)) d� : (7.15)
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Now we explicitly compute the number det (hij(e)). We have

hij(�(�)) =

�
@�

@�i
;
@�

@�j

�
�(�)

:

Denoting by gij the graded metric with respect to the coordinates x 2 A, we note
that gij(e) = �ij . Then, by (7.12) it follows that

q
det (hij(e)) =

s
det

��
@�

@�i
;
@�

@�j

�
e

�
=

jr~u(0)j
j@x1 ~u(0)j

=
jru(e)j
jrHu(e)j :

Finally, by (7.10) and observing that Hq�1
j�j ( ~B1 \ �1) = �gQ�1(�H(e)) (see De�ni-

tion 5.2.2), the limit (7.15) leads us to the conclusion. 2

Theorem 7.1.3 Let � be a hypersurface of class C1 in 
 �M. Then we have

�gQ�1(�H)

!Q�1
SQ�1x� = j�H j �gx� ; (7.16)

SQ�1x� =
!Q�1

�gQ�1(�H)
j�H j �gx� : (7.17)

Proof. Theorem 7.1.2 implies that for any p 2 � n C(�) we have

lim
r!0

�g(� \Bp;r)

!Q�1 rQ�1
=

�gQ�1(�(p))

!Q�1 j�H(p)j :

Due to Theorem 6.6.2 we have SQ�1 (C(�)) = 0. Observing that �g(� \ Bp;r) =
�g(� \ Dp;r) for a.e. r > 0 and using theorems on measure derivatives, see for
instance Theorems 2.10.17 (2) and 2.10.18 (1) of [55], the proof follows by a standard
argument. 2

7.2 Coarea formula on sub-Riemannian groups

In this section we apply the relation (7.16) between the Riemannian surface measure
and the Q�1 dimensional spherical Hausdor� measure of C1 hypersurfaces to the
study of an intrinsic version of the coarea formula in sub-Riemannian groups.

We begin the section recalling a classical result, see 13.4 of [25].

Theorem 7.2.1 (Riemannian coarea formula) Let (M; g) be a Riemannian ma-

nifold and let u : M �! R be a Lipschitz map with respect to the Riemannian

distance. Then for any summable map h :M �! R we haveZ
M

h jruj dvg =
Z
R

Z
u�1(t)

h d�g dt : (7.18)
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In the following theorem we extend the Riemannian coarea formula to sub-Rieman-
nian groups, where the measure of level sets is computed by the spherical Hausdor�
measure with respect to the homogeneous distance.

Theorem 7.2.2 (Generalized coarea formula) Let u : G �! R be a locally Lip-

schitz map with respect to the Riemannian distance of G. Then for any nonnegative

measurable map h : G �! R we haveZ
G

h(w) jrHuj(w) dvg(w) =
Z
R

Z
u�1(t)

�gQ�1(�H(w))

!Q�1
h(w) dSQ�1(w) dt ; (7.19)

where the spherical Hausdor� measure and the metric factor are understood with

respect to the same homogeneous distance.

Proof. Without loss of generality, we can assume that u is a Lipschitz map on a
bounded Borel set E. Moreover, we can extend u to a Lipschitz map on G. The
Whitney Extension Theorem (see 3.1.15 of [55]) ensures that for any " > 0 there
exists a map ~u : G �! R of class C1 such that, de�ning the Borel set

E0 =
n
x 2 G j u(x) = ~u(x)

o
;

we have vg(E n E0) � ". Thus, the gradients of u and ~u coincide a.e. on E0. In view
of formulae (7.10) and (7.18) we obtainZ

E
jrHuj dvg =

Z
R

�Z
E\u�1(t)

j�H j d�g
�
dt ;

for any measurable subset E � G. Hence, the general coarea estimate (2.6) implies

0 �
Z
E
jruj dvg �

Z
R

�Z
E0\~u�1(t)

j~�H j d�g
�
dt � C Lip(u) " ;

where C is a dimensional constant and ~�H is the horizontal normal of the level sets of
~u. By the fact that G is a strati�ed group we can apply Theorem 6.3.1, getting that
the set of characteristic points is SQ�1-negligible for a.e. level set of ~u. Furthermore,
by the classical Sard Theorem the set of critical values of ~u is negligible. Thus,
formula (7.16) yields

0 �
Z
E
jruj dvg �

Z
R

�Z
E0\~u�1(t)

�gQ�1(~�H(x))

!Q�1
dSQ�1(x)

�
dt � C Lip(u) " : (7.20)

Let us observe that E0\u�1(t) = E0\ ~u�1(t) and for a.e. level set we have ru = r~u
outside of a SQ�1-negligible set. Thus, for a.e. t 2 R the following equality holds for
SQ�1-a.e. x 2 u�1(t)

�gQ�1(~�H(x)) = �gQ�1(�H(x)) :
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Hence, inequality (7.20) becomes

0 �
Z
E
jruj dvg �

Z
R

�Z
E0\u�1(t)

�gQ�1(�H(x))

!Q�1
dSQ�1(x)

�
dt � C Lip(u) " :

Again, using (2.6) and observing that in view of (5.5) the function �gQ�1(�) is bounded,
we get Z

(EnE0)\u�1(t)
�gQ�1(�H(x)) dSQ�1(x)

�
dt � C 0 Lip(u) " :

Finally, in joining the last two inequalities we arrive at

�C 0Lip(u)" �
Z
E
jruj dvg �

Z
R

�Z
E\u�1(t)

�gQ�1(�H(x))

!Q�1
dSQ�1(x)

�
dt � CLip(u)" :

Letting "! 0 it follows

Z
E
jrHuj dvg =

Z
R

�Z
E\u�1(t)

�gQ�1(�H(x))

!Q�1
dSQ�1(x)

�
dt : (7.21)

Now, by a standard argument, taking an increasing sequence of nonnegative step
functions that converge to h and applying the Beppo Levi-Monotone convergence
theorem the thesis follows. 2

Corollary 7.2.3 Let (En; k�k) be the Euclidean space endowed with a norm and let

u : En �! R be a locally Lipschitz map. Then for any nonnegative measurable map

h : En �! R we haveZ
En

h(x) jruj(x) dx =
Z
R

Z
u�1(t)

�n�1(�(x))

!n�1
h(x) dHn�1

k�k (x) dt ; (7.22)

where ru is the Euclidean gradient, � is the normal direction to the level set and

�n�1(�(x)) is de�ned with respect to k�k as the Hausdor� measure Hn�1
k�k .

Proof. Formula (7.22) follows directly from (7.19), observing that Q = n and that
any direction in En is horizontal. Thus, the horizontal gradient coincides with the
Euclidean gradient and the horizontal normal �H coincides with the normal � to
the level set. Now, we recall that the spherical Hausdor� measure coincides with
the Hasudor� measure on recti�able subsets of a normed space. This fact follows
from the isodiametric inequality of �nite dimensional normed spaces, see [25]. Thus,
for a.e. level set of f we can replace the Sn�1k�k in formula (7.19) with Hn�1

k�k . This
completes the proof. 2

In the next theorem we apply the generalized coarea formula in rotational groups
with invariant homogeneous distances.
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Theorem 7.2.4 Let G be an R-rotational group endowed with an R-invariant ho-
mogeneous distance d and let u : G �! R be a locally Lipschitz map with respect to

the Riemannian distance. Then for any nonnegative measurable map h : G �! R we

have Z
A
h(x) jrHuj(x) dvg(x) = �Q�1

!Q�1

Z
R

Z
u�1(t)

h(x) dSQ�1dt ; (7.23)

where �Q�1 is given by Proposition 5.2.5 and it is referred to d together with SQ�1.
Proof. By virtue of Theorem 7.2.2 we have

Z
G

h(w) jrHuj(w) dvg(w) =
Z
R

Z
u�1(t)

�gQ�1(�H(w))

!Q�1
h(w) dSQ�1(w) dt :

Proposition 5.2.5 yields �gQ�1(�H(x)) = �Q�1 and this concludes the proof. 2

Remark 7.2.5 Theorem 7.2.4 yields simpli�ed versions of the coarea formula in the
Heisenberg group with suitable homogeneous distances, with formulae analogous to
(6.46) and (6.47).

In the sub-Riemannian context it is natural to require formulae where only the re-
striction of the metric g to the horizontal subbundle HG is involved. Next, we will
apply this principle to formula (7.19). Let us de�ne the factor

�Q�1(�) =
SQ(B1)

vg(B1)

�gQ�1(�)

!Q�1

and observe that the left invariance of both vg and SQ impliesZ
G

h(w) jrHuj(w) dSQ(w) =
Z
R

Z
u�1(t)

�Q�1(�H(w))h(w) dSQ�1(w) dt : (7.24)

It is not di�cult to recognize that the left hand side of (7.24) involves only the
restriction of g to HG. In the following proposition we check that even the constant
�Q�1(�) depends only on the restriction of the graded metric g to HG.

Proposition 7.2.6 Let g and ~g be two graded metrics on the graded group M and

suppose that g(e)(v; w) = ~g(e)(v; w) for any v; w 2 HeM. Then for any � 2 HeMnf0g
we have

�gQ�1(�)

vg(B1)
=
�~gQ�1(�)

v~g(B1)
:

Proof. Let L the vertical hyperplane in M orthogonal to �. We de�ne W1 to be
the unit vector parallel to � and we complete it to an adapted orthonormal basis
(W1; : : : ;Wq) of M with respect to g. Let F : Rq �!M be the associated system of
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graded coordinates (De�nition 2.3.43). By the hypothesis on g and ~g we can consider
an adapted orthonormal basis (Y1; : : : ; Yq) ofM with respect to ~g such that Yi =Wi

for any i = 1; : : : ;m. To this latter basis we associate the graded coordinates de�ned
by T : Rq �! M. Let C be the q � q matrix de�ned by relations Wi = cji Yj and
notice that it has the following form

C =

�
Im C1

O C2

�
; (7.25)

where Im is the m �m identity matrix, C1 2 Mm;q�m(R), C2 2 Mq�m;q�m(R) and
O 2Mq�m;m(R) is the null matrix. By de�nition of the maps F and T and identifying
the matrix C with its corresponding map, we have F = T � C. Now we read the
hyperplane L in the two systems of coordinates, getting the following relations

� = F�1(L) =
n
� 2 Rq j �1 = 0

o
= C�1T�1(L) = C�1S :

From (7.25) we notice that the restriction of C to � has the determinant equal to
detC2 and that it maps � into S. It follows

�~gQ�1(�) = Hq�1
j�j

�
T�1(B1 \ L)

�
= Hq�1

j�j

�
C � F�1(B1 \ L)

�
= Hq�1

j�j

�
C (F�1(B1) \�)

�
= jdetC2jHq�1

j�j

�
F�1(B1 \ L)

�
= j detC2j �gQ�1(�): (7.26)

Proposition 2.3.47 implies that v~g(B1) = Lq �T�1(B1)
�
, then we have

v~g(B1) = Lq �T�1(B1)
�
= Lq(C � F�1(B1))

= jdetCj Lq �F�1(B1)
�
= j detC2j vg(B1) ; (7.27)

where the last equality follows by (7.25) and Proposition 2.3.47. Finally, equations
(7.26) and (7.27) yield the thesis. 2

7.3 Characteristic set of C1;1 hypersurfaces

In this section we study the size of the characteristic set of C1;1 hypersurfaces in 2-
step graded groups endowed with a homogeneous distance. Throughout the section

 will denote an open subset of M.

