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CHAPTER 1

Preliminaries

We state here some basic notions of topology and analysis that we will use
in this book. The proofs of some theorems are omitted and can be found in
many excellent sources.

1.1. General topology

1.1.1. Topological spaces. A topological space is a pair (X, τ) where X
is a set and τ is a collection of subsets of X called open subsets, satisfying
the following axioms:

• ∅ and X are open subsets;
• the arbitrary union of open subsets is an open subset;
• the finite intersection of open subsets is an open subset.

If this holds we say that τ is a topology for the set X. The complement
X \U of an open subset U ∈ τ is by definition a closed subset. Of course the
open subsets determine the closed subsets and viceversa.

Every set X has many different topologies. At the two extremes we have
the following:

• the trivial topology τ = {X,∅}, and
• the discrete topology where τ consists of all subsets of X.

Informally, in the trivial topology all points are undistinguishable, while in
the discrete topology all the points are neatly separated from each other. The
topologies that are of interest for us in are of neither of these extremal types
and lie somehow in the middle.

When we denote a topological space, we often write X instead of (X, τ)

for simplicity.

1.1.2. Continuous maps. A map f : X → Y between topological spaces
is continuous if the inverse image of every open subset of Y is an open subset
of X. The map f is a homeomorphism if it has an inverse f −1 : Y → X which
is also continuous.

Two topological spaces X and Y are homeomorphic if there is a homeo-
morphism f : X → Y relating them. Being homeomorphic is clearly an equiv-
alence relation. Informally, two homeomorphic spaces have the same kind of
topological structure and should share the same topological properties.
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6 1. PRELIMINARIES

A neighbourhood of a point x ∈ X is any subset N ⊂ X containing an
open set U that contains x , that is x ∈ U ⊂ N ⊂ X. Here is an equivalent
notion of continuity that is closer to the one introduced in analysis.

Exercise 1.1.1. A function f : X → Y is continuous if and only if for
every x ∈ X the inverse image f −1(N) of any neighbourhood N of f (x) is a
neighbourhood of x .

1.1.3. Examples. There are many ways to construct topological spaces
and we summarise them here very briefly.

Metric spaces. Every metric space (X, d) is also naturally a topological
space: by definition, a subset U ⊂ X is open ⇐⇒ for every x0 ∈ U there is an
r > 0 such that the open ball

B(x0, r) =
{
x ∈ X

∣∣ d(x, x0) < r
}

is entirely contained in U.
In particular Rn is a topological space, whose topology is induced by the

euclidean distance between points:

d(x, y) =

√√√√ n∑
i=1

(x i − y i)2.

Exercise 1.1.2. Every open ball B(x0, r) ⊂ Rn is homeomorphic to Rn
itself. More generally, the open convex subsets of Rn are all homeomorphic.

Product topology. The cartesian product X =
∏
i∈I Xi of two or more

topological spaces is a topological space: by definition, a subset U ⊂ X is
open ⇐⇒ it is a (possibly infinite) union of products

∏
i∈I Ui of open subsets

Ui ⊂ Xi , where Ui 6= Xi only for finitely many i .

Exercise 1.1.3. This is the coarsest topology (that is, the topology with the
fewest open sets) on X such that the projections X → Xi are all continuous.

Subspace topology. Every subset S ⊂ X of a topological space X is also
naturally a topological space: by definition a subset U ⊂ S is open ⇐⇒ there
is an open subset V ⊂ X such that U = V ∩ S.

Exercise 1.1.4. This is the coarsest topology on S such that the inclusion
i : S ↪→ X is continuous.

In particular every subset S ⊂ Rn is naturally a topological space. It is
quite remarkable that a topological structure on a set X induces one on any
subset S ⊂ X, with no requirement on S.
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Quotient topology. Let f : X → Y be a surjective map. A topology on
X induces one on Y as follows: by definition a set U ⊂ Y is open ⇐⇒ its
counterimage f −1(U) is open in X.

Exercise 1.1.5. This is the finest topology (that is, the one with the most
open subsets) on Y such that the map f : X → Y is continuous.

A typical situation is when Y is the quotient space Y = X/∼ for some
equivalence relation ∼ on X, and X → Y is the induced projection.

1.1.4. Connected spaces. A topological space X is connected if it is not
the disjoint union X = X1 tX2 of two non-empty open subsets X1, X2.

Exercise 1.1.6. The space R is connected. A product of connected spaces
is connected. Hence Rn is also connected.

Exercise 1.1.7. Every topological space X is partitioned canonically into
maximal connected subsets, called connected components.

Given the canonical decomposition into connected components, it is typi-
cally harmless to restrict our attention to connected spaces.

Exercise 1.1.8. Let f : X → Y be a continuous map between topological
spaces. If X is connected, then also f (X) is.

A slightly stronger notion is that of path-connectedness. A space X is
path-connected if for every x, y ∈ X there is a path connecting them, that
is a continuous map α : [0, 1] → X with α(0) = x and α(1) = y . Every
path-connected space is connected, and the converse is also true if the space
fulfills some reasonable requirement. A space is locally path-connected if every
point has a path-connected neighbourhood. Every topological space we will
encounter in this book will be locally path-connected.

Exercise 1.1.9. A locally path-connected topological space X is connected
⇐⇒ it is path-connected.

Exercise 1.1.10. The Euclidean space Rn is path-connected. Products and
quotients of path-connected spaces are path-connected.

1.1.5. Compact spaces. Let X be a topological space. An open cover
for X is a collection {Ui}i∈I of open sets whose union is X. A subcover is
any subcollection of Ui ’s that still form a cover. An open cover is finite if it
consists of finitely many open sets.

Definition 1.1.11. A topological space X is compact if every open cover
for X contains a finite subcover.

We are not merely requiring that X has a finite open cover, since every
X has one, with X itself as a unique open set. The definition is more subtle
and says that every open cover, no matter how complicated, should contain a
finite one.
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Exercise 1.1.12. The closed segment [0, 1] is compact.

On metric spaces the notion of compactness may be expressed in a differ-
ent, and maybe more familiar, analytic way.

Exercise 1.1.13. A metric space X is compact ⇐⇒ the following holds:
every sequence of points in X contains a converging subsequence.

On Rn there is a still more familiar formulation.

Exercise 1.1.14. A subspace of Rn is compact⇐⇒ it is closed and bounded.

We already know that continuous maps send connected spaces to con-
nected spaces, and they do the same with compact spaces.

Exercise 1.1.15. Let f : X → Y be a continuous map between topological
spaces. If X is compact, then f (X) also is.

Finally, compactness is preserved under some operations.

Exercise 1.1.16. Products and quotients of compact spaces are compact.
A closed subspace in a compact space is also compact.

1.1.6. Reasonable assumptions. A topological space can be very wild,
but most of the spaces encountered in this book will satisfy some reasonable
assumptions, that we now list.

Hausdorff. A topological space X is Hausdorff if every two distinct points
x, y ∈ X have disjoint open neighbourhoods Ux and Uy , that is Ux ∩ Uy = ∅.

Proposition 1.1.17. Every metric space has a Hausdorff topology.

Proof. Two distinct points x, y ∈ X are at some strictly positive distance
d = d(x, y) > 0. The balls B(x, d/2) and B(y , d/2) are disjoint thanks to
the triangular inequality. �

In particular the euclidean space Rn is Hausdorff.

Exercise 1.1.18. Products and subspaces of Hausdorff spaces are also
Hausdorff. The quotient of a Hausdorff space needs not to be Hausdorff!

Countable base. A base for a topological space X is a set of open subsets
{Ui} such that every open set in X is a union of these. Here are some examples:

• On a metric space X, pick all the balls B(x, r) with varying x ∈ X
and r > 0. These form a base.
• If B and B′ are bases for X and X ′ respectively, the products U × U ′
as U ∈ B and U ′ ∈ B′ vary form a base for X ×X ′.

At some point we will only consider spaces that have a countable basis.
This amounts informally to requiring that X be not too large. For instance,
the euclidean space Rn has a countable base: we can take all the open balls
B(x, r) where x has rational coordinates and r > 0 is a rational number.
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Exercise 1.1.19. Countable products and subspaces of spaces with a count-
able basis also have a countable basis.

Locally compact. A topological space X is locally compact if every point
x ∈ X has a compact neighbourhood. The euclidean space Rn is locally
compact.

1.1.7. Reasonable consequences. The reasonable assumptions listed in
the previous section have some nice and reasonable consequences.

Countable base with compact closure. We first note the following.

Proposition 1.1.20. If a topological space X is Hausdorff and locally com-
pact, every x ∈ X has an open neighbourhood U(x) with compact closure.

Proof. Every x ∈ X has a compact neighbourhood V (x), that is closed
since X is Hausdorff. The neighbourhood V (x) contains an open neighbour-
hood U(x) of x , whose closure is contained in V (x) and hence compact. �

Proposition 1.1.21. Every locally compact Hausdorff space X with a count-
able base has a countable base made of open sets with compact closure.

Proof. Let {Ui} be a countable base. For every open set U ⊂ X and
x ∈ U, there is an open neighbourhood U(x) ⊂ U of x with compact closure,
which contains a Ui that contains x . Therefore the Ui with compact closure
suffice as a base for X. �

Exhaustion by compact sets. Let X be a topological space. An exhaus-
tion by compact subsets is a countable family K1, K2, . . . of compact subsets
such that Ki ⊂ int(Ki+1) for all i and ∪iKi = X.

The standard example is the exhaustion of Rn by closed balls

Ki = B(0, i) =
{
x ∈ Rn

∣∣ ‖x‖ ≤ i}.
Proposition 1.1.22. Every locally compact Hausdorff space X with a count-

able base has an exhaustion by compact subsets.

Proof. The space X has a countable base U1, U2, . . . of open sets with
compact closures. Define K1 = U1 and

Ki+1 = U1 ∪ . . . ∪ Uk
where k is the smallest natural number such that Ki ⊂ ∪kj=1Uj . �

Paracompactness. An open cover for a topological space X is a set {Ui}
of open sets whose union is the whole of X. An open cover {Ui} is locally
finite if every point in X has a neighbourhood that intersects only finitely many
Ui . A refinement of an open cover {Ui} is another open cover {Vj} such that
every Vj is contained in some Ui .
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Figure 1.1. A locally compact Hausdorff space with countable base is
paracompact: how to construct a locally finite refinement using an ex-
haustion by compact subsets.

Definition 1.1.23. A topological space X is paracompact if every open
cover {Ui} has a locally finite refinement {Vj}.

Of course a compact space is paracompact, but the class of paracompact
spaces is much larger.

Proposition 1.1.24. Every locally compact Hausdorff space X with count-
able base is paracompact.

Proof. Let {Ui} be an open covering: we now prove that there is a locally
finite refinement. We know that X has an exhaustion by compact subsets
{Kj}, and we set K0 = K−1 = ∅. For every i , j we define Vi j =

(
int(Kj+1) \

Kj−2

)
∩Ui as in Figure 1.1. The family {Vi j} is an open cover and a refinement

of {Ui}, but it may not be locally finite.
For every fixed j = 1, 2, . . . only finitely many Vi j suffice to cover the com-

pact set Kj \ int(Kj−1), so we remove all the others. The resulting refinement
{Vi j} is now locally finite. �

In particular the Euclidean space Rn is paracompact, and more generally
every subspace X ⊂ Rn is paracompact. The reason for being interested
in paracompactness may probably sound obscure at this point, and it will be
unveiled in the next chapters.

1.1.8. Topological manifolds. Recall that the open unit ball in Rn is

Bn =
{
x ∈ Rn

∣∣ ‖x‖ < 1
}
.

A topological manifold of dimension n is a reasonable topological space
locally modelled on Bn.

Definition 1.1.25. A topological manifold of dimension n (shortly, a topo-
logical n-manifold) is a Hausdorff topological space M with countable base
such that every point x has an open neighbourhood Ux homeomorphic to Bn.

In other words, a Hausdorff topological space M with countable base is a
manifold⇐⇒ it has an open covering {Ui} such that each Ui is homeomorphic
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Figure 1.2. A topological manifold is covered by open subsets, each
homeomorphic to Bn. Here the manifold is a circle, and is covered by four
open arcs, each homeomorphic to the open interval B1.

to Bn. A schematic picture in Figure 1.2 shows that the circle is a topological
1-manifold: a more rigorous proof will be given in the next chapters.

Example 1.1.26. Every open subset of Rn is a topological n-manifold.
In general, any open subset of a topological n-manifold is a topological n-
manifold.

1.1.9. Pathologies. The two reasonability hypothesis in Definition 1.1.25
are there only to discard some spaces that are usually considered as patholog-
ical. Here are two examples. The impressionable reader may skip this section.

Exercise 1.1.27 (The double point). Consider two parallel lines Y = {y =

±1} ⊂ R2 and their quotient X = Y/∼ where (x, y) ∼ (x ′, y ′)⇐⇒ x = x ′ and
(y = y ′ or x 6= 0). Prove that every point in X has an open neighbourhood
homeomorphic to B1, but X is not Hausdorff.

The following is particularly crazy.

Exercise 1.1.28 (The long ray). Let α be an ordinal, and consider X =

α×[0, 1) with the lexicographic order. Remove from X the first element (0, 0),
and give X the order topology, having the intervals (a, b) = {a < x < b} as a
base. If α is countable, then X is homeomorphic to R. If α = ω1 is the first
non countable ordinal, then X is the long ray : every point in X has an open
neighbourhood homeomorphic to B1, but X is not separable (it contains no
countable dense subset) and hence does not have a countable base. However,
the long ray X is path-connected!

1.1.10. Homotopy. Let X and Y be two topological spaces. A homotopy
between two continuous maps f , g : X → Y is another continuous map F : X×
[0, 1] → Y such that F (·, 0) = f and F (·, 1) = g. Two maps f and g are
homotopic if there is a homotopy between them, and we may write f ∼ g.

Two topological spaces X and Y are homotopically equivalent if there are
two continuous maps f : X → Y and g : Y → X such that f ◦ g ∼ idY and
g ◦ f ∼ idX .
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Two homeomorphic spaces are homotopically equivalent, but the converse
may not hold. For instance, the euclidean space Rn is homotopically equivalent
to a point for every n. A topological space that is homotopically equivalent to
a point is called contractible.

1.2. Algebraic topology

1.2.1. Fundamental group. Let X be a topological space and x0 ∈ X a
base point. The fundamental group of the pair (X, x0) is a group

π1(X, x0)

defined by taking all loops, that is all paths starting and ending at x0, considered
up to homotopies with fixed endpoints. Loops may be concatenated, and this
operation gives a group structure to π1(X, x0).

If x1 is another base point, every arc from x0 to x1 defines an isomorphism
between π1(X, x0) and π1(X, x1). Therefore if X is path-connected the fun-
damental group is base point independent, at least up to isomorphisms, and
we write it as π1(X). If π1(X) is trivial we say that X is simply connected.

Every continuous map f : X → Y between topological spaces induces a
homomorphism

f∗ : π1(X, x0) −→ π1

(
Y, f (x0)

)
.

The transformation from f to f∗ is a functor from the category of pointed
topological spaces to that of groups. This means that (f ◦ g)∗ = f∗ ◦ g∗ and
(idX)∗ = idπ1(X,x0). It implies in particular that homeomorphic spaces have
isomorphic fundamental groups.

Exercise 1.2.1. Every topological connected manifold M has a countable
fundamental group.

Hint. Since M has a countable base, we may find an open covering of
M that consists of countably many open sets homeomorphic to open balls
called islands. Every pair of such sets intersect in an open set that has at
most countably many connected components called bridges. Every loop in
π1(M, x0) may be determined by a (non unique!) finite sequence of symbols
saying which islands and bridges it crosses. There are only countably many
sequences. �

Two maps f , g : (X, x0) → (Y, y0) that are homotopic, via a homotopy
that sends x0 to y0 at each time, induce the same homomorphisms f∗ =

g∗ on fundamental groups. This implies that homotopically equivalent path-
connected spaces have isomorphic fundamental groups, so in particular every
contractible topological space is simply connected.

There are simply connected manifolds that are not contractible, as we will
discover in the next chapters.
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1.2.2. Coverings. Let X̃ andX be two path-connected topological spaces.
A continuous surjective map p : X̃ → X is a covering map if every x ∈ X has
an open neighbourhood U such that

p−1(U) =
⊔
i∈I
Ui

where Ui is open and p|Ui : Ui → U is a homeomorphism for all i ∈ I.
A local homeomorphism is a continuous map f : X → Y where every x ∈ X

has an open neighbourhood U such that f (U) is open and f |U : U → f (U) is a
homeomorphism. A covering map is always a local homeomorphism, but the
converse may not hold.

The degree of a covering p : X̃ → X is the cardinality of a fibre p−1(x) of
a point x , a number which does not depend on x .

Two coverings p : X̃ → X and p′ : X̃ ′ → X of the same space X are
isomorphic if there is a homeomorphism f : X̃ → X̃ ′ such that p = p′ ◦ f .

1.2.3. Coverings and fundamental group. One of the most beautiful
aspects of algebraic topology is the exceptionally strong connection between
fundamental groups and covering maps.

Let p : X̃ → X be a covering map. We fix a basepoint x0 ∈ X and a lift
x̃0 ∈ p−1(x0) in the fibre of x0. The induced homomorphism

p∗ : π1(X̃, x̃0) −→ π1(X, x0)

is always injective. If we modify x̃0 in the fibre of x0, the image subgroup Im p∗
changes only by a conjugation inside π1(X, x0). The degree of p equals the
index of Im p∗ in π1(X, x0).

A topological space Y is locally contractible if every point y ∈ Y has a
contractible neighbourhood. This is again a very reasonable assumption: every
topological space considered in this book will be of this kind.

We now consider a connected and locally contractible topological space X
and fix a base-point x0 ∈ X.

Theorem 1.2.2. By sending p to Im p∗ we get a bijective correspondence{
coverings p : X̃ → X

up to isomorphism

}
←→

{
subgroups of π1(X, x0)

up to conjugacy

}
The covering corresponding to the trivial subgroup is called the univer-

sal covering. In other words, a covering X̃ → X is universal if X̃ is simply
connected, and we have just discovered that this covering is unique up to
isomorphism.

Exercise 1.2.3. Let p : X̃ → X be a covering map. If X is a topological
manifold, then X̃ also is.

Hint. To lift a countable base from X to X̃, use that π1(X) is countable
by Exercise 1.2.1 and hence p has countable degree. �
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1.2.4. Deck transformations. Let p : X̃ → X be a covering map. A deck
transformation or automorphism for p is a homeomorphism f : X̃ → X̃ such
that p ◦ f = p. The deck transformations form a group Aut(p) called the deck
transformation group of p.

If Im p∗ is a normal subgroup, the covering map is called regular. For
instance, the universal cover is regular. Regular covering maps behave nicely
in many aspects: for instance we have a natural isomorphism

Aut(p) ∼= π1(X)/π1(X̃).

To be more specific, we need to recall some basic notions on group actions.

1.2.5. Group actions. An action of a group G on a set X is a group
homomorphism

ρ : G −→ S(X)

where S(X) is the group of all the bijections X → X. We denote ρ(g) simply
by g, and hence write g(x) instead of ρ(g)(x). We note that

g(h(x)) = (gh)(x), e(x) = x

for every g, h ∈ G and x ∈ X. In particular if g(x) = y then g−1(y) = x .
The stabiliser of a point x ∈ X is the subgroup Gx < G consisting of all

the elements g such that g(x) = x . The orbit of a point x ∈ X is the subset

O(x) =
{
g(x)

∣∣ g ∈ G} ⊂ X.
Exercise 1.2.4. We have x ∈ O(x). Two orbits O(x) and O(y) either

coincide or are disjoint. They coincide ⇐⇒ ∃g ∈ G such that g(x) = y .

Therefore the set X is partitioned into orbits. The action is:

• transitive if for every x, y ∈ X there is a g ∈ G such that g(x) = y ;
• faithful if ρ is injective;
• free if the stabiliser of every point is trivial, that is g(x) 6= x for every
x ∈ X and every non-trivial g ∈ G.

Exercise 1.2.5. The stabilisers Gx and Gy of two points x, y lying in the
same orbit are conjugate subgroups of G.

Exercise 1.2.6. There is a natural bijection between the left cosets of Gx
in G and the elements of O(x). In particular the cardinality of O(x) equals
the index [G : Gx ] of Gx in G.

The space of all the orbits is denoted by X/G . We have a natural projection
π : X → X/G .
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1.2.6. Topological actions. If X is a topological space, a topological
action of a group G on X is a homomorphism

G −→ Homeo(X)

where Homeo(X) is the group of all the self-homeomorphisms of X. We have
a natural projection π : X → X/G and we equip the quotient set X/G with the
quotient topology. The action is:

• properly discontinuous if any two points x, y ∈ X have neighbour-
hoods Ux and Uy such that the set{

g ∈ G
∣∣ g(Ux) ∩ Uy 6= ∅

}
is finite.

Example 1.2.7. The action of a finite group G is always properly discon-
tinuous.

This definition is relevant mainly because of the following remarkable fact.

Proposition 1.2.8. Let G act on a Hausdorff path-connected space X. The
following are equivalent:

(1) G acts freely and properly discontinuously;
(2) the quotient X/G is Hausdorff and X → X/G is a regular covering.

Every regular covering between Hausdorff path-connected spaces arises in this
way.

Concerning the last sentence: if X̃ → X is a regular covering, the deck
transformation group G acts transitively on each fibre, and we get X = X̃/G .
This does not hold for non-regular coverings.

We have here a formidable and universal tool to construct plenty of regular
coverings and of topological spaces: it suffices to have X and a group G acting
freely and properly discontinously on it.

Since every universal cover is regular, we also get the following.

Corollary 1.2.9. Every path-connected locally contractible Hausdorff topo-
logical space X is the quotient X̃/G of its universal cover by the action of
some group G acting freely and properly discontinuously.

Note that the group G is isomorphic to π1(X). There are plenty of exam-
ples of this phenomenon, but in this introductory chapter we limit ourselves to
a very basic one. More will come later.

Example 1.2.10. Let G = Z act on X = R as translations, that is g(v) =

v + g. The action is free and properly discontinuous; hence we get a covering
R→ R/Z. The quotient R/Z is in fact homeomorphic to S1 (exercise).
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In principle, one could now think of classifying all the (locally contractible,
path-connected, Hausdorff) topological spaces by looking only at the simply
connected ones and then studying the groups acting freely and properly dis-
continuously on them. It is of course impossible to carry on this too ambitious
strategy in this wide generality, but the task becomes more reasonable if one
restricts the attention to spaces of some particular kind like – as we will see –
the riemannian manifolds having constant curvature.

Recall that a continuous map f : X → Y is proper if f −1(K) is compact
for every compact K ⊂ Y .

Exercise 1.2.11. Let a group G act on a locally compact space X. Assign
to G the discrete topology. The following are equivalent:

• the action is properly discontinuous;
• for every compact K ⊂ X, the set

{
g | g(K) ∩K 6= ∅

}
is finite;

• the map G ×X → X ×X that sends (g, x) to (g(x), x) is proper.

1.3. Multivariable analysis

It will be important in this book to use superscripts and subscripts in a
globally coherent way, and to obey this rule (to be explained later on) we will
employ superscripts x1, . . . , xn to indicate the coordinates of a vector x ∈ Rn.
At some points we will break this rule and use subscripts x1, . . . , xn only to
avoid cumbersome formulas.

1.3.1. Smooth maps. A map f : U → V between two open sets U ⊂ Rn
and V ⊂ Rm is C∞ or smooth if it has partial derivatives of any order. All the
maps considered in this book will be smooth.

In particular, for every p ∈ U we have a differential

dfp : Rn 7−→ Rm

which is the linear map that best approximates f near p, that is we get

f (x) = f (p) + dfp(x − p) + o
(
‖x − p‖

)
.

If we see dfp as a m × n matrix, it is called the Jacobian and we get

dfp =

(
∂f

∂x1
· · ·

∂f

∂xn

)
=


∂f1
∂x1 · · · ∂f1

∂xn
...

. . .
...

∂fm
∂x1 · · · ∂fm

∂xn

 .
A fundamental property of differentials is the chain rule: if we are given two
smooth functions

U
f−→ V

g−→ W

then for every p ∈ U we have

d(g ◦ f )p = dgf (p) ◦ dfp.
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1.3.2. Taylor Theorem. A multi-index is a vector α = (α1, . . . , αn) of
non-negative integers αi ≥ 0. We set

|α| = α1 + . . .+ αn, α! = α1! · · ·αn!, xα = xα1
1 · · · x

αn
n .

Let f : U → R be a smooth map defined on some open set U ⊂ Rn. For every
multi-index α we define the corresponding combination of partial derivatives:

Dαf =
∂|α|f

∂xα1
1 · · · ∂x

αn
n
.

We recall Taylor’s Theorem:

Theorem 1.3.1. Let f : U → R be a smooth map defined on some open
convex set U ⊂ Rn. For every point x0 ∈ U and integer k ≥ 0 we have

f (x) =
∑
|α|≤k

Dαf (x0)

α!
(x − x0)α +

∑
|α|=k+1

hα(x)(x − x0)α

where hα : U → R is a smooth map that depends on α.

1.3.3. Diffeomorphisms. A smooth map f : U → V between two open
sets U ⊂ Rn and V ⊂ Rm is a diffeomorphism if it is invertible and its inverse
f −1 : V → U is also smooth.

Proposition 1.3.2. If f is a diffeomorphism, then dfp is invertible for every
p ∈ U. In particular we get n = m.

Proof. The chain rule gives

idRn = d(idU)p = d(f −1 ◦ f )p = df −1
f (p)
◦ dfp,

idRm = d(idV )f (p) = d(f ◦ f −1)f (p) = dfp ◦ df −1
f (p)

.

Therefore the linear map dfp is invertible. �

We now show that a weak converse of this statement holds.

1.3.4. Local diffeomorphisms. We say that a smooth map f : U → V

is a local diffeomorphism at a point p ∈ U if there is an open neighbourhood
U ′ ⊂ U of p such that f (U ′) is open and f |U ′ : U ′ → f (U ′) is a diffeomorphism.

Here is an important theorem, that we will use frequently.

Theorem 1.3.3 (Inverse Function Theorem). A smooth map f : U → V is
a local diffeomorphism at p ∈ U ⇐⇒ its differential dfp is invertible.

We say that a smooth map f : U → V is a local diffeomorphism if it is so
at every point p ∈ U. A diffeomorphism is always a local diffeomorphism, but
the converse does not hold as the following example shows.
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Figure 1.3. A smooth bump function f : R2 → R.

Example 1.3.4. The smooth map f : R2 → R2 given by

f

(
x

y

)
=

(
ex cos y

ex sin y

)
has Jacobian

df(x,y) =

(
ex cos y −ex sin y

ex sin y ex cos y

)
with determinant e2x and hence everywhere invertible. By the Inverse Function
Theorem, the map f is a local diffeomorphism. The map f is however not
injective, hence it is not a diffeomorphism.

1.3.5. Bump functions. A smooth bump function is a smooth function
ρ : Rn → R that has compact support (the support is the closure of the set of
points x ∈ Rn where ρ(x) 6= 0). See Figure 1.3.

The existence of bump functions is a peculiar feature of the smooth envi-
ronment that has many important consequences in differential topology. The
main tool is the smooth function

h(t) =

{
e−

1
t if t ≥ 0,

0 if t ≤ 0.

We may use it to build a bump function ρ : Rn → R as follows:

ρ(x) = h
(

1− ‖x‖2
)
.

The support of ρ is the closed unit disc ‖x‖ ≤ 1, and it has a unique maximum
at the origin x = 0.

Note that a bump function is never analytic (unless it is constantly zero).
Sometimes it is useful to have a bump function that looks like a plateau, for
instance consider η : Rn → R defined as follows:

η(x) =
h
(

1− ‖x‖2
)

h
(

1− ‖x‖2
)

+ h
(
‖x‖2 − 1

4

) .
Here η(x) = 1 for all ‖x‖ ≤ 1

2 and η(x) = 0 for all ‖x‖ ≥ 1, while η(x) ∈ (0, 1)

for all 1
2 < ‖x‖ < 1.
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Figure 1.4. A smooth transition function Ψ.

1.3.6. Transition function. Another important smooth non-analytic func-
tions is the transition function Ψ: R→ R defined as

Ψ(x) =
h(x)

h(x) + h(1− x)

where h(x) is the function defined above. The function Ψ is smooth and non-
decreasing, and we have Ψ(x) = 0 for all x ≤ 0 and Ψ(x) = 1 for all x ≥ 1.
See Figure 1.4.