Theorem 7.3.1 (Blow-up estimates) LetM = V1�V2 be the graded algebra ofM
and let � � 
 be a C1;1

loc hypersurface with p 2 C(�). Then there exist a neighbourhood

U of p in � such that for any p0 2 C(�) \ U we have

0 < c � lim inf
r!0+

�g(� \Bp0;r)

rQ�2
� lim sup

r!0+

�g(� \Bp0;r)

rQ�2
� C : (7.28)

where c depends on U and C is a geometrical constant independent of �.
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Proof. We represent � in a neighbourhood Op = lp(O) of p as Op \ u�1(t) � �,
where O is an open neighbourhood of e 2 G and u 2 C1;1(Op), with u(p) = 0. Let
(F;W ) be system of graded coordinates. Since p 2 C(�), then rHu(p) = 0 andPq

l=m+1Wlu(p)Wl(p) 6= 0, where (Wm+1; : : : ;Wq) is an orthogonal basis of V2. We
can also assume that Wm+1u(p) = jru(p)j and Wju(p) = 0 for any j = m+1; : : : ; q.
We de�ne the map ~u = u � lp � F : ~O �! Rq, where ~O = F�1(O), obtaining

@xj ~u(0) =Wju(p) = �jm+1 jru(p)j : (7.29)

We consider the hyperplane

�m+1 =
n
x 2 Rq j xm+1 = 0

o
:

By the implicit function theorem there exists an open subset A � �m+1 containing
the origin and a C1 map ' : A �! R such that

~u (�; '(�; �); �) = 0 for any (�; �) 2 A ;
where we have posed (�; �) =

Pm
j=1 xj ej +

Pq
j=m+2 xj ej and (ej) is the canonical

basis of Rq. Let us de�ne ~�(�; �) = (�; '(�; �); �) for any (�; �) 2 A and � = F � ~�.
Now, by the fact that translations are isometries with respect to the Riemannian

metric, for a suitable small r0 > 0 we have

�g(� \Bp;r) = �g
�
lp�1(�) \Br

�
= �g (�(A) \Br) = �g

�
�
�
~��1(A \ ~Br)

��
=

Z
��1( ~Br)

q
det (hij(�(�; �))) d�d� ;

for any r < r0, where ~Br = F�1(Br) and hij denotes the graded metric g restricted
to lp�1(�) with respect to the coordinates (�; �). Now we consider the restriction of

the coordinate dilation �r to the hyperplane �m+1 and denote it by ~�r. It is easy to
notice that the jacobian of ~�r is r

Q�2, hence by a change of variable (�; �) = ~�r(�
0; �0)

we get

�g(� \Bp;r) = rQ�2
Z
~�1=r��1( ~Br)

r
det
�
hij(�(~�r(�0; �0)))

�
d�0d�0 : (7.30)

Next, we study the shape of the domain ~�1=r�
�1( ~Br) as r ! 0. We have the repre-

sentation

~�1=r�
�1�r( ~B1) =

n
(�; �) 2 �m+1

��� ��; ' (�r(�; �)) r�2; �� 2 ~B1

o
: (7.31)

By (7.29) it follows

@xk'(0) = � @xk ~u(0)

@xm+1
~u(0)

= 0 @xl'(0) = � @xl ~u(0)

@xm+1
~u(0)

= 0
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for any k = 1; : : : ;m and l = m + 2; : : : ; q. Hence, we have proved that r'(0) = 0
and by Taylor formula for C1;1 functions we obtain

'
�
~�r(�; �)

�
= �

�
r�; r2�)

� j(r�; r2�)j2 (7.32)

where j � j is the Euclidean norm on �m+1 and � is a map which is bounded by the
Lipschitz constant of r'. Let C � Rq be an open Euclidean ball contained in ~B1

and let us de�ne the set

E = f(�; �) 2 �m+1 j (�; Lj�j2; �) 2 Cg ;
where L = 2k�k1. Now, we aim to prove that for any (�; �) 2 E

1�1=r��1(Br) ((�; �)) �! 1 as r ! 0 : (7.33)

Consider (�; �) 2 E and choose r1 2 (0; r0) such that for any r < r1 and (�; �) 2 E
we have j(�; r�)j � p

2j�j. Then, by equation (7.32) for any r 2 (0; r1) we get

r�2j' ��r(y; z0)� j = j� �(ry; r2z0)� j j(y; rz0)j2 � 2k�k1 jyj2 = L jyj2 :
Since C is convex and ~�1=r�

�1�r( ~B1) has representation (7.31) it follows that

E � ~�1=r�
�1�r( ~B1) for any r 2 (0; r1) ;

and the limit (7.33) is proved. In view of Fatou Theorem and (7.33) we obtain

lim inf
r!0

Z
�1=r��1( ~Br)

q
det (hij(�(�r(�; �)))) d�d� �

Z
E

q
det (hij(e)) d�d� ;

whereq
det (hij(e)) =

s
det

��
@�

@�i
;
@�

@�j

�
e

�
=

jr~u(0)j
j@xm+1

~u(0)j =
jru(p)j

jWm+1u(p)j = 1 :

We observe that the size of the open set E depends on k�k1, so the constant c =
Hq�1
j�j (E) can be chosen independent of all points p0 2 C(�) \ U , where U is a

bounded open neighbourhood of p in � and by (7.30) c1 satis�es our claim. To
get the upper estimate we observe directly from the representation (7.31) that there
exists a bounded sets F � �m+1 which contains ~�1=r�

�1( ~Br) for any r > 0. Thus,

we can choose C = Hq�1
j�j (F ) independent of p 2 C(�). 2

Theorem 7.3.2 Let � � 
 be a C1;1
loc hypersurface in a step 2 group M. Then there

exists a countable open covering fUjg of C(�) and positive constants cj and C such

that

cj SQ�2 (C(Uj \ �)) � �g(C(Uj \ �) � C SQ�2 (C(Uj \ �)) (7.34)

for any j 2 N and we have

Hd�dim (C(�)) � Q� 2 : (7.35)
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Proof. We adopt the notation of Theorem 2.10.18 in [55], where V = �, � = �gx�
and F is the family of balls with respect to the homogeneous metric d and �(Bx;r) =
r� for any x 2 G and r > 0. By Theorem 7.3.1 Theorems 2.10.17(2), 2.10.18(1) of
[55] we have a countable open covering fUjg of C(�) and positive constants cj ; C
such that

cj SQ�2 (C(Uj \ �)) � �g (C(Uj \ �)) � C SQ�2 (C(Uj \ �)) :

These estimates imply in particular that SQ�2 (C(Uj \ �)) is �nite for every j 2 N,
then estimate (7.35) follows. 2

Remark 7.3.3 As a consequence of (7.34), the characteristic set of a C1;1
loc hypersur-

face is a countable union of subsets with HQ�2-�nite measure.

We observe that the CC distance � is always greater than or equal to the Riemannian
distance dg, in the case both of them are built with the same graded metric. Hence,
for any set E �M and � > 0 we have H�

dg
(E) � H�

� (E). So the following inequality
holds

Hdg�dim(E) � H��dim(E) : (7.36)

Now, by Theorem 1.4(1) of [12], for any � > 0 there exists a C1;1 hypersurface ��

in the Heisenberg group Hn such that Hj�j�dim(C(��)) � 2n � �, where j � j is the
Euclidean norm in Hn, viewed as a vector space. It is clear that Hdg�dim(C(�)) =
Hj�j�dim(C(�)), so by (7.36) we get

H��dim(C(��)) � 2n� � = Q� 2� � ; (7.37)

where Q = 2n+ 2 is the Hausdor� dimension of Hn with respect to a homogeneous
distance. Thus, by virtue of Theorem 7.3.2 we get

Q� 2� � � H��dim(C(��)) � Q� 2 ;

hence the estimate (7.35) is optimal.

7.4 Perimeter measure

In this section we study the perimeter measure of C1 domains in sub-Riemannian
groups, obtaining its representation in terms of the Q�1 spherical Hausdor� measure
of the topological boundary (7.6). Several consequences of this formula are given.

In the sequel, subsets with C1 boundary and nonempty interior will be simply
called C1 subsets.

Proposition 7.4.1 Let E be a C1 closed subset of M. Then we have

@�E n C(@E) = @E n C(@E) : (7.38)
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Proof. The inclusion @�E � @E is immediate. So consider p 2 @E n C(@E). For a
suitable r0 > 0 and any r 2 (0; r0) we have

Bp;r \ E = lp

�n
exp(w) 2 Br

���u(p expw)) � 0
o�

;

where u 2 C1(O;R) has nonvanishing gradient on the open bounded neighbourhood
O of p and u(p) = 0. Proposition 3.2.8 and formula (7.10) yield

u(p expw) = dHu(p)(exp(w))+o (d (exp(w))) = jru(p)j h�H(p); wip+o (d (exp(w))) ;

where �H(p) is the horizontal normal of @E at p. Then it follows

Bp;r \ E = lp

�n
p0 2 Br

��� h�H(p); ln p0ip + o
�
d(p0; e)

� � 0
o�

:

Utilizing De�nition 6.4.1 and posing ~Br = lnBr we notice that

vg(Bp;r \ E) = rQ vg(B1 \ Ep;r)

= rQ vg

�
exp

�n
w 2 ~B1

��� h�H(p); wi+ o(1) � 0
o��

; (7.39)

where Ep;r = �1=r(p
�1E) is the r-rescaled of E at p (De�nition 6.4.1). Due to the fact

that p =2 C(@E) we have �H(p) 6= 0 (see Proposition 2.2.10). Thus, by the Lebesgue
Convergence Theorem and De�nition 6.4.3 it follows that

lim
r!0+

vg(Bp;r \ E)
rQ

= vg
�
B1 \ S+g (�H(p))

�
> 0 : (7.40)

From the expression

Bp;r n E = lp

�n
exp(w) 2 Br

���u(p expw)) < 0
o�

and reasoning in the same way as before we deduce that

lim
r!0+

vg(Bp;r n E)
rQ

= vg
�
B1 \ S�g (�H(p))

�
> 0 :

Observing that vg(Bp;r) = vg(B1) r
Q and keeping in mind the de�nition of essential

boundary, our claim follows. 2

The following theorem is the main result of the section. We prove the blow-up in any
graded group endowed with a homogeneous distance, provided that the domain E is
of class C1.
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Theorem 7.4.2 (Blow-up) Let E be a C1 closed subset of M. Then for any p 2
@E n C(@E) we have

lim
r!0+

j@Ep;rjH(B1) = lim
r!0+

j@EjH(Bp;r)

rQ�1
= �gQ�1 (�H(p)) (7.41)

with the following weak � convergence of vector valued Radon measures

�Ep;r j@Ep;rjH * �H(p)

j�H(p)j j@S
+
g (�H(p))jH as r ! 0 ; (7.42)

where �H(p) is the horizontal normal to @E at p (De�nition 2.2.9) and the couple

Bp;r, �
g
Q�1 (�H(p)) is considered with respect to the same homogeneous distance.

Proof. Let us �x a system of graded coordinates (F;W ) and a point p 2 E nC(@E).
We start proving the limit (7.41). We �x the notation Ep = p�1E. By the C1

regularity of E, we can represent � = O \ @Ep by a C1 map u : O �! R, where
O � M is an open bounded neighbourhood of e and dHu(s) is surjective for any
s 2 O. By virtue of formula (7.10) we have

dHu(e)(Z) = jru(e)j h�H(e); Zip ;
where �H(e) is the horizontal normal to @E at p 2 @E n f0g translated to e 2 M.
Choosing our graded coordinates such that W1(e) = �H(e)=j�H(e)j and taking into
account (7.10) it follows that

W1u(e) = dHu(e)(W1) = jru(e)j j�H(e)jhW1;W1i = jrHu(e)j
Wju(e) = dHu(e)(Wj) = jru(e)j j�H(e)jhW1;Wjie = 0 (7.43)

for any j = 2; : : : ;m. Let us de�ne ~u = u � F : ~O �! R, where ~O = F�1(O) � Rq.
We note that ~u�1(0) = ~� with ~� = F�1(�) � Rq. Consider the hyperplane

�1 =
n
x 2 Rq j x1 = 0

o
:

By the implicit function theorem there exists an open subset A � �1 containing the
origin and a C1 map ' : A �! R such that ~u ('(�); �) = 0 for any � 2 A, where we
have posed � =

Pq
j=2 xj ej and (ej) is the canonical basis of R

q. Now we consider

the parametrization ~�(�) = ('(�); �) and the map � = F � ~�. Formula (7.49) applied
to Ep yields

j@EpjH(Br) = F�1
] j@EpjH( ~Br) =

Z
~Br\@ ~Ep

jw ~Ep
j dHq�1

for any r 2 (0; r0), where r0 > 0 is suitable small and ~Br = F�1(Br). Hence, from
the parametrization of O \ @ ~Ep by the map � we deduce that

j@EpjH(Br) =

Z
~��1( ~Br)

jw ~Ep
j(~�(�))Jq�1(d�(�))d�
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and the change of variable by the coordinate dilation �r restricted to the hyperplane
�1 yields

j@EpjH(Br) = rQ�1
Z
�1=r ~��1( ~Br)

jw ~Ep
j(~�(�r�))Jq�1 (d�(�r(�))) d� :

Now, proceeding as in the proof of Theorem 7.1.2 we see that

Lq�1
�
�1=r

~��1( ~Br)
�
�! �gQ�1 (�H(e)) as r ! 0+

therefore

j@Ep;rjH(B1) =
j@EpjH(Br)

rQ�1
�! �gQ�1 (�H(e)) jw ~Ep

j(0)Jq�1 (d�(0)) ; (7.44)

as r ! 0+. We notice that the di�erential dF : Rq �! G is an isometry and that the
unit inward normal �Ep is orthogonal to Te@Ep, therefore the unit normal � ~E(0) to
~Ep at the origin satis�es the relation F�� ~Ep(e) = �Ep(e) and

h�Ep ;Wiie = hF�� ~Ep ; F� ~Wiie = h� ~Ep ; ~Wii0 : (7.45)

By virtue of (7.45) we see that

jw ~Ep
j(0) =

vuut mX
j=1

h� ~Ep ; ~Wii20 = j�H(e)j (7.46)

and by (7.43) we get

@xj'(0) = �@xj ~u(0)
@x1 ~u(0)

= 0 for any j = 2; : : : ;m ;

that yields

Jq�1 (d�(0)) = jr~u(0)j
j@x1 ~u(0)j

=
jru(e)j
jrHu(e)j =

1

j�H(e)j ; (7.47)

where the latter equality follows from formula (7.10). In view of formulae (7.44),
(7.46) and (7.47) we have established (7.41).

Now, we adopt the notation used in the proof of Proposition 7.4.1. First, we want
to prove that the rescaled set Ep;r converges to S

+
g (�H(e)) in L

1
loc(M). If we replace

B1 with BR in (7.39) and we apply (7.40), then for any R > 0 we have

lim
r!0+

vg

�
exp

�n
w 2 ~BR

��� h�H(e); wi+ o(1) > 0
o��

= vg
�
BR \ S+g (�H(e))

�
:
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Let us pick a test function ' 2 �c(HG) and observe that the integralZ
G

h'; �Ep;ri dj@Ep;rjH =

Z
Ep;r

divH'dvg

converges to Z
S+g (�H(e))

divH' dvg =

Z
G

h'; �S+g (�H(e))i dj@S+g (�H(e))jH :

as r ! 0+. From limit (7.41) and weak � compactness we deduce the existence of a
weak � converging subsequence

�Ep;rk j@Ep;rk jH * �S+g (�H(e)) j@S+g (�H(e))jH ;

then the above convergence holds as r ! 0+. By Lemma 6.4.5 the previous limit
becomes

�Ep;r j@Ep;rk jH *
�H(e)

j�H(e)j j@S
+
g (�H(e))jH as r ! 0+ :

Let us write �H;@Ep(e) = �H(e) to stress that the horizontal normal is relative to
p�1@E. Then it is clear the relation dlp�H;@Ep(e) = �H;@E(p) 2 TpM that corresponds
to the horizontal normal �H(p) to @E at p. We use the same notation �H(p) to
denote the left invariant vector �eld of G that coincides with �H(p) at p (according
to Remark 6.4.10), so from the last limit we infer (7.42). 2

Given a C1 closed subset E �M and looking at its boundary as a C1 hypersurface @E,
there are de�ned the horizontal normal �H(p) at p 2 @E nC(@E) and the generalized
inward normal �E(p), due to (7.48). In the following proposition we prove that these
two normal vectors have the same direction, completing the previous theorem.

Proposition 7.4.3 In the assumptions of Theorem 7.4.2 we have

�E(p) =
�H(p)

j�H(p)j and @E n C(@E) = @�HE n C(@E) (7.48)

where �E(p) is the generalized inward normal (De�nition 2.4.9) and �H(p) is the

horizontal normal to @E at p (De�nition 2.2.9).

Proof. We adopt the notation used in the proof of Theorem 7.4.2. By de�nition of
generalized inward normal it is not di�cult to check that for any ' 2 �c(HBp;r)Z

Bp;r

h�E ; 'i dj@EjH = rQ�1
Z
B1

h�Ep;r ; '�lp��ri dj@Ep;rjH
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and by formulae (2.1) and (6.18) we haveZ
Bp;r

h�E ; 'i dj@EjH =

Z
B1

h�E ; 'i�lp��r d
�
�1=r�l�1p

�
]
j@EjH

= rQ�1
Z
B1

h�E�lp��r; '�lp��ri dj@Ep;rjH

therefore �Ep;r = �E �lp��r as vector measurable maps, that indeed are continuous.
By previous equality we infer that

Z
Bp;r

h�E ; 'i dj@EjH =
rQ�1

j@EjH(Bp;r)

Z
B1

h�Ep;r ; '�lp��ri dj@Ep;rjHZ
B1

h�Ep;r ; '�lp��r �  i dj@Ep;rjH +

Z
B1

h�Ep;r ;  i dj@Ep;rjH

whenever  2 �c(HBp;r). By virtue of (6.21) and (7.41) we obtain

j@Ep;rjH(B1) �! j@S+g (�H(p)) jH :

Hence, the weak convergence (7.42) and (7.50) yield

lim sup
r!0+

�����
Z
Bp;r

h�E ; 'i dj@EjH �
Z
B1

h�Ep;r ;  i dj@Ep;rjH
�����

=

����h�E(p); '(p)i �
Z
B1

�
�H(p)

j�H(p)j ;  
�
dj@S+g (�H(p)) jH

����
� lim sup

r!0+
k'�lp��r �  kL1(B1) = k'(p)�  kL1(B1) :

Replacing  with  k in the last estimate, where ( k) � �c(HB1) and  k ! '(p)1B1
we obtain

h�E(p); '(p)i =
�
�H(p)

j�H(p)j ; '(p)
�

and the arbitrary choice of ' yields the equality �E(p) = �H(p)=j�H(p)j. Now we have
to prove that p 2 @�HE. We check the continuity of �E , that is de�ned in principle
as a measurable map by the Riesz Representation Theorem. Let ' =

Pm
j=1 '

jWj 2
�c(HM) and apply Proposition 2.3.47, formula (2.1) and (2.43), obtainingZ

Rq

h�E ; 'i�F dF�1
] j@EjH =

Z
M

h�E ; 'i dj@EjH = �
Z
E
divH'dvg

= �
Z
~E

mX
j=1

~Wj ~'j dLq =
Z
@ ~E

mX
j=1

~'jh� ~E ; ~Wji dHq�1 ;
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where ~E = F�1(E), ~Wj = F�1
� Wj 2 �(TRq) and � ~E is the unit inward normal to ~E.

In view of the arbitrary choice of ' we get the equality of vector measures

�E�F F�1
] j@EjH = w ~EHq�1

x@ ~E ; (7.49)

where w ~E =
Pm

j=1h� ~E ~Wji ej . From continuity of � ~E we deduce that �E is also
continuous. Next we prove that p 2 @�HE. Let us apply the change of variable
formula (2.1) Z

Bp;r

�E dj@EjH =

Z
B1

�E �lp ��r d
�
�1=r�l�1p

�
]
j@EjH

and formula (6.18), obtaining

Z
Bp;r

�E dj@EjH =
rQ�1

j@EjH(Bp;r)

Z
B1

�E �lp ��r dj@Ep;rjH =

Z
B1

�E �lp ��r dj@Ep;rjH

The continuity of �E implies

lim
r!0+

Z
Bp;r

�E d j@EjH = �E(p) (7.50)

hence the �rst equality of (7.48) yields our claim. 2

Theorem 7.4.2 will be an essential tool in the proof of the next result, where an
explicit representation for the perimeter measure of C1 domains is given, (7.51).
Another crucial tool to obtain this representation formula is Theorem 6.6.2, where it
is proved that the characteristic set of C1 hypersurfaces isHQ�1-negligible. Note that
Theorem 6.6.2 is proved in strati�ed groups, instead of general graded groups with
a homogeneous distance. In fact, the main result used in its proof is Theorem 6.3.1
that follows from the coarea inequality (6.1), which in turn was proved using the a.e.
H-di�erentiability of Lipschitz maps. This last result can be proved only for strati�ed
groups as we have discussed in Chapter 3. Just for this reason the following theorem
is proved in sub-Riemannian groups instead of general graded groups endowed with
a homogeneous distance.

Theorem 7.4.4 Let E be a C1 closed subset of the sub-Riemannian group G. Then

we can represent the perimeter measure as follows

j@EjH =
�gQ�1(�H)

!Q�1
SQ�1x@E ; (7.51)

where SQ�1 and �gQ�1(�H) refer to the same homogeneous distance.
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Proof In view of Theorem 6.6.2 we have HQ�1 (C(@E)) = 0. Thus, by (7.48) the
rest of the proof follows exactly as it is done in Theorem 6.4.12 using the limit (7.41)
at points of @�HE n C(@E). 2
By Remark 5.2.3 the following numbers

�Q�1 = inf
�2V1

�gQ�1(�) and �Q�1 = sup
�2V1

�gQ�1(�)

are �nite positive constants. Thus, by virtue of Theorem 7.4.4 we immediately obtain
the following result.