1.3.7. Cauchy–Lipschitz Theorem. The Cauchy–Lipschitz Theorem cer-
tifies the existence and uniqueness of solutions of a system of first-order dif-
ferential equations, and also the smooth dependence on its initial values, when
the given equations are smooth.

Let f : I × Rn → Rn be a smooth map, with I ⊂ R some interval.

Theorem 1.3.5. The Cauchy problem{
x ′(t) = f (t, x(t)),

x(0) = x0

has a unique solution x(t), defined on some maximal open interval J ⊂ I. The
point x(t) depends smoothly on both t and x0 ∈ Rn.

If we have a higher order differential equation

x (n)(t) = f (t, x ′(t), x ′′(t), . . . , x (n−1)(t))

we can reduce it to a system of first-order equations as above, with variables
x1 = x, x2, . . . , xn and equations x ′i (t) = xi+1(t) and x ′n = f (t, x1, . . . , xn).
Therefore we have again a unique smooth solution x(t) for any arbitrarily
fixed initial values of x(0), x ′(0), . . . , x (n−1)(0).

If the solution x(t) is defined on some maximal interval J = (a, b) and
b < +∞, then x(t) must diverge (that is, exit from any compact set) as
t → b, otherwise (one can prove that) the solution could be prolonged on
some bigger open interval and J would not be maximal.
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1.3.8. Integration. A Borel set V ⊂ Rn is any subset constructed from
the open and closed sets by countable unions and intersections.

If V ⊂ Rn is a Borel set and f : V → R is a non-negative measurable
function, we may consider its Lebesgue integral∫

V

f .

If ϕ : U → V is a diffeomorphism between two open subsets of Rn, then we
get the following changes of variables formula∫

V ′
f =

∫
U ′
| det dϕ|f ◦ ϕ

for any Borel subsets U ′ ⊂ U and V ′ = ϕ(U ′).

Remark 1.3.6. A diffeomorphism of course does not preserve the measure
of Borel sets, but it sends zero-measure sets to zero-measure sets.

1.3.9. The Sard Lemma. Let f : U → Rn be a smooth map defined
on some open subset U ⊂ Rm. We say that a point p ∈ U is regular if
the differential dfp is surjective, and singular otherwise. A value q ∈ Rn is
a regular value if all its counterimages p ∈ f −1(q) are regular points, and
singular otherwise.

Here is an important fact on smooth maps.

Lemma 1.3.7 (Sard’s Lemma). The singular values of f form a zero-
measure subset of Rn.

Corollary 1.3.8. If m < n, the image of f is a zero-measure subset.

Recall that a Peano curve is a continuous surjection R → R2. Maps of
this kind are forbidden in the smooth world.

1.3.10. Complex analysis. Let U, V ⊂ C be open subsets. Recall that a
function f : U → V is holomorphic if for every z0 ∈ U the limit

f ′(z0) = lim
z→z0

f (z)− f (z0)

z − z0

exists. The limit f ′(z0) is a complex number called the complex derivative of
f at z0.

Quite surprisingly, a homolorphic function satisfies a wealth of very good
properties: if we identify C with R2 in the usual way, we may interpret f as
a function between open sets of R2, and it turns out that f is smooth (and
even analytic) and its Jacobian at z0 is such that

det(dfz0 ) = |f ′(z0)|2.

It is indeed a remarkable fact that the presence of the complex derivative alone
guarantees the existence of partial derivatives of any order.
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1.4. Projective geometry

1.4.1. Projective spaces. Let K be any field: we will be essentially inter-
ested in the cases K = R or C. Let V be a finite-dimensional vector space on
K. The projective space of V is

P(V ) =
(
V \ {0}

)
/∼

where v ∼ w ⇐⇒ v = λw for some λ 6= 0. In particular we write

KPn = P(Kn+1).

Every non-zero vector v = (x0, . . . , xn) ∈ Kn+1 determines a point in KPn
which we denote as

[x0, . . . , xn].

These are the homogeneous coordinates of the point. Of course not all the
xi are zero, and [x0, . . . , xn] = [λx0, . . . , λxn] for all λ 6= 0.

1.4.2. Topology. When K = R or C, the space KPn inherits the quotient
topology from Kn+1 and is a Hausdorff compact connected topological space.
A convenient way to see this is to consider the projections

π : Sn −→ RPn, π : S2n+1 −→ CPn

obtained by restricting the projections from Rn \ {0} and Cn \ {0}. Note that
S2n+1 =

{
z ∈ Cn+1

∣∣ |z0|2 + . . .+ |zn|2 = 1
}
.

Exercise 1.4.1. Show that the projections are surjective and deduce that
the projective spaces are connected and compact.

Exercise 1.4.2. We have the following homeomorphisms

RP1 ∼= S1, CP1 ∼= S2.

The fundamental group of RPn is Z when n = 1 and Z/2Z when n > 1.
On the other hand the complex projective space CPn is simply connected for
every n.





CHAPTER 2

Tensors

2.1. Multilinear algebra

2.1.1. The dual space. In this book we will be concerned mostly with real
finite-dimensional vector spaces. Given two such spaces V,W of dimension
m, n, we denote by Hom(V,W ) the set of all the linear maps V → W . The
set Hom(V,W ) is itself naturally a vector space of dimension mn.

A space that will be quite relevant here is the dual space V ∗ = Hom(V,R),
that consists of all the linear functionals V → R, also called covectors. The
spaces V and V ∗ have the same dimension, but there is no canonical way to
choose an isomorphism V → V ∗ between them: this fact will have important
consequences in this book.

A basis B = {v1, . . . , vn} for V induces a dual basis B∗ = {v1, . . . , vn} for
V ∗ by requiring that v i(vj) = δi j . (Recall that the Kronecker delta δi j equals
1 if i = j and 0 otherwise.) We can construct an isomorphism V → V ∗ by
sending vi to v i , but it heavily depends on the chosen basis B.

On the other hand, a canonical isomorphism V → V ∗∗ exists between V
and its bidual space V ∗∗ = (V ∗)∗. The isomorphism is the following:

v 7−→
(
v∗ 7−→ v∗(v)

)
.

Exercise 2.1.1. This is indeed an isomorphism. If V had infinite dimension,
it would be injective and not surjective.

For that reason, the bidual space V ∗∗ will play no role here and will always
be identified with V . In fact, it is useful to think of V and V ∗ as related by a
bilinear pairing

V × V ∗ −→ R

that sends (v , v∗) to v∗(v). Not only the vectors in V ∗ act on V , but also the
vectors in V act on V ∗.

Every linear map L : V → W induces an adjoint linear map L∗ : W ∗ → V ∗

that sends f to f ◦ L. Of course we get L∗∗ = L.

2.1.2. Multilinear maps. Given some vector spaces V1, . . . , Vk ,W , a map

F : V1 × · · · × Vk −→ W

is multilinear if it is linear on each component.

23
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Let Bi = {vi ,1, . . . , vi ,mi} be a basis of Vi and C = {w1, . . . , wn} a basis of
W . The coefficients of F with respect to these basis are the numbers

F jj1,...,jk

with 1 ≤ ji ≤ mi and 1 ≤ j ≤ n such that

F (v1,j1 , . . . , vk,jk ) =

n∑
j=1

F jj1,...,jkwj .

Exercise 2.1.2. Every multilinear F is determined by its coefficients, and
every choice of coefficients determines a multilinear F .

We denote by Mult(V1, . . . , Vk ;W ) the space of all the multilinear maps
V1 × · · · × Vk → W . This is naturally a vector space.

Corollary 2.1.3. We have

dim Mult(V1, . . . , Vk ;W ) = dim V1 · · · dim Vk dimW.

When W = R we omit it from the notation and write Mult(V1, . . . , Vk).
In that case of course we have

dim Mult(V1, . . . , Vk) = dim V1 · · · dim Vk .

In fact, every space Mult(V1, . . . , Vk ;W ) may be transformed canonically into
a similar one where the target vector space is R, thanks to the following:

Exercise 2.1.4. There is a canonical isomorphism

Mult(V1, . . . , Vk ;W ) −→ Mult(V1, . . . , Vk ,W
∗)

defined by sending F ∈ Mult(V1, . . . , Vk ;W ) to the map

(v1, . . . , vk , w
∗) 7−→ w∗

(
F (v1, . . . , vk)

)
.

Hint. The spaces have the same dimension and the map is injective. �

2.1.3. Sum and product of spaces. We now introduce a couple of opera-
tions ⊕ and ⊗ on vector spaces. Let V1, . . . , Vk be some real finite-dimensional
vector spaces.

Sum. The sum V1⊕· · ·⊕Vk is just the cartesian product with componen-
twise vector space operations. That is:

V1 ⊕ · · · ⊕ Vk =
{

(v1, . . . , vk)
∣∣ v1 ∈ V1, . . . , vk ∈ Vk

}
and the vector space operations are

(v1, . . . , vk) + (w1, . . . , wk) = (v1 + w1, . . . , vk + wk),

λ(v1, . . . , vk) = (λv1, . . . , λvk).

Let Bi = {vi ,1, . . . , vi ,mi} be a basis of Vi , for all i = 1, . . . , k .
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Exercise 2.1.5. A basis for V1 ⊕ · · · ⊕ Vk is{
(v1,j1 , 0, . . . , 0), . . . , (0, . . . , 0, vi ,ji , 0, . . . , 0), . . . , (0, . . . , 0, vk,jk )

}
where 1 ≤ ji ≤ mi varies for each i = 1, . . . , k .

We deduce that

dim(V1 ⊕ · · · ⊕ Vk) = dim V1 + . . .+ dim Vk .

Tensor product. The tensor product V1 ⊗ · · · ⊗ Vk is defined (a bit more
obscurely. . .) as the space of all the multilinear maps V ∗1 × · · · × V ∗k → R, i.e.

V1 ⊗ · · · ⊗ Vk = Mult(V ∗1 , . . . , V
∗
k ).

We already know that

dim(V1 ⊗ · · · ⊗ Vk) = dim V1 · · · dim Vk .

Any k vectors v1 ∈ V1, . . . , vk ∈ Vk determine an element

v1 ⊗ · · · ⊗ vk ∈ V1 ⊗ · · · ⊗ Vk
which is by definition the multilinear map

(v∗1 , . . . , v
∗
k ) 7−→ v∗1 (v1) · · · v∗k (vk).

As opposite to the sum operation, it is important to note that not all the
elements of V1 ⊗ · · · ⊗ Vk are of the form v1 ⊗ · · · ⊗ vk . The elements of this
type (sometimes called pure or simple) can however generate the space, as
the next proposition shows. Let Bi = {vi ,1, . . . , vi ,mi} be a basis of Vi for all
1 ≤ i ≤ k .

Proposition 2.1.6. A basis for the tensor product V1 ⊗ · · · ⊗ Vk is

{v1,j1 ⊗ · · · ⊗ vk,jk}
where 1 ≤ ji ≤ mi varies for each i = 1, . . . , k .

Proof. This is a consequence of Exercise 2.1.2. If we use the dual basis
for V ∗i , the element v1,j1⊗· · ·⊗vk,jk corresponds to the multilinear map whose
coefficients F 1

i1,...,ik
equal 1 if (i1, . . . , ik) = (j1, . . . , jk) and 0 otherwise. �

Example 2.1.7. A basis for R2 ⊗ R2 is given by the elements(
1

0

)
⊗
(

1

0

)
,

(
1

0

)
⊗
(

0

1

)
,

(
0

1

)
⊗
(

1

0

)
,

(
0

1

)
⊗
(

0

1

)
.

Exercise 2.1.8. The following relations hold in V ⊗W :

(v + v ′)⊗ w = v ⊗ w + v ′ ⊗ w, v ⊗ (w + w ′) = v ⊗ w + v ⊗ w ′,
λ(v ⊗ w) = (λv)⊗ w = v ⊗ (λw),

v ⊗ w = 0⇐⇒ v = 0 or w = 0.

Exercise 2.1.9. Let v , v ′ ∈ V and w,w ′ ∈ W be non-zero vectors. If v
and v ′ are independent, then v ⊗ w and v ′ ⊗ w ′ also are.
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Exercise 2.1.10. Let v , v ′ ∈ V and w,w ′ ∈ W be two pairs of independent
vectors. Show that

v ⊗ w + v ′ ⊗ w ′ ∈ V ⊗W
is not a pure element.

2.1.4. Canonical isomorphisms. We now introduce some canonical iso-
morphisms, that may look quite abstract at a first sight, but that will help us
a lot to simplify many situations: two spaces that are canonically isomorphic
may be harmlessly considered as the same space.

We start with the following easy:

Proposition 2.1.11. The map v 7→ v ⊗ 1 defines a canonical isomorphism

V −→ V ⊗ R.

Proof. The spaces have the same dimension and the map is linear and
injective by Exercise 2.1.8. �

Let V1, . . . , Vk , Z be any vector spaces.

Proposition 2.1.12. The linear map

Hom(V1 ⊗ · · · ⊗ Vk , Z) −→ Mult(V1, . . . , Vk ;Z)

that sends F to F ′ via F ′(v1, . . . , vk) = F (v1 ⊗ · · · ⊗ vk) is an isomorphism.

Proof. The spaces have the same dimension and the map is injective (ex-
ercise: use Proposition 2.1.6). �

This canonical isomorphism is called the universal property of ⊗ and one
can also show that it characterises the tensor product uniquely. This is typically
stated by drawing a commutative diagram like this:

(1) V1 × · · · × Vk //

F ′
((

V1 ⊗ · · · ⊗ Vk
F
��
Z

Given a multilinear F ′ there is a unique linear F so that the diagram commutes.
The universal property is very useful to construct maps. For instance, we may
use it to construct more canonical isomorphisms:

Proposition 2.1.13. There are canonical isomorphisms

V ⊕W ∼= W ⊕ V, (V ⊕W )⊕ Z ∼= V ⊕W ⊕ Z ∼= V ⊕ (W ⊕ Z),

V ⊗W ∼= W ⊗ V, (V ⊗W )⊗ Z ∼= V ⊗W ⊗ Z ∼= V ⊗ (W ⊗ Z),

V ⊗ (W ⊕ Z) ∼= (V ⊗W )⊕ (V ⊗ Z),

(V1 ⊕ · · · ⊕ Vk)∗ ∼= V ∗1 ⊕ · · · ⊕ V ∗k , (V1 ⊗ · · · ⊗ Vk)∗ ∼= V ∗1 ⊗ · · · ⊗ V ∗k .
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Proof. The isomorphisms in the first line are

(v , w) 7→ (w, v), (v , w, z) 7→
(

(v , w), z
)
, (v , w, z) 7→ (v ,

(
w, z)

)
.

Those in the second line are uniquely determined by the conditions

v ⊗w 7→ w ⊗ v , v ⊗w ⊗ z 7→ (v ⊗w)⊗ z, v ⊗w ⊗ z 7→ v ⊗ (w ⊗ z)

thanks to the universal property of the tensor products. Analogously the iso-
morphism of the third line is determined by

v ⊗ (w, z) 7→ (v ⊗ w, v ⊗ z).

Concerning the last line, the first isomorphism is straightforward. For the
second, we have

(V1⊗· · ·⊗ Vk)∗ = Hom(V1⊗· · ·⊗ Vk ,R) = Mult(V1, . . . , Vk) = V ∗1 ⊗· · ·⊗ V ∗k .

More concretely, every element v1 ⊗ · · · ⊗ v k ∈ V ∗1 ⊗ · · · ⊗ V ∗k is naturally an
element of (V1 ⊗ · · · ⊗ Vk)∗ as follows:

(v1 ⊗ · · · ⊗ v k)(w1 ⊗ · · · ⊗ wk) = v1(w1) · · · v k(wk).

The proof is complete. �

There are yet more canonical isomorphisms to discover! The following is
a consequence of Exercise 2.1.4 and is particularly useful.

Corollary 2.1.14. There is a canonical isomorphism

Hom(V,W ) ∼= V ∗ ⊗W.

In particular we have End(V ) ∼= V ∗ ⊗ V = Mult(V, V ∗). In this canonical
isomorphism, the identity endomorphism idV corresponds to the bilinear map
V × V ∗ → R that sends (v , v∗) to v∗(v).

Exercise 2.1.15. Given v∗ ∈ V ∗ and w ∈ W , the element v∗ ⊗ w corre-
sponds via the canonical isomorphism Hom(V,W ) ∼= V ∗ ⊗ W to the homo-
morphism v 7→ v∗(v)w . Deduce that the pure elements in V ∗⊗W correspond
precisely to the homomorphisms V → W of rank ≤ 1.

2.1.5. The Segre embedding. We briefly show a geometric application
of the algebra introduced in this section. Let U, V be vector spaces. The
natural map U × V → U ⊗ V induces an injective map on projective spaces

P(U)× P(V ) ↪→ P(U ⊗ V )

called the Segre embedding. The map is injective thanks to Exercise 2.1.9.
We have just discovered a simple method for embedding a product of

projective spaces in a bigger projective space. If U = Rm+1 and V = Rn+1 we
have an isomorphism U ⊗ V ∼= R(m+1)(n+1) and we get an embedding

RPm × RPn ↪→ RPmn+m+n.
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Example 2.1.16. When m = n = 1 we get RP1 ×RP1 ↪→ RP3. Note that
RP1 × RP1 is topologically a torus. The Segre map is(

[x0, x1], [y0, y1]
)
7−→

[(
x0

x1

)
⊗
(
y0

y1

)]
and the right member equals[
x0y0

(
1

0

)
⊗
(

1

0

)
+ x0y1

(
1

0

)
⊗
(

0

1

)
+ x1y0

(
0

1

)
⊗
(

1

0

)
+ x1y1

(
0

1

)
⊗
(

0

1

)]
.

In coordinates with respect to the canonical basis the Segre embedding is(
[x0, x1], [y0, y1]

)
7−→ [x0y0, x0y1, x1y0, x1y1].

It is now an exercise to show that the image is precisely the quadric z0z3 = z1z2

in RP3. We recover the well-known fact that such a quadric is a torus.

2.1.6. Infinite-dimensional spaces. In very few points in this book we
will be concerned with infinite dimensional real vector spaces. We summarise
briefly how to extend some of the operations introduced above to an infinite-
dimensional context.

The dual V ∗ of a vector space V is always the space of all functionals
V → R. There is a canonical injective map V ↪→ V ∗∗ which is surjective if and
only if V has finite dimension.

Let V1, V2, . . . be vector spaces. The direct product and the direct sum∏
i

Vi ,
⊕
i

Vi

are respectively the space of all sequences (v1, v2, . . .) with vi ∈ Vi , and the
subspace consisting of sequences with only finitely many non-zero elements.
In the latter case, when the spaces Vi are clearly distinct, one may write every
sequence simply as a sum

vi1 + . . .+ vih

of the non-zero elements in the sequence. There is a canonical isomorphism

(⊕iVi)∗ =
∏
iV
∗
i .

The tensor product V ⊗W of two vector spaces of arbitrary dimension may
be defined as the unique vector space that satisfies the universal property
(1). Uniqueness is easy to prove, but existence is more involved: the space
Mult(V ∗,W ∗) does not work here, it is too big because V 6= V ∗∗. Instead we
may define V ⊗W as a quotient

V ⊗W = F (V ×W )/∼

where F (S) is the free vector space generated by the set S, that is the abstract
vector space with basis S, and ∼ is the equivalence relation generated by
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equivalences of this type:

(v1, w) + (v2, w) ∼ (v1 + v2, w),

(v , w1) + (v , w2) ∼ (v , w1 + w2),

(λv, w) ∼ λ(v , w) ∼ (v , λw).

The equivalence class of (v , w) is indicated as v ⊗w . More concretely, if {vi}
and {wj} are basis of V and W , then {vi ⊗ wj} is a basis of V ⊗W , and this
is the most important thing to keep in mind.

The tensor product is distributive with respect to direct sum, that is there
are canonical isomorphisms

V ⊗
(
⊕i Wi

) ∼= ⊕i(V ⊗Wi)

but the tensor product is not distributive with respect to the direct product in
general! We need dim V <∞ for that:

Exercise 2.1.17. If V has finite dimension, there is a canonical isomorphism

V ⊗
(∏

iWi

) ∼= ∏
i(V ⊗Wi).

Dimostrare?

2.2. Tensors

We have defined the operations ⊕,⊗, ∗ in full generality, and we now apply
them to a single finite-dimensional real vector space V .

2.2.1. Definition. Let V be a real vector space of dimension n and h, k ≥
0 some integers. A tensor of type (h, k) is an element T of the vector space

T kh (V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
h

⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k

.

In other words T is a multilinear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
h

× V × · · · × V︸ ︷︷ ︸
k

−→ R.

This elegant definition gathers many well-known notions in a single word:

• a tensor of type (0, 0) is by convention an element of R, a scalar ;
• a tensor of type (1, 0) is an element of V , a vector ;
• a tensor of type (0, 1) is an element of V ∗, a covector ;
• a tensor of type (0, 2) is a bilinear form V × V → R;
• a tensor of type (1, 1) is an element of V ⊗ V ∗ and hence may be
interpreted as an endomorphism V → V , by Corollary 2.1.14;

More generally, every tensor T of type (h, k) may be interpreted as a
multilinear map

T ′ : V × · · · × V︸ ︷︷ ︸
k

−→ V ⊗ · · · ⊗ V︸ ︷︷ ︸
h
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by writing

T ′(v1, . . . , vk)(v∗1 , . . . , v
∗
h ) = T (v∗1 , . . . , v

∗
h , v1, . . . , vk).

In particular a tensor of type (1, k) can be interpreted as a multilinear map

T : V × · · · × V︸ ︷︷ ︸
k

−→ V.

Example 2.2.1. The euclidean scalar product in Rn is defined as

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + . . .+ xnyn.

It is a bilinear map Rn × Rn → R and hence a tensor of type (0, 2).

Example 2.2.2. The cross product in R3 is defined as

(x, y , z) ∧ (x ′, y ′, z ′) = (yz ′ − zy ′, zx ′ − xz ′, xy ′ − yx ′).

It is a bilinear map R3 × R3 → R3 and hence a tensor of type (1, 2).

Example 2.2.3. The determinant may be interpreted as a multilinear map

Rn × · · · × Rn︸ ︷︷ ︸
n

−→ R

that sends (v1, . . . , vn) to det(v1 · · · vn). As such, it is a tensor of type (0, n).

2.2.2. Coordinates. Every abstract and ethereal object in linear algebra
transforms into a more reassuring multidimensional array of numbers, called
coordinates, as soon as we choose a basis.

Let B = {v1, . . . , vn} be a basis of V , and B∗ = {v1, . . . , vn} be the dual
basis of V ∗. A basis of the tensor space T kh (V ) consists of all the vectors

vi1 ⊗ · · · ⊗ vih ⊗ v
j1 ⊗ · · · ⊗ v jk

where 1 ≤ i1, . . . , ih, j1, . . . , jk ≤ n. Overall, this basis consists of nh+k vectors.
Every tensor T of type (h, k) can be written uniquely as

(2) T = T i1,...,ihj1,...,jk
vi1 ⊗ · · · ⊗ vih ⊗ v

j1 ⊗ · · · ⊗ v jk .

We are using here the Einstein summation convention: every index that is re-
peated at least twice should be summed over the values of the index. Therefore
in (2) we sum over all the indices i1, . . . , ih, j1, . . . , jk . The following proposition
shows how to compute the coordinates of T directly.

Proposition 2.2.4. The coordinates of T are

T i1,...,ihj1,...,jk
= T

(
v i1 , . . . , v ih , vj1 , . . . , vjk

)
.

Proof. Apply both members of (2) to
(
v i1 , . . . , v ih , vj1 , . . . , vjk

)
. �

Example 2.2.5. The coordinates of the Euclidean scalar product g on Rn
with respect to an orthonormal basis are gi j = δi j .
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Figure 2.1. The coordinates of the cross product tensor with respect
to the canonical basis of R3 (or any positive orthonormal basis) form the
Levi-Civita symbol εi jk .

Example 2.2.6. The coordinates of id ∈ Hom(V, V ) = V ⊗V ∗ with respect
to any basis are idij = δij . This is again the Kronecker delta, written as δij for
convenience.

Exercise 2.2.7. The coordinates of the cross product tensor in R3 with
respect to any positive orthonormal basis are

T ijk = εi jk =


+1 if (i , j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2),

−1 if (i , j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3),

0 if i = j, or j = k, or k = i .

The three-dimensional array εi jk is called the Levi-Civita symbol and is shown
in Figure 2.1.

Exercise 2.2.8. The determinant in R3 may be interpreted as a tensor of
type (0, 3). Show that its coordinates with respect to any positive orthonormal
basis are also εi jk .

2.2.3. Coordinates manipulation. The coordinates and the Einstein con-
vention are powerful tools that enable us to describe complicated tensor ma-
nipulations in a very concise way, and the reader should familiarise with them.
We start by exhibiting some simple examples. We fix a basis B = {v1, . . . , vn}
for V and consider coordinates with respect to this basis. We write the coor-
dinates of a generic vector v as v i , that is we have

v = v ivi .

Note that v i is a number while vi is a vector. If v ∈ V is a vector and
T : V → V is an endomorphism, that is T ∈ T 1

1 (V ), we may write w = T (v)

directly in coordinates as follows:

w j = T ji v
i

where v i , w j , T ji are the coordinates of v , w, T . The trace of T is simply

T ii .
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If v , w ∈ V are vectors and g : V ×V → R is a bilinear form, that is g ∈ T 2
0 (V ),

it has coordinates gi j and we may write the scalar g(v , w) as follows:

v igi jw
j .

The expressions w j = T ji v
i and v igi jw j are just the usual products matrix-

times-vector(s) that describe endomorphisms and bilinear forms in coordinates:
we are only rewriting them using the Einstein convention.

Let T be the tensor of type (1, 2) that describes the cross product in R3.
The equality z = v ∧ w can be written in coordinates as

z i = T ijkv
jw k .

Note that in all the cases described so far the Einstein convention is applied to
pairs of indices where one is a superscript and the other is a subscript. This is
in fact a general phenomenon: all the notation is designed to get this in any
possible situation, with the purpose of limiting considerably the possibilities of
errors and the amount of information that one has to remember by heart.

Example 2.2.9. We prove the well-known equalities

(v ∧ w) · z = v · (w ∧ z) = det(v w z)

using coordinates. The three members may be written as

v jT ijkw
kgi lz

l , v lgl iw
jT ijkz

k , deti jkv
iw jzk .

Now we take an orthonormal basis B, so that gi j = δi j and T ijk = εi jk = deti jk .
The three members simplify as

εi jkv
jw kz i , εi jkv

iw jzk , εi jkv
iw jzk

and they represent the same number thanks to the symmetries of ε.

Remark 2.2.10. In accordance with the previous discussion, the coordinates
of a vector x ∈ Rn with respect to the canonical basis should be indicated with
superscripts x1, . . . , xn, and we will try to stick to this convention as much
as possible; at few points we will break this rule and use subscripts to avoid
cumbersome formulas like (x1)2/(x2)1.

2.2.4. Change of basis. If C = {w1, . . . , wn} is another basis of V then

wj = Aijvi

for some invertible n × n matrix A of coefficients. Here “invertible” means of
course that there is a n × n matrix B, called the inverse of A, such that

AikB
k
j = δij = BikA

k
j

where δij is the Kronecker delta.

Proposition 2.2.11. The dual basis changes as follows:

w i = Bijv
j .
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Proof. We check that the proposed w i form the dual basis of wi :

w i(wj) = (Bikv
k)(Aljvl) = BikA

l
jv
k(vl) = BikA

l
jδ
k
l = BikA

k
j = δij .

It is a useful exercise to fully understand each of the previous equalities! In
the fourth one we removed the Kronecker delta and set k = l . �

Let T be a tensor as in (2). We now want to determine the coordinates
T̂ i1,...,ihj1,...,jk

of T in the new basis C, in terms of the coordinates T i1,...,ihj1,...,jk
in the old

basis B and of the matrices A and B.

Proposition 2.2.12. We have

(3) T̂ i1...ihj1...jk
= Bi1l1 · · ·B

ih
lh
Am1
j1
· · ·Amkjk T

l1...lh
m1...mk

This complicated-looking equation may be memorised by noting that we
need one A for every lower index of T , and one B for every upper index.

Proof. By Proposition 2.2.4 we have

T̂ i1,...,ihj1,...,jk
= T

(
w i1 , . . . , w ih , wj1 , . . . , wjk

)
= T

(
Bi1l1v

l1 , . . . , Bihlh v
lh , Am1

j1
vm1 , . . . , A

mk
jk
vmk
)

= Bi1l1 · · ·B
ih
lh
Am1
j1
· · ·Amkjk T

(
v l1 , . . . , v lh , vm1 , . . . , vmk

)
= Bi1l1 · · ·B

ih
lh
Am1
j1
· · ·Amkjk T

l1...lh
m1...mk

.