Theorem 7.4.5 For any C1 closed subset E � G we have the following estimates

�Q�1
!Q�1

HQ�1(@E \ 
) � PH(E;
) � 2Q �Q�1
!Q�1

HQ�1(@E \ 
) (7.52)

for any bounded open set 
 � G.

The following theorem is a straightforward consequence of (7.16) and (7.51).

Theorem 7.4.6 For any C1 closed subset E � G we have

j@EjH = j�H j�gx@E : (7.53)

The previous theorems complete the picture of relations among perimeter measure
of C1 domains of sub-Riemannian groups, the Riemannian surface measure of their
boundary and the Q�1 dimensional spherical Hausdor� measure of their boundary
with respect to a homogeneous distance.

We also mention that other notions of surface measure can be considered in the
sub-Riemannian context, for instance in [141] the notion of Minkowski content of
a hypersurface is extended to CC-spaces and the equality between X-perimeter of
a smooth domain and the Minkowski content of its boundary is proved. Here the
X-perimeter is referred to a general system of vector �elds, see [31].

Another simple consequence of (7.51) is the following divergence theorem for C1

sets of sub-Riemannian groups, that immediately follows using formula (2.45) and
Proposition 7.4.3

Theorem 7.4.7 (Divergence Theorem) Let E be a C1 closed subset of a sub-

Riemannian group G. Then for any � 2 �c(HG) we have

Z
E
divH� dvg = �

Z
@E

D
�;

�H
j�H j

E �gQ�1(�H)
!Q�1

dSQ�1 : (7.54)
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By Proposition 5.2.5 and Proposition 5.1.12 we easily see that the previous formula
becomes Z

E
divH� dvg = ��Q�1

!Q�1

Z
@E

D
�;

�H
j�H j

E
dSQ�1� (7.55)

in R-rotational groups, where � is CC-distance relative to the graded metric that
makes the group R-rotational and �Q�1 is the constant metric factor de�ned in
Proposition 5.2.5. In a similar way, taking into account (7.53) we obtain another
version of the divergence theoremZ

E
divH� dvg = �

Z
@E
h�; �Hi d�g : (7.56)
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Chapter 8

Weak di�erentiability of H-BV

functions

In this last chapter we focus the attention on the real-valued maps de�ned on sub-
Riemannian groups such that their distributional derivatives along horizontal direc-
tions are �nite measures, namely H-BV functions. When all these weak derivatives
up to an order greater than one are �nite measures, we have functions of H-bounded
higher order variation (De�nition 8.5.1). In the corresponding Euclidean theory it is
well known that they are a.e. approximately di�erentiable up to the order of their
�nite variation and that their approximate discontinuity set is recti�able. To have
an account of the classical theory we refer the reader to the works [27], [55], [185]
and to the historical note in [6]. So the �rst natural question arising from the Eu-
clidean context is to study the approximate di�erentiability and the properties of the
approximate discontinuity set in the framework of sub-Riemannian groups.

We will accomplish this study using some tools of classical Analysis that have
been recently extended to the context of sub-Riemannian geometries. In fact, in the
last few years there has been a strong development of the theory of Sobolev spaces
in the sub-Riemannian context and also in the metric one: important results such as
Poincar�e inequalities, embedding theorems, representation formulae, trace theorems,
compactness results and much more, hold in sub-Riemannian groups when formulated
in intrinsic terms, e.g. using left translations, dilations and the CC-distance, see [42],
[66], [67], [79], [91], [100], [140] (in Section 2.5 we have collected some of these results).

In Section 8.1 we introduce the notion of approximate continuity and of approx-
imate di�erentiability for locally summable maps. Following Federer's de�nition, we
also de�ne a weaker notion of approximate di�erentiability that will be useful in the
proof of Theorem 8.2.2.

Section 8.2 deals with the approximate di�erentiability of H-BV functions. Here
the problem consists in the fact that an integral inequality of type (8.3) is not still
known for nonabelian sub-Riemannian groups, therefore the classical approach de-

169
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scribed in [6] cannot be applied. We will utilize two notions of approximate di�e-
rentiability: the stronger one of De�nition 8.1.2 and the weaker one of (8.2). However
we will always refer to approximate di�erentiability meaning the stronger notion. The
idea of our approach is to prove �rst that H-BV functions are a.e. approximately
di�erentiable with respect to the weaker notion and subsequently, by a bootstrap ar-
gument based on the Poincar�e inequality, to achieve the approximate di�erentiability.
We also obtain that the approximate di�erential coincides a.e. with the density of
the absolutely continuous part of the H-BV vector measure.

In Section 8.3 we prove that the approximate discontinuity set of an H-BV fun-
ction is contained in a countable union of the essential boundaries of sets with H-�nite
perimeter, up to an HQ�1-negligible set, (8.16). Note that by results of [5] we can
conclude that Su is contained in a countable union of sets with HQ�1-�nite measure.
Furthermore, whenever a recti�ability theorem for sets of H-�nite perimeter in sub-
Riemannian groups holds, we immediately achieve the G-recti�ability of Su when u
is H-BV. Here recti�ability theorem means that the H-reduced boundary of H-�nite
perimeter sets is G-recti�able. This result is known only for sub-Riemannian groups
of step two, [73], and it is an open question for groups of higher step.

In Section 8.4 we present an important integral inequality, named \representation
formula" by the authors of [67]. This will be a crucial tool in the Section 8.5, con-
cerning the proof of higher order di�erentiability. In order to keep the chapter more
self-contained, we will give a proof of this formula adapting to our case the proof of
Theorem 1 in [67], that holds for the much more general spaces of homogeneous type
which satisfy the Poincar�e inequality.

In Section 8.5 we prove the approximate di�erentiability of higher order. Notice
that the case of H-BV 2 maps correspond to a weak Alexandrov type di�erentiability
(Theorem 8.5.6). Our method is based on two crucial estimates: �rst, in a suitable
point x we estimate the di�erence ju(y) � u(x)j utilizing the maximal function, see
(8.8). Second, we use the representation formula (8.19) in the form (8.23) in order
to obtain information on the behavior of jDHvj, where v = jDHuj. This procedure
is applied to the function u once we have subtracted a suitable polynomial in such a
way that the densities of the absolutely continuous parts of the horizontal measure
derivatives are vanishing at the point. By the isomorphism between polynomials
and left invariant di�erential operators the above mentioned polynomial is uniquely
de�ned (Proposition 8.5.3) and it corresponds to the \intrinsic" Taylor expansion of
the map at the �xed point. We point out that some di�culties come from the non-
commutativity of left invariant di�erential operators. Here we exploit the important
Poincar�e-Birkho�-Witt Theorem, which provides a manageable basis for the algebra
of left invariant di�erential operators.

In Section 8.6 we construct a nontrivial class of H-BV 2 functions in the Heisenberg
group arising as inf-convolutions of the cost function d(x; y)2=2, where the distance
d is constructed with a suitable gauge norm.
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8.1 Weak notions of regularity

Here we introduce some weak notions of limit and di�erential for measurable functions
on sub-Riemannian groups. We will utilize the same notation of Section 2.5 for both
the Riemannian volume and the metric ball with respect to the CC-distance.

De�nition 8.1.1 (Approximate limit) We say that a function u 2 L1loc(
;R
m)

has an approximate limit � 2 Rm at x 2 
 if

lim
r!0+

Z
Ux;r

ju(y)� �j dy = 0 :

If u does not have an approximate limit at x we say that x is an approximate discon-

tinuity point and we denote by Su the measurable set of all these points, namely the
approximate discontinuity set.

It is clear that the approximate limit is uniquely de�ned and that it does not depend
on the representative element of u; it will be denoted by ~u(x). We call the points in

nSu approximate continuity points of u. Since sub-Riemannian groups are doubling
spaces we have that Su is negligible and u(x) = ~u(x) for a.e. x 2 
. This follows
from Theorem 2.1.22 of the thesis and Theorem 2.9.8 of [55].

There is a weaker, and more canonical, de�nition of approximate limit (we will
refer to [55]). Let us consider a measurable function u : 
 �! R, x 2 
 and � 2 R.
We say that � is the approximate limit of u at x if for any " > 0 we have that

x 2 I(fz 2 
 j ju(z)� �j < "g) :
The approximate limit � is uniquely de�ned and it is denoted by ap limz!x u(z).
Note that x 2 
 n Su implies ap limz!x u(z) = ~u(x), but the converse is not true
in general, see for instance Remark 3.66 of [6]. However there will be no confusion
utilizing the same word (but a di�erent notation) for the two concepts. Moreover,
for locally bounded functions u there is a complete equivalence: ap limz!x u(z) = �
implies x 2 
 n Su and � = ~u(x).

In the sequel it will be useful to represent a scalar valued H-linear map L : G �! R

by a horizontal vector of G. This is easily done exploiting the graded metric on the
group as follows

L(x) = hv; lnxi for any x 2 G:
We will use the notation v� to indicate the map L.

De�nition 8.1.2 (Approximate di�erential) Consider u 2 L1loc(
) and a point
x 2 
 n Su. We say that u is approximately di�erentiable at x if there exists an
H-linear map L : G �! R such that

lim
r!0+

Z
Ux;r

ju(z)� ~u(x)� L(x�1z)j
r

dz = 0 : (8.1)
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The map L is uniquely de�ned, it is denoted by dHu(x) and it is called the approxi-
mate di�erential of u at x.

We warn the reader that we have used the same symbol for both di�erentials of
De�nitions 3.4.8 and 8.1.2. This slight abuse of notation is justi�ed by the fact that
di�erentiability implies approximate di�erentiability.

In the spirit of [55], a weaker notion of approximate di�erentiability could be
given, saying that the approximate di�erential of a map u : A � G �! R at x 2 I(A)
is the unique H-linear map L : G �! R such that

ap lim
y!x

u(y)� u(x)� L(x�1y)

d(x; y)
= 0 : (8.2)

We point out that the approximate di�erentiability implies the existence of the ap-
proximate limit (8.2), as it will be proved in Proposition 8.2.1, but already in the
Euclidean case the converse is not true, see for instance Remark 3.66 of [6].

8.2 First order di�erentiability

In this section we prove the approximate di�erentiability of H-BV functions. We
point out that the validity of the following inequality

Z
Ux;r

ju(x)� u(z)j
d(x; z)

dz � C

Z 1

0

jDHuj(Ux;�rt)
tQ

dt ; (8.3)

where �;C > 0 are dimensional constants, would imply a slightly stronger approxi-
mate di�erentiability via classical methods described in [6]. Unfortunately, this seems
to be an open question.

Proposition 8.2.1 Let u : 
 �! R be a Borel map. Then the following statements

are equivalent:

1. for a.e. x 2 
 there exists an H-linear map Lx : G �! R such that

ap lim
y!x

u(y)� u(x)� Lx(x
�1y)

d(x; y)
= 0 ; (8.4)

2. u is countably Lipschitz up to a negligible set, i.e. there exists a countable

family of Borel subsets fAi j Ai � 
; i 2 Ng such that and for each i 2 N the

restriction ujAi
is a Lipschitz map and we have

���
 nSi2NAi

��� = 0.

Furthermore 1. and 2. hold if u is approximately di�erentiable a.e. in 
.
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Proof. We start proving that property 1 is implied by the approximate di�eren-
tiability. Assume that u is approximately di�erentiable at x 2 
 with approximate
di�erential dHu(x). Let us �x " > 0 and consider the set

Ex;� =
n
z 2 Ux;�

���ju(z)� u(x)� dHu(x)(x
�1z)j > "d(x; z)

o
:

In order to get (8.4) we have to prove that

lim
�!0+

jEx;�j ��Q = 0 : (8.5)

Let us de�ne the maps Tx;�(z) = �1=�(x
�1z) and

Rx;�(z) =
ju(x��z)� u(x)� dHu(x)(��z)j

�
;

observing that

Tx;�(Ex;�) =
n
y 2 U1

��� Rx;�(y) > "d(y)
o
:= A� :

Hence we have jEx;�j��Q = jA�j, so (8.5) follows if we prove that
lim
�!0+

jA�j = 0 : (8.6)

By hypothesis, making a change of variable we get

lim
�!0+

Z
Ux;�

ju(z)� u(x)� dHu(x)(x
�1z)j

�
dz = lim

�!0+

Z
U1

Rx;�(z) dz = 0 : (8.7)

For each t 2]0; 1[ we have Z
A�nUt

Rx;� � jA� n Utj " t ;

so in view of (8.7) we obtain jA� n Utj �! 0 as �! 0+. It follows that

lim sup
�!0+

jA�j � lim sup
�!0+

jA� n Utj+ jUtj = jUtj :

Finally, letting t! 0 equation (8.6) follows, so statement 1 is proved. The fact that
statement 1 implies statement 2 can be proved as in Theorem 3.1.8 of [55], see also
Theorem 6 in [177]. Now, let us prove that statement 2 implies 1. By Theorem 3.4.11
we know that ujAi

is a.e. differentiable. Let us indicate by Du(Ai) the subset of I(Ai)
where ujAi

is di�erentiable in Ai. Clearly, we have���
 n[
i2N

Du(Ai)
��� = 0 :
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Consider x 2 Du(Ai) and choose " > 0. Then there exists � > 0 such that for any
z 2 Ai \ Ux;� we get

R(z) =
ju(z)� u(x)� L(x�1z)j

d(z; x)
< " ;

with L = dujAi
(x). From the last inequality it follows that

Ux;r \ fz 2 
 j R(z) � "g � Ux;r nAi

for any r � �. Hence we get

lim sup
r!0+

jUx;r \ fz 2 
 j R(z) � "gj
jUx;rj � lim sup

r!0+

jUx;r nAij
jUx;rj = 0 ;

in view of the fact that x is a density point of Ai. 2

Theorem 8.2.2 Let u : 
 �! R be a locally H-BV function. Then, u is approxi-

mately di�erentiable a.e. in 
 and the di�erential corresponds to the density of the

absolutely continuous part of DHu, i.e. dHu(x) = rHu(x)
� for a.e. x 2 
.

Proof. We �rst prove that u is countably Lipschitz up to a negligible set. To see
this, we use a standard technique which is well known in the study of metric Sobolev
spaces, see for instance Theorem 3.2 of [91]. Let us �x t > 0 and de�ne the open
subset


t = fz 2 
 j dist(z;
c) > tg :
We want to prove that u is countably Lipschitz on 
t. We cover 
t with a countable
union of open balls fPj j j 2 Ng with center in 
t and radius t=4. Let us consider
j 2 N and two approximate continuity points x; y 2 Pj . For each i 2 Z we de�ne the
balls Bi(x) = Ux;2�id(x;y) and Bi(y) = Uy;2�id(x;y). Notice that Bi(x) and Bi(y) are
compactly contained in 
 for any i � �1. We have

j~u(x)� uB0(x)j �
1X
i=0

juBi+1(x) � uBi(x)j �
1X
i=0

Z
Bi+1(x)

ju(z)� uBi(x)j dz

and by Poincar�e inequality (2.51) it follows

� C d(x; y)
1X
i=0

2�i�1
jDHuj(Bi+1(x))

jBi+1(x)j � C d(x; y)Md(x;y)jDHuj(x) :

In the same way we get

j~u(y)� uB0(y)j � C d(x; y)Md(x;y)jDHuj(y) :
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We proceed analogously, getting

juB0(x) � uB0(y)j � juB0(x) � uB�1(x)j+ juB�1(x) � uB0(y)j

�
Z
B0(x)

ju(z)� uB�1(x)j dz +
Z
B0(y)

ju(z)� uB�1(x)j dz

� 2Q+1
Z
B�1(x)

ju(z)� uB�1(x)j dz � C 2Q+2 d(x; y)M2d(x;y)jDHuj(x) :

Finally, we obtain

j~u(x)� ~u(y)j � c d(x; y)
�
M2d(x;y)jDHuj(x) +M2d(x;y)jDHuj(y)

�
(8.8)

with c = (2Q+2 + 2)C. Now, let us consider the decomposition

Pj = Nj [
 [
l2N

Ejl

!

where Ejl is the Borel set of all approximate continuity points z 2 Pj such that
M jDHuj(z) � l and Nj = Su[fz 2 Pj jM jDHuj(z) = +1g : Then Nj is a negligible
set and by (8.8) it follows that

j~u(x)� ~u(y)j � 2 c l d(x; y) 8x; y 2 Ejl

and any j; l 2 N. This gives the countably Lipschitz property of u in 
t. Observing
that 
 is a countable union of 
1=k, with k 2 Nnf0g we obtain the countably Lipschitz
property of u in 
. In view of Proposition 8.2.1 the countably Lipschitz property
yields the existence of an H-linear map Lx : G �! R such that for a.e. x 2 
 we
have

ap lim
y!x

u(y)� ~u(x)� Lx(x
�1y)

d(x; y)
= 0 : (8.9)

In order to prove the a.e. approximate di�erentiability, we select a point x 2 
 n
(Su [ SrHu) such that (8.9) holds and

lim
r!0+

jDs
Huj(Ux;r)
rQ

= 0 : (8.10)

In view of Remark 2.4.6 the set of points which do not satisfy (8.10) is negligible, so
the set of selected points with all the above properties has full measure in 
. We �x
" > 0 and consider the set

Fx;r =
�
y 2 Ux;r j ju(y)� ~u(x)� Lx(x

�1y)j > "d(x; y)
	
;
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observing that

Zx;r := �1=r(x
�1Fx;r) =

�
z 2 U1 j ju(x�rz)� ~u(x)� Lx(�rz)j

r
> "

�
: (8.11)

In view of (8.10) we have that jFx;rj r�Q �! 0 as r ! 0+, therefore

jZx;rj = j�1=r(x�1Fx;r)j = r�Qjx�1Fx;rj = r�QjFx;rj �! 0 as r ! 0+ : (8.12)

Now, we consider the di�erence Sx = rHu(x)
� � Lx and de�ne the maps

v(y) = u(y)� ~u(x)�rHu(x)
�(x�1y) ;

wx;r(z) =
v(x�rz) + Sx(�rz)

r
= vx;r(z) + Sx(z) ;

observing that ~v(x) = 0, jDHvx;rj(U1) �! 0 as r ! 0+ and

Zx;r = fz 2 U1 j jwx;r(z)j > "g :
Thus, by (8.12) it follows that wx;r ! 0 in measure as r ! 0+. Since vx;r is an H-BV
function, we can apply Poincar�e inequality (2.51), gettingZ

U1

jvx;r(z)�mx;rj dz � C jDHvx;rj(U1) �! 0 as r ! 0+ ; (8.13)

where mx;r =
R
U1
vx;r . Then, we obtainZ
U1

jwx;r(z)�mx;r � Sx(z)j dz �! 0 as r ! 0+ :

It follows that mx;r + Sx converges to zero in measure on U1 as r ! 0+. This easily
implies that mx;r ! 0 and Sx = 0. So, rHu(x)

� = Lx and in view of (8.13) we get

1

r

Z
Ux;r

jv(z)j dz =
Z
U1

jvx;r(z)j dz �! 0 as r ! 0+ ;

which proves the approximate di�erentiability of u at x with dHu(x) = rHu(x)
�. 2

8.3 Size of Su

In this section we study the regularity of the approximate discontinuity set Su when
u is an H-BV function. The following two lemmas are crucial to prove Theorem 8.3.3.
They are the sub-Riemannian version of Lemma 3.74 and Lemma 3.75 of [6]. We
give the proof of them in order to emphasize the main steps, where the relevant
sub-Riemannian general theorems are needed. Furthermore, since Lemma 3.74 in [6]
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is proved using the Besicovitch Covering Theorem, which may fail in general sub-
Riemannian groups, we show another simpler way to prove it, adopting the Vitali
Covering Theorem for doubling spaces.

In the sequel we will use the upper Q dimensional density of a measure � at a
point x 2 G, de�ned as follows

��Q(�; x) = lim sup
r!0+

�(Bx;r)

jBx;rj :

In the case � = vgxE, where E � G is a measurable set, we will write ��Q(E; x).

Lemma 8.3.1 Let (Eh) be a sequence of measurable subsets of 
, such that jEhj �!
0 and PH(Eh;
) �! 0 as h!1. Then, for any � > 0 we have

HQ�1

 
1\
h=1

fx 2 
 j ��Q(Eh; x) � �g
!
= 0 :

Proof. Let us �x � > 0 and � 2]0; 1[. We consider a Borel set E � 
 such that
jEj < jU1j� �Q=2 and de�ne

E� = fx 2 
 j ��Q(E; x) � �g :

For any x 2 E� the estimate

jUx;� \ Ej
jUx;�j � jEj

jU1j �Q <
�

2

implies the existence of a radius rx 2]0; �[ such that jUx;rx \ Ej = �jUx;rx j=2. Thus,
in view of (2.52) we get

�

2
jU1j rQx = jUx;rx \ Ej � C rx PH(E;Ux;rx): (8.14)

Now, let us consider an open subset 
0 b 
, with 0 < � < dist(
0; @
) and jEj �
jU1j� �Q=2. Using a well known covering theorem for the family fUx;rx j x 2 
0\E�g
(Corollary 2.8.5 in [55]), we get a countable disjoint subfamily

fBj j Bj = Uxj ;rxj ; j 2 Ng

such that 
0 \ E� � S1
h=1 5Bj , where 5Bj is the ball of center xj and radius 5rxj .

Therefore, the estimate (8.14) implies

HQ�1
10� (
0 \ E�) � 5Q�1

1X
i=1

rQ�1xi � 2C5Q�1

� jU1j
1X
i=1

PH(E;Bi) � C 0

�
PH(E;
) :
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We �x the sequence �i = (2jEij=jU1j�)1=Q, observing that �i � � for i large, hence

HQ�1
10�i

 

0 \

1\
h=1

E�
h

!
� C 0

�
PH(Ei;
) :

Thus, letting �rst �i ! 0+ and then 
0 " 
 the conclusion follows. 2

Lemma 8.3.2 Let u : 
 �! R be an H-BV function. Then, the set

L =

(
x 2 
 j lim sup

r!0+

Z
Ux;r

ju(y)j1� dy =1
)

is HQ�1-negligible, where 1� = Q=(Q� 1).