The proof is complete. �

The reader should appreciate the generality of the formula (3): it describes
in a single equality the coordinate changes of vectors, covectors, endomor-
phisms, bilinear forms, the cross product in R3, the determinant, and some
more complicated tensors that we will encounter in this book. We write some
of them:

v̂ i = Bil v
l , v̂j = Amj vm, T̂ ij = BilA

m
j T

l
m, ĝi j = Ami A

n
j gmn.

The formula (3) contains many indices and may look complicated at a first
glance, but in fact it only says that the lower indices j1, . . . , jk change through
the matrix A, while the upper indices i1, . . . , ih change via the inverse matrix
B. For that reason, the lower and upper indices are also called respectively
covariant and contravariant.

Remark 2.2.13. In some physics and engineering text books, the formula
(3) is used as a definition of tensor: a tensor is simply a multi-dimensional
array, that changes as prescribed by that formula if one modifies the basis of
the vector space.

We now introduce some operations with tensors.
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2.2.5. Tensor product. It follows from the definitions that

T kh (V )⊗ T nm(V ) = T k+n
h+m(V ).

In particular, given two tensors S ∈ T kh (V ) and T ∈ T nm(V ), their product
S ⊗ T is an element of T k+n

h+m(V ). In coordinates with respect to some basis
B, it may be written as

(S ⊗ T )
i1...ih ih+1...ih+m

j1...jk jk+1...jk+n
= Si1...ihj1...jk

T
ih+1...ih+m

jk+1...jk+n
.

2.2.6. The tensor algebra. The tensor algebra of V is

T (V ) =
⊕
h,k≥0

T kh (V ).

The product ⊗ is defined on every pair of tensors, and it extends distributively
on the whole of T (V ). With this operation T (V ) is an associative algebra and
an infinite-dimensional vector space (if V is not trivial). Recall that

T 0
0 (V ) = R, T 0

1 (V ) = V, T 1
0 (V ) = V ∗.

Exercise 2.2.14. If dim V ≥ 2 the algebra is not commutative: if v , w ∈ V
are independent vectors, then v ⊗ w 6= w ⊗ v .

We denote for simplicity

Th(V ) = T 0
h (V ), T k(V ) = T k0 (V ).

The vector spaces

T∗(V ) =
⊕
h≥0

Th(V ), T ∗(V ) =
⊕
k≥0

T k(V )

are both subalgebras of T (V ) and are sometimes called the contravariant and
covariant tensor algebras, respectively.

Exercise 2.2.15. The algebras T∗(R) and R[x ] are isomorphic.

Remark 2.2.16. Let B = {v1, . . . , vn} be a basis of V . The elements
v1, . . . , vn ∈ T1(V ) generate T∗(V ) as a free algebra. This means that every
element of T∗(V ) may be written as a polynomial in the variables v1, . . . , vn in
a unique way up to permuting its addenda. Note that ⊗ is not commutative,
hence the ordering in each monomial is important. As an example:

3 + v1 − 7v2 + v1 ⊗ v2 − 3v2 ⊗ v1.
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2.2.7. Contractions. We now introduce a general important operation
on tensors called contraction that generalises the trace of endomorphisms.

The trace is an operation that picks as an input an endomorphism, that is
a (1, 1)-tensor, and produces as an output a number, that is a (0, 0)-tensor.
More generally, a contraction is an operation that transforms a (h, k)-tensor
into a (h − 1, k − 1)-tensor, and is defined for all h, k ≥ 1. It depends on the
choice of two integers 1 ≤ a ≤ h and 1 ≤ b ≤ k and results in a linear map

C : T kh (V ) −→ T k−1
h−1 (V ).

The contraction is defined as follows. Recall that

T kh (V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
h

⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k

.

The indices a and b indicate which factors V and V ∗ need to be “contracted”.
After a canonical isomorphism we may put these factors at the end and write

T kh (V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
h−1

⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k−1

⊗ V ⊗ V ∗ = T k−1
h−1 (V )⊗ V ⊗ V ∗.

The contraction is the linear map

C : T k−1
h−1 (V )⊗ V ⊗ V ∗ −→ T k−1

h−1 (V )

determined by the condition

C(w ⊗ v ⊗ v∗) = v∗(v)w.

Recall that C is well-defined because (w, v, v∗) 7→ v∗(v)w is multilinear and
hence the universal property applies.

Example 2.2.17. The contraction of a pure tensor is

C(v1 ⊗ · · · ⊗ vh ⊗ v1 ⊗ · · · ⊗ v k) =

vb(va)v1 ⊗ · · · ⊗ v̂a ⊗ · · · ⊗ vh ⊗ v1 ⊗ · · · ⊗ v̂b ⊗ · · · ⊗ v k

where ŵ indicates that the factor w is omitted.

2.2.8. In coordinates. The definition of a contraction may look abstruse,
but we now see that everything is pretty simple in coordinates. Let B =

{v1, . . . , vn} be a basis for V .

Proposition 2.2.18. If T has coordinates T i1,...,ihj1,...,jk
, then C(T ) has

C(T )
i1,...,ih−1

j1,...,jk−1
= T

i1,...,l ,...,ih−1

j1,...,l ,...,jk−1

where l is inserted at the positions a above and b below.
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Proof. We write the coordinates of T as T i1,...,i ,...,ih−1

j1,...,j,...,jk−1
for convenience,

where i and j occupy the places a and b. We have

C(T ) = C
(
T
i1,...,i ,...,ih−1

j1,...,j,...,jk−1
vi1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vih−1

⊗ v j1 ⊗ · · · ⊗ v j ⊗ · · · ⊗ v jk−1
)

= T
i1,...,i ,...,ih−1

j1,...,j,...,jk−1
δji vi1 ⊗ · · · ⊗ vih−1

⊗ v j1 ⊗ · · · ⊗ v jk−1

= T
i1,...,l ,...,ih−1

j1,...,l ,...jk−1
vi1 ⊗ · · · ⊗ vih−1

⊗ v j1 ⊗ · · · ⊗ v jk−1 .

The proof is complete. �

This shows in particular that, as promised, the contraction of an endomor-
phism whose coordinates are T ij is indeed its trace T ii .

Contractions are handled very easily in coordinates. As an example, a
tensor T of type (1, 2) has coordinates T ijk and can be contracted in two
ways, producing two (typically distinct) covectors v and v ′ with coordinates

vk = T iik , v ′j = T ij i .

It is important to remember that the coordinates depend on the choice of a
basis B, but the covectors v and v ′ obtained by contracting T do not depend
on B. Likewise, a tensor of type T i jkl has four types of contractions, producing
four (possibly distinct) tensors of type (1,1), that is endomorphisms.

It is convenient to manipulate a tensor using its coordinates as we just did:
remember however that we must always contract a covariant index together
with a contravariant one! The “contraction” of two covariant (or contravari-
ant) indices makes no sense because it is not basis-independent. This should
not be surprising: the trace T ii of an endomorphism is basis-independent, but
the trace gi i of a bilinear form is notoriously not. Said with other words:
there is a canonical homomorphism V ⊗ V ∗ → R, but there is no canonical
homomorphism V ⊗ V → R.

Exercise 2.2.19. The tensor T that expresses the cross product in R3 has
two contractions. Prove that they both give rise to the null covector.

Hint. This can be done by calculation, or abstractly: since T is invariant
under orientation-preserving isometries, its contractions also are. �

Example 2.2.20. Let T, det, g be the tensors in R3 that represent the cross
product, the determinant, and the Euclidean scalar product. They are of type
(1, 2), (0, 3), and (0, 2) respectively. The tensor T ⊗ g is of type (1, 4) and
may be written in coordinates as T kij glm. It has four contractions C(T ⊗ g),
that are all of type (0, 3). These are

T kkjglm, T kikglm, T kij gkm, T kij glk .

The first two are null by the previous exercise. The last two, expressed on a
orthonormal basis, become εi jm and εi j l . Therefore for these two contractions
we get C(T ⊗ g) = det .
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Every time we sum over a pair of covariant and contravariant indices, we
are doing a contraction. So for instance each of the operations

w j = T ji v
i , v igi jw

j

described in Section 2.2.3 may be interpreted as two-steps operations, where
we first multiply some tensors and then we contract the result. Contractions
and tensor products are everywhere.

2.3. Scalar products

We now study vector spaces V equipped with a scalar product g. We
investigate in particular the effects of g on the tensor algebra T (V ). We start
by recalling some basic facts on scalar products.

2.3.1. Definition. A scalar product on V is a symmetric bilinear form g

that is not degenerate, that is

g(v , w) = 0 ∀v ∈ V ⇐⇒ w = 0.

Recall that the scalar product is

• positive definite if g(v , v) > 0 ∀v 6= 0,
• negative definite if g(v , v) < 0 ∀v 6= 0,
• indefinite in the other cases.

Every scalar product g has a signature (p,m) where p (respectively, m) is the
maximum dimension of a subspace W ⊂ V such that the restriction g|W is
positive definite (respectively, negative definite). We have p+m = n = dim V .
The scalar product is positive definite (respectively, negative definite) ⇐⇒ its
signature is (n, 0) (respectively, (0, n)).

A scalar product g is a tensor of type (0, 2) and its coordinates with respect
to some basis B = {v1, . . . , vn} are written as gi j . The basis B is orthonormal
if gi j = ±δi j for all i , j . In particular gi i = ±1, and the sign +1 and −1 occur
p and m times as i varies. Every scalar product has an orthonormal basis.

We are mostly interested in positive definite scalar products, but indefinite
scalar product also arise in some interesting contexts – notably in Einstein’s
general relativity.

2.3.2. Isometries. Let V and W be equipped with some scalar products
g and h. A linear map T : V → W is an isometry if g(u, v) = h

(
T (u), T (v)

)
for all u, v ∈ V . This condition can be expressed in coordinates as

uigi jv
j = uiT ki hklT

l
j v
j

and since it must be satisfied for all u, v we get

gi j = T ki hklT
l
j .

The isometries from V to itself form a group that we denote by O(V ).
After fixing a basis, the group O(V ) can be represented as the subgroup of
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GL(n,R) formed by the matrices A such that tAgA = g. In particular Binet’s
formula yields detA = ±1. Therefore every isometry f ∈ O(V ) has det f = ±1

and the positive isometries (that is, those with det = 1) form an index-two
normal subgroup SO(V ) < O(V ).

When g is positive-definite and the basis is orthonormal we get the usual
orthogonal group O(n) < GL(n,R) formed by all the matrices A such that
tAA = I. More generally, if g has signature (p,m) we can find an orthonormal
basis v1, . . . , vn where gi i = −1 for i = 1, . . . , m and gi i = 1 for i = m +

1, . . . , n and in this basis O(V ) can be represented as the subgroup

O(p,m) =
{
A ∈ GL(n,R) | tAJA = J

}
, J =

(
−Im 0

0 Ip

)
.

2.3.3. The identification of V and V ∗. Let V be equipped with a scalar
product g. Our aim is now to show that g enriches the tensor algebra T (V )

with some new interesting structures.
We first discover that g induces an isomorphism

V −→ V ∗

that sends v ∈ V to the functional v∗ ∈ V ∗ defined by v∗(w) = g(v , w).
(This is an isomorphism because g is non-degenerate!) This is an important
point: as we know, the spaces V and V ∗ are not canonically identified, but we
can identify them once we have fixed a scalar product g.

Exercise 2.3.1. The isomorphism V → V ∗ sends a vector with coordinates
v i to the covector with coordinates

vj = gi jv
i .

The scalar product g induces a scalar product on V ∗, that we lazily still
name g, as follows:

g(v∗, w∗) = g(v , w)

where v∗, w∗ ∈ V ∗ are the images of v , w ∈ V along the isomorphism V → V ∗

defined above. The scalar product g on V ∗ is a tensor of type (2, 0) and its
coordinates are denoted by gi j .

Proposition 2.3.2. The matrix gi j is the inverse of gi j .

Proof. Note that gi j is invertible because g is non-degenerate. The equality
defining gi j may be rewritten in coordinates as

v igikg
klgl jw

j = vkg
klwl = v igi jw

j .

Since this holds for every v , w ∈ V we get

gikg
klgl j = gi j .

Read as a matrices multiplication, this is GHG = G that implies GH = HG = I

because G is invertible and hence H = G−1. The proof is complete. �
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Note that the proposition holds for every choice of a basis B.

2.3.4. Raising and lowering indices. We may use the scalar product g
on V to “raise” and “lower” the indices of any tensor at our pleasure. That is,
the isomorphism V → V ∗ induces an isomorphism

T kh (V ) −→ Th+k(V )

for all h, k ≥ 0. In coordinates, the isomorphism sends a tensor T i1,...,ihj1,...,jk
to

U i1,...,ih,j1,...,jk = T i1,...,ihl1,...,lk
gl1j1 · · · glk jk .

We can use gi j to raise the indices of a tensor, and in the opposite direction
we can use gi j to lower them. This operation may be encoded efficiently
and unambiguously by assigning different indices to distinct columns in the
notation. So for instance we start with a tensor like

T j
i kl

and then we may raise or lower some indices to produce a new tensor that we
may lazily indicate with the same letter; for instance we can move the indices
i and j and get a new tensor

T ijkl .

If gi j = δi j , then gi j = δi j and the coordinates of the two different tensors are
just the same, that is T j

i kl = T ijkl for every i , j, k, l . In general we have

T ijkl = T b
a klg

aigbj .

2.3.5. Scalar product on the tensor spaces. A scalar product g on V
induces a scalar product on each vector space T kh (V ), still boringly denoted by
g. This is done as follows: if S, T ∈ T kh (V ), then g(S, T ) is the scalar

T i1,...,ihj1,...,jk
gi1l1 · · · gih lhg

j1m1 · · · gjkmkSl1,...,lhm1,...,mk
.

This number is clearly basis-independent because it is obtained by multiple
contractions of a product of tensors.

Exercise 2.3.3. If B = {v1, . . . , vn} is an orthonormal basis of V , then

{vi1 ⊗ · · · ⊗ vih ⊗ v
j1 ⊗ · · · ⊗ v jk}

is an orthonormal basis of T kh (V ). If g is positive-definite on V then it is so
also on T kh (V ).

More generally, the following holds. We denote the scalar product as 〈, 〉.

Exercise 2.3.4. For any choice of vi , wj ∈ V and v k , w l ∈ V ∗ we have

〈v1⊗· · · vh⊗v1⊗· · ·⊗v k , w1⊗· · ·wh⊗w1⊗· · ·⊗w k〉 =

h∏
i=1

〈vi , wi〉
k∏
j=1

〈v j , w j〉.
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2.4. The symmetric and exterior algebras

Symmetric and antisymmetric matrices play an important role in linear
algebra: both concepts can be generalised to tensors.

2.4.1. Symmetric and antisymmetric tensors. We now introduce two
special types of covariant tensors.

Definition 2.4.1. A tensor T ∈ T k(V ) is symmetric if

(4) T (u1, . . . , uk) = T
(
uσ(1), . . . , uσ(k)

)
for every vectors u1, . . . , uk ∈ V and every permutation σ ∈ Sk . On the other
hand T is antisymmetric if

T (u1, . . . , uk) = sgn(σ)T
(
uσ(1), . . . , uσ(k)

)
for every vectors u1, . . . , uk ∈ V and every permutation σ ∈ Sk . Here sgn(σ) =

±1 is the sign of the permutation σ.

Both conditions are very easily expressed in coordinates. As usual we fix
any basis B = {v1, . . . , vn} on V and consider the coordinates of T with respect
to B.

Proposition 2.4.2. A tensor T ∈ T k(V ) is

• symmetric ⇐⇒ Ti1,...,ik = Tiσ(1),...,iσ(k)
∀i1, . . . , ik , ∀σ;

• antisymmetric ⇐⇒ Ti1,...,ik = sgn(σ)Tiσ(1),...,iσ(k)
∀i1, . . . , ik ,∀σ.

Proof. We prove the first sentence, the second is analogous. Recall that

Ti1,...,ik = T
(
vi1 , . . . , vik

)
.

Therefore we must prove that (4) holds for all vectors ⇐⇒ it holds for the
vectors in the basis B. This is left as an exercise. �

For instance a tensor Ti j is symmetric if Ti j = Tj i and antisymmetric if
Ti j = −Tj i , for all 1 ≤ i , j ≤ n.

Example 2.4.3. Every scalar product on V is a symmetric tensor g ∈
T 2(V ). The determinant is an antisymmetric tensor det ∈ T n(Rn).

Remark 2.4.4. If T is antisymmetric and the indices i1, . . . , ik are not all
distinct, then Ti1,...,ik = 0.

2.4.2. Symmetrisation and antisymmetrisation of tensors. If a ten-
sor T is not (anti-)symmetric, we can transform it by brute force into an
(anti-)symmetric one.

Let T ∈ T k(V ) be a covariant tensor. The symmetrisation of T is the
tensor S(T ) ∈ T k(V ) defined by averaging T on permutations as follows:

S(T )(v1, . . . , vk) =
1

k!

∑
σ∈Sk

T
(
vσ(1), . . . , vσ(k)

)
.



2.4. THE SYMMETRIC AND EXTERIOR ALGEBRAS 41

Analogously, the antisymmetrisation of T is the tensor

A(T )(v1, . . . , vk) =
1

k!

∑
σ∈Sk

sgn(σ)T
(
vσ(1), . . . , vσ(k)

)
.

Exercise 2.4.5. The tensors S(T ) and A(T ) are indeed symmetric and
antisymmetric, respectively. We have S(T ) = T ⇐⇒ T is symmetric and
A(T ) = T ⇐⇒ T is antisymmetric.

In coordinates with respect to some basis we have

S(T )i1,...,ik =
1

k!

∑
σ∈Sk

Tiσ(1),...,iσ(k)
,

A(T )i1,...,ik =
1

k!

∑
σ∈Sk

sgn(σ)Tiσ(1),...,iσ(k)
.

The members on the right can be written more concisely as

T(i1,...,ik), T[i1,...,ik ].

The round or square brackets indicate that we symmetrise or antisymmetrise
by summing along all permutations on the indices (and dividing by k!).

2.4.3. The symmetric and antisymmetric algebras. We now introduce
two more algebras associated to V . For every k ≥ 0 we denote by

Sk(V ), Λk(V )

the vector subspace of T k(V ) consisting of all the symmetric or antisymmetric
tensors, respectively. We now define

S∗(V ) =
⊕
k≥0

Sk(V ), Λ∗(V ) =
⊕
k≥0

Λk(V ).

These are both vector subspaces of the covariant tensor algebra T ∗(V ). These
are not subalgebras of T ∗(V ), because they are not closed under ⊗. Note that

S1(V ) = Λ1(V ) = T 1(V ) = V ∗

but S2(V ) and Λ2(V ) are strictly smaller than T 2(V ) if dim V ≥ 2, because
of the following:

Exercise 2.4.6. If v∗, w∗ ∈ V ∗ are independent, then v∗ ⊗ w∗ is neither
symmetric nor antisymmetric. Moreover

S(v∗⊗w∗) =
1

2
(v∗⊗w∗+w∗⊗ v∗), A(v∗⊗w∗) =

1

2
(v∗⊗w∗−w∗⊗ v∗).

The spaces S∗(V ) and Λ∗(V ) are actually algebras, but with some products
different from ⊗, that we now define. The symmetrised product of some
covariant tensors T 1 ∈ T k1 (V ), . . . , Tm ∈ T km(V ) is

T 1 � · · · � Tm =
(k1 + . . .+ km)!

k1! · · · km!
S(T 1 ⊗ · · · ⊗ Tm)
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while their antisymmetrised product

T 1 ∧ · · · ∧ Tm =
(k1 + · · ·+ km)!

k1! · · · km!
A(T 1 ⊗ · · · ⊗ Tm).

For instance if v∗, w∗ ∈ V ∗ then

v∗ � w∗ = v∗ ⊗ w∗ + w∗ ⊗ v∗, v∗ ∧ w∗ = v∗ ⊗ w∗ − w∗ ⊗ v∗.

Note that

v∗ � w∗ = w∗ � v∗, v∗ ∧ w∗ = −w∗ ∧ v∗.

More generally, if v1, . . . , vm ∈ V ∗ then

v1 � · · · � vm =
∑
σ∈Sm

vσ(1) ⊗ · · · ⊗ vσ(m),

v1 ∧ · · · ∧ vm =
∑
σ∈Sm

sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(m).

Using coordinates with respect to some basis B of V and the brackets (), [] to
denote symmetrisation and antisymmetrisation, we may write

(T � U)i1,...,ip+q =
(p + q)!

p!q!
T(i1,...,ipUip+1,...,ip+q),

(T ∧ U)i1,...,ip+q =
(p + q)!

p!q!
T[i1,...,ipUip+1,...,ip+q ].

Proposition 2.4.7. The vector spaces S∗(V ) and Λ∗(V ) form two associa-
tive algebras with the products � and ∧ respectively.

Proof. Everything is immediate except associativity. We prove it for Λ,
the other is analogous. Pick S ∈ Λp, T ∈ Λq, and U ∈ Λr . In coordinates(

(S ∧ T ) ∧ U
)
i1,...,ip+q+r

=
1

(p + q)!r !
(S ∧ T )[i1,...,ip+q

Uip+q+1,...,ip+q+r ]

=
1

(p + q)!p!q!r !
S[[i1,...,ipTip+1,...,ip+q ]Uip+q+1,...,ip+q+r ]

=
1

p!q!r !
S[i1,...,ipTip+1,...,ip+qUip+q+1,...,ip+q+r ]

= (S ∧ T ∧ U)i1,...,ip+q+r .

The third equality follows from the fact that the same permutation in the
symmetric group Sp+q+r is obtained (p+q)! times. Analogously we can prove
that S ∧ (T ∧ U) = S ∧ T ∧ U. The proof is complete. �

The two algebras S∗(V ) and Λ∗(V ) are called the covariant symmetric
algebra and the covariant exterior algebra. The products � and ∧ are called
the symmetric and exterior product.
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2.4.4. Dimensions. We now construct some standard basis for Sk(V )

and Λk(V ) and calculate their dimensions. Let B = {v1, . . . , vn} be a basis for
V and B∗ = {v1, . . . , vn} the dual basis of V ∗.

Proposition 2.4.8. A basis for Sk(V ) is{
v i1 � · · · � v ik

}
where 1 ≤ i1 ≤ . . . ≤ ik ≤ n vary. A basis for Λk(V ) is{

v i1 ∧ · · · ∧ v ik
}

where 1 ≤ i1 < . . . < ik ≤ n vary.

Proof. This is a consequence of Propositions 2.4.2 and Remark 2.4.4. �

Example 2.4.9. Let e1, e2 be the canonical basis for R2 and e1, e2 be the
dual basis. The following is a basis for S2(R2):

e1 � e1, e1 � e2, e2 � e2.

The following is a basis for Λ2(R3):

e1 ∧ e2, e1 ∧ e3, e2 ∧ e3.

Corollary 2.4.10. We have

dimSk(V ) =

(
n + k − 1

k

)
,

dim Λk(V ) =

(
n

k

)
.

Corollary 2.4.11. The algebra S∗(V ) is commutative, while Λ∗(V ) is anti-
commutative, that is

T ∧ U = (−1)pqU ∧ T
for every T ∈ Λp(V ) and U ∈ Λq(V ).

Proof. We prove anticommutativity. It suffices to prove this when T, U
are basis elements, that is we must show that

(v i1 ∧ · · · ∧ v ip) ∧ (v j1 ∧ · · · ∧ v jq) = (−1)pq(v j1 ∧ · · · ∧ v jq) ∧ (v i1 ∧ · · · ∧ v ip).

This equality follows from applying pq times the simple equality

v∗ ∧ w∗ = −w∗ ∧ v∗.
The proof is complete. �

Corollary 2.4.12. If T ∈ Λk(V ) with odd k then T ∧ T = 0.

Corollary 2.4.13. We have dimS∗(V ) =∞ and dim Λ∗(V ) = 2n.

Exercise 2.4.14. The algebras S∗(V ) and R[x1, . . . , xn] are isomorphic.

In the rest of this section we will focus mostly on the exterior algebra
Λ∗(V ), that will be a fundamental tool in this book.
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2.4.5. The determinant line. One of the most important aspect of the
theory, that will have important applications in the next chapters, is the fol-
lowing – apparently innocuous – fact:

dim Λn(V ) = 1.

The space Λn(V ) is called the determinant line. If v1, . . . , vn is a basis of V ∗,
then a generator for Λn(V ) is the tensor

v1 ∧ · · · ∧ vn.
In fact, we already know that there is only one alternating n-linear form in V
up to rescaling – this is exactly where the determinant comes from. When
V = Rn, we get

det = e1 ∧ · · · ∧ en

where e1, . . . , en is the canonical basis of (Rn)∗ = Rn. Note however that
Λn(V ) has no canonical generator unless we make some choice, like for instance
a basis of V .

Let now v1, . . . , vn and w1, . . . , wn be two bases of V ∗, and let A the
change of basis matrix, so that v i = Aijw

j .

Proposition 2.4.15. The following equality holds:

v1 ∧ · · · ∧ vn = detA · w1 ∧ · · · ∧ wn.

Proof. We have

v1 ∧ · · · ∧ vn = A1
j1
· · ·Anjnw

j1 ∧ · · · ∧ w jn

=
∑
σ∈Sn

A1
σ(1) · · ·A

n
σ(n)w

σ(1) ∧ · · · ∧ wσ(n)

=
∑
σ∈Sn

sgn(σ)A1
σ(1) · · ·A

n
σ(n)w

1 ∧ · · · ∧ wn

= detA · w1 ∧ · · · ∧ wn.
The proof is complete. �

We have discovered here another important fact: the equality looks like
the formula in the change of variables in multiple integrals, see Section 1.3.8.
This will allow us to connect alternating tensors with integration and volume.

2.4.6. Contractions. Let v ∈ V be a fixed vector. By contracting with
v we may define a linear map

ιv : Λk(V ) −→ Λk−1(V ).

The linear map sends T ∈ Λk(V ) to the antisymmetric tensor ιv (T ) that acts
on vectors as follows:

ιv (T )(v1, . . . , vk−1) = T
(
v , v1, . . . , vk−1

)
.

It is immediate to check that ιv (T ) is indeed antisymmetric.
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Exercise 2.4.16. The following hold:

ιv ◦ ιv = 0, ιv ◦ ιw = −ιw ◦ ιv .

2.4.7. Totally decomposable antisymmetric tensors. An antisymmetric
tensor T ∈ Λk(V ) is totally decomposable if it may be written as

T = w1 ∧ · · · ∧ w k

for some covectors w1, . . . , w k ∈ V ∗. This notion is similar to that of a pure
tensor, only with the product ∧ instead of ⊗.

Exercise 2.4.17. The element T = w1 ∧ · · · ∧ w k is non-zero ⇐⇒ the
covectors w1, . . . , w k are linearly independent.

As with pure tensors, not all the antisymmetric tensors are totally decom-
posable:

Exercise 2.4.18. If v1, v2, v3, v4 ∈ V ∗ are linearly independent then

v1 ∧ v2 + v3 ∧ v4

is not totally decomposable.

Hint. If w is totally decomposable, then w ∧ w = 0. �

2.4.8. Contravariant versions. We have established the theory of sym-
metric and antisymmetric covariant tensors, but actually everything we said
also holds verbatim for the contravariant tensors: we can therefore denote by

Sk(V ), Λk(V )

the subspaces of Tk(V ) consisting of all the symmetric or antisymmetric ten-
sors, and define

S∗(V ) =
⊕
k≥0

Sk(V ), Λ∗(V ) =
⊕
k≥0

Λk(V ).

These form two algebras, called the contravariant symmetric algebra and con-
travariant exterior algebra.

2.4.9. Linear maps. Every linear map L : V → W between vector spaces
induces some algebra homomorphisms

L∗ : T∗(V ) −→ T∗(W ), L∗ : T ∗(W ) −→ T ∗(V ),

L∗ : S∗(V ) −→ S∗(W ), L∗ : S∗(W ) −→ S∗(V ),

L∗ : Λ∗(V ) −→ Λ∗(W ), L∗ : Λ∗(W ) −→ Λ∗(V ).

The passing from L to L∗ or L∗ is functorial, that is

(L′ ◦ L)∗ = L′∗ ◦ L∗, id∗ = id,

(L′ ◦ L)∗ = L∗ ◦ (L′)∗, id∗ = id.

From this we deduce that if L is an isomorphism then L∗ is an isomorphism.
More than that:
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• if L is injective then L∗ is injective and L∗ is surjective,
• if L is surjective then L∗ is surjective and L∗ injective.