Proof. In view of Proposition 2.5.8 we can assume that u � 0 (replacing u by juj).
We de�ne the set

D =

�
y 2 
 j lim sup

r!0+

jDHuj(Ux;r)
rQ�1

=1
�
;

observing that by Theorem 2.10.17 and Theorem 2.10.18 of [55] and the fact that
jDHuj(
) < 1, we have HQ�1(D) = 0. For any integer h 2 N we can choose
th 2]h; h+ 1[ such that

PH(Eth ;
) �
Z h+1

h
PH(Et;
) dt ;

where Et = fx 2 
 j u(x) > tg, for each t � 0. By (2.49) we have

1X
h=0

PH(Eth ;
) �
Z 1

0
PH(Et;
)dt = jDHuj(
) <1 :

Then, we apply Lemma 8.3.1 to the sequence (Eth) with � = 1, getting

HQ�1
� 1\
h=0

Fh

�
= 0 ;

where we have de�ned Fh = fx 2 
 j ��Q(Eth ; x) = 1g. We want to prove that
L � D [T1

h=0 Fh. In order to do that, we consider x =2 D [T1
h=0 Fh and we prove

that x =2 L. We de�ne the constants cx;r to be the mean value of u on Ux;r and apply
the Sobolev-Poincar�e inequality (2.53) obtaining

Z
Ux;r

ju(z)� cx;rj1� dz � C

� jDHuj(Ux;r)
rQ�1

�1�

: (8.15)
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Notice that if lim supr!0+ cx;r < 1 then (8.15) implies x =2 L. Then, reasoning
by contradiction, suppose that there exists a sequence cx;rj such that rj ! 0+ and
cx;rj !1 as j !1. We de�ne the function vj(y) = u(x�rjy)� cx;rj , observing that
jDHvj j(U1) = jDHuj(Ux;rj ) r1�Qj . Since the sequence jDHvj j(U1), j 2 N, is bounded,
Theorem 2.5.7 implies the convergence a.e. of (vj) to a function w 2 L1(U1), possibly
extracting a subsequence. As a consequence, u(x�rjy) ! +1 as j ! 1 for a.e.
y 2 U1, and therefore

jU1j = lim
j!1

jfz 2 U1 j u(x�rjz) > thgj = lim
j!1

jfy 2 Ux;rj j u(y) > thgj
rQj

:

This implies x 2 T1
h=1 Fh, contradicting the initial assumption. 2

Theorem 8.3.3 Let u : 
 �! be an H-BV function. Then there exists an HQ�1-

negligible set L � G, such that

Su n L �
[
j2N

@�Ej ; (8.16)

where Ej has H-�nite perimeter in 
 for every j 2 N.
Proof. We de�ne Et = fx 2 
 j u(x) > tg for t 2 R. By coarea formula (2.49)
the set of numbers t 2 R such that PH(Et;
) < 1 has full measure in R, then it is
possible to consider a countable dense subset D � R such that PH(Et;
) < 1 for
any t 2 D. Notice that from general results about sets of �nite perimeter in Ahlfors
metric spaces, see Theorem 4.2 in [5], we have that HQ�1(Et) < 1 for any t 2 D.
So, in view of Lemma 8.3.2 it su�ces to prove the following inclusion

Su n L �
[
t2D

@�Et ; (8.17)

where L = fx 2 
 j lim supr!0+
R
Ux;r

ju(y)j1� dy = 1g. Let us consider a point

x =2 St2D @
�Et [ L. Then, for any positive t we have

lim sup
r!0+

jEtj
jUx;rj �

1

t
lim sup
r!0+

Z
Ux;r

juj ; (8.18)

hence, for any t 2 D su�ciently large such that the right hand side of (8.18) is less
than one, it must be ��Q(Et; x) = 0. Analogously, for t 2 D \ (�1; 0) with jtj large
enough we have ��Q(E

c
t ; x) = 0, so ��Q(Et; x) = 1. This means that

� = supft 2 D j ��Q(Et; x) = 1g
is a real number. Since D is dense in R and t �! jEtj is a decreasing map it
follows that ��Q(Et; x) = 0 for any t > � and ��Q(E

c
t ; x) = 0 for any t < � . By
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virtue of this fact it follows that for any " > 0 we have jF" \ Ux;rj = o(rQ), where
F" = fy 2 
 j ju(y)� � j > "g. Finally

lim sup
r!0+

Z
Ux;r

ju(y)� � j dy � "+ lim sup
r!0+

1

jUx;rj
Z
F"

ju(y)� � j dy

� "+ lim sup
r!0+

� jF"j
jUx;rj

�1=Q
 Z

Ux;r

ju(y)� � j1� dy
!1=1�

= " :

Letting "! 0+, we obtain that x =2 Su, so the inclusion (8.17) is proved. 2

8.4 Representation formula

In this section we prove the \representation formula" for H-BV functions. We recall
that the metric ball of center x 2 G and radius r > 0 with respect to the CC-distance
is denoted by Ux;r.

Theorem 8.4.1 (Representation formula) There exists a dimensional constant

C > 0 such that

j ~w(x)� wUx;r j � C

Z
Ux;r

1

�(x; y)Q�1
djDHwj(y): (8.19)

for any w 2 BVH(Ux;r) and x =2 Sw, where � is the CC-distance of the group.

Proof. Let us de�ne the radii rj = r2�j and wUx;rj =
R
Ux;rj

wdvg for every j 2 N.
By the fact that x =2 Sw and the Poincar�e inequality (2.50), we obtain the following
chain of estimates

jw(x)� wUx;r j �
X
j2N

jwUx;rj+1� wUx;rj j �
X
j2N

Z
Ux;rj+1

jw � wUx;rj j

� 2Q
X
j2N

Z
Ux;rj

jw � wUx;rj j �
2QC

vg(U1)

X
j2N

r1�Qj

Z
Ux;rj

djDHwj

=
2QC

vg(U1)

Z
Ux;r

X
j2N

r1�Qj 1Ux;rj djDHwj = 2QC

vg(U1)

Z
Ux;r

X
2j<r=�(x;y)

r1�Qj djDHwj :

Now we �x " = (Q� 1)=2 > 0 and observe that for any y 2 Ux;rj we have

r1�Qj �
�
�(x; y)

rj

�"
�(x; y)1�Q ;
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hence the previous inequalities yield

jw(x)� wUx;r j �
2QC

vg(U1)

Z
Ux;r

�(x; y)1�Q
X

2j<r=�(x;y)

�
�(x; y)

rj

�"
djDHwj : (8.20)

Now �x Ny as the maximum integer j 2 N such that 2j < r=�(x; y), obtaining

X
2j<r=�(x;y)

�
�(x; y)

rj

�"
=

�
�(x; y)

r

�" NyX
j=0

2" j =

�
�(x; y)

r

�" 2"Ny+" � 1

2" � 1

�
�
�(x; y)

r

�"
2"Ny

2"

2" � 1
� 2"

2" � 1
= cQ :

Then the estimate (8.20) becomes

jw(x)� wUx;r j �
2QC cQ
vg(U1)

Z
Bx;r

�(x; y)1�QdjDHwj

and the thesis follows. 2

In the sequel we will need of other versions of formula (8.19). By Fubini's Theorem
for products of Radon measures we haveZ

Ux;r

�(x; y)1�Q djDHwj(y) =
Z
Ux;r

(Q�1)
 Z 1

�(x;y)
t�Q dt

!
djDHwj(y)

= (Q� 1)

Z
Ux;r

�Z 1

0
t�Q1f�(x;y)<tg dt

�
djDHwj(y)

= (Q� 1)

Z +1

0

jDHwj(Ux;r \ Ux;t)
tQ

dt

= (Q� 1)

Z r

0

jDHwj(Ux;t)
tQ

dt+
jDHwj(Ux;r)

r(Q�1)
: (8.21)

so that (8.19) becomes

j ~w(x)� wUx;r j � C

�
(Q� 1)

Z r

0

jDHwj(Ux;t)
tQ

dt+
jDHwj(Ux;r)

r(Q�1)

�
: (8.22)

Furthermore, we notice that in the case ~w(x) = 0 the inequality (8.19) yields

jwUx;s j � C

Z
Ux;r

1

�(x; y)Q�1
djDHwj(y):

for every 0 < s < r. By De�nition 2.5.9 for the restricted maximal function and by
equality (8.21) we arrive at the following integral estimate

jMrw(x)j � C

�
(Q� 1)

Z r

0

jDHwj(Ux;t)
tQ

dt+
jDHwj(Ux;r)

r(Q�1)

�
: (8.23)
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8.5 Higher order di�erentiability of H-BV k functions

In this section we study the di�erentiability properties of maps with higher order
H-bounded variation. The method to accomplish this study is substantially di�erent
from that one employed for H-BV functions. Particularly interesting is the case of
maps with second H-bounded variation, in view of potential applications to the theory
of convex functions on strati�ed groups (see [44] and [123]).

We begin with the de�nition of high order H-BV function.

De�nition 8.5.1 Let us �x an orthonormal frame (X1; : : : ; Xm) of H
. By induc-
tion on k � 2 and taking into account the de�nition of H-BV with k = 1, we say
that a Borel map u : 
 �! R has H-bounded k-variation (in short, H-BV k) if for
any i = 1; : : : ;m the distributional derivatives Xiu are representable by functions
with H-bounded (k � 1)-variation. We denote by BV k

H(
) the space of all H-BV
k

functions.

Remark 8.5.2 The notion of H-BV k function does not depend on the choice of the
orthonormal frame (X1; : : : ; Xm).

The Poincar�e-Birkho�-Witt Theorem (shortly PBW Theorem) states that for any
basis (W1;W2; : : :Wq) of G regarded as frame of �rst order di�erential operators, the
algebra of left invariant di�erential operators on G has a basis formed by the following
ordered terms

W� =W i1
1 � � � � � �W iq

q ;

where � = (i1; : : : ; iq) varies in N
q, see Chapter 1.C of [59]. Analogously as we have

done for polynomials, we de�ne the degree of a left invariant di�erential operator
Z =

P
� c�W

� as

degH(Z) = max
n qX
k=1

dk�k j c� 6= 0
o
;

where dk is the degree of the coordinate yk and (F;W ) is the corresponding system
of graded coordinates (De�nition 2.3.43). The space Ak(G) represents the space of
left invariant di�erential operators of homogeneous degree less than or equal to k.
This analogy between polynomials and di�erential operators is not only formal, as
the following proposition shows.

Proposition 8.5.3 There exists an isomorphism L : PH;k(G) �! Ak(G), given by

L(P ) =
X

degH(W�)�k

W�P (0)W�:



8.5. HIGHER ORDER DIFFERENTIABILITY OF H-BV K FUNCTIONS 183

For the proof of this fact we refer the reader to Proposition 1.30 of [59].
In order to deal with higher order di�erentiability theorems we make some pre-

liminary considerations. Let us consider a basis fW� j degH(W�) � kg of Ak(G) and
u 2 BV k

H(
), where (W1; : : : ;Wq) is an adapted basis of G. We denoteWi = Xi, with
i = 1; : : : ;m, where (X1; : : : ; Xm) is a �xed horizontal orthonormal frame. Our aim
is to �nd out a polynomial P : G �! R which approximates u at a �xed point x 2 

with order k. In view of the last proposition it is natural to look for a substitute of
homogeneous derivatives W� of u at x, with degH(W

�) � k. Our �rst observation
is that due to the strati�cation of G the operators W� with degH(W

�) � l are linear
combinations of operators X1 � � �Xl with 1 � i � m and l � k. Therefore the dis-
tributional derivatives D�

Wu are measures whenever degH(W
�) � k. So, taking into

account the preceding observation and the fact that vector �elds Wi have vanishing
divergence, we state the following de�nition.