This holds because if L is injective (surjective) there is a linear map L′ : W → V

such that L′◦L = idV (L◦L′ = idW ), as one proves with standard linear algebra.

Remark 2.4.19. The terms covariance and its opposite contravariance are
used for similar objects in two quite different contexts, and this is a perma-
nent source of confusion. In general, a mathematical entity is “covariant”
if it changes “in the same way” as some other preferred entity when some
modification is made. But which modifications are we considering here?

Physicists are interested in changes of frame, that is of basis, and they note
that if we change a basis with a matrix A the coordinates of a vector change
with B = A−1, that is contravariantly. On the other hand, mathematicians
are mostly interested in functoriality, and note that a map L : V → W induces
maps L∗ : T∗(V ) → T∗(W ) and L∗ : T ∗(W ) → T ∗(V ) on tensors, and they
would tend to call contravariant the second types of tensors because arrows
are reversed. Unfortunately, the physicist and mathematicians conventions do
not match.

We have chosen here the physicist convention, but we try to use the terms
covariant and contravariant as little as possible. The reader can ignore all these
matters – in fact, these issues start to annoy you only when you decide to write
a textbook, and you are forced to choose a notation that is both reasonable
and consistent.

2.4.10. Non-degenerate bilinear pairing. Let V have dimension n.

Exercise 2.4.20. Given a non-zero α ∈ Λk(V ), there is a β ∈ Λn−k(V )

with α ∧ β 6= 0 in Λn(V ).

Recall that Λn(V ) is isomorphic to R. From this exercise we deduce easily
that the bilinear pairing

Λk(V )× Λn−k(V ) −→ Λn(V )

(α, β) 7−→ α ∧ β

is non-degenerate; that is, the induced map

Λk(V ) −→ Hom
(

Λn−k(V ),Λn(V )
)

α 7−→ (β 7→ α ∧ β)

is an isomorphism. Note that Λn(V ) is isomorphic to R, but not canonically:
to fix an isomorphism we need to equip V with some additional structure, as
we will soon see.

2.4.11. The rescaled scalar product on the exterior algebra. Let V
have dimension n and be equipped with a scalar product g. This induces a
scalar product g on each tensor space T k(V ) and hence on Λk(V ).
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Exercise 2.4.21. Let v1, . . . , v k , w1, . . . , w k ∈ V ∗ be covectors. We have

g(v1 ∧ · · · ∧ v k , w1 ∧ · · · ∧ w k) = k! det〈v i , w j〉.

Hint. Use Exercise 2.3.4. �

The k! factor in the formula is slightly annoying, so it is customary to
replace g with the rescaled scalar product

〈α, β〉 =
1

k!
g(α, β).

Now we get the simpler formula

〈v1 ∧ · · · ∧ v k , w1 ∧ · · · ∧ w k〉 = det〈v i , w j〉.

In particular, if v1, . . . , vn is an orthonormal basis of covectors the elements

v i1 ∧ · · · ∧ v ik

with i1 < · · · < ik form an orthonormal basis for Λk(V ).

2.5. Orientation

We now introduce and discuss the notion of orientation on a real vector
space V and its consequences on the tensor spaces, and in particular on the
exterior algebra.

2.5.1. Definition. Let us say that two basis of V are cooriented if the
change of basis matrix relating them has positive determinant. Being coori-
ented is an equivalence relation on the set of all the basis in V , and one checks
immediately that we get precisely two equivalence classes of bases.

Definition 2.5.1. An orientation on V is the choice of one of these two
equivalence classes.

If V is oriented, the bases belonging to the preferred equivalence class
are called positive, and the other negative. Of course V has two distinct
orientations. The space Rn has a canonical orientation given by the canonical
basis, but a space V may not have a canonical orientation in general.

Exercise 2.5.2. If V = U⊕W , then an orientation on any two of the spaces
U, V,W induces an orientation on the third, by requiring that, for every positive
basis u1, . . . , uk of U and w1, . . . , wh of W , the basis u1, . . . , uk , w1, . . . , wh of
V is also positive.
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2.5.2. Via the determinant line. An orientation on V induces one on V ∗

and vice-versa, as follows: we require a basis on V to be positive ⇐⇒ its dual
basis on V ∗ is positive.

Proposition 2.4.15 in turn shows that an orientation on V ∗ induces one
on Λn(V ) and vice-versa: a basis v1, . . . , vn is positive in V ∗ ⇐⇒ the element
v1 ∧ · · · ∧ vn is a positive basis for the line Λn(V ).

Summing everything up, we could define an orientation on V to be an
orientation on the determinant line Λn(V ).

2.5.3. Scalar product. If V is equipped with both an orientation and a
scalar product g, then we get for free a canonical generator ω for the deter-
minant line Λn(V ) by taking

ω = v1 ∧ · · · ∧ vn

where v1, . . . , vn is any positive orthonormal basis of V ∗. The generator ω
does not depend on the basis, because any two such basis are related by a
matrix A with detA = 1 and hence Proposition 2.4.15 applies. The element
ω is also determined by requiring that

ω(v1, . . . , vn) = 1

on every positive orthonormal basis v1, . . . , vn of V .

2.5.4. The Hodge star operator. Let V be equipped with both an ori-
entation and a scalar product of some signature (p,m). This induces a scalar
product 〈, 〉 on each Λk(V ), rescaled as in Section 2.4.11. Let ω be the canon-
ical generator of Λn(V ). Note that 〈ω,ω〉 = (−1)m.

The Hodge star operator is the linear map

∗ : Λk(V ) −→ Λn−k(V )

that sends β ∈ Λk(V ) to the unique ∗β ∈ Λn−k(V ) such that

α ∧ (∗β) = 〈α, β〉ω

for all α ∈ Λk(V ). The map is well-defined because the bilinear pairing ∧ is
non-degenerate, see Section 2.4.10.

Exercise 2.5.3. The following hold:

(1) If v1, . . . , vn is a positive orthonormal basis for V ∗, then

∗(v1 ∧ · · · ∧ v k) = (−1)m
′
v k+1 ∧ · · · ∧ vn

where m′ is the number of vectors in v1, . . . , v k with 〈v i , v i〉 = −1.
(2) The map ∗ is an isomorphism. If m is even the map ∗ is an isometry.
(3) For every β ∈ Λk(V ) we have ∗ ∗ β = (−1)k(n−k)+mβ.
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If n = 2k the Hodge star operator ∗ : Λk(V )→ Λk(V ) is an automorphism.
If moreover k is even (so n is divisible by four) and m is also even (for instance,
if the scalar product is positive definite), the exercise says that ∗ is an isometric
involution. Since ∗2 = id, the vector space Λk(V ) splits into its ±1 eigenspaces

Λk(V ) = Λk+(V )⊕ Λk−(V )

where α ∈ Λk±(V ) ⇐⇒ ∗α = ±α. The elements in Λk+(V ) and Λl−(V ) are
called respectively self-dual and anti-self-dual.

Exercise 2.5.4. If dim V = 4, the scalar product g is positive definite, and
v1, v2, v3, v4 is a positive orthonormal basis for V ∗, then a basis for Λ2

+(V ) is

v1 ∧ v2 + v3 ∧ v4, v1 ∧ v3 + v4 ∧ v2, v1 ∧ v4 + v2 ∧ v3.

A basis for Λ2
−(V ) is

v1 ∧ v2 − v3 ∧ v4, v1 ∧ v3 − v4 ∧ v2, v1 ∧ v4 − v2 ∧ v3.

2.6. Grassmannians

After many pages of algebra, we now would like to see some geometric
applications of the structures that we have just introduced. Here is one.

2.6.1. Definition. Let V be a real vector space of dimension n. Remem-
ber that the projective space P(V ) is the set of all the vector lines in V . More
generally, fix 0 < k < n = dim V .

Definition 2.6.1. The Grassmannian Grk(V ) is the set consisting of all the
k-dimensional vector subspaces W ⊂ V .

Recall that every W ⊂ V determines a subspace W 0 ⊂ V ∗ consisting of all
the functionals that vanish on W . We have dimW 0 = n − dimW . The sets
Grk(V ) and Grn−k(V ∗) may thus be identified canonically. In particular

Gr1(V ) = P(V ), Grn−1(V ) = P(V ∗).

The simplest new interesting set to investigate is the Grassmannian Gr2(R4)

of vector planes in R4. How can we study such an object?

2.6.2. The Plücker embedding. A generic Grassmannian is not a pro-
jective space in any sense, but we now show that it can be embedded in some
(bigger) projective space. We do this using the exterior algebra.

For every k-dimensional subspace W ⊂ V of V we have the inclusion map
L : W → V which induces an injective linear map

Λk(W ) −→ Λk(V ).

Since dim Λk(W ) = 1, the image of this map is a line in Λk(V ) that depends
only on W . By sending W to this line we get a map

Grk(V ) −→ P
(

Λk(V )
)
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called the Plücker embedding. Concretely, the map sends W ⊂ V to

[w1 ∧ · · · ∧ wk ]

where w1, . . . , wk is any basis of W .

Proposition 2.6.2. The Plücker embedding is injective.

Proof. Consider W 6= W ′. Let w1, . . . , wk and w ′1, . . . , w
′
k be any basis of

W and W ′. Pick any vector w ∈ W \W ′. By Exercise 2.4.17 we have

w1 ∧ · · · ∧ wk ∧ w = 0, w ′1 ∧ · · · ∧ w ′k ∧ w 6= 0.

Therefore the tensors w1∧· · ·∧wk and w ′1∧· · ·∧w ′k are not proportional. �

For instance, we get the Plücker embedding

Gr2(R4) ↪−→ P
(

Λ2(R4)
) ∼= P

(
R
(

4
2

))
= RP5.

This map is clearly not surjective because of Exercise 2.4.18.

2.6.3. The Veronese embedding. Here is another geometric application.
Fix k > 0 and consider the natural map V → Sk(V ) defined as

v 7−→ v � · · · � v︸ ︷︷ ︸
k

.

This map is not linear in general, however it is injective (exercise) and it also
induces an injective map between projective spaces

P(V ) ↪→ P
(
Sk(V )

)
called the Veronese embedding. This map is not a projective map in general.

Exercise 2.6.3. If V = Rn+1 and we use the canonical basis, we get

Pn ↪−→ PN

where N =
(
n + k
k

)
− 1. The map sends [x0, . . . , xn] to [xk0 , x

k−1
0 x1, . . .] where

the square brackets contain all the possible degree-k monomials in the variables
x0, . . . , xn. For instance for k = n = 2 we get

P2 ↪−→ P5

given by
[x, y , z ] 7−→ [x2, y2, z2, xy , yz, zx ].

For n = 1 we get
P1 ↪−→ Pk

given by
[x, y ] 7−→ [xk , xk−1y , . . . , xy k−1, y k ].
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2.7. Exercises

Exercise 2.7.1. Let U, V,W be finite-dimensional vector spaces. Show that there
is a canonical isomorphism

Mult(U, V ;W ) −→ Hom(U,Hom(V,W )).

Exercise 2.7.2. Let V be a finite-dimensional vector space. Show that every
tensor T of type (0, 2) may be written uniquely as a sum of a symmetric and an
antisymmetric tensor. Show that this is not true for tensors of type (0, n) with n ≥ 3.

Exercise 2.7.3. Let V be a finite-dimensional vector space. Let T be a tensor of
type (0, k). Prove the following equivalences:

• T is antisymmetric ⇐⇒ T (v1, . . . , vk) = 0 if two of the vi ’s coincide.
• S(T ) = 0⇐⇒ T (v , . . . , v) = 0 for every v ∈ V .

Note that the two conditions are stronger than simply requiring that (in some coor-
dinates) Ti1,...,ik = 0 whenever two or all the indices coincide (respectively).

Exercise 2.7.4. Let V be a vector space of dimension n and v ∈ V a fixed
vector. Show that the contraction ιv may be characterised as the unique linear map
ιv : Λk → Λk−1 that satisfies these axioms for all k :

(1) for k = 1 we have ιv (w ∗) = w ∗(v);
(2) for every T ∈ Λk(V ) and U ∈ Λk(V ) we get

ιv (T ∧ U) = ιv (T ) ∧ U + (−1)kT ∧ ιv (U).

Exercise 2.7.5. Let V be equipped with both an orientation and a scalar product
of some signature (p,m).

(1) For a (not necessarily orthonormal) basis v1, . . . , vn of V we get

(5) ∗ (v1 ∧ · · · ∧ v k) =

√
| det g|

(n − k)!
g1j1 · · · gkjk εj1···jnv jk+1 ∧ · · · ∧ v jn .

Here εj1···jn is the Levi-Civita symbol, which is 0 if the indices j1, . . . , jn are
not distinct, and equals the sign of the permutation (j1, . . . , jn) if they are
distinct. In coordinates we get

(∗T )jk+1,...,jn =

√
| det g|
k!

gi1j1 · · · gik jk εj1···jnTi1,...,ik .

If we use g to raise indices (as usual) we may write this simply as

(∗T )jk+1,...,jn =

√
| det g|
k!

εj1···jnT
j1,...,jk .
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Differential topology





CHAPTER 3

Smooth manifolds

3.1. Smooth manifolds

We introduce here the notion of smooth manifold, the main protagonist
of the book.

3.1.1. Definition. The definition of topological manifold that we have
proposed in Section 1.1.8 is simple but also very poor, and it is quite hard to
employ it concretely: for instance, it is already non obvious to answer such a
natural question as whether Rn and Rm are homeomorphic when n 6= m. To
make life easier, we enrich the definition by adding a smooth structure that
exploits the power of differential calculus.

Let M be a topological n-manifold. A chart is a homeomorphism ϕ : U →
V from some open set U ⊂ M onto an open set V ⊂ Rn. The inverse map
ϕ−1 : V → U is called a parametrisation. An atlas onM is a set

{
ϕi
}
of charts

ϕi : Ui → Vi that cover M, that is such that ∪Ui = M.
Let

{
ϕi
}
be an atlas on M. Whenever Ui ∩Uj 6= ∅, we define a transition

map
ϕi j : ϕi(Ui ∩ Uj) −→ ϕj(Ui ∩ Uj)

by setting ϕi j = ϕj ◦ϕ−1
i . The reader should visualise this definition by looking

at Figure 3.1. Note that both the domain and codomain of ϕi j are open sets of
Rn, and hence it makes perfectly sense to ask whether the transition functions
ϕi j are smooth. We say that the atlas is smooth if all the transition functions
ϕi j are smooth. Here is the most important definition of the book:

Definition 3.1.1. A smooth n-manifold is a topological n-manifold equipped
with a smooth atlas.

To be more precise, we allow the same smooth manifold to be described by
different atlases, as follows: we say that two smooth atlases {ϕi} and {ϕ′j} are
compatible if their union is again a smooth atlas; compatibility is an equivalent
relation and we define a smooth structure on a topological manifold M to be
an equivalence class of smooth atlases on M. The rigorous definition of a
smooth manifold is a topological manifold M with a smooth structure on it.

Remark 3.1.2. The union of all the smooth atlases in M compatible with
a given one is again a compatible smooth atlas, called a maximal atlas. The
maximal atlas is uniquely determined by the smooth structure: hence one can

55
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Figure 3.1. Two overlapping charts ϕi and ϕj induce a transition func-
tion ϕi j = ϕj ◦ ϕ−1

i .

Figure 3.2. An atlas on a compact manifold..

also define a smooth manifold to be a topological manifold equipped with a
maximal atlas, without using equivalence classes.

As a first example, every open subset U ⊂ Rn is naturally a smooth mani-
fold, with an atlas that consists of a unique chart: the identity map U → U.

The open subsets of Rn can be pretty complicated, but they are never
compact. To construct some compact smooth manifolds we now build some
atlases as in Figure 3.2.

3.1.2. Spheres. Recall that the unit sphere is

Sn =
{
x ∈ Rn+1

∣∣ ‖x‖ = 1
}
.

This is the prototypical example of a compact smooth manifold. To build a
smooth atlas on Sn, we may consider the hemispheres

U+
i =

{
x ∈ Sn

∣∣ x i > 0
}
, U−i =

{
x ∈ Sn

∣∣ x i < 0
}
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Figure 3.3. The stereographic projection sends a point x ∈ Sn \ {N} to
the point ϕ(x) obtained by intersecting the line l containing N and x with
the horizontal hyperplane xn+1 = −1.

for i = 1, . . . , n+ 1 and define a chart ϕ±i : U±i → Bn by forgetting x i , that is

ϕ±i (x1, . . . , xn+1) = (x1, . . . , x̌ i , . . . , xn+1).

Proposition 3.1.3. These charts define a smooth atlas on Sn.

Proof. The inverse (ϕ±i )−1 is

(y1, . . . , yn) 7−→
(
y1, . . . , y i−1,±

√
1− ‖y‖2, y i , . . . , yn

)
.

The transition functions are compositions ϕ±i ◦ (ϕ±j )−1 and are smooth. �

We have equipped Sn with the structure of a smooth manifold. As we said,
the same smooth structure on Sn can be built via a different atlas: for instance
we describe one now that contains only two charts. Consider the north pole
N = (0, . . . , 0, 1) in Sn and the stereographic projection ϕN : Sn \ {N} → Rn,

ϕN(x1, . . . , xn+1) =
2

1− xn+1
(x1, . . . , xn).

The geometric interpretation of the stereographic projection is illustrated in
Figure 3.3. The map ϕN is a homeomorphism, so in particular Sn \ {N} is
homeomorphic to Rn. We can analogously define a stereographic projection
ϕS via the south pole S = (0, . . . , 0,−1), and deduce that Sn \ {S} is also
homeomorphic to Rn.

Exercise 3.1.4. The two charts {ϕS, ϕN} form a smooth atlas for Sn,
compatible with the one defined above.

The atlases {ϕ±i } and {ϕS, ϕN} define the same smooth structure on Sn.

Remark 3.1.5. The circle S1 is quite special: we can identify C with R2 and
write S1 = {e iθ | θ ∈ R}. The universal covering R→ S1, θ 7→ e iθ is of course
not injective, but it furnishes an atlas of natural charts when restricted to the
open segments (a, b) with b − a < 2π. The transition maps are translations.
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Figure 3.4. The torus S1×S1 embedded in R3. Every point (e iθ, e iϕ) ∈
S1×S1 of the torus may be interpreted on the figure as a point with (blue)
longitude θ and (red) latitude ϕ. Note that the latitude and longitude
behave very nicely on the torus, as opposite to the sphere where longitude
is ambiguous at the poles. Cartographers would enjoy to live on a torus-
shaped planet.

3.1.3. Projective spaces. We now consider the real projective space RPn.
Recall the every point in RPn has some homogeneous coordinates [x0, . . . , xn].

For i = 0, . . . , n we set Ui ⊂ RPn to be the open subset defined by the
inequality x i 6= 0. We define a chart ϕi : Ui → Rn by setting

ϕi
(

[x0, . . . , xn]
)

=

(
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
.

The inverse parametrisation ϕ−1
i : Rn → Ui may be written simply as

ϕ−1
i (y1, . . . , yn) = [y1, . . . , yi , 1, yi+1, . . . , yn].

The open subsets U0, . . . , Un cover RPn and the transition functions ϕi j are
clearly smooth: hence the atlas {ϕi} defines a smooth structure on RPn.

We have discovered that RPn is naturally a smooth n-manifold. The same
construction works for the complex projective space CPn which is hence a
smooth 2n-manifold: it suffices to identify Cn+1 with R2n+2 in the usual way.

Recall that RPn and CPn are connected and compact, see Exercise 1.4.1.

3.1.4. Products. The product M ×N of two smooth manifolds M, N of
dimension m, n is naturally a smooth (m + n)-manifold. Indeed, two smooth
atlases {ϕi}, {ψj} on M,N induce a smooth atlas {ϕi × ψj} on M × N.

For instance the torus S1 × S1 is a smooth manifold of dimension two.
We take this opportunity to mention that a 2-manifold is usually called a
surface. We will soon prove that the torus may be conveniently embedded
as a submanifold of R3 as in Figure 3.4: to do so we will need to define the
notion of embedding and of submanifold.

3.1.5. No prior topology. We now make a useful observation. We note
that it is not strictly necessary to priorly have a topology to define a smooth
manifold structure: we can also proceed directly with atlases as follows.
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Let X be any set. We define a smooth atlas on X to be a collection
of subsets Ui covering X and of bijections ϕi : Ui → Vi onto open subsets
of Rn, such that ϕi(Ui ∩ Uj) is open for every i , j , and the transition maps
ϕi j = ϕj ◦ ϕ−1

i are smooth wherever they are defined.

Exercise 3.1.6. There is a unique topology on X such that every Ui is open
and every ϕi : Ui → Vi is a homeomorphism. In this topology, a subset U ⊂ X
is open ⇐⇒ the sets ϕi(U ∩ Ui) are open for every i .

Therefore a smooth atlas on a set X defines a compatible topology. If
this topology is Hausdorff and second-countable, this gives a smooth manifold
structure on X.

3.1.6. Grassmannians. We apply the “no prior topology” philosophy to
define a smooth manifold structure on the Grassmannian.

Remember from Section 2.6 that the Grassmannian Grk(V ) is the set of
all k-dimensional vector subspaces W ⊂ V . We now define a smooth manifold
structure on Grk(V ) by assigning it a smooth atlas A.

For every basis B = {v1, . . . , vn} of V , we define the subspaces

W = Span(v1, . . . , vk), Z = Span(vk+1, . . . , vn).

Of course V = W ⊕ Z. Now we consider the set

UB =
{
W ′ ⊂ V

∣∣ V = W ′ ⊕ Z
}
.

The set UB is a subset of Grk(V ) that contains W . We now define a map

fB : Z × · · · × Z︸ ︷︷ ︸
k

−→ UB

(z1, . . . , zk) 7−→ Span(v1 + z1, . . . , vk + zk).

It is a linear algebra exercise to show that fB is a bijection. The given basis
vk+1, . . . , vn allows us to identify Z with Rn−k , so we get a bijection

fB : R(n−k)k −→ UB.

The atlas A for Grk(V ) is formed by all the maps f −1
B : UB → R(n−k)k as

B varies among all the basis of V . It is now an exercise to show that the
transition maps are defined on open sets and smooth. So we have given
Grk(V ) the structure of a smooth manifold of dimension (n − k)k .

3.2. Smooth maps

Every honest category of objects has its morphisms. We have defined the
smooth manifolds, and we now introduce the right kind of maps between them.

We will henceforth use the following convention: if M is a given smooth
manifold, we just call a chart on M any chart ϕ : U → V compatible with the
smooth structure on M.
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3.2.1. Definition. We say that a map f : M → N between two smooth
manifolds is smooth if it is so when read along some charts. This means that
for every x ∈ M there are some charts ϕ : U → V and ψ : W → Z of M and
N, with x ∈ U and f (U) ⊂ W , such that the map

ψ ◦ f ◦ ϕ−1 : V −→ Z

is smooth. Note that the manifolds M and N may have different dimensions.
It may be useful to visualise this definition via a commutative diagram:

U
f //

ϕ

��

W

ψ
��

V
F
// Z

Here F = ψ ◦ f ◦ ϕ−1 should be thought as “the map f read on charts”.

Remark 3.2.1. If f : M → N is smooth then ψ ◦ f ◦ϕ−1 is also smooth for
any charts ϕ and ψ as above. This is a typical situation: if something is smooth
on some charts that cover M, it is so on all charts, because the transition
functions are smooth and the composition of smooth maps is smooth.

A curve in M is a smooth map γ : I → M defined on some open interval
I ⊂ R, that may be bounded or unbounded. Curves play an important role in
differential topology and geometry.

Exercise 3.2.2. The inclusion Sn ↪→ Rn+1 is a smooth map.

The space of all the smooth mapsM → N is usually denoted by C∞(M,N).
We will often encounter the space C∞(M,R), written as C∞(M) for short.
We note that C∞(M) is a real commutative algebra.

3.2.2. Diffeomorphisms. A smooth map f : M → N is a diffeomorphism
if it is a bijection and its inverse f −1 : N → M is also smooth. Of course a
diffeomorphism is also a homeomorphism, but the converse is often not true.

Example 3.2.3. The map f : Bn → Rn defined as

f (x) =
x√

1− ‖x‖2

is a diffeomorphism. Its inverse is

g(x) =
x√

1 + ‖x‖2
.

Two manifoldsM,N are diffeomorphic if there is a diffeomorphism f : M →
N. Being diffeomorphic is clearly an equivalence relation. The open ball of
radius r > 0 centred at x0 ∈ Rn is by definition

B(x0, r) =
{
x ∈ Rn

∣∣ ‖x − x0‖ < r
}
.
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Exercise 3.2.4. Any two open balls in Rn are diffeomorphic.

As a consequence, every open ball in Rn is diffeomorphic to Rn itself.

Exercise 3.2.5. The antipodal map ι : Sn → Sn, ι(x) = −x is a diffeomor-
phism.

Example 3.2.6. The following diffeomorphisms hold:

RP1 ∼= S1, CP1 ∼= S2.

These are obtained as compositions

RP1 −→ R ∪ {∞} −→ S1

CP1 −→ C ∪ {∞} −→ S2

where the first map sends [x0, x1] to x1/x0, and the second is the stereographic
projection. All the maps are clearly 1-1 and we only need to check that the
composition is smooth, and with smooth inverse. Everything is obvious except
near the point [0, 1]. In the complex case, if we take the parametrisation
z 7→ [z, 1], by calculating we find (exercise) that the map is

[z, 1] 7−→
1

1 + 4|z |2
(

4<z,−4=z, 1− 4|z |2
)
.

So it is smooth and has smooth inverse.

3.3. Partitions of unity

We now introduce a powerful tool that may look quite technical at a
first reading, but which will have spectacular consequences in the next pages.
The general idea is that smooth functions are flexible enough to be patched
altogether: one can use bump functions (see Section 1.3.5) to extend smooth
maps from local to global, to approximate continuous maps with smooth maps,
and to do much more in the next chapters.

3.3.1. Adequate atlas. Let M be a smooth manifold. We now introduce
a type of atlas that is very convenient to prove theorems.

Definition 3.3.1. An atlas {ϕi : Ui → Rn} for M is adequate if

(1) the open sets {Ui} form a locally finite covering of M,
(2) the open subsets Vi = ϕ−1

i (Bn) also form a covering of M.

We should visualise an adequate atlas as in Figure 3.5: a locally finite set
of patches Ui diffeomorphic to Rn, each containing a Vi ∼= Bn, such that the
Vi ’s cover M.

We already know that M is paracompact by Proposition 1.1.24, so every
open covering has a locally finite refinement. We reprove here this fact in a
stronger and more useful form.
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Figure 3.5. An adequate atlas.

Figure 3.6. A partition of unity on S1 (the endpoints should be identified).

Proposition 3.3.2. Let {Ui} be an open covering of M. There is an ade-
quate atlas {ϕk : Wk → Rn} such that {Wk} refines {Ui}.

Proof. We readapt the proof of Proposition 1.1.24. We know that M has
an exhaustion by compact subsets {Kj}, and we set K0 = K−1 = ∅.

We construct the atlas inductively on j = 1, 2 . . . For every p ∈ Kj \
int(Kj−1) there is an open set Ui containing p. We fix a chart ϕp : Wp → Rn
with p ∈ Wp ⊂

(
int(Kj+1) \Kj−2

)
∩ Ui .

The open sets ϕ−1
p (Bn) cover the compact set Kj \ int(Kj−1) as p varies

there, and finitely many of them suffice to cover it. By taking only these
finitely many ϕp for every j = 1, 2, . . . we get an adequate covering. �

3.3.2. Partition of unity. Let {Ui} be an open covering of M.

Definition 3.3.3. A partition of unity subordinate to the open covering
{Ui} is a family {ρi : M → R} of smooth functions with values in [0, 1], such
that the following hold:

(1) the support of ρi is contained in Ui for all i ,
(2) every x ∈ M has a neighbourhood where all but finitely many of the

ρi vanish, and
∑
i ρi(x) = 1.

See an example in Figure 3.6. What is important for us, is that partitions
of unity exist.

Proposition 3.3.4. For every open covering {Ui} of M there is a partition
of unity subordinate to {Ui}.

Proof. Fix a smooth bump function λ : Rn → R with values in [0, 1] such
that λ(x) = 1 if ‖x‖ ≤ 1 and λ(x) = 0 if ‖x‖ ≥ 2, see Section 1.3.5.
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Pick an adequate atlas
{
ϕk : Wk → Rn

}
such that {Wk} refines {Ui}.

Define the function ρ̄k : M → R as ρ̄k(p) = λ(ϕk(p)) if p ∈ Wk and zero
otherwise. The family {ρ̄k} is almost a partition of unity subordinate to {Wk},
except that

∑
j ρ̄j(p) may be any strictly positive number (note that it is not

zero because the atlas is adequate). To fix this it suffices to set

ρk(p) =
ρ̄k(p)∑
j ρ̄j(p)

.

The family {ρk} is a partition of unity subordinate to {Wk}. To get one {ηi}
subordinate to {Ui} we fix a function i(k) such that Wk ⊂ Ui(k) for every k
and we define

ηi(p) =
∑
i(k)=i

ρk(p).

The proof is complete. �

3.3.3. Extension of smooth maps. We show an application of the par-
titions of unity. Let M and N be two smooth manifolds. The fact that we
prove here is already interesting and non-trivial when M is Rm or some open
set in it. We first need to define a notion of smooth map for arbitrary (not
necessarily open) domains.

Definition 3.3.5. Let S ⊂ M be any subset. A map f : S → N is smooth if
it is locally the restriction of smooth functions. That is, for every p ∈ S there
are an open neighbourhood U ⊂ M of p and a smooth map g : U → N such
that g|U∩S = f |U∩S.

One may wonder whether the existence of local extensions implies that of
a global one. This is true if the domain is closed and the codomain is Rn.

Proposition 3.3.6. If S ⊂ M is a closed subset, every smooth map f : S →
Rn is the restriction of a smooth map F : M → Rn.

Proof. By definition for every p ∈ S there are an open neighbourhood
U(p) and a local extension gp : U(p)→ Rn of f . Consider the open covering{

U(p)
}
p∈S ∪

{
M \ S

}
of M, and pick a partition of unity {ρp} ∪ {ρ} subordinate to it. For every
x ∈ M we define

F (x) =
∑

ρp(x)gp(x)

where the sum is taken over the finitely many p ∈ M such that ρp(x) 6= 0.
The function F : M → Rn is locally a finite sum of smooth functions and is
hence smooth. If x ∈ S we have

F (x) =
∑

ρp(x)gp(x) =
∑

ρp(x)f (x) = f (x)
∑

ρp(x) = f (x).

Therefore F : M → Rn is a smooth global extension of f . �
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Remark 3.3.7. Smooth (not even continuous) extensions cannot exist for
every S ⊂ M for obvious reasons. Take for instance M = R and S = R∗ =

R \ {0} and f : S → R with f (x) = 1 on x > 0 and f (x) = 0 on x < 0.

Remark 3.3.8. In the proof, the extension F vanishes outside ∪p∈SU(p).
In the construction we may take the U(p) to be arbitrarily small: hence we
may require F to vanish outside of an arbitrary open neighbourhood of S.

3.3.4. Approximation of continuous maps. Here is another application
of the partition of unity. Let M be a smooth manifold.

Proposition 3.3.9. Let f : M → Rn be a continuous map, whose restriction
f |S to some (possibly empty) closed subset S ⊂ M is smooth. For every
continuous positive function ε : M → R>0 there is a smooth map g : M → Rn
with f (x) = g(x) for all x ∈ S and ‖f (x)− g(x)‖ < ε(x) for all x ∈ M.

Proof. The map g is easily constructed locally: for every p ∈ M there are
an open neighbourhood U(p) ⊂ M and a smooth map gp : U(p) → Rn such
that f (x) = gp(x) for all x ∈ U(p) ∩ S and ‖f (x) − gp(x)‖ < ε(x) for all
x ∈ U(p). (This is proved as follows: if p ∈ S, let gp be an extension of f ,
while if p 6∈ S simply set gp(x) = f (p) constantly. The second condition is
then achieved by restricting U(p).)

We now paste the gp to a global map by taking a partition of unity {ρp}
subordinated to

{
U(p)

}
and defining

g(x) =
∑

ρp(x)gp(x).

The sum is taken over the finitely many p ∈ M. such that ρp(x) 6= 0. The
map g : M → Rn is smooth and f (x) = g(x) for all x ∈ S. Moreover

‖f (x)− g(x)‖ =
∥∥∥∑ ρp(x)f (x)−

∑
ρp(x)gp(x)

∥∥∥
≤
∑

ρp(x)
∥∥f (x)− gp(x)

∥∥ <∑ ρp(x)ε(x) = ε(x).

The proof is complete. �

We have proved in particular that every continuous map f : M → Rn may
be approximated by smooth functions.

3.3.5. Smooth exhaustions. Here is another application. A smooth ex-
haustion on a manifold M is a smooth positive function f : M → R>0 such
that f −1[0, T ] is compact for every T .

Proposition 3.3.10. Every manifold M has a smooth exhaustion.

Proof. Pick a locally finite, hence countable, covering
{
Ui
}
where Ūi is

compact for every i , and a subordinated partition of unity ρi . The function

f (p) =

∞∑
j=1

jρj(p)
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Figure 3.7. The tangent space TpM is the set of all curves γ passing
through p up to some equivalence relation.

is easily seen to be a smooth exhaustion. �

3.4. Tangent space

Let M be a smooth n-manifold. We now define for every point p ∈ M a
n-dimensional real vector space TpM called the tangent space of M at p.

Heuristically, the tangent space TpM should generalise the intuitive notions
of tangent line to a curve in R2 or R3, or of a tangent plane to a surface in
R3, as in Figure 3.7. There is however a problem here in trying to formalise
this idea: our manifold M is an abstract object and is not embedded in some
bigger space like the surface in R3 depicted in the figure! For that reason
we need to define TpM intrinsically, using only the points that are contained
inside M and not outside – since there is no outside at all. We start to do
this by considering all the curves passing through p: as suggested in Figure
3.7, every such curve γ should define somehow a tangent vector v ∈ TpM.
Afterwards we introduce a second more sophisticated definition where every
tangent vector is introduced as a derivation.

3.4.1. Definition via curves. Here is a definition of the tangent space
TpM at p ∈ M. We fix a point p ∈ M and consider all the curves γ : I → M

with 0 ∈ I and γ(0) = p. (The open interval I may vary.) We want to define
a notion of tangency of such curves at p. Let γ1, γ2 be two such curves.

If M = Rn, the derivative γ′(t) makes sense and we say as usual that
γ1 and γ2 are tangent at p if γ′1(0) = γ′2(0). On a more general M, we
pick a chart ϕ : U → V and we say that γ1 and γ2 are tangent at p if the
compositions ϕ ◦ γ1 and ϕ ◦ γ2 are tangent at ϕ(p).1

This definition is chart-independent, that is it is not influenced by the
choice of ϕ, because a transition map between two different charts transports
tangent curves to tangent curves.

1To be precise, we may need to priorly restrict γ1 and/or γ2 to a smaller interval I ′ ⊂ I
in order for their images to lie in U.
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The tangency at p is an equivalence relation on the set of all curves γ : I →
M with γ(0) = p. We are ready to define TpM.

Definition 3.4.1. The tangent space TpM at p ∈ M is the set of all curves
γ : I → M with 0 ∈ I and γ(0) = p, considered up to tangency at p.

When M = Rn, the space TpRn is naturally identified with Rn itself, by
transforming every curve γ into its derivative γ′(0). We will always write

TpRn = Rn.

This holds also for open subsets M ⊂ Rn.

3.4.2. Definition via derivations. We now propose a more abstract and
quite different definition of the tangent space at a point. It is always good to
understand different equivalent definitions of the same mathematical object:
the reader may choose the one she prefers, but we advise her to try to under-
stand and remember both because, depending on the context, one definition
may be more suitable than the other – for instance to prove theorems.

Let M be a smooth manifold and p ∈ M be a point. A derivation v

at p is an operation that assigns a number v(f ) to every smooth function
f : U → R defined in some open neighbourhood U of p, that fulfils the following
requirements:

(1) if f and g agree on a neighbourhood of p, then v(f ) = v(g);
(2) v is linear, that is v(λf +µg) = λv(f ) +µv(g) for all numbers λ, µ;
(3) v(f g) = v(f )g(p) + f (p)v(g).

In (2) and (3) we suppose that f and g are defined on the same open neigh-
bourhood U. The term “derivation” is used here because the third requirement
looks very much like the Leibniz rule. Here is a fresh new definition of the
tangent space at a point:

Definition 3.4.2. The tangent space TpM is the set of all derivations at p.

A linear combination λv + λ′v ′ of two derivations v , v ′ with λ, λ′ ∈ R is
again a derivation: therefore the tangent space TpM has a natural structure
of real vector space.

We study the model case M = Rn. Here every vector v ∈ Rn determines
the directional derivative ∂v along v , defined as usual as

∂v f =

n∑
i=1

v i
∂f

∂x i
,

which fulfils all the requirement (1-3) and is hence a derivation. Conversely:

Proposition 3.4.3. If M = Rn every derivation is a directional derivative ∂v
along some vector v ∈ Rn.
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Proof. We set p = 0 for simplicity. By the Taylor formula every smooth
function f can be written near 0 as

f (x) = f (0) +
∑
i

∂f

∂x i
(0)x i +

∑
i ,j

hi j(x)x ix j

for some smooth functions hi j . If v is a derivation, by applying it to f we get

v(f ) = f (0)v(1) +
∑
i

∂f

∂x i
(0)v(x i) +

∑
i ,j

v(hi jx
ix j).

The first and third term vanish because of the Leibniz rule (exercise: use
that v(1) = v(1 · 1)). Therefore v is the partial derivative along the vector
(v(x1), . . . , v(xn)). �

We have discovered that whenM = Rn the tangent space TpM is naturally
identified with Rn. This works also if M ⊂ Rn is an open subset.

We have shown in particular that the two definitions – via curves and via
derivations – of TpM are equivalent at least for the open subsets M ⊂ Rn. On
a general M, here is a direct way to pass from one definition to the other: for
every curve γ : I → M with γ(0) = p, we may define a derivation v by setting

v(f ) = (f ◦ γ)′(0).

This gives indeed a 1-1 correspondence between curves up to tangency and
derivations, as one can immediately deduce by taking one chart.

Summing up, we have two equivalent definitions: the one via curves may
look more concrete, but derivations have the advantage of giving TpM a natural
structure of a n-dimensional real vector space.

It is important to note that TpM is a vector space and nothing more than
that: for instance there is no canonical norm or scalar product on TpM, so
it does not make any sense to talk about the lengths of tangent vectors –
tangent vectors have no lengths. We are lucky enough to have a well-defined
vector space and we are content with that. To define lengths we need an
additional structure called metric tensor, that we will introduce later on in the
subsequent chapters.

3.4.3. Differential of a map. We now introduce some kind of derivative
of a smooth map, called differential. The differential is neither a number, nor
a matrix of numbers in any sense: it is “only” a linear function between tangent
spaces that approximates the smooth map at every point.

Let f : M → N be a smooth map between smooth manifolds. The differ-
ential of f at a point p ∈ M is the map

dfp : TpM −→ Tf (p)N

that sends a curve γ with γ(0) = p to the curve f ◦ γ.
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The map dfp is well-defined, because smooth maps send tangent curves to
tangent curves, as one sees by taking charts. Alternatively, we may use deriva-
tions: the map dfp sends a derivation v ∈ TpM to the derivation dfp(v) = v ′

that acts as v ′(g) = v(g ◦ f ).

Exercise 3.4.4. The function v ′ is indeed a derivation. The two definitions
of dfp are equivalent; using the second one we see that dfp is linear.

The definition of dfp is clearly functorial, that is we have

d(g ◦ f )p = dgf (p) ◦ dfp, d(idM)p = idTpM .

This implies in particular that the differential dfp of a diffeomorphism f : M →
N is invertible at every point p ∈ M.

When M ⊂ Rm and N ⊂ Rn are open subsets, the differential dfp of a
smooth map f : M → N is a linear map

dfp : Rm −→ Rn

because we have the natural identifications TpM = Rm and Tf (p)N = Rn. It is
an exercise to check that dfp is just the ordinary differential of Section 1.3.1.

3.4.4. On charts. A constant refrain in differential topology and geome-
try is that an abstract highly non-numerical definition becomes a more concrete
numerical object when read on charts. If ϕ : U → V and ψ : W → Z are charts
of M and N with f (U) ⊂ W , then we may consider the commutative diagram

U
f //

ϕ

��

W

ψ
��

V
F
// Z

where F = ψ ◦ f ◦ϕ−1 is the map f read on charts. By taking differentials we
find for every p ∈ U another commutative diagram of linear maps

TpM
dfp //

dϕp
��

Tf (p)N

dψf (p)

��
Rm

dFϕ(p)

// Rn

and dFϕ(p) should be thought as “the differential dfp read on charts”. Com-
mutative diagrams are useful because they contain a lot of information in a
single picture. The vertical arrows are isomorphisms, so one can fully recover
dfp by looking at dFϕ(p). In particular dFϕ(p) has the same rank of dfp, and
is injective/surjective ⇐⇒ dfp is.

It is convenient to look at dFϕ(p) because it is a rather familiar object:
being the differential of a smooth map F : V → Z between open sets V ⊂ Rm
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and Z ⊂ Rn, the differential dFϕ(p) is a quite reassuring Jacobian n×m matrix
whose entries vary smoothly with respect to the point ϕ(p) ∈ V .

Example 3.4.5. The Veronese embedding f : RP1 ↪→ RP2 is

f
(

[x0, x1]
)

= [x2
0 , x0x1, x

2
1 ],

see Exercise 2.6.3. The map sends the open subset U0 = {x0 6= 0} ⊂ RP1 into
W0 = {x0 6= 0} ⊂ RP2. We use the coordinate charts ϕ : U0 → R, [1, t] 7→
t and ψ : W0 → R2, [1, t, u] 7→ (t, u). Read on these charts the map f
transforms into a map F = ψ ◦ f ◦ ϕ−1 : R→ R2, that is

F (t) = (t, t2).

Its differential is (1, 2t), so in particular it is injective. Analogously the chart
U1 = {x1 6= 0} ⊂ RP1 injects into W2 = {x2 6= 0} ⊂ RP2 like t 7→ (t2, t). We
have discovered that dfp is injective for every p ∈ RP1.

Exercise 3.4.6. For every k, n and every p ∈ RPn, show that the differential
dfp of the Veronese embedding f : Pn ↪→ PN of Exercise 2.6.3 is injective.

3.4.5. Products. Let M×N be a product of smooth manifolds of dimen-
sions m and n. For every (p, q) ∈ M × N there is a natural identification

T(p,q)(M × N) = TpM × TqN.

This identification is immediate using the definition of tangent spaces via
curves, since a curve in M × N is the union of two curves in M and N.

Exercise 3.4.7. The Segre embedding f : RP1 × RP1 ↪→ RP3 is(
[x0, x1], [y0, y1]

)
7−→ [x0y0, x0y1, x1y0, x1y1].

See Section 2.1.5. Prove that for every (p, q) ∈ RP1 × RP1 the differential
df(p,q) is injective.

3.4.6. Velocity of a curve. If γ : I → M is a curve, for every t ∈ I we
get a differential dγt : TtR → Tγ(t)M. Since TtR = R we may simply write
dγt : R → Tγ(t)M and it makes sense to define the velocity of γ at the time
t as the tangent vector

γ′(t) = dγt(1) ∈ Tγ(t)M.

If we use the description of TpM via curves, the definition of the velocity is
rather tautological: the velocity of a curve at a point is the curve itself. Recall
as we said above that there is no norm in Tγ(t)M, hence there is no way to
quantify the “speed” of γ′(t) as a number – except when it is zero.
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3.4.7. Inverse Function Theorem. The Inverse Function Theorem 1.3.3
applies to this context. We say that f : M → N is a local diffeomorphism at
p ∈ M if there is an open neighbourhood U ⊂ M of p such that f (U) ⊂ N is
open and f |U : U → f (U) is a diffeomorphism.

Theorem 3.4.8. A smooth map f : M → N is a local diffeomorphism at
p ∈ M ⇐⇒ its differential dfp is invertible.

Proof. Apply Theorem 1.3.3 to ψ ◦ f ◦ ϕ−1 for some charts ϕ,ψ. �

Exercise 3.4.9. Consider the map Sn → RPn that sends x to [x ]. Prove
that it is a local diffeomorphism.

3.5. Smooth coverings

In the smooth manifolds setting it is natural to consider topological cover-
ings that are also compatible with the smooth structures, and these are called
smooth coverings.

3.5.1. Definition. Let M and N be two smooth manifolds of the same
dimension.

Definition 3.5.1. A smooth covering is a local diffeomorphism f : M → N

between smooth manifolds that is also a topological covering.

For instance, the map R → S1, t 7→ e it is a smooth covering of infinite
degree, and the map Sn → RPn of Exercise 3.4.9 is a smooth covering of
degree two. To construct a local diffeomorphism that is not covering, pick any
covering M → N (for instance, a diffeomorphism) and remove some random
closed subset from the domain.

Exercise 3.5.2. A homeomorphism between smooth manifold that is also
a local diffeomorphism is a diffeomorphism.

From this, deduce that the following definition is equivalent to the one
given above: a smooth covering is a smooth map f : M → N such that every
p ∈ N has an open neighbourhood U where

f −1(U) =
⊔
i∈I
Ui

and the restriction f |Ui : Ui → U is a diffeomorphism for every i ∈ I.

3.5.2. Surfaces. As an example, one may use a bit of complex analysis
to construct many non-trivial smooth coverings between open subsets of C.

Exercise 3.5.3. Let p(z) ∈ C[z ] be a complex polynomial of some degree
d ≥ 1. Consider the set S = {z ∈ C | p′(z) = 0}, that has cardinality at most
d − 1. The restriction

p : C \ p−1
(
p(S)

)
−→ C \ p(S)

is a smooth covering of degree d .
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For instance, the map f (z) = zn is a degree-n smooth covering f : C∗ →
C∗ where we indicate C∗ = C \ {0}.

3.5.3. From topological to smooth coverings. Let M̃ → M be a cov-
ering of topological spaces. If M has a smooth manifold structure, we already
know from Exercise 1.2.3 that M̃ is a topological manifold; more than that:

Proposition 3.5.4. There is a unique smooth structure on M̃ such that
p : M̃ → M is a smooth covering.

Proof. For every chart ϕ : U → V of M and every open subset Ũ ⊂ M̃

such that p|Ũ : Ũ → U is a homeomorphism, we assign the chart ϕ ◦ p|Ũ to
M̃. These charts form a smooth atlas on M̃ and p is a smooth covering.
Conversely, since p is a local diffeomorphism the smooth structure of M̃ is
uniquely determined (exercise). �

As a consequence, much of the machinery on topological coverings sum-
marised in Section 1.2.2 apply also to smooth coverings. For instance, if
M is a connected smooth manifold, there is a bijective correspondence be-
tween the conjugacy classes of subgroups of π1(M) and the smooth cov-
erings M̃ → M considered up to isomorphism, where two smooth cover-
ings p : M̃ → M, p′ : M̃ ′ → M are isomorphic if there is a diffeomorphism
f : M̃ → M̃ ′ such that p = p′ ◦ f .

3.5.4. Smooth actions. We keep adapting the topological definitions of
Section 1.2.6 to this smooth setting. A smooth action of a group G on a
smooth manifold M is a group homomorphism

G −→ Diffeo(M)

where Diffeo(M) is the group of all the self-diffeomorphisms M → M. All the
results stated there apply to this smooth setting. In particular we have the
following.

Proposition 3.5.5. Let G act smoothly, freely, and properly discontinuously
on a smooth manifold M. The quotient M/G has a unique smooth structure
such that p : M → M/G is a smooth regular covering.

Moreover, every smooth regular covering between smooth manifolds arises
in this way.

Proof. We already know that p is a covering and M/G is a topological
manifold. The smooth structure is constructed as follows: for every chart
U → V on M such that p|U is injective, we add the chart ϕ ◦ p−1 : p(U)→ V

to M/G. We get a smooth atlas on M/G because G acts smoothly. �

For instance, if M is a smooth manifold and ι : M → M a fixed-point free
involution (a diffeomorphism ι such that ι2 = id and ι(p) 6= p for all p), then
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M/ι = M/G where G = 〈ι〉 has order two is a smooth manifold and M → M/ι

a degree-two covering. This applies for instance to

RPn = Sn/ι

where ι is the antipodal map. Every degree-two covering in fact arises in
this way, because every degree-two covering is regular (since every index-two
subgroup is normal).

3.5.5. The n-dimensional torus. Here is one example. Let G = Zn act
on Rn by translations, that is g(v) = v + g. The action is free and properly
discontinuous, hence the quotient T n = Rn/Zn is a smooth manifold called
the n-dimensional torus. The manifold is in fact diffeomorphic to the product

S1 × · · · × S1︸ ︷︷ ︸
n

via the map

f (x1, . . . , xn) =
(
e2πx1i , . . . , e2πxn i

)
.

The map f is defined on Rn but it descends to the quotient T n, and is invertible
there. The n-torus T n is compact and its fundamental group is Zn.

3.5.6. Lens spaces. Let p > 1 and q > 1 be two coprime integers and
define the complex number ω = e2πi/p. We identify R4 with C2 and see the
three-dimensional sphere S3 as

S3 =
{

(z, w) ∈ C2
∣∣ |z |2 + |w |2 = 1

}
.

The map

f (z, w) = (ωz, ωqw)

is a linear isomorphism of C2 that consists geometrically of two simultaneous
order-p rotations on the real planes w = 0 and z = 0. The map f preserves
S3, it has order p and none of its iterates f , f 2, . . . , f p−1 has a fixed point in
S3. Therefore the group G = 〈f 〉 generated by f acts freely on S3, and also
properly discontinuously because it is finite. The quotient

L(p, q) = S3/G

is therefore a smooth manifold covered by S3 called lens space. Its fundamental
group is isomorphic to the cyclic group G ∼= Z/pZ. Note that the manifold
depends on both p and q.
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Figure 3.8. Some fundamental domains for the torus, the Klein bottle,
and the projective plane. The surface is obtained from the domain by
identifying the boundary curves with the same colours, respecting arrows.

3.5.7. The Klein bottle. Let G be the group of affine isometries of R2

generated by the maps

f (x, y) = (x + 1, y), g(x, y) =
(

1− x, y + 1
)
.

The first map is a horizontal translation, the second is a glide reflection with
axis x = 1/2. We note that g∓1f g±1 = f −1 and hence f g±1 = g±1f −1 and
g∓1f = f −1g∓1. This implies easily that every element of G is of the form

f hgk(x, y) =

{
(1− x + h, y + k) if k is odd,

(x + h, y + k) if k is even.

The group G acts freely and properly discontinuously. The quotient surface
R2/G is called the Klein bottle.

3.5.8. Fundamental domains. Let G be a group acting smoothly, freely,
and properly discontinuously on a manifold M. Sometimes we can visualise
the quotient manifold M/G by drawing a fundamental domain for the action.

A fundamental domain is a closed subset D ⊂ M such that:

• every orbit intersects D in at least one point;
• every orbit intersects int(D) in at most one point.

For instance, Figure 3.8 shows some fundamental domains for:

• the action of Z2 to R2 via translations, yielding the torus T = R2/Z2;
• the action of G on R2 yielding the Klein bottle K = R2/G;
• the action of the antipodal map ι on S2 yielding RP2 = S2/ι.

The topology of the manifold M/G can be obtained directly from D by
identifying the points that lie in the same orbit. In Figure 3.8 this consists of
identifying the boundary sides or curves with the same colours as suggested
by the arrows.

3.6. Orientation

Some (but not all) manifolds can be equipped with an additional structure
called an orientation. An orientation is a way of distinguishing your left hand
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from your right hand, through a fixed convention that holds coherently in the
whole universe you are living in.

3.6.1. Oriented manifolds. Let M be a smooth manifold. We say that
a compatible atlas on M is oriented if all the transition functions ϕi j have
orientation-preserving differentials. That is, for every p in the domain of ϕi j
the differential d(ϕi j)p has positive determinant, for all i , j . Note that this
determinant varies smoothly on p and never vanishes because ϕi j is a diffeo-
morphism: hence if the domain is connected and the determinant is positive
at one point p, it is so at every point of the domain by continuity.

Definition 3.6.1. An orientation on M is an equivalence class of oriented
atlases (compatible with the smooth structure of M), where two oriented
atlases are considered as equivalent if their union is also oriented.

There are two important issues about orientations: the first is that a
manifold M may have no orientation at all (see Exercise 3.6.7 below), and the
second is that an orientation for M is never unique, as the following shows.

Exercise 3.6.2. If A = {ϕi} is an oriented atlas for M, then A′ = {r ◦ϕi}
is also an oriented atlas, where r : Rn → Rn is a fixed reflection along some
hyperplane H ⊂ Rn. The two oriented atlases are not orientably compatible.

We say that the orientations on M induced by A and A′ are opposite. If
M admits some orientation, we say that M is orientable.

Exercise 3.6.3. The sphere Sn is orientable.

Exercise 3.6.4. If M and N are orientable, then M × N also is.

3.6.2. Tangent spaces. We now exhibit an equivalent definition of orien-
tation that involves tangent spaces. Recall the notion of orientation for vector
spaces from Section 2.5.1.

Let M be a smooth manifold. Suppose that we assign an orientation to
the vector space TpM for every p ∈ M. We say that this assignment is locally
coherent if the following holds: for every p ∈ M there is a chart ϕ : U → V

with p ∈ U whose differential dϕq : TqM → Tϕ(q)Rn = Rn is orientation-
preserving (that is, it sends a positive basis of TqM to a positive one of Rn),
for all q ∈ U.

Here is a new definition of orientation on M.

Definition 3.6.5. An orientation for M is a locally coherent assignment of
orientations on all the tangent spaces TpM.

We have two distinct notions of orientation on M, and we now show that
they are equivalent. We see immediately how to pass from the first to the
second: for every p ∈ M there is some chart ϕ : U → V in the oriented atlas
with p ∈ U and we assign an orientation to TpM by saying that a basis in
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Figure 3.9. The Möbius strip is a non-orientable surface.

TpM is positive ⇐⇒ its image in Rn along dϕp is. The orientation of TpM is
well-defined because it is chart-independent: every other chart of the oriented
atlas differs by composition with a ϕi j with positive differentials. We leave to
the reader as an exercise to discover how to go back from the second definition
to the first.

Proposition 3.6.6. A connected smooth manifold M has either two orien-
tations or none.

Proof. Let A be an oriented atlas, and A′ its opposite. Suppose that we
have a third oriented atlas A′′. We get a partition M = StS′ where S (S′) is
the set of points p ∈ M where the orientation induced by A′′ on TpM coincides
with that of A (A′). Both sets S, S′ are open, so either M = S or M = S′,
and hence A′′ is compatible with either A or A′. �

Exercise 3.6.7. The Möbius strip shown in Figure 3.9 is non-orientable.
(A rigorous definition and proof will be exhibited soon, but it is instructive to
guess why that surface is not orientable only by looking at the picture.)

3.6.3. Orientation-preserving maps. Let f : M → N be a local dif-
feomorphism between two oriented manifolds M and N. We say that f is
orientation-preserving if the differential dfp : TpM → Tf (p)N is an orientation-
preserving isomorphism for every p ∈ M. That is, we mean that it sends pos-
itive bases to positive bases. Analogously, the map f is orientation-reversing
if dfp is so for every p ∈ M, that is it sends positive bases to negative bases.

Exercise 3.6.8. If M is connected, every local diffeomorphism f : M → N

between oriented manifolds is either orientation-preserving or reversing.

As a consequence, if M is connected, to understand whether f : M → N

is orientation-preserving or reversing it suffices to examine dfp at any single
point p ∈ M.

Exercise 3.6.9. The orthogonal reflection π along a linear hyperplane H ⊂
Rn+1 restricts to an orientation-reversing diffeomorphism of Sn

Hint. Suppose H = {x1 = 0}, pick p = (0, . . . , 0, 1), examine dπp. �
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Corollary 3.6.10. The antipodal map ι : Sn → Sn is orientation-preserving
⇐⇒ n is odd.

Proof. The map ι is a composition of n+1 reflections along the coordinate
hyperplanes. �

Let M be connected and oriented and f : M → M be a diffeomorphism.
The condition of f being orientation-preserving or reversing is independent
of the chosen orientation for M (exercise). A manifold M that admits an
orientation-reversing diffeomorphism M → M is called mirrorable. For in-
stance, the sphere Sn is mirrorable. Not all the orientable manifolds are mir-
rorable! This phenomenon is sometimes called chirality.

3.6.4. Orientability of projective spaces. We now determine whether
RPn is orientable or not, as a corollary of the following general fact.

Proposition 3.6.11. Let π : M̃ → M be a regular smooth covering of man-
ifolds. The manifold M is orientable ⇐⇒ M̃ is orientable and all the deck
transformations are orientation-preserving.