De�nition 8.5.4 Let u 2 BV k
H(
). For any � 2 Nq, we consider the following

multi-index Radon measures D�
Wu with degH(W

�) � kZ


� dD�

Wu = (�1)j�j
Z


u W�l

l � � �W�1
1 � 8� 2 C1

c (
):

By Radon-Nikod�ym Theorem we haveD�
Wu = (D�

Wu)
a+(D�

Wu)
s, where the addenda

are respectively the absolutely continuous part and the singular part of the measure
D�
Wu with respect to the volume measure. We de�ne the weak mixed derivatives as

the summable maps r�
Wu such that

(D�
Wu)

a = r�
Wu Hq :

Our substitute for the �-derivative of u is ~uW�(x), which is the approximate limit
of r�

Wu at points x 2 
 n Sr�
Wu. Now, let us consider the di�erential operator

X1 � � �Xlu where 1 � i � m and 1 � l � k. By virtue of PBW Theorem, there
exist coe�cients fc�g such that

X1 � � �Xlu =

NkX
j=1

c;� W
�u ; (8.24)

where Nk = dim (Ak(G)).

De�nition 8.5.5 Let u 2 BV k
H(
). Utilizing the above notation, we denote by

u the density of the absolutely continuous part of the measure X1 � � �Xlu, where
 2 f1; : : : ;mgl and l � k.

Decomposing the singular and absolutely continuous part of both the measures in
(8.24), we obtain the following equality of summable maps

u =

NkX
j=1

c;� r�
Wu : (8.25)
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The next theorem is the main result of this section and can be regarded as a weak
extension of Alexandrov di�erentiability theorem to the setting of non-Riemannian
geometries.

Theorem 8.5.6 (Alexandrov) Let u 2 BV 2
H(
). Then for a.e. x 2 
 there exists

a polynomial P[x] with degH(P[x]) � 2, such that

lim
r!0+

1

r2

Z
Ux;r

ju� P[x]j = 0 (8.26)

Proof. First of all, we �x a point x =2 SdegH(W�)�2 Sr�
Wu such that (8.25) and the

limit

lim
r!0+

j (X1X2u)
s j(Ux;r)

rQ
= 0 (8.27)

holds for every  2 f1; : : : ;mgl, with l = 1; 2. By the previous discussion and
Remark 2.4.6, the set of points where these conditions do not occur is negligible.
Due to Proposition 8.5.3, there exists a unique polynomial P[x] = P which satis�es
the condition W�P (x) = ~uW�(x), whenever degH(W

�) � 2. Now, let us de�ne
w = u � P . By relation (8.25) we observe that ~w(x) = 0 for any  2 f1; : : : ;mgl,
l = 0; 1; 2. This means that

~w(x) = 0 ; ~wi(x) = 0 ; ~wij(x) = 0 (8.28)

for any i; j = 1; : : : ;m. We consider the summable map

v = jDHwj =
� mX
i=1

w2
i

�1=2
:

By Proposition 2.5.8 it follows that

jDHvj �
mX
i=1

jDHwij ;

hence conditions (8.27) and (8.28) yield

jDHvj(Ux;r) = o(rQ) : (8.29)

We can �x r0 > 0 small enough such that Ux;4r0 � 
, so we will consider all r 2]0; r0[.
By the standard telescopic estimate (8.8), for a.e. y 2 Ux;r we have

j ~w(y)j � C [M2rv(x) +M2rv(y)] d(x; y) ;

therefore, taking the average over Ux;r and dividing by r2 we obtain

1

r2

Z
Ux;r

jw(y)j dy � C

 
M2rv(x)

r
+
1

r

Z
Ux;r

M2rv(y) dy

!
:



8.5. HIGHER ORDER DIFFERENTIABILITY OF H-BV K FUNCTIONS 185

Thus, in order to prove (8.26) we show that the maps

a(r) = r�1M2rv(x) ; b(r) = r�1
Z
Ux;r

M2rv(y) dy

go to zero as r ! 0+. Since also ~v(x) = 0, inequality (8.23) gives

jMrv(x)j � C

�
(Q� 1)

Z r

0

jDHvj(Ux;t)
tQ

dt+
jDHvj(Ux;r)
r(Q�1)

�
:

By (8.29) and the last estimate we get that a(r)! 0 as r ! 0+. Let us consider the
estimate

b(r) � 1

r

Z
Ux;r

jM2rv(y)� ~v(y)j dy + 1

r

Z
Ux;r

jv(y)j dy ;

observing that

1

r

Z
Ux;r

jv(y)j dy � r�1Mrv(x) � a(r) �! 0 as r ! 0+ :

In view of inequality

jM2rv(y)� ~v(y)j �M2r[v � ~v(y)](y) ; (8.30)

and applying inequality (8.23) to the map z �! v(z)� ~v(y) we get

M2r[v � ~v(y)](y) � C

�
(Q� 1)

Z 2r

0

jDHvj(Uy;t)
tQ

dt+
jDHvj(Uy;2r)
(2r)(Q�1)

�
: (8.31)

Thus, estimates (8.30) and (8.31) yield

1

r

Z
Ux;r

jM2rv(y)� ~v(y)jdy � C

r

Z
Ux;r

�
(Q� 1)

Z 2r

0

jDHvj(Uy;t)
tQ

dt+
jDHvj(Uy;2r)
(2r)(Q�1)

�
dy :

Now, in order to get the thesis, we have to prove that both terms

�(r) =
1

r

Z
Ux;r

Z 2r

0

� jDHvj(Uy;t)
tQ

dt

�
dy ; �(r) =

1

r

Z
Ux;r

jDHvj(Uy;2r)
(2r)(Q�1)

dy

are in�nitesimal as r ! 0+. By Fubini's Theorem we have

�(r) =
r�1

jUx;rj
Z 2r

0

dt

tQ

Z
Ux;r

 Z
Ux;3r

1Uy;t(z) djDHvj(z)
!
dy

=
r�1

jUx;rj
Z 2r

0

dt

tQ

Z
Ux;3r

jUx;r \ Uz;tj djDHvj(z)
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=
jU1jr�1
jUx;rj

Z 2r

0

Z
Ux;3r

jUx;r \ Uz;tj
jUz;tj djDHvj(z) � 3Q 2

jDHvj(Ux;3r)
(3r)Q

:

By (8.29) the last term goes to zero as r ! 0, so limr!0 �(r) = 0. Similarly, we have

�(r) =
1

2Q�1rQjUx;rj
Z
Ux;r

 Z
Ux;3r

1Uy;2r(z) djDHvj(z)
!
dy

=
1

2Q�1rQ

Z
Ux;3r

jUz;2r \ Ux;rj
jUx;rj djDHvj(z) � 3Q

2Q�1
jDHvj(Ux;3r)

(3r)Q
:

Again, utilizing (8.29) on the last term we get limr!0+ �(r) = 0, so the thesis follows.
2

The arguments used for second order di�erentiability of H-BV 2 functions can be
extended with some additional e�orts to higher order di�erentiability.

Theorem 8.5.7 Let u 2 BV k
H(
) and 1 � l � k. Then for a.e. x 2 
 there exists a

polynomial P[x], with degH(P[x]) � l, such that

lim
r!0+

1

rl

Z
Ux;r

ju� P[x]j = 0: (8.32)

Proof. We prove the theorem by induction on k � 2. Theorem 8.2.2 and Theo-
rem 8.5.6 give us the validity of induction hypothesis for k = 2. Now, let us consider
u 2 BV k

H(
) with k � 3. Clearly we have XiXju 2 BV k�2
H for any i; j = 1; : : : ;m.

By induction hypothesis for a.e. x 2 
 there exist polynomials R[x;ij], with h-
deg(R[x;ij]) � k � 2, such thatZ

Ux;r

juij �R[x;ij]j = o(rk�2) (8.33)

and
W �R[x;ij](x) = ~uijW� (x) ; whenever d(�) � k � 2 : (8.34)

Moreover, for a.e. x 2 
 there exists a polynomial P[x], with degH(P[x]) � k, such
that

W�P[x](x) = ~uW�(x) ; whenever degH(W
�) � k : (8.35)

The PBW Theorem yields the distributional relations

W �XiXj =
X

degH(W�)�k

c�ij;�W
� (8.36)

for any i; j = 1; : : : ;m and � 2 Nq with degH(W
�) � k � 2. Thus, relations (8.34),

(8.35), (8.36) and the following equality

(W �XiXju)
a = (W �uij)

a = ~uijW�
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imply

W �R[x;ij](x) =
X

degH(W�)�k

c�ij;�~uW�(x) =
X

degH(W�)�k

c�ij;�W
�P[x](x) =W �XiXjP (x) ;

whenever degH(W
�) � k � 2. Thus, Proposition 8.5.3 yields R[x;ij] = XiXjP .

Now, let us de�ne w = u�P and v = jDHwj, obtaining the following inequalities
of measures

jDHvj �
mX
i=1

jDHXiwj �
mX

i;j=1

jXjXiwj : (8.37)

By the fact that u 2 BV k
H(
), with k � 3, the distributional derivatives XjXiw

are represented by integrable functions wij . So, equality R[x;ij] = XiXjP and the
inductive formula (8.33) yield

jXjXiwj(Ux;r)
jUx;rj =

Z
Ux;r

jwij j =
Z
Ux;r

juij �R[x;ij]j = o(rk�2);

hence (8.37) implies
jDHvj(Ux;r) = o(rQ+k�2) : (8.38)

Now, the rest of the proof proceeds analogously to Theorem 8.5.6, replacing property
(8.29) with (8.38). This last observation leads us to the conclusion. 2

8.6 A class of H-BV 2 functions

In this section we present a way to construct explicit examples of H-BV 2 functions
arising from the inf-convolution of the so-called \gauge distance" in the Heisenberg
group H2n+1.

We begin with some elementary remarks about distributional derivatives along
vector �elds. In the following preliminary considerations the set 
 will be an open
subset of Rq with the Euclidean metric.

Let X : 
 �! Rq be a locally Lipschitz vector �eld; then, the following chain rule

DX(h � u) = h0(u)DXu (8.39)

holds whenever h : R ! R is continuously di�erentiable, u : 
 �! R is continuous
and DXu is representable by a Radon measure in 
 as follows:Z



u X�' dLq =

Z


' dDXu 8' 2 C1

c (
);

where X� = �X�divX is the formal adjoint of X. Analogously, the product rule

DX(uv) = vDXu+ uDXv (8.40)
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holds whenever u : 
 �! R is locally integrable (or locally bounded) and DXu is
representable in 
 by a Radon measure, v : 
 �! R is continuous and DXv is
representable in 
 by a locally bounded (or locally summable) function. The proofs
of (8.39) and (8.40) can be achieved by approximations of the following type.

Proposition 8.6.1 Let u 2 �, where � is either C(
), L1loc(
) or L
1
loc(
), respec-

tively. Then there exists a sequence of smooth functions (ul) such that

jDXulj(
) � jDXuj(
) + 1

l
(8.41)

and either (ul) uniformly converges to u on compact sets, or it converges to u in

L1loc(
), or it is locally uniformly locally bounded, respectively.