Proof. If M is orientable, there is a locally coherent way to orient all the
tangent spaces TpM, which lifts to a locally coherent orientation of the tangent
spaces Tp̃M̃, by requiring dπp̃ to be orientation-preserving ∀ p̃ ∈ M̃. Every
deck transformation τ turns out to be orientation preserving because π◦τ = π

implies dπτ(p̃) ◦ dτp̃ = dπp̃, both isomorphisms dπτ(p̃) and dπp̃ preserve
orientations and hence dτp̃ also does.

Conversely, suppose that M̃ is orientable and all the deck transformations
are orientation-preserving. We can assign an orientation on TpM by requiring
that dπp̃ be orientation-preserving for some lift p̃ of p: the definition is well-
posed, because if we pick another lift p̃′ there is an orientation-preserving deck
transformation τ that sends p̃ to p̃′ and we get dπτ(p̃) ◦ dτp̃ = dπp̃. �

Corollary 3.6.12. The real projective space RPn is orientable⇐⇒ n is odd.

Proof. We have RPn = Sn/ι and the deck transformation ι is orientation-
preserving ⇐⇒ n is odd. �

Exercise 3.6.13. The projective plane RP2 contains an open subset diffeo-
morphic to the Möbius strip.

On the other hand, the n-torus and the lens spaces are orientable, be-
cause they are obtained by quotienting an orientable manifold (Rn or S3) via
a group of orientation-preserving diffeomorphisms acting freely and properly
discontinuously.
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Figure 3.10. The Klein bottle immersed elegantly but non-injectively in R3.

3.6.5. Non-orientable surfaces. Here are two famous non-orientable sur-
faces. We have defined the Klein bottle in Section 3.5.7 as R2/G with G
generated by

f (x, y) = (x + 1, y), g(x, y) =
(

1− x, y + 1
)
.

Since g is orientation-reversing, the Klein bottle is not orientable. The Möbius
strip is defined analogously as R2/〈g〉, and is also not orientable. Note that
the Klein bottle is compact, while the Möbius strip is not. The Klein bottle
has infinite fundamental group, so it is not homeomorphic to RP2. Lo dimostreremo?

As opposite to the Möbius strip, the Klein bottle cannot be embedded in
R3, and the best that we can do is to immerse it in R3 non-injectively as shown
in Figure 3.10. The notions of immersion and embedding will be introduced in
Section 3.8.

Exercise 3.6.14. Convince yourself that by glueing the opposite sides of
the central square in Figure 3.8 you get a surface homeomorphic to the one
shown in Figure 3.10.

3.6.6. Orientable double cover. Non-orientable manifolds are fascinat-
ing objects, but we will see in the next chapters that it is often useful to assume
that a manifold is orientable, just to make life easier. So, if you ordered an
orientable manifold and you received a non-orientable one by mistake, what
can you do? The best that you can do is to transform it into an orientable
one by substituting it with an appropriate double cover. We now describe this
operation.

We say that a manifold N is doubly covered by another manifold Ñ if there
is a covering Ñ → N of degree two.

Proposition 3.6.15. Every non-orientable connected manifold M is canon-
ically doubly covered by an orientable connected manifold M̃.

Proof. We define M̃ as the set of all pairs (p, o) where p ∈ M and o is an
orientation for TpM. By sending (p, o) to p we get a 2-1 map π : M̃ → M. We
now assign to the set M̃ a structure of smooth connected orientable manifold
and prove that π is a smooth covering.
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For every chart ϕi : Ui → Vi on M we consider the set Ũi ⊂ M̃ of all pairs
(p, o) where p ∈ Ui and o is the orientation induced by transferring back that
of Rn via dϕp. We also consider the map ϕ̃i : Ũi → Vi , ϕ̃i = ϕi ◦ π. We now
show that the maps

ϕ̃i : Ũi −→ Vi

constructed in this way form an oriented smooth atlas for the set M̃, recall
the definition in Section 3.1.5.

To prove that this is an oriented smooth atlas, we first note that the sets
Ũi cover M̃ and every ϕ̃i is a bijection. Then, we must show that for every
i , j the images of Ũi ∩ Ũj along ϕ̃i and ϕ̃j are open subsets (if not empty) and
the transition map ϕ̃i j is orientation-preservingly smooth.

We consider a point (p, o) ∈ Ũi ∩ Ũj . The charts ϕi and ϕj both send o
to the canonical orientation of Rn, therefore the differential of the transition
map ϕi j has positive determinant in ϕi(p) and hence in the whole connected
component W of ϕi(Ui ∩ Uj) containing ϕi(p). This implies that ϕ̃i(Ũi ∩ Ũj)
contains the open set W . Moreover ϕ̃i j is orientation-preserving on W .

Now that M̃ is a smooth manifold, we check that π is a smooth covering:
for every p ∈ M we pick any chart ϕi : Ui → Vi with p ∈ Ui and note that
ϕ′i = r ◦ϕi is also a chart for any reflection r of Rn; the two charts define two
open subsets Ũi , Ũ ′i of M̃, each projected diffeomorphically to Ui via π.

Actually, it still remains to prove that M̃ is connected: if it were not, it
would split into two components, each diffeomorphic to M via π, but this is
excluded because M̃ is orientable and M is not. �

For instance: the Klein bottle is covered by the torus, the projective spaces
are covered by spheres, and the Möbius strip is covered by R×S1, with degree
two in all the cases.

Corollary 3.6.16. Every simply connected manifold is orientable.

Proof. A simply connected manifold has no non-trivial covering! �

Corollary 3.6.17. The complex projective spaces CPn are all orientable.

Remark 3.6.18. The orientability of CPn can be checked also by noting
that Cn has a natural orientation and that the transition maps between the
coordinate charts are holomorphic and hence orientation-preserving.

3.7. Submanifolds

One of the fundamental aspects of smooth manifolds is that they contain
plenty of manifolds of smaller dimension, called submanifolds.
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Figure 3.11. A smooth submanifold S ⊂ M looks locally like a linear
subspace L ⊂ Rm.

3.7.1. Definition. Let M be a smooth m-manifold.

Definition 3.7.1. A subset S ⊂ M is a n-dimensional smooth submanifold
(shortly, a n-submanifold) if for every p ∈ S there is a chart ϕ : U → Rm with
p ∈ U that sends U ∩ S onto some linear n-subspace L ⊂ Rm.

That is, the subset S looks locally like a vector n-subspace in Rm, on some
chart. Of course we must have n ≤ m. See Figure 3.11.

A smooth n-submanifold S ⊂ M is itself a smooth n-manifold: an atlas
for S is obtained by restricting all the diffeomorphisms U → Rm as above to
U ∩ S, composed with any linear isomorphism L → Rn. The transition maps
are restrictions of smooth functions to linear subspaces and are hence smooth.

If we use the definition of tangent spaces via curves, we see immediately
that for every p ∈ S there is a canonical inclusion i : TpS ↪→ TpM. Via
derivations, the inclusion is i(v)(f ) = v(f |S). We will see TpS as a linear
n-subspace of TpM.

When m = n, a submanifold N ⊂ M is just an open subset of M.

Example 3.7.2. Every linear subspace L ⊂ Rn is a submanifold.

Example 3.7.3. The graph S of a smooth function f : Rn → Rm is a n-
submanifold of Rn ×Rm diffeomorphic to Rn. The map Rn ×Rm → Rn ×Rm
that sends (x, y) to

(
x, y + f (x)

)
is a diffeomorphism that sends the linear

space L = {y = 0} to S.

As a consequence, a subset S ⊂ Rn that is locally the graph of some
smooth function is a submanifold. For instance, the sphere Sn ⊂ Rn+1 can be
seen locally at every point (up to permuting the coordinates) as the graph of
the smooth function x 7→

√
1− ‖x‖2 and is hence a n-submanifold in Rn+1.

If S ⊂ Rn is a k-submanifold, the tangent space TpS at a point p ∈ S
may be represented very concretely as a k-dimensional vector subspace of
TpRn = Rn.

Exercise 3.7.4. For every p ∈ Sn we have

TpS
n = p⊥
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where p⊥ indicates the vector space orthogonal to p. (We will soon deduce
this exercise from a general theorem.)

Example 3.7.5. A projective k-dimensional subspace S of RPn or CPn
is the zero set of n − k independent homogeneous linear equations. It is
a smooth submanifold, because read on each coordinate chart it becomes a
linear k-subspace in Rn or Cn. It is diffeomorphic to RPk or CPk .

Exercise 3.7.6. Let M,N be smooth manifolds. For every p ∈ M the
subset {p} × N is a submanifold of M × N diffeomorphic to N.

3.8. Immersions, embeddings, and submersions

We now study some particular kinds of nice maps called immersions, em-
beddings, and submersions.

3.8.1. Immersions. A smooth map f : M → N between smooth mani-
folds of dimension m and n is an immersion at a point p ∈ M if the differential

dfp : TpM −→ Tf (p)N

is injective. This implies in particular that m ≤ n.
It is a remarkable fact that every immersion may be described locally in a

very simple form, on appropriate charts. This is the content of the following
proposition.

Proposition 3.8.1. Let f : M → N be an immersion at p ∈ M. There are
charts ϕ : U → Rm and ψ : W → Rn with p ∈ U ⊂ M and f (U) ⊂ W ⊂ N

such that ψ ◦ f ◦ ϕ−1(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

The proposition can be memorised via the following commutative diagram:

(6) U
f //

ϕ

��

W

ψ
��

Rm
F
// Rn

where F (x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0). Read on some charts, every
immersion looks like F .

Proof. We can replace M and N with any open neighbourhoods of p and
f (p), in particular by taking charts we may suppose that M ⊂ Rm and N ⊂ Rn
are some open subsets.

We know that dfp : Rm → Rn is injective. Therefore its image L has
dimension m. Choose an injective linear map g : Rn−m → Rn whose image is
in direct sum with L and define

G : M × Rn−m −→ Rn



3.8. IMMERSIONS, EMBEDDINGS, AND SUBMERSIONS 81

Figure 3.12. A non-injective immersion S1 → R2 (left) and an injective
immersion R→ R2 that is not an embedding (right).

by setting G(x, y) = f (x) +g(y). Its differential at (p, 0) is dG(p,0) = (dfp, g)

and it is an isomorphism. By the Implicit Function Theorem the map G is
a local diffeomorphism at (p, 0). Therefore there are open neighbourhoods
U1, U2,W of p, 0, f (p) such that

G|U1×U2
: U1 × U2 → W

is a diffeomorphism, and we call ψ its inverse. Now for every x ∈ U1 we get

ψ
(
f (x)

)
= ψ

(
G(x, 0)

)
= (x, 0).

Therefore we get the commutative diagram

U1
f // W

ψ

��
U1

F
// U1 × U2

with F (x) = (x, 0) as required. To conclude, we may take neighbourhoods
U1, U2 diffeomorphic to Rm, Rn−m and the diagram transforms into (6). �

A map f : M → N is an immersion if it is so at every p ∈ M. An immersion
is locally injective because of Proposition 3.8.1, but it may not be so globally:
see for instance Figure 3.12-(left).

3.8.2. Embeddings. We have discovered that an immersion has a partic-
ularly nice local behaviour. We now introduce some special type of immersions
that also behave nicely globally.

Definition 3.8.2. A smooth map f : M → N is an embedding if it is an
immersion and a homeomorphism onto its image.

The latter condition means that f : M → f (M) is a homeomorphism, so
in particular f is injective. We note that f may be an injective immersion while
not being a homeomorphism onto its image! An example is shown in Figure
3.12-(right). We really need the “homeomorphism onto its image” condition
here, injectivity is not enough for our purposes.

The importance of embeddings relies in the following.

Proposition 3.8.3. If f : M → N is an embedding, then f (M) ⊂ N is a
smooth submanifold and f : M → f (M) a diffeomorphism.
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Proof. For every p ∈ M there are open neighbourhoods U ⊂ M, V ⊂ N

of p, f (p) such that f |U : U → V ∩ f (M) is a homeomorphism.
By Proposition 3.8.1, after taking a smaller V there is a chart that sends(

V, V ∩ f (M)
)
to (Rn, L) for some linear subspace L. Therefore f (M) is a

smooth submanifold, and f is a diffeomorphism onto f (M). �

Figure 3.12-(right) shows that the image of an injective immersion needs
not to be a submanifold. Conversely:

Exercise 3.8.4. If S ⊂ N is a smooth submanifold, then the inclusion map
i : S ↪→ N is an embedding.

We now look for a simple embedding criterion. Recall that a map f : X →
Y is proper if C ⊂ Y compact implies f −1(C) ⊂ X compact.

Exercise 3.8.5. A proper injective immersion f : M → N is an embedding.

In particular, if M is compact then f is certainly proper, and we can con-
clude that every injective immersion of M is an embedding. This is certainly a
fairly simple embedding criterion.

Example 3.8.6. Fix two positive numbers 0 < a < b and consider the map
f : S1 × S1 → R3 given by

f (e iθ, e iϕ) =
(

(a cos θ + b) cosϕ, (a cos θ + b) sinϕ, a sin θ
)
.

Using the coordinates θ and ϕ, the differential is−a sin θ cosϕ −(a cos θ + b) sinϕ

−a sin θ sinϕ (a cos θ + b) cosϕ

a cos θ 0


and it has rank two for all θ, ϕ. Therefore f is an injective immersion and
hence an embedding since S1×S1 is compact. The image of f is the standard
torus in space already shown in Figure 3.4.

Example 3.8.7. Let p, q be two coprime integers. The map g : S1 →
S1 × S1 given by

g(e iθ) =
(
e ipθ, e iqθ

)
is injective (exercise) and its differential in the angle coordinates is (p, q) 6=
(0, 0). Therefore g is an embedding.

The composition f ◦ g : S1 → R3 with the map f of Example 3.8.6 is also
an embedding, and its image is called a torus knot: see Figure 3.13. More
generally, a knot is an embedding S1 ↪→ R3.

Exercise 3.8.8. Let p, q be two real numbers with irrational ratio p/q. The
map h : R→ S1 × S1 defined by

h(t) =
(
e ipt , e iqt

)
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Figure 3.13. A knot is an embedding S1 ↪→ R3. This is a torus knot:
what are the parameters p and q here?

is an injective immersion but is not an embedding. Its image is in fact a dense
subset of the torus.

Exercise 3.8.9. If M is compact and N is connected, and dimM = dimN,
every embedding M → N is a diffeomorphism.

3.8.3. Submersions. We now describe some maps that are somehow dual
to immersions. A smooth map f : M → N is a submersion at a point p ∈ M
if the differential dfp is surjective. This implies that m ≥ n. Again, every such
map has a simple local form.

Proposition 3.8.10. Let f : M → N be a submersion at p ∈ M. There are
charts ϕ : U → Rm and ψ : W → Rn with p ∈ U ⊂ M and f (U) ⊂ W ⊂ N

such that ψ ◦ f ◦ ϕ−1(x1, . . . , xm) = (x1, . . . , xn).

The proposition can be memorised via the following commutative diagram:

U
f //

ϕ

��

W

ψ
��

Rm
F
// Rn

where F (x1, . . . , xm) = (x1, . . . , xn). Read on some charts, every submersion
looks like F .

Proof. The proof is very similar to that of Proposition 3.8.1. We can
replace M and N with any open neighbourhoods of p and f (p), in particular
by taking charts we suppose that M ⊂ Rm and N ⊂ Rn are open subsets.

We know that dfp : TpM → Tf (p)N is surjective, hence its kernel K has
dimension m − n. Choose a linear map g : Rm → Rm−n that is injective on K
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and define
G : M −→ N × Rm−n

by setting G(x) =
(
f (x), g(x)

)
. Its differential at p is dGp = (dfp, g) and

is an isomorphism. By the Implicit Function Theorem the map G is a local
diffeomorphism at p.

Therefore there are open neighbourhoods U,W1,W2 of p, f (p), 0 such that
G(U) = W1 ×W2 and G|U is a diffeomorphism. Now f

(
G−1(x, y)

)
= x and

we conclude similarly as in the proof of Proposition 3.8.1. �

A smooth map f : M → N is a submersion if it is so at every p ∈ M.

3.8.4. Regular values. We have proved that the image of an embedding
is a submanifold, and now we show that (somehow dually) the preimage of a
submersion is also a submanifold. In fact, one does not really need the map
to be a submersion: some weaker hypothesis suffices, that we now introduce.

Let f : M → N be a smooth map between manifolds of dimension m ≥ n
respectively. A point p ∈ M is regular if the differential dfp is surjective (that
is if f is a submersion at p), and critical otherwise.

Proposition 3.8.11. The regular points form an open subset of M.

Proof. Read on charts, the differential dfp becomes a n ×m matrix that
depends smoothly on the point p. The matrices with maximum rank m form
an open subset in the set of all n ×m matrices. �

A point q ∈ N is a regular value if the counterimage f −1(q) consists en-
tirely of regular points, and it is singular otherwise. The map f is a submersion
⇐⇒ all the points in the codomain are regular values.

Proposition 3.8.12. If q ∈ N is a regular value, then S = f −1(q) is either
empty or a smooth (m − n)-submanifold. Moreover for every p ∈ S we have

TpS = ker dfp.

Proof. Thanks to Proposition 3.8.10 there are charts at p and f (p) that
transform f locally into a projection π : Rm → Rn. On these charts f −1(q) is
the linear subspace kerπ, hence a (m − n)-submanifold. The tangent space
at p is kerπ = ker dfp. �

Using this proposition we can re-prove that the sphere Sn is a submanifold
of Rn+1: pick the smooth map f (x) = ‖x‖2 and note that Sn = f −1(1). The
gradient dfx is (2x1, . . . , 2xn), hence every non-zero point x ∈ Rn+1 is regular
for f , and therefore every non-zero point y ∈ R is a regular value: in particular
1 is regular and the proposition applies.

We can also deduce Exercise 3.7.4 quite easily: for every x ∈ Sn we get

TxS
n = ker dfx = ker(2x1, . . . , 2xn) = x⊥.
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3.9. Examples

Some familiar spaces are actually smooth manifolds in a natural way. We
list some of them and state a few results that will be useful in the sequel.

3.9.1. Matrix spaces. Every finite-dimensional real vector space V is nat-
urally a smooth manifold diffeomorphic to Rn: as a smooth atlas, pick all the
isomorphisms V → Rn. Since V is also a vector space, the tangent space at
every point p ∈ V is naturally identified with V itself.

The vector space M(m, n) of all m× n matrices is hence diffeomorphic to
Rmn. The subset consisting of all the matrices with maximal rank is open, and
is hence also a smooth manifold.

In particular, the set M(n) of all the square n × n matrices is a smooth
manifold, and the open subset GL(n,R) of all the invertible n × n matrices is
a smooth manifold, both of dimension n2. For every A ∈ M(n) we identify
TAM(n) = M(n), and also TAGL(n,R) = M(n) for every A ∈ GL(n,R).

The subspaces S(n) and A(n) of all the symmetric and antisymmetric
matrices are submanifolds of dimension (n+1)n/2 and (n−1)n/2 respectively.

A less trivial example is the set of n × n matrices with unit determinant:

SL(n,R) =
{
A ∈ M(n)

∣∣ detA = 1
}
.

Proposition 3.9.1. The set SL(n,R) is a submanifold of M(n) of codimen-
sion 1. We have

TISL(n,R) =
{
A ∈ M(n)

∣∣ trA = 0
}
.

Proof. The determinant is a smooth map det : M(n)→ R. We show that
1 ∈ R is a regular value. For every A ∈ SL(n,R) and B ∈ M(n) we easily get

det(A+ tB) = det(I + tBA−1) = 1 + ttr(BA−1) + o(t).

Therefore d detA(B) = tr(BA−1) and by taking B = A we deduce that d detA
is surjective. Hence 1 is a regular value, so by Proposition 3.8.12 the preimage
SL(n,R) is a smooth submanifold and TISL(n,R) = ker d detI is as stated. �

3.9.2. Orthogonal matrices. Another important example is the set of all
the orthogonal matrices

O(n) =
{
A ∈ M(n)

∣∣ tAA = I
}
.

Proposition 3.9.2. The set O(n) is a submanifold of M(n) of dimension
(n − 1)n/2. We have

TIO(n) = A(n).

Proof. Consider the smooth map

f : M(n) −→ S(n),

A 7−→ tAA.
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Note that O(n) = f −1(I). We now show that I ∈ S(n) is a regular value. For
every A ∈ O(n) we have

f (A+ tB) = t(A+ tB)(A+ tB) = tAA+ t(tBA+ tAB) + t2 tBB

= I + t(tBA+ tAB) + o(t).

and hence
dfA(B) = tBA+ tAB.

For every symmetric matrix S ∈ S(n) there is a B such that tBA+ tAB = S

(exercise). Then dfA is surjective for all A ∈ O(n) and I is a regular value.
We deduce from Proposition 3.8.12 that O(n) = f −1(I) is a smooth

manifold of dimension dimM(n)− dimS(n) = (n − 1)n/2. Moreover

TIO(n) = ker dfI = {B | tB + B = 0} = A(n).

The proof is complete. �

3.9.3. Fixed rank. We now exhibit some natural submanifolds in the
space M(m, n) of all m × n matrices. For every 0 ≤ k ≤ min{m, n}, we
define Mk(m, n) ⊂ M(m, n) to be the subset consisting of all the matrices
having rank k .

Proposition 3.9.3. The subspace Mk(m, n) is a submanifold in M(m, n) of
codimension (m − k)(n − k).

Proof. Consider a matrix P0 ∈ Mk(m, n). Up to permuting rows and
columns, we may suppose that P0 =

(
A0 B0

C0 D0

)
where A0 ∈ GL(k,R).

On an open neighbourhood of P0 every matrix P is also of this type P =(
A B
C D

)
with A ∈ GL(k,R) and if we set Q =

(
A−1 −A−1B

0 In−k

)
∈ GL(n,R) we find

PQ =

(
Ik 0

CA−1 D − CA−1B

)
.

Since rkP = rkPQ, we deduce that

rkP = k ⇐⇒ D = CA−1B.

Therefore Mk(m, n) is a manifold parametrised locally by (A,B, C), of codi-
mension (m − k)(n − k). �

3.9.4. Square roots. Let S+(n) ⊂ S(n) be the open subset of all positive-
definite symmetric matrices. We will neeed the following.

Proposition 3.9.4. Every S ∈ S+(n) has a unique square root
√
S ∈ S+(n),

that depends smoothly on S.

Proof. The existence and uniqueness of
√
S are consequences of the spec-

tral theorem. Smoothness may be proved by showing that the map f : S+(n)→
S+(n), A 7→ A2 is a submersion: being a 1-1 correspondence, it is then a dif-
feomorphism.
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To show that f is a submersion, up to conjugacy we may suppose that D
is diagonal, and write

f (D + tM) = (D + tM)2 = D2 + t(DM +MD) + o(t).

We have

(DM +MD)i j = Di iMi j +Mi jDj j = (Di i +Dj j)Mi j .

Since Di i > 0 for all i , if M 6= 0 then DM +MD 6= 0, so dfD is injective and
hence invertible. �

3.9.5. Some matrix decompositions. It is often useful to decompose a
matrix into a product of matrices of some special types. Let T (n) be the set
of all upper triangular matrices with positive entries on the diagonal.

Proposition 3.9.5. For every A ∈ GL(n,R) there are unique O ∈ O(n) and
T ∈ T (n) such that A = OT . Both O and T depend smoothly on A.

Proof. Write A = (v1 . . . vn) and orthonormalise its columns via the Gram–
Schmidt algorithm to get O = (w1 . . . wn). The algorithm may in fact be in-
terpreted as a right multiplication by some triangular T . Conversely, if A = OT

then O is uniquely determined: the vector w i+1 must be the unit vector or-
thogonal to Span(v1, . . . , v i) lying on the same side as v i+1. �

Corollary 3.9.6. We have the diffeomorphisms

GL(n,R) ∼= O(n)× T (n) ∼= O(n)× Rn(n+1)/2.

In particular there is a smooth strong deformation retraction of GL(n,R)

onto the compact subset O(n). We also deduce a similar result for SL(n,R).
Let ST (n) ⊂ T (n) be the submanifold of all upper triangular matrices with
positive entries on the diagonal and unit determinant.

Corollary 3.9.7. We have the diffeomorphisms

SL(n,R) ∼= SO(n)× ST (n) ∼= SO(n)× Rn(n+1)/2−1.

The decomposition M = OT is nice, but we will later need one that is
“more invariant”.

Proposition 3.9.8. For every A ∈ GL(n,R) there are unique O ∈ O(n) and
S ∈ S+(n) such that A = OS. Both O and S depend smoothly on A.

Proof. Pick S =
√

tAA. Write O = AS−1 and note that O is orthogonal:
tOO = tS−1 tAAS−1 = S−1S2S−1 = I.

Conversely, if A = OS then tAA = tS tOOS = S2. �

The decomposition A = OS is also known as the polar decomposition and
is “more invariant” than A = OT because it satisfies the following property:
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Proposition 3.9.9. If A′ = PAQ for some orthogonal matrices P,Q ∈
O(n), then A′ = O′S′ with O′ = POQ and S′ = Q−1SQ.

Proof. By multiplying we indeed get A′ = S′O′. �

3.9.6. Connected components. Recall that every A ∈ O(n) has detA =

±1. We define

SO(n) =
{
A ∈ O(n) | detA = 1

}
Proposition 3.9.10. The manifold O(n) has two connected components,

one of which is SO(n).

Proof. We first prove that SO(n) is path-connected. Let Rθ be the θ-
rotation 2× 2 matrix. The real Jordan theorem implies that every real square
matrix has either an invariant line or plane. By applying this fact iteratively we
deduced that every A ∈ SO(n) is similar A = M−1BM via a matrixM ∈ SO(n)

to a B ∈ SO(n) of type

B =

Rθ1
. . . 0

...
. . .

...
0 . . . Rθm

 or B =


Rθ1

. . . 0 0
...

. . .
...

...
0 . . . Rθm 0

0 . . . 0 1


depending on whether n = 2m or n = 2m+ 1, for some angles θ1, . . . , θm. By
sending continuously the angles to zero we get a path connecting B to In and
by conjugating everything with M we get one connecting A to In.

Finally, two matrices in O(n) with determinant 1 and −1 cannot be path-
connected because the determinant is a continuous function. �

Corollary 3.9.11. The manifold GL(n,R) has two connected components,
consisting of matrices with positive and negative determinant, respectively.

Corollary 3.9.12. The manifold SL(n,R) is connected.

3.10. Homotopy and isotopy

There are plenty of smooth mapsM → N between two given smooth man-
ifolds, and in some cases it is natural to consider them up to some equivalence
relation. We introduce here a quite mild relation called smooth homotopy and
a stronger one, that works only for embeddings, called isotopy.

3.10.1. Smooth homotopy. We introduce the following notion.

Definition 3.10.1. A smooth homotopy between two given smooth maps
f , g : M → N is a smooth map F : M × R→ N such that F (x, 0) = f (x) and
F (x, 1) = g(x) for all x ∈ M.
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In general topology, a homotopy is just a continuous map F : X×[0, 1]→ Y

where X, Y are topological spaces. In this smooth setting we must (a bit
reluctantly) substitute [0, 1] with R because we need the domain to be a
smooth manifold. Anyway, the behaviour of F (x, t) when t 6∈ [0, 1] is of no
interest for us, and we may require F (x, ·) to be constant outside that interval:

Proposition 3.10.2. If F is a smooth homotopy between f and g, then
there is another smooth homotopy F ′ such that F ′(x, t) equals f (x) for all
t ≤ 0 and g(x) for all t ≥ 1.

Proof. Take a smooth transition function Ψ: R→ R as in Section 1.3.6,
such that Ψ(t) = 0 for all t ≤ 0 and Ψ(t) = 1 for all t ≥ 1. Define
F ′(x, t) = F

(
x,Ψ(t)

)
. �

Two smooth maps f , g : M → N are smoothly homotopic if there is a
smooth homotopy between them.

Proposition 3.10.3. Being smoothly homotopic is an equivalence relation.

Proof. The only non-trivial part is the transitive property. Let F be a
smooth homotopy between f and g, and G be a smooth homotopy between g
and h. We must glue them to an isotopy H between f and g.

To do this smoothly, we first modify F and G as in the proof of Proposition
3.10.2, taking a transition function Ψ such that Ψ(x) = 0 for all x ≤ 1

3 and
Ψ(x) = 1 for all x ≥ 2

3 . Now F (x, ·) and G(x, ·) are constant outside
[

1
3 ,

2
3

]
and can be glued by writing

H(x, t) =

 F (x, 2t) for t ≤ 1
2 ,

G(x, 2t − 1) for t ≥ 1
2 .

The map H is smooth and the proof is complete. �

Example 3.10.4. Let M be a smooth manifold. Any two maps f , g : M →
Rn are smoothly homotopic: indeed, every f : M → Rn is smoothly homotopic
to the constant map c(x) = 0, simply by taking

F (x, t) = tf (x).

3.10.2. Isotopy. We now introduce an enhanced version of smooth ho-
motopy, called isotopy, that is nicely tailored to work with embeddings.

Definition 3.10.5. An isotopy between two embeddings f , g : M → N is a
smooth homotopy F : M × R→ N between them, such that Ft(x) = F (x, t)

is an embedding Ft : M → N for all t ∈ [0, 1].

We can prove as above that the isotopy between embeddings is an equiv-
alence relation. Being isotopic is much stronger than being homotopic: for
instance two embeddings f , g : M → Rn are always smoothly homotopic, but
they may not be isotopic in many interesting cases.
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As an example, two knots f , g : S1 ↪→ R3 may not be isotopic. The knot
theory is an area of topology that studies precisely this phenomenon: its main
(and still unachieved) goal would be to classify all knots up to isotopy in a
satisfactory way.

Another interesting challenge is to study the set of all self-diffeomorphisms
M → M of one fixed manifoldM up to isotopy. Note that ifM is compact and
connected, every level Ft in one such isotopy is a diffeomorphism by Exercise
3.8.9. This is already a fundamental and non-trivial problem when M = Sn is
a sphere; the one-dimensional case is the only one that can be solved easily:

Proposition 3.10.6. Every self-diffeomorphism ϕ : S1 → S1 is isotopic ei-
ther to the identity or to a reflection z 7→ z̄ , depending on whether ϕ is
orientation-preserving or not.

Proof. Suppose that ϕ : S1 → S1 is orientation-preserving. We lift ϕ to
a map ϕ̃ : R → R between universal covers, and note that ϕ̃′(x) > 0 for all
x ∈ R. Consider the map

F̃t(x) = tϕ̃(x) + (1− t)x.

Since F̃t(x + 2kπ) = F̃t(x) + 2kπ the map descends to a map Ft : S1 → S1.
When t ∈ [0, 1] we get F̃ ′t(x) = tϕ̃′(x) + (1 − t) > 0, hence each Ft is an
embedding. Therefore Ft is an isotopy between id and ϕ. �

Here is another interesting question, that we will be able to solve in the
positive in the next chapters.

Question 3.10.7. Let M be a connected n-manifold. Are two orientation-
preserving embeddings f , g : Rn ↪→ M always isotopic?

3.11. The Whitney embedding

We now show that every manifold may be embedded in some Euclidean
space. This result was proved by Whitney in the 1930s.

3.11.1. Borel and zero-measure subsets. We start with some prelimi-
naries that are of independent interest.

Let M be a smooth n-manifold. As in every topological space, a Borel
subset of M is any subspace S ⊂ M that can be constructed from the open
sets through the operations of relative complement, countable unions and
intersections.

Exercise 3.11.1. A subset S ⊂ M is Borel ⇐⇒ its image along any chart
is a Borel subset of Rn.

Let S ⊂ M be a Borel set. Although there is no notion of measure for
S, we may still say that S has measure zero if the image ϕ(U ∩ S) along any
chart ϕ : U → V has measure zero, with respect to the Lebesgue measure in
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Rn. Note that any diffeomorphism sends zero-measure sets to zero-measure
sets (Remark 1.3.6), so it suffices to check this for a set of charts covering S.

Proposition 3.11.2. Let f : M → N be a smooth map between manifolds
of dimensions m, n. If m < n, the image of f is a zero-measure set.

Proof. This holds on charts by Corollary 1.3.8. �

In particular, the image of f has empty interior.

3.11.2. The compact case. We now prove that every compact manifold
embeds in some Euclidean space. Not only the statement seems very strong,
but its proof is actually relatively easy.

Theorem 3.11.3. Every compact smooth manifold M embeds in some Rn.

Proof. Since M is compact, it has a finite adequate atlas
{
ϕi : Ui → Rm

}
that consists of some k charts. The open subsets Vi = ϕ−1

i (Bm) cover M.
Let λ : Rm → R be a bump function with λ(x) = 1 if ‖x‖ ≤ 1, 0 < λ(x) < 1

if 1 < ‖x‖ < 2, and λ(x) = 0 if ‖x‖ ≥ 2, see Section 1.3.5.
For every i = 1, . . . , k we define the smooth map λi : M → R by setting

λi(p) = λ
(
ϕi(p)

)
if p ∈ Ui and zero otherwise. Note that λi(p) = 1 if and only

if p ∈ Vi , so the function λi detects whether a point belongs to Vi . Analogously
we define the smooth map ψi : M → Rm by setting ψi(p) = λi(p)ϕi(p) when
p ∈ Ui and zero otherwise. Note that the functions ψi and ϕi coincide on Vi .

Let n = k(m + 1). We define F : M → Rn by setting

F (p) =
(
ψ1(p), . . . , ψk(p), λ1(p), . . . , λk(p)

)
.

The codomain is indeed Rm× . . .×Rm×R× . . .×R = Rn. We now show that
F is an injective immersion, and hence an embedding since M is compact.

Every point p ∈ M belongs to some Vi , and on this open set ψi = ϕi is a
local diffeomorphism; therefore the differential d(ψi)p has rank m, and hence
also dFp has the maximum rank m. We deduce that F is an immersion.

We prove that F is injective. Suppose that F (p) = F (q). The point p
belongs to some Vi , so λi(p) = λi(q) = 1, which implies that also q belongs
to Vi . Now ψi = ϕi is injective on Vi , and therefore p = q. �

We now want to improve the theorem in two directions: we remove the
compactness hypothesis, and we prove that the dimension n = 2m+1 suffices.

3.11.3. Immersions. LetM be a manifold of dimensionm, not necessarily
compact. We know from Proposition 3.3.9 that every continuous map f : M →
Rn into a Euclidean space can be perturbed to a smooth map. We now show
that if n ≥ 2m the map can be perturbed to an immersion.

Theorem 3.11.4. Let f : M → Rn be a continuous map, and n ≥ 2m. For
every ε > 0 there is an immersion F : M → Rn with ‖F (p)−f (p)‖ < ε ∀p ∈ M.
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Figure 3.14. We pass from F i−1 to F i by modifying the function only
in Ui , with the purpose to get an immersion on V̄i .

Proof. By Proposition 3.3.9, we may suppose that f is smooth.
Let

{
ϕi : Ui → Rm

}
be an adequate atlas, with countably many indices

i = 1, 2, . . . The open subsets Vi = ϕ−1
i (Bm) also form a covering of M. Let

ψi : M → Rm be defined as in the proof of Theorem 3.11.3, so that ψi ≡ ϕi
on Vi and ψi ≡ 0 outside Ui . We set

Mi =

i⋃
j=1

Vj

and note that
{
M̄i

}
is a covering of M with compact subsets.

We define a sequence F 0, F 1, . . . of maps F i : M → Rn such that:

(1) ‖F i(p)− f (p)‖ < ε for all p ∈ M,
(2) F i ≡ F i−1 outside of Ui ,
(3) dF ip is injective for all p ∈ M̄i .

See Figure 3.14. Since {Ui} is locally finite, the maps F i stabilise on every
compact set and converge to an immersion F : M → Rn as required.

We define F i inductively on i as follows. We set F 0 = f and

F i = F i−1 + Aiψi

for some appropriate matrix A = Ai ∈ M(n,m) that we now choose accurately
so that the conditions (1-3) will be satisfied.

We note that F i satisfies (2). Condition (1) is also fine as long as ‖A‖
is sufficiently small. To get (3) we need a bit of work. By the inductive
hypothesis dF i−1

p is injective for all p ∈ M̄i−1, and it will keep being so if ‖A‖
is sufficiently small. It remains to consider the points p ∈ M̄i \ M̄i−1.

At every p ∈ V̄i we have ψi = ϕi and

dF ip = dF i−1
p + Ad(ϕi)p.

Therefore dF ip is not injective if and only if

A = B − d(F i−1 ◦ ϕ−1
i )ϕi (p)

for some matrix B ∈ M(n,m) of rank k < m.
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Figure 3.15. Can you perturb this continuous map f : S2 → R3 to an
immersion? Probably not... At every horizontal level except the poles, the
map is as in Figure 3.16 below. The map f is an immersion everywhere
except at the poles, but it seems hard to eliminate the singular points at
the poles just by perturbing f . If we are allowed to raise the dimension of
the target, then f can certainly be perturbed to an immersion S2 → R4

and to an embedding S2 → R5 by Whitney’s Theorems 3.11.4 and 3.11.7,
although both perturbations may be hard to see...

By Proposition 3.9.3, the space Mk(m, n) of all rank-k matrices is a man-
ifold of dimension mn − (m − k)(n − k). For every k < m consider the map

Ψ: Bm ×Mk(n,m) −→ M(n,m)

(x, B) 7−→ B − d(F i−1 ◦ ϕ−1
i )x .

The dimensions of the domain and codomain are

m +mn − (m − k)(n − k), mn.

Since n ≥ 2m and k ≤ m − 1 we have

m − (m − k)(n − k) ≤ m − 1 · (n −m + 1) = 2m − n − 1 < 0.

By Proposition 3.11.2 the image of Ψ has zero measure for all k . Therefore it
suffices to pick A with small ‖A‖ and away from these zero-measure sets. �

In particular, every continuous map R→ R2 or S1 → R2 can be perturbed
to an immersion. If S is a surface, every continuous map S → R4 can be
perturbed to an immersion.

We cannot remove the condition n ≥ 2m in general. For instance, no map
S1 → R can be perturbed to an immersion, because there are no immersions
S1 → R at all. The dimensions m = 2 and n = 3 seem also problematic:
as a challenging example, consider the continuous map f : S2 → R3 drawn in
Figure 3.15. Can you perturb f to an immersion?

Remark 3.11.5. The proof of Theorem 3.11.4, especially in the choice of
the matrix A, suggests that any “generic” smooth perturbation of f should be
an immersion. This suggestion can be made precise by endowing the space of
all maps M → Rn with the appropriate topology: we do not pursue this here.

Corollary 3.11.6. Every m-manifold M immerses in R2m.
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Figure 3.16. This immersion S1 → R2 cannot be perturbed to an embedding.

Figure 3.17. It suffices to raise the dimension of the target by one, and
the immersion can now be perturbed to an injective immersion.

Proof. Pick a constant map f : M → R2m and apply Theorem 3.11.4. �

3.11.4. Injective immersions. Can we perturb an immersion Mm → Rn
to an injective immersion? This may not be possible in some cases, see Figure
3.16. In fact, Figure 3.17 suggests that we could achieve injectivity just by
adding one dimension to the codomain: the immersion can be perturbed to be
injective in R3, not in R2. We now show that this is a general principle.

Theorem 3.11.7. Let f : M → Rn be an immersion, and n ≥ 2m + 1. For
every ε > 0 there is an injective immersion F : M → Rn with ‖F (p)− f (p)‖ <
ε ∀p ∈ M.

Proof. We adapt the proof of Theorem 3.11.4 to this context. By Propo-
sition 3.8.1 the map f is locally injective, so by Proposition 3.3.2 we can find
an adequate atlas

{
ϕi : Ui → Rm

}
such that f |Ui is injective for all i .

We define again Vi = ϕ−1
i (Bm) and Mi = ∪j≤iVj . Let λi : M → R be a

bump function with λi ≡ 1 on Vi and λi ≡ 0 outside Ui .
We now construct a sequence F 0, F 1, . . . of immersions F i : M → Rn,

that satisfy the following conditions:

(1) ‖F i(p)− f (p)‖ < ε for all p ∈ M,
(2) F i ≡ F i−1 outside of Ui ,
(3) F i |Uj is injective for all j ,
(4) F i is injective on M̄i .

Again, we conclude that F i converge to some F that is an injective immersion.
We set F 0 = f . Given F i−1, we define

F i = F i−1 + λivi

where v = vi ∈ Rn is some vector that we now determine. If ‖v‖ is sufficiently
small, then F i is an immersion and (1) is satisfied. Moreover (2) is automatic.
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Now let U ⊂ M ×M be the open subset

U =
{

(p, q) ∈ M ×M
∣∣ λi(p) 6= λi(q)

}
.

We define Ψ: U → Rn by setting

Ψ(p, q) = −
F i−1(p)− F i−1(q)

λi(p)− λi(q)
.

We deduce that F i(p) = F i(q) if and only if one of the following holds:

(a) (p, q) ∈ U and v = Ψ(p, q), or
(b) (p, q) 6∈ U and F i−1(p) = F i−1(q).

Since dimU = 2m, the image Ψ(U) form a zero-measure subset and we may
require that v be disjoint from it. This excludes (a) and therefore F i is injective
where F i−1 is injective: we get (3).

To show (4), suppose that F i(p) = F i(q) for some p, q ∈ M̄i . We must
have λi(p) = λi(q) and F i−1(p) = F i−1(q). If λi(p) = 0, then p, q ∈ M̄i−1

and we get p = q by the induction hypothesis. If λi(p) > 0, then p, q ∈ Ui
and we get p = q by the induction hypothesis again. �

3.11.5. Embeddings. We now want to make one step further, and pro-
mote injective immersions to embeddings. The following result is the main
achievement of this section.

Theorem 3.11.8 (Whitney embedding Theorem). For every smooth m-
manifold M there is a proper embedding M ↪→ R2m+1.

Proof. Pick a smooth exhaustion g : M → R>0 from Proposition 3.3.10
and consider the proper map f : M → R2m+1, f (p) =

(
g(p), 0, . . . , 0

)
. By

applying Theorems 3.11.4 and 3.11.7 with any fixed ε > 0 we can perturb f
to an injective immersion, that is easily seen to be still proper. Being proper,
it is an embedding by Exercise 3.8.5. �

Concerning properness, we note the following.

Exercise 3.11.9. An embedding i : M ↪→ Rn is proper⇐⇒ i(M) is a closed
subset of Rn.

Corollary 3.11.10. Every m-manifold M is diffeomorphic to a closed sub-
manifold of R2m+1.

For instance, every surface embeds properly in R5.

3.12. Exercises

Exercise 3.12.1. Construct two smooth atlases in R that are not compatible.
Show that the two resulting smooth manifolds are diffeomorphic.
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Remark 3.12.2. Every topological manifold of dimension n ≤ 3 has in fact a
unique (up to diffeomorphisms) smooth structure. Things become more complicated
in dimension n ≥ 4 where a given topological manifold can have no smooth structure
at all, or can have many pairwise non-diffeomorphic smooth structures.

Exercise 3.12.3. Let M,N be two topological manifolds and f : M → N a local
homeomorphism. Given a smooth structure on M, show that there is precisely one
smooth structure on N such that f becomes a local diffeomorphism.

G

Exercise 3.12.4. Consider the group G of affine isometries of R3 generated by:

f (x, y , z) = (x + 1, y , z), g(x, y , z) = (x, y + 1, z),

h(x, y , z) = (−x,−y , z + 1).

Show that G acts freely and properly discontinuously and that the 3-manifold R3/G

is compact and orientable, but not homeomorphic to the 3-torus S1×S1×S1. Show
that this 3-manifold is doubly covered by the 3-torus.

Exercise 3.12.5. Let G be the group of affine transformations of R2 generated by

f (x, y) = (2x, 1
2y).

Show that G acts freely but not properly discontinuously on the manifoldM = R2\{0}.
Show that the resulting map M → M/G is a covering map, but the quotient M/G is
not Hausdorff.

Exercise 3.12.6. Let M and N be manifolds. Show that M × N is orientable if
and only if both M and N are.

Exercise 3.12.7. Let N be a manifold, M ⊂ N a smooth submanifold, and S ⊂ M
a smooth submanifold. Show that S ⊂ N is a smooth submanifold.

Exercise 3.12.8. Let f : M → N be a smooth map between smooth manifolds.
Show that the following map is an embedding:

i : M ↪→ M × N, p 7−→
(
p, f (p)

)
Exercise 3.12.9. Every immersion f : M → N between manifolds of the same

dimension is an open map. If M is compact and N is connected, it is a smooth
covering of finite degree.

Exercise 3.12.10. Every injective immersion f : M → N between manifolds of
the same dimension is an embedding. If M is compact and N is connected, it is a
diffeomorphism.

Exercise 3.12.11. Prove that a submersion is an open map. Deduce that if M is
compact there is no submersion M → Rn.

Exercise 3.12.12. Prove that the following map f : RP2 → R4 is an embedding:

f ([x, y , z ]) =
(x2 − y2, xy , xz, yz)

x2 + y2 + z2
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Exercise 3.12.13. Construct for all n an embedding

S1 × · · · × S1︸ ︷︷ ︸
n

↪→ Rn+1.

Exercise 3.12.14. Prove that the Plücker embedding defined in Section 2.6.2 is
indeed an embedding.





CHAPTER 4

Bundles

We introduce here a notion that is ubiquitous in modern geometry, that
of a bundle. We start with the more general concept of fibre bundle, and then
we turn to vector bundles.

4.1. Fibre bundles

In the previous chapter we have introduced the immersions M → N, and
we have proved that they behave nicely near each point p ∈ M of the domain.
After that, we have discussed the enhanced notion of embedding that is also
nice at every point q ∈ N of the codomain.

Here we do a similar thing with submersions. These are maps that behave
nicely at every point p ∈ M of the domain, and we would like to enhance the
definition of submersion by requiring it to be nice also at every point q ∈ N of
the codomain. This leads to the notion of fibre bundle.

4.1.1. Definition. We work as usual in the smooth manifolds context.

Definition 4.1.1. Let F be a smooth manifold. A smooth fibre bundle with
fibre F is a smooth map

π : E −→ B

between two smooth manifolds E,B called the total space and the base space,
that satisfies the following local triviality condition. Every p ∈ B has an open
trivialising neighbourhood U ⊂ B whose counterimage π−1(U) is diffeomorphic
to a product U × F , via a map ϕ : π−1(U) → U × F such that the following
diagram commute:

π−1(U)
ϕ //

π

��

U × F

π1
yy

U

where π1 : U × F → U is the projection onto the first factor.

The definition might look slightly technical, but on the contrary is indeed
very natural: in a fibre bundle E → B, every fibre is diffeomorphic to F , and
locally the fibration looks like a product U×F projecting onto the first factor.

Example 4.1.2. The trivial bundle is the product E = B × F , with the
projection π : E → B onto the first factor.

99
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Figure 4.1. The Möbius strip is the total space of a fibre bundle with
base a circle and fibre R. Although it is locally trivial (as every fibre bundle),
it is globally non-trivial: the fibre R makes a “twist” when transported all
through the base circle.

immersion submersion local diffeomorphism smooth homotopy

embedding fibre bundle smooth covering isotopy

Table 4.1. We summarise here some of the most important definitions
in differential topology. Every notion in the second row is an improvement
of the one above.

The prototype of a non-trivial fibre bundle is the Möbius strip shown in
Figure 4.1, which is the total space of a fibre bundle with F = R and B = S1.

If the fibre F is diffeomorphic to the line R, the circle S1, the sphere Sn,
the torus T , etc. we say correspondingly that E is a line, circle, sphere, or
torus bundle over B. For instance, the Möbius strip is a line bundle over S1.

Two fibre bundles π : E → B and π′ : E′ → B are isomorphic if there is a
diffeomorphism ψ : E → E′ such that π = π′ ◦ ψ. We say that a fibre bundle
is trivial if it is isomorphic to the trivial bundle.

Remark 4.1.3. Every fibre bundle is a submersion, but not every submer-
sion is a fibre bundle. Table 4.1 summarises some important definitions that
we have introduced up to now. Recall that immersions and submersions are
somehow dual notions, and every concept in the second row is an improvement
of the one lying above.

Example 4.1.4. Both the torus T and the Klein bottle K are total spaces of
fibre bundles over S1 with fibre S1. A fibration on the torus is (e iθ, e iϕ) 7→ e iθ

and is clearly trivial. A fibration on the Klein bottle is suggested in Figure 4.2:
this fibration is certainly not trivial, because K is not diffeomorphic to S1×S1.
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Figure 4.2. The torus and the Klein bottles are both total spaces of
circle fibrations over the circle. The first is trivial, the second is not.

Note that in general two fibre bundles over the same B that are isomorphic
must have diffeomorphic total spaces, but the converse is not necessarily true.

Example 4.1.5. A smooth covering between manifolds is precisely the same
thing as a fibre bundle with zero-dimensional fibre F .

4.1.2. Sections. A section of a fibre bundle E → B is a smooth map
s : B → E such that π ◦ s = idB.

Example 4.1.6. On a trivial fibre bundle B×F → B every map f : B → F

determines a section s(p) =
(
p, f (p)

)
, and every section is obtained in this

way, so sections and maps B → F are roughly the same thing.

On non-trivial bundles sections are more subtle: there are fibre bundles
that have no sections at all, for instance non-trivial smooth coverings. We will
often confuse a section s with its image s(B); we can do this unambiguously
since s(B) determines s.

Exercise 4.1.7. Show that any two sections on the Möbius strip bundle
intersect. This also implies that the bundle is non-trivial.

4.2. Vector bundles

A vector bundle is a particular fibre bundle where every fibre has a structure
of finite-dimensional real vector space. This is an extremely useful concept in
differential topology and geometry.

4.2.1. Definition. A smooth vector bundle of rank k is a smooth fibre
bundle E → M with fibre F = Rk , where the fibre Ep = π−1(p) of every
point p ∈ M has an additional structure of a real vector space of dimension
k , compatible with the smooth structure in the following way: every p ∈ M
must have a trivialising open neighbourhood U such that the following diagram
commutes

π−1(U)
ϕ //

π

��

U × Rk

π1

yy
U
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via a diffeomorphism ϕ that sends every fibre Ep to {p} × Rk isomorphically
as vector spaces. Note that the dimensions k and n of the fibre and of M may
be arbitrary.

The simplest example of a vector bundle over M is the trivial one M×Rk .
In general, the natural number k > 0 is the rank of the vector bundle. A
vector bundle with rank k = 1 is called a line bundle. Vector bundles arise
quite naturally in various contexts, as we will soon see.

Exercise 4.2.1. Recall that RPn may be interpreted as the space of all the
vector lines l ⊂ Rn+1. Consider the space

E =
{

(l , v) ∈ RPn × Rn+1
∣∣ v ∈ l}.

This is a smooth (n+1)-submanifold of RPn×Rn+1 and the map π : E → RPn
that sends (l , v) to l is a smooth line bundle with fibre F = R, called the
tautological line bundle. Here π−1(l) is naturally identified to l itself and is
hence a vector line.

4.2.2. Morphisms. A morphism between two vector bundles E → M and
E′ → M ′ is a commutative diagram

E
F //

π
��

E′

π′

��
M

f
// M ′

where F and f are smooth maps, and F is a linear map on each fibre (that is
F |Ep : Ep → E′f (p) is linear for each p ∈ M).

Note that the dimensions of the manifolds M,M ′ and of their fibres are
arbitrary, so this is a quite general notion. As usual, we say that a morphism
is an isomorphism if it is invertible on both sides: this is in fact equivalent to
requiring that both maps f and F be diffeomorphisms.

In some cases we might prefer to consider vector bundles on a fixed base
manifold M, and in that setting it is natural to consider only morphisms where
f is the identity map on M.

4.2.3. The zero-section. As opposite to more general fibre bundles, every
vector bundle E → M has a canonical section s : M → E, called the zero-
section, defined as s(p) = 0 where 0 is the zero in the vector space Ep, for all
p ∈ M. It is convenient to identify the image s(M) of the zero-section with
M itself. We will always consider the base space M embedded canonically in
E through its zero-section.

4.2.4. Manipulations of vector bundles. Roughly speaking, every oper-
ation on vector spaces translates into one on vector bundles over a fixed base
manifold M. For instance, given two vector bundles E → M and E′ → M we
may define:
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• their sum E ⊕ E′ → M,
• the dual E∗ → M,
• their tensor product E ⊗ E′ → M.

To do so we simply need to perform these operations fibrewise. If Ep, E′p are
the fibres over p in E,E′, then the fibre of E ⊕E′ is by definition Ep ⊕E′p, so

E ⊕ E′ =
⊔
p∈M

Ep ⊕ E′p.

Of course, to complete the construction we need to build a natural smooth
structure on E ⊕ E′, and this is done as follows: if U × Rk and U × Rh are
local trivialisations of E and E′, then U × (Rk ⊕Rh) is a local trivialisation for
E ⊕ E′ and we equip it with the obvious product smooth structure.

The dual and tensor product bundles are defined analogously. More vector
bundles may be constructed by combining these operations.

Example 4.2.2. The vector bundle Hom(E,E′) → M is by definition the
vector bundle E∗⊗E′ → M. The fiber over p ∈ M is Hom(Ep, E

′
p) = E∗p⊗E′p,

see Corollary 2.1.14.

4.2.5. Subbundle and quotient bundle. The notion of vector subspace
translates into that of subbundle. Given a vector bundle π : E → M, a subset
E′ ⊂ E is a h-subbundle if it fulfills the following requirement: every p ∈ M
has a trivialising neighbourhood U ⊂ M with a diffeomorphism

ϕ : π−1(U) −→ U × Rk = U × Rh × Rk−h

with ϕ
(
E′ ∩ π−1(U)

)
= U × Rh × {0}. Shortly: a subbundle E′ ⊂ E looks

locally like U × Rh × {0} ⊂ U × Rh × Rk−h above U ⊂ M.
If follows readily from the definition that E′ ⊂ E is a submanifold and the

restriction π|E′ : E′ → M is a rank-h bundle, where the fiber E′p at every point
p ∈ M is a h-subspace of Ep.

Example 4.2.3. The line bundle of Exercise 4.2.1 is a subbundle of the
trivial bundle RPn × Rn+1 over RPn.

If E′ is a subbundle of E, we can define the quotient bundle E/E′ → M,
whose fibre over p ∈ M is the quotient vector space Ep/E′p. The smooth struc-
ture is obtained from the diffeomorphisms ϕ considered above by identifying
Rk/Rh with Rk−h in the obvious way. The resulting maps

E′ //

π

��

E //

π

��

E/E′

π

��
M

id
// M

id
// M

are bundle morphisms.
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4.2.6. Restriction and pull-back. So far we have only described some
manipulations of vector bundles on a fixed base manifold M. Some interesting
operations arise also by varying the base manifold.

For instance we can change the base while keeping the fibres fixed: if
N ⊂ M is a submanifold, then every vector bundle E → M restricts to a
vector bundle E|N → N with the same fibres Ep in the obvious way. We call
this operation the restriction to a submanifold. We get a bundle morphism

E|N //

π

��

E

π

��
N
� � // M

More generally, let f : N → M be any smooth map and E → M be a vector
bundle. The pull-back of f is a new vector bundle f ∗E → N constructed as
follows: the total space is

f ∗E =
{

(p, v) ∈ N × E
∣∣ f (p) = π(v)

}
⊂ N × E.

The map π : f ∗E → N is π(p, v) = p. The fibre (f ∗E)p over p is naturally
identified with Ef (p) and is hence a vector space.

Proposition 4.2.4. The total space f ∗E is a smooth submanifold of N×E
and f ∗E → N is a vector bundle.

Proof. By restricting to a trivialising neighbourhood for E it suffices to
consider the case where N = Rn,M = Rm, and E = Rm × Rk . We get

f ∗E =
{

(x, y , z) ∈ Rn × Rm × Rk
∣∣ f (x) = y

}
.

Everything now follows from Example 3.7.3. �

We draw the commutative diagram

f ∗E //

��

E

π
��

N
f
// M

The dotted arrows indicate the maps that are induced by pulling-back π along
f . The restriction is a particular kind of pull-back where N ⊂ M is a subman-
ifold and f is the inclusion map.

Exercise 4.2.5. If f is constant, then f ∗E is trivial.

4.2.7. Homotopy invariance of pull-backs. The pull-back of a bundle
along a map is in fact invariant up to homotopy.

Theorem 4.2.6. The pull-backs f ∗E, g∗E of a vector bundle E → M along
two homotopic maps f , g : N → M are always isomorphic.
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The proof of this theorem will be quite straightforward after that we in-
troduce connections, so we defer it to the next chapters. TBD

Corollary 4.2.7. Every vector bundle on a contractible manifold is trivial.

Proof. Let E → M be a vector bundle on a contractible M. The identity
id : M → M is homotopic to a constant map c : M → M, so E = id∗E is
isomorphic to c∗E, which is trivial by Exercise 4.2.5. �

In particular every vector bundle over Rn is trivial.