The estimate (8.41) is proved in [69], [79]. One considers a locally �nite open cover
fAig, where Ai = 
i+1 n 
i�1 and


i =

�
x 2 


���; jxj < i; dist(x;
c) >
1

i+ 1

�

for any i 2 N, with 
�1 = ;. A smooth partition of unity f ig is de�ned with respect
to fAig, hence the candidate to be the approximating functions is as follows

ul :=
1X
i=0

(u i) � �"i

with "i = "i(l) small enough. Since supi "i(l) tends to 0 as l!1 all Lp convergence
properties of the sequence follow directly from this representation. Notice also that
when DXu << Lq, we get the L1loc(
) convergence of the densities of DXul to the
density of DXu, see either Proposition 1.2.2 of [69] or Theorem A.2 of [79].

Now, the proof of (8.39) can be achieved by approximation of u with the sequence
(ul) of Proposition 8.6.1, so that DXul weakly converges to DXu in the topology of
Radon measures and ul converges to u uniformly on compact sets of 
. The proof of
(8.40) is similar and requires either the L1loc convergence of ul to u when u 2 L1loc,
or the additional uniform local bound, when u 2 L1loc, and the L1loc convergence of

densities DXvl to DXv, when DXv 2 L1loc, or the additional uniform local bound,
when DXv 2 L1(
), together with the uniform convergence of vl to v on compact
sets of 
.

Lemma 8.6.2 Let u; v : 
 �! R be continuous functions,  2 R and let X : 
 �!
Rq be a locally Lipschitz vector �eld. Then

DXu �  Lq; DXv �  Lq =) DX(u ^ v) �  Lq: (8.42)

If DXu and DXv are representable by L1loc(
) functions, then

DXXu �  Lq; DXXv �  Lq =) DXX(u ^ v) �  Lq: (8.43)
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Proof. In order to show (8.42), it su�ces to approximate u ^ v by u + h�(u � v),
where h� 2 C1(R), �1 � h0� � 0, h�(t) ! �t+ uniformly as � ! 0+. Indeed, the
chain rule (8.39) gives

DX(u+ h�(u� v)) =
�
1 + h0�(u� v)

�
DXu� h0�(u� v)DXv �  Lq:

The implication (8.43) follows by the same argument, noticing that the functions h�
can be chosen to be concave. We have

DXX(u+ h�(u� v))

=
�
1 + h0�(u� v)

�
DXXu� h0�(u� v)DXXv + h00� (u� v)(DXu�DXv)

2

� �1 + h0�(u� v)
�
DXXu� h0�(u� v)DXXv �  Lq:

2

Now we particularize our study to H2n+1 (we recall that Hn is isomorphic to R2n+1).
To denote elements of H2n+1 we consider the coordinates (�; t) = (�1; : : : ; �2n; t). The
following family of vector �elds

Xi = @�i + 2�n+i@t; Yi = @�n+i � 2�i@t; i = 1; : : : ; n (8.44)

can be considered as a horizontal orthonormal frame of HH2n+1, so

rHu =
nX
i=1

XiuXi + YiuYi

whenever u is smooth. The only nontrivial bracket relations are

[Xi; Yi] = �4Z = �4 @t; i = 1; : : : ; n :

Via the BCH formula our vector �elds induce the following group operation

xx0 =

 
� + �0; t+ t0 + 2

nX
i=1

�n+i�
0
i � �i�

0
n+i

!
:

Now for any element x = (�; t) 2 H2n+1 we de�ne the following gauge norm

k(�; t)k = 4
p
j�j4 + t2 :

A non-trivial fact is that d(x; y) = kx�1yk yields a left invariant distance on H2n+1,
see [113]. In the following we de�ne c(x; y) = d(x; y)2 and we consider a function u
arising from the inf-convolution of c. Precisely, we assume that there exist a bounded
family fyigi2I � H2n+1 and ti 2 R such that

u(x) = inf
i2I

c(x; yi) + ti 8x 2 H2n+1: (8.45)
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Inf-convolution formulas of this type appear in several �elds, for instance in the rep-
resentation theory of viscosity solutions, in the related �eld of dynamic programming
(see for instance [33], [127]) and in the theory of optimal transportation problems. In
the latter theory, functions representable as in (8.45) are called c-concave (see [164],
[159]). In these theories it is well known that in many situations the function u inher-
its from c a one-sided estimate on the second distributional derivative; for instance,
this is the case when c(x; y) = h(x � y) and h : Rq �! R is a C1;1

loc
function (see

for instance [76]). In the following theorem we extend this result to the Heisenberg
setting, thus getting a non-trivial class of examples of H-BV 2-functions.

Theorem 8.6.3 Let 
 � H2n+1 be a bounded open set. The function u de�ned in

(8.45) is Lipschitz and belongs to BV 2
H(
).

Proof. Since the family fyigi2I is bounded it is easy to check that c(�; yi) are
uniformly Lipschitz in 
, therefore u is a Lipschitz function in 
. Notice also that,
since H2n+1 is separable, we can assume I to be �nite or countable with no loss of
generality.

The essential fact leading to the H-BV 2 property consists in the following point-
wise estimates on H2n+1 n f0g

jXiXjc(�; e)j; jXiYjc(�; e)j; jYiYjc(�; e)j; jYjXic(�; e)j � 10 (8.46)

for any i; j = 1; : : : ; n. This can be checked by direct calculation. Notice that the
identity c(z; y) = c(y�1z; e) yields

T [c(�; y)](z) = T [c(y�1�; e)](z) = Tc(�; e)(y�1z)
for any left invariant vector �eld T . It follows that the previous estimates hold
replacing the unit element e with any y 2 H2n+1, getting

jPPc(�; y)j �  on H2n+1 n fyg ;
whenever P =

Pn
i=1 aiXi + biYi and

Pn
i=1 a

2
i + b2i � 1, with  = 20n2. By applying

Lemma 8.6.2 we obtain that
DPPu �  L2n+1

�rst for �nite families and then, by a limiting argument, for countable families. In
particular DPPu is representable in 
 by a Radon measure for any P of the above
form. By polarization identity, taking P = (Xi � Xj)=2, P = (Xi � Yj)=2 and
P = (Yi�Yj)=2, respectively, we obtain that DXiXju, DYiYju DXiYj+YjXiu are Radon
measures for any i; j = 1; : : : ; n. In particular DXiYju is a measure whenever i 6= j.
Again, exploiting (8.46) and the non-trivial bracket relations we obtain jDZc(�; y)j �
5L2n+1, so that Lemma 8.6.2 yields that DZu is representable in 
 by a Radon
measure (actually absolutely continuous with respect to L2n+1). Finally, the relation
DXiYi+YiXi +DZ = 2DXiYi yields that DXiYiu is a Radon measure. 2



Chapter 9

Basic notation and terminology

� set inclusion
Ac complement set

A topological closure
1A characteristic function of a set A

R extended real numbers, Section 2.1
Rn n-dimensional space of Euclidean coordinates
En n-dimensional Euclidean space
H2n+1 Heisenberg group, De�nition 2.3.23
G nilpotent Lie group, De�nition 2.3.8
P(X) class of all subsets of X, Section 2.1
f]� image measure, De�nition 2.1.5
f � measure induced by the map f and the measure �, De�nition 2.1.7R
E u d� averaged integral, Section 2.1
I(A) set of density points, De�nition 2.1.14
Lip(f) Lipschitz constant of the map f , De�nition 2.1.9
N(f;A; y) multiplicity function, De�nition 2.1.11
dim(V ) dimension of linear space V
spanfXig linear space generated by vectors Xi

Mn;m(K) n�m matrices over the �eld K
Bx;r open ball of center x and radius r, De�nition 2.1.8
Bd
x;r open ball with respect to the distance d, De�nition 2.1.8

Dx;r closed ball of center x and radius r, De�nition 2.1.8
Dd
x;r closed ball with respect to the distance d, De�nition 2.1.8

diam(E) diameter of a set, Section 2.1
�a Hausdor�-type measure, De�nition 2.1.17
Ha Hausdor� measure, De�nition 2.1.17
Ha
j�j Hausdor� measure with respect to the Euclidean norm

Sa spherical Hausdor� measure, Section 2.1

191
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jEj Haar measure of a subset E
Ck(
; N) continuously k-di�erentiable functions, De�nition 2.2.1
�(TM) space of vector �elds, De�nition 2.2.2
f�X image of the vector �eld X under f , De�nition 2.2.3
pH horizontal Riemannian projection, De�nition 2.2.7
�(HM) space of horizontal vector �elds, De�nition 2.2.6
G Lie algebra of left invariant vector �elds, De�nition 2.3.2
h2n+1 Heisenberg algebra, De�nition 2.3.23
Vj subspace of G with degree j, De�nition 2.3.16
Vj subset of G with elements of degree j, De�nition 2.3.16
TpG tangent space of G at the point p

Hj
pG subspace of vectors of degree j at the point p, De�nition 2.3.16

e unit element of a Lie group, Section 2.3
lp left translation, De�nition 2.3.1
exp exponential map of Lie groups, De�nition 2.3.6
} operation between vectors of the Lie algebra, (2.18)
�r dilation, De�nition 2.3.18
�t sign map, De�nition 2.3.18
�r coordinate dilation, De�nition 2.3.45
vg Riemannian volume, Subsection 2.3.2
hX;Y ip Riemannian metric, (2.31)
�g Riemannian measure on hypersurfaces, Chapter 7
lg(�) length of a curve, De�nition 2.2.18
degH(P ) homogeneous degree of a polynomial P , De�nition 2.3.50
PH;k(G) space of polynomials P with degH(P ) � k, De�nition 2.3.50
degH(Z) homogeneous degree of a di�erential operator Z, Section 8.5
Ak(G) space of di�erential operators Z with degH(Z) � k, Section 8.5
C(�) characteristic set of a C1 hypersurface, De�nition 2.2.8
divH horizontal divergence, De�nition 2.4.1
DH horizontal distributional gradient
jDHuj variational measure associated to an H-BV function, De�nition 2.4.3
j@EjH perimeter measure, De�nition 2.4.8
PH(E; �) perimeter measure, De�nition 2.4.8
Ep;r r-rescaled of E at p, De�nition 6.4.1
fx;r r-rescaled of f at x, De�nition 6.2.2
rH horizontal gradient
@�HE H-reduced boundary, De�nition 2.4.10
�E generalized inward normal, De�nition 2.4.9
�H horizontal normal, De�nition 2.2.9
DHu vector measure of an H-BV function, Section 2.4
Da
Hu absolutely continuous part of the H-BV measure, Section 2.4
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Ds
Hu singular part of the H-BV measure, Section 2.4

HL(G;M) group of H-linear maps, De�nition 3.1.4
C1
H(
;M) C1

H maps, De�nition 3.2.6
�gQ�1(�) metric factor, De�nition 5.2.2

R subset of horizontal isometries, De�nition 5.1.1
Jq(L) jacobian, De�nition 2.3.40
JQ(L) H-jacobian, De�nition 4.2.1
Jk(�) normed jacobian, De�nition 4.1.9
Jf (x) metric jacobian, De�nition 4.1.4
Cp(L) coarea factor, De�nition 2.3.40
CP (L) H-coarea factor, De�nition 6.1.3
Lp�(X;N) p-summable maps with respect to the measure �, Section 2.1
�ij Kronecker delta
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