4.3. Tangent bundle

We now introduce the most important vector bundle on a smooth n-
manifold M, the tangent bundle. We will also define some of its relatives,
like the cotangent, the normal, and the more general tensor bundle.

4.3.1. Definition. Let M be a smooth manifold. As a set, the tangent
bundle of M is the disjoint union

TM =
⊔
p∈M

TpM

of all its tangent spaces. There is an obvious projection π : TM → M that
sends TpM to p.

The set TM has a natural structure of smooth manifold induced from
that of M as follows. Every chart ϕ : U → V of M induces an isomorphism
dϕp : TpM → Rn for every p ∈ U. Therefore it induces an overall identification
ϕ∗ : π−1(U)→ V × Rn via

ϕ∗(v) =
(
ϕ(p), dϕp(v)

)
where p = π(v), for every v ∈ π−1(U). We define an atlas on TM by taking all
the charts ϕ∗ of this type. The same charts ϕ∗ furnish the local trivializations
needed to prove that TM −→ M is indeed a vector bundle.

If dimM = n, then dimTM = 2n. We think of M embedded in TM as
the zero-section, as usual with vector bundles.

Example 4.3.1. The tangent bundle of an open subset U ⊂ Rn is canoni-
cally identified with the trivial bundle

TU = U × Rn

because every tangent space in U is canonically identified with Rn.

More generally, we can write the tangent bundle TM of a submanifold
M ⊂ Rn of any dimension m < n quite explicitly:
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Figure 4.3. The tangent bundle of S1 is trivial.

Example 4.3.2. The tangent bundle of a submanifold M ⊂ Rn is naturally
a submanifold TM ⊂ Rn × Rn = R2n, defined by

TM =
{

(p, v)
∣∣ p ∈ M, v ∈ TpM}.

For instance, we have

TSn =
{

(x, v)
∣∣ ‖x‖ = 1, v ∈ x⊥

}
.

Example 4.3.3. As suggested by Figure 4.3, the tangent bundle of S1 is
trivial. A bundle isomorphism f : S1 × R→ TS1 is the following:

f (e iθ, t) =
(
e iθ, te i(θ+π/2)

)
.

Is the tangent bundle of S2 also trivial? And that of S3?

Exercise 4.3.4. The tangent bundle TM is always an orientable manifold
(even when M is not!).

Every smooth map f : M → N induces a morphism of tangent bundles

TM
f∗ //

π
��

TN

π
��

M
f
// N

by setting f∗(v) = dfp(v) where p = π(v) for all v ∈ TM. The restriction of
f∗ to each fibre TpM is the differential dfp : TpM → Tf (p)N.

If f is a diffeomorphism, then f∗ is an isomorphism.

4.3.2. Cotangent bundle. The cotangent bundle T ∗M of a smooth man-
ifold M is by definition the vector bundle dual to the tangent bundle TM. The
fibre T ∗pM at p ∈ M is the vector space dual to the tangent space TpM and
is called the cotangent space at p.
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The cotangent bundle has some curious features that are lacking in the
tangent bundle. One is the following: every smooth function f : M → R
induces a differential dfp : TpM → R at every p ∈ M, which is an element

dfp ∈ T ∗pM

of the cotangent space. We can therefore interpret the family of differentials
{dfp}p∈M as a section of the cotangent bundle, and call it simply df .

We have discovered that every smooth function f : M → R induces a
section df of the cotangent bundle called its differential.

Remark 4.3.5. When M = Rn, both the tangent and the cotangent space
at every p ∈ M are identified to Rn and the differential df is simply the gradient
∇f , that assigns a vector (∇f )p ∈ Rn to every point p ∈ Rn. Note however
that the tangent and cotangent spaces at a point p ∈ M are not canonically
identified on a general smooth manifold M. A map f : M → R induces a
section of the cotangent bundle, not of the tangent bundle!

4.3.3. Normal bundle. Let M be a smooth manifold and N ⊂ M a sub-
manifold. We can find two natural vector bundles based on N: the tangent
bundle TN and the restriction TM|N of the tangent bundle of M to N. The
first is naturally a subbundle of the second, since at every p ∈ N we have a
natural inclusion TpN ⊂ TpM.

The normal bundle at N is the quotient

νN = TM|N/TN.

An interesting feature of the normal bundle is that the total space νN is a
manifold of the same dimension as the ambient spaceM. Indeed if dimM = m

and dimN = n we get

dim νN = (m − n) + n = m.

This preludes to an important topological application of νN called tubular
neirghbourhood that will be revealed in the next chapters.

Example 4.3.6. On a submanifoldM ⊂ Rn we may use the Euclidean scalar
product to identify νpM with TpM⊥ for every p ∈ M. We get an orthogonal
decomposition

TpM ⊕ νpM = Rn

for every p. Therefore we can interpret νM as a submanifold

νM =
{

(p, v)
∣∣ p ∈ M, v ∈ νpM} ⊂ Rn × Rn.

For instance we have

νSn =
{

(x, v)
∣∣ ‖x‖ = 1, v ∈ Span(x)

}
.
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It is easy to deduce that the normal bundle of Sn inside Rn+1 is trivial, because
we may identify Sn × R and νSn by sending (x, λ) to (x, λx). Therefore we
get a connected sum of bundles

TSn ⊕ νSn = Sn × Rn+1

where two of them νSn and Sn × Rn+1 are trivial, but the third one TSn is
often not trivial. It is possible to add a trivial bundle to a non-trivial one, and
get a trivial bundle as a result.

4.3.4. Tensor bundle. For every h, k ≥ 0 we may construct the tensor
bundle T kh (M) via tensor products of the tangent and cotangent bundles:

T kh (M) = T (M)⊗ · · · ⊗ T (M)︸ ︷︷ ︸
h

⊗T ∗(M)⊗ · · · ⊗ T ∗(M)︸ ︷︷ ︸
k

.

The fiber over p is the tensor space T kh (TpM). We define analogously the
symmetric and antisymmetric tensor bundles

Sk(M), Λk(M)

as the subbundles of T k(M) whose fibres over p are Sk(TpM) and Λk(TpM).
In particular T1(M) is the tangent bundle and T 1(M) = S1(M) = Λ1(M) is the
cotangent bundle. We also define the trivial tensor bundle T 0

0 (M) = M × R,
coherently with the fact that a tensor of type (0, 0) is just a scalar in R.

4.4. Sections

The most important feature of vector bundles is that they contain plenty
of sections. Sections are not as exoteric as they might look like: in fact, many
mathematical entities that will be introduced in this book – like vector fields,
differential forms, and metric tensors – are sections in some appropriate vector
bundles, so it makes perfectly sense to study them in more detail. The effort
we are making now in treating these abstract objects in full generality will be
soon rewarded.

4.4.1. Vector space. Let π : E → M be a vector bundle. The space of
all sections s : M → E is usually denoted by

Γ(E).

This space is naturally a vector space: the sum s + s ′ of two sections s and
s ′ is defined by setting (s + s ′)(p) = s(p) + s ′(p) for every p ∈ M, using the
vector space structure of Ep, and the product with scalars is analogous. The
origin of the vector space Γ(E) is of course the zero-section.

Moreover, for every smooth function f : M → R and every section s we
can define a new section f s by setting (f s)(p) = f (p)s(p). Therefore Γ(E)

is also a module over the ring C∞(M).
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If E and E′ are two bundles over M, with sections s and s ′, then one can
define the sections s ⊕ s ′ and s ⊗ s ′ of E ⊕E′ and E ⊗E′ in the obvious way,
by setting (s ⊕ s ′)(p) =

(
s(p), s ′(p)

)
and (s ⊗ s ′)(p) = s(p)⊗ s ′(p).

4.4.2. Extensions of sections. We now show that vector bundles have
plenty of sections, and we do this by proving that every “locally defined” section
may be extended to a global one.

Let π : E → M be a vector bundle and s be a section. On a trivialising
neighbourhood U, we get a diffeomorphism ϕ : π−1(U)→ U × Rk and hence

ϕ
(
s(p)

)
=
(
p, s ′(p)

)
for some smooth map s ′ : U → Rk . In other words, every smooth section s
can be read as a function s ′ : U → Rk on every trivalising neighbourhood U.

The fact that sections look locally like functions has some interesting con-
sequences: for instance, we now show that sections defined only partially may
be extended globally.

Let S ⊂ M be any subset. We say that a smooth map s : S → E is a
partial section if π ◦ s = idS. Recall from Definition 3.3.5 the correct meaning
of “smooth” here.

Proposition 4.4.1. If S ⊂ M is a closed subset, every partial section s : S →
E may be extended to a global one M → E.

Proof. We adapt the proof Proposition 3.3.6 to this context. Locally,
sections are like maps U → Rk and can hence be extended. Therefore for every
p ∈ S there are an open trivialising neighbourhood Up and a local extension
gp : Up → E of s. We then proceed with a partition of unity following the
same proof of Proposition 3.3.6. �

Remark 4.4.2. By construction, we may suppose (if needed) that s van-
ishes outside of any given neighbourhood of S.

Exercise 4.4.3. Let E → M be a vector bundle of rank k ≥ 1. If M is not
a finite collection of points, the vector space Γ(E) has infinite dimension.

4.4.3. Zeroes. Let π : E → M be a vector bundle over some smooth
manifold M. We say that a section s : M → E vanishes at a point p ∈ M if
s(p) = 0. In that case p is called a zero of s. The section is nowhere vanishing
if s(p) 6= 0 for all p ∈ M.

Here is one important thing to keep in mind about sections of vector
bundles: although there are plenty of them, it may be hard – and sometimes
impossible – to construct one that is nowhere vanishing. As an example:

Exercise 4.4.4. The Möbius strip line bundle E → S1 has no nowhere-
vanishing section.
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4.4.4. Frames. Let π : E → M be a rank-k vector bundle. A frame for
π consists of k sections s1, . . . , sk such that the vectors s1(p), . . . , sk(p) are
independent, and hence form a basis for Ep, for every p ∈ M.

Every si is in particular a nowhere-vanishing section: finding a frame is even
harder than constructing a nowhere-vanishing section. In fact, the following
shows that frames exist only on trivial bundles.

Proposition 4.4.5. A bundle has a frame ⇐⇒ the bundle is trivial.

Proof. On a trivial bundle E = M × Rk , the sections si(p) = (p, ei) with
i = 1, . . . , k form a frame. Conversely, a frame s1, . . . , sk on π : E → M

provides a bundle isomorphism F : M × Rk → E by writing

F
(
p, (λ1, . . . , λk)

)
= λ1s1(p) + . . .+ λksk(p).

The proof is complete. �

In light of this result, a frame is also called a trivialisation of the bundle E
because it specifies a precise isomorphism of E with the trivial bundle M×Rk .
A nontrivial bundle E → M has no global frame, but it has many local frames:
we define a local frame to be a frame on a trivialising open set U ⊂ M. Every
trivialising open set has a local frame, induced by the trivialising chart.

4.4.5. Tensor fields. We now introduce the most important types of sec-
tions in differential topology and geometry, called tensor fields. These are
ubiquitous in this book.

Let M be a smooth manifold. A tensor field of type (h, k) is a section s
of the tensor bundle T kh (M) of M, that is

s ∈ Γ
(
T kh (M)

)
.

In other words, we have a tensor s(p) ∈ T kh (TpM) that varies smoothly with
the point p ∈ M.

Since T 0
0 (M) = M×R is the trivial line bundle, a tensor field of type (0, 0)

is just a smooth function s : M → R.
A tensor field of type (1, 0) assigns a tangent vector at every point and

is called a vector field : vector fields are extremely important in differential
topology and we will study them in the next chapter with some detail.

A tensor field of type (0, 1) may be called a covector field, but the term
1-form is more often employed. More generally, a k-form is a section of the
antisymmetric tensor bundle Λk(M). These are also important objects and we
will dedicate the Chapter 7 to them.

A symmetric tensor field of type (0, 2) assigns a bilinear symmetric form to
every tangent space: this notion will open the doors to differential geometry.

Most of the operations that we defined on tensors apply naturally to tensor
fields. For instance, the tensor product s ⊗ s ′ of two tensor fields s and s ′

of type (h, k) and (h′, k ′) is a tensor field of type (h + h′, k + k ′), and the
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contraction of a tensor field of type (h, k) is a tensor field of type (h−1, k−1).
It suffices to apply these constructions pointwise at every p ∈ M.

4.4.6. Coordinates. Let s be a tensor field of type (h, k) on M and let
ϕ : U → V be a chart. We now want to express s in coordinates with respect
to the chart ϕ.

As we already noticed, for every p ∈ U the differential dϕp identifies the
tangent space TpM with Rn, and we deduce from that an identification of the
tensor space T kh (TpM) with T kh (Rn). The tensor field s, restricted to U, may
therefore be represented as a smooth map

s ′ : V −→ T kh (Rn).

How can we write such a map? The vector space T kh (Rn) has a canonical
basis that consists of the elements

ei1 ⊗ · · · ⊗ eih ⊗ e
j1 ⊗ · · · ⊗ e jk

where 1 ≤ i1, . . . , ih, j1, . . . , jk ≤ n and e1, . . . , en is the canonical basis of Rn,
see Section 2.2.2. Therefore s ′ may be written uniquely as

s ′(x) = s i1,...,ihj1,...,jk
(x)ei1 ⊗ · · · ⊗ eih ⊗ e

j1 ⊗ · · · ⊗ e jk

where we employ the Einstein convention and the coefficients vary smoothly
with respect to x ∈ V . Shortly, the coordinates of s with respect to ϕ are the
coefficients

s i1,...,ihj1,...,jk

that are real numbers that depend smoothly on x .

4.4.7. Changes of coordinates. If we pick another chart around a point
p ∈ M, the same tensor field s is represented via some different coordinates

ŝ i1,...,ihj1,...,jk

and the transformation law relating the two different coordinates is prescribed
by Proposition 2.2.12. It is convenient here to denote the coordinates of the
two charts by x1, . . . , xn and x̂1, . . . , x̂n respectively, so that the differential of
the transition map may be written simply as

∂x̂ i

∂x j
.

The transformation law says that

ŝ i1...ihj1...jk
=
∂x̂ i1

∂x l1
· · ·

∂x̂ ih

∂x lh
∂xm1

∂x̂ j1
· · ·

∂xmk

∂x̂ jk
s l1...lhm1...mk

.

For instance, for a vector field we have

ŝ i =
∂x̂ i

∂x j
s j



112 4. BUNDLES

while for a covector field we get

ŝj =
∂x i

∂x̂ j
si .

Note that everything is designed so that every two repeated indices stay one
on the top and the other on the bottom, in every formula. This is a conven-
tion that helps us to prevent mistakes; another trick consists of replacing the
notations ei and e j with the symbols ∂

∂x i
and dx j . We will explain this in the

subsequent chapters.

4.5. Riemannian metric

It is sometimes useful to equip a vector bundle with some additional struc-
ture, called Riemannian metric. Not only this structure is interesting in its own
right, but it is also useful as an auxiliary tool.

4.5.1. Definition. Let π : E → M be a vector bundle. Consider the bun-
dle E∗⊗E∗ → M. Remember that the fibre above p ∈ M is the space E∗p⊗E∗p
of all tensors on Ep of type (0, 2). Remember also that scalar products are
particular kinds of symmetric tensors of type (0, 2).

Definition 4.5.1. A Riemannian metric in π is a section g of E∗⊗E∗ such
that g(p) is a positive-definite scalar product on Ep for every p ∈ M.

In other words, a Riemannian metric is a positive-definite scalar product
g(p) on each fibre Ep, that varies smoothly with p. On a trivialising chart
U the bundle E looks like U × Rk and g can be represented concretely as a
positive-definite symmetric matrix gi j smoothly varying with p ∈ U.

Proposition 4.5.2. Every vector bundle has a Riemannian metric.

Proof. We fix an open covering {Ui} of trivialising sets for the bundle.
Above every Ui the bundle is like Ui × Rk , so we can identify Ep = Rk for
every p ∈ Ui and assign it the Euclidean scalar product, that we name g(p)i .

To patch the g(p)i altogether, we pick a partition of unity {ρi} subordinate
to the covering. For every p ∈ M we define

g(p) =
∑
i

ρi(p)g(p)i .

This is a positive-definite scalar product, because a linear combination of pos-
itive definite scalar products with positive coefficients is always a positive-
definite scalar product. �

Example 4.5.3. The Euclidean metric on the trivial bundle M × Rk is the
assignment of the Euclidean scalar product on every fibre Rk .

If E → M has a Riemannian metric, then every subbundle and every
restriction to a submanifold also inherits a Riemannian metric.
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4.5.2. Orthonormal frames. Let E → M be a vector bundle equipped
with a Riemannian metric. An orthonormal frame is a frame s1, . . . , sk where
s1(p), . . . , sk(p) form an orthonormal basis for every p ∈ M.

Proposition 4.5.4. Every frame transforms canonically into an orthonormal
frame via the Gram – Schmidt algorithm.

Proof. This sentence already says everything. The Gram – Schmidt al-
gorithm transforms s1(p), . . . , sk(p) into k orthonormal vectors in a way that
depends smoothly on p, as one can see on a chart. �

Corollary 4.5.5. A bundle has an orthonormal frame ⇐⇒ it is trivial.

Proof. We already know that a bundle has a frame ⇐⇒ it is trivial. �

4.5.3. Isotopies. We will soon need an appropriate notion of isotopy be-
tween bundle isomorphisms.

Let E → M and E′ → M be two vector bundles, and f , g : E → E′ be two
isomorphisms. An isotopy between f and g is a smooth map

F : E × R −→ E′

such that each Ft = F (·, t) is an isomorphism, and F0 = f , F1 = g.

4.5.4. Isometries. An isometry between vector bundles E,E′ with Rie-
mannian metrics g, g′ is an isomorphism F : E → E′ that preserves the metric,
that is with g′

(
F (v), F (w)

)
= g(v , w) for all v , w ∈ Ep and all p ∈ M.

The following proposition says that, maybe a bit surprisingly, isometry
between vector bundles is not a stronger relation than isomorphism. This fact
extends the well-known linear algebra theorem that says that two real vector
spaces equipped with positive definite scalar products are isometric if and only
if they are isomorphic.

Proposition 4.5.6. Two isomorphic vector bundles equipped with arbitrary
Riemannian metrics are always isometric, via an isometry that is isotopic to
the initial isomorphism.

Proof. If the two bundles are trivial, this follows from Proposition 4.5.4,
since we would find orthonormal frames on both, and an isometry would be
constructed by sending the first to the second.

In general, we can use this argument only locally, and more work is needed
to pass from local to global: the Gram – Schmidt process is not “invariant
enough” for this purpose and we will need the “more invariant” OS decomposi-
ton of Proposition 3.9.8.

We may reduce to the case where π : E → M is a vector bundle and g, g′

are two arbitrary Riemannian metrics on it; we must construct an isometry
E → E with respect to the metrics g and g′, isotopic to the identity.
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Let U be a trivialising neighbourhood. Pick two orthonormal frames si and
s ′i for g and g′ on U. We may represent every isomorphism E|U → E|U with
respect to these frames as a matrix A(p) ∈ GL(n,R) that depends smoothly
on p ∈ U. The isomorphism is an isometry ⇐⇒ A(p) ∈ O(n) for every p ∈ U.

Let A = A(p) represent the identity isomorphism in these basis. Use
Proposition 3.9.8 to decompose A as A = OS with O ∈ O(n) and S ∈ S+(n).
The matrix O(p) defines an isometry for every p ∈ U.

As a consequence of Proposition 3.9.9, we see easily that the isometry
defined by O(p) actually does not depend on the orthogonal frames si and
s ′i chosen above! Therefore by covering M with charts we get a well-defined
global isometry E → E with respect to the metrics g and g′.

An isotopy between O and A is B(p) = O(p)
(
tI+ (1−t)S(p)

)
, using that

S+(n) is convex. This is well defined again by Proposition 3.9.9. �

4.5.5. Unitary sphere bundle. Let π : E → M be a vector bundle. Let
us equip it with a Riemannian metric g. Every fibre Ep has a positive-definite
scalar product g(p) and hence every vector v ∈ Ep has a norm

‖v‖ =
√
g(v , v).

The associated unitary sphere bundle is the submanifold

S(E) =
{
v ∈ E

∣∣ ‖v‖ = 1
}
.

The projection π restricts to a projection π : S(E)→ M whose fibre S(E)p is
the unitary sphere in Ep.

Proposition 4.5.7. The projection π : S(E)→ M is indeed a sphere bundle.
It does not depend, up to isotopy, on the chosen metric g.

By “isotopy” we mean that the sphere bundles constructed from two met-
rics g and g′ are related by a self-isomorphism of E → M isotopic to the
identity.

Proof. We prove the local triviality. On a trivialising open set U the bundle
E is isometric to the Euclidean U×Rk , so S(E)|U is like U×Sk−1. If we pick
another metric g′, we get an E′ isometric to E by Proposition 4.5.6, via an
isometry that is isotopic to the identity. Hence S(E′) is isotopic to S(E). �

4.5.6. Orthogonal bundle. Let E → M be a vector bundle equipped with
a Riemannian metric. For every subbundle E′ → M we have an orthogonal
bundle (E′)⊥ → M, whose fiber (E′)⊥p is the orthogonal subspace to E′p ⊂ Ep
with respect to the metric.

The orthogonal bundle is canonically isomorphic to the normal bundle E/E′

and may be seen as a realisation of it as a subbundle of E.

Example 4.5.8. If the tangent bundle TM of a manifold M is equipped
with a Riemannian metric, the normal bundle νN of any submanifold N ⊂ M
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may be seen (using the Riemannian metric) as a subbundle of TM|N , so that
we get an orthogonal sum

TM|N = TN ⊕ νN.

4.5.7. Dual vector bundle. Here is another instance where a Riemannian
metric may be used as an auxiliary tool, to prove theorems.

Proposition 4.5.9. Every vector bundle E → M is isomorphic to its dual
E∗ → M.

Proof. Pick a Riemannian metric on M. The scalar product on Ep may
be used to identify Ep with its dual E∗p as described in Section 2.3.3. This
furnishes the bundle isomorphism E → E′. �

Example 4.5.10. A Riemannian metric on the tangent bundle TM deter-
mines an identification of the tangent and the cotangent bundles over M.
More generally, it furnishes some bundle isomorphisms

T kh (M) ∼= Th+k(M) ∼= T h+k(M).

4.5.8. Shrinking vector bundles. A Riemannian metric may be used to
shrink a vector bundle. We will need this technical operation at some point.

Lemma 4.5.11. Let E → M be a vector bundle. For every neighbourhood
W ⊂ E of the zero-section M there is an embedding g : E → W with

• g|M = idM ,
• g(Ep) ⊂ Ep for every p ∈ M.

Moreover there is an isotopy gt between g0 = idE and g1 = g through embed-
dings gt : E → E that also fulfill these two requirements.

Proof. Fix a Riemannian metric on E. Using a partition of unity, we can
prove (exercise) that there is a smooth positive function ε : M → R such that
W contains all the vectors v ∈ Ep with ‖v‖ < ε(p), for all p ∈ M. Define

g(v) = ε
(
π(v)

) v√
1 + ‖v‖2

.

This map fulfills the requirements. An isotopy is obtained by convex combina-
tion gt(v) = (1− t)v + tg(v). �

4.5.9. Trivialising sums. The tangent bundle TSn of a sphere is often
non-trivial, but it suffices to add the normal bundle of Sn in Rn+1 to get a
trivial bundle, that is:

TSn ⊕ νSn = Sn × Rn+1.

This is in fact an instance of a more general phenomenon:

Exercise 4.5.12. For any vector bundle E → M there is another vector
bundle E′ ⊕M such that E ⊕ E′ → M is trivial.

TBD
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4.6. Exercises

Exercise 4.6.1. Let S be an orientable surface. Show that the tangent bundle
TS is trivial ⇐⇒ there is a nowhere-vanishing vector field on S.

Show that this is false for the Klein bottle K: the tangent bundle TK is not trivial
but K has a nowhere-vanishing section.

Exercise 4.6.2. Prove that there are precisely two vector bundles with rank 1 over
S1 up to isomorphism.

Exercise 4.6.3. Construct a fibre bundle E → K with fibre F = S1 over the Klein
bottle K, such that E is an orientable 3-manifold.

Hint. Use Exercise 3.12.4. �

Exercise 4.6.4. Show that every non-orientable manifold M of dimension n is
contained in an orientable manifold of dimension n + 1.

Exercise 4.6.5. Let π : E → M be a bundle with connected fibre F . Fix any
base-point x0 ∈ E. Show that π∗ : π1(E, x0) → π1(M,π(x0)) is a surjective ho-
momorphism. If it is a vector bundle, show that it is an isomorphism (construct a
deformation retract of E onto the zero-section).

Exercise 4.6.6. The Grassmann bundle Grk(E) → M of a bundle E → M is the
fibre bundle whose fiber Grk(E)p over p consists of all k-planes in Ep. Prove that
Grk(E) has a natural smooth structure, and that there is a natural 1-1 correspondence
between sections of Grk(E) and k-plane subbundles of E.



CHAPTER 5

The basic toolkit

We now introduce some fundamental notions that apply to every context
in differential topology: we start with vector fields, their flows and Lie brackets;
then we turn to distributions, foliations, and the Fobenius Theorem; finally, we
introduce the two most important tools to understand embedded submanifolds,
namely tubular neighbourhoods and transversality.

5.1. Vector fields

5.1.1. Definition. Let M be a smooth manifold. A section X : M → TM

of the tangent bundle is called a vector field : it assigns a tangent vector
X(p) ∈ Tp(M) to every point p ∈ M that varies smoothly with p. Remember
that sections are smooth by definition, and hence vector fields also are.

Some vector fields on the torus are drawn in Figure 5.1. Recall that a zero
of X is a point p such that X(p) = 0. Note that the vector fields sketched in
the figure have no zeroes.

Example 5.1.1. When n = 2m − 1 is odd, the following is a nowhere-
vanishing vector field on Sn ⊂ R2m:

(x1, . . . , x2m) 7−→ (−x2, x1, . . . ,−x2m, x2m−1).

Exercise 5.1.2. Write a smooth vector field on Sn that vanishes only at
the poles (±1, 0, . . . , 0).

We denote by X(M) the set of all the vector fields on M. Recall from
Section 4.4 that X(M) = Γ(TM) is a vector space and also a C∞(M)-module.

Figure 5.1. Nowhere-vanishing vector fields on the torus.

117
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5.1.2. Diffeomorphisms. Many of the mathematical objects that we de-
fine are naturally transported along smooth maps f : M → N, either from M

to N or vice-versa from N to M, but this is not the case with vector fields:
there is no meaningful way to transport a vector field along a generic map f ,
neither forward from M to N nor backwards from N to M.

On the other hand, every intrinsic (that is, coordinates-independent) no-
tion can be transported in both directions if f : M → N is a diffeomorphism.
If f is a diffeomorphism, every vector field X in M induces a vector field Y on
N via differentials, that is by imposing:

Y
(
f (p)

)
= dfp

(
X(p)

)
for every p ∈ M.

This gives an isomorphism between X(M) and X(N) induced by f .

5.1.3. On charts. If X is a vector field on M and ϕ : U → V ⊂ Rn is a
chart, we can restrict X to a vector field on U and then transport it into a
vector field in V via the diffeomorphism ϕ. As we noticed in Section 4.4.6, the
transported vector field assumes the familiar form of a smooth map V → Rn
because TV = V × Rn, and we may write it as a vector(

X1(x), . . . , Xn(x)
)

in Rn that varies smoothly on x ∈ V . Here X i is the i-coordinate of X in the
chosen chart, a real number that depend smoothly on x ∈ V . We can use the
Einstein notation and write the transported vector field in V more concisely as

X iei

where e1, . . . , en is the canonical basis of Rn. It turns out that it is more
comfortable to use the symbol ∂

∂x i
instead of ei , and we write instead

X i
∂

∂x i
.

Why do we prefer the awkward notation ∂
∂x i

to the more familiar ei? The
partial derivative symbol is appropriate here for three reasons: (i) it is coherent
with the interpretation of tangent vectors as derivations, (ii) there is no risk
of confusing it with anything else, and more importantly (iii) it helps us write
the coordinate changes correctly via the chain rule. Indeed, if we pick another
chart we get different coordinates

X̄ i
∂

∂x̄ i

and we know from Section 4.4.7 that the coordinates of a vector change
contravariantly, hence

(7) X̄ j = X i
∂x̄ j

∂x i
.
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Thanks to the partial derivative notation, there is no need to remember the
formula by heart: it suffices to apply formally the chain rule and we get

X i
∂

∂x i
= X i

∂x̄ j

∂x i
∂

∂x̄ j
.

This gives (7). Beware that one possible source of confusion is that the
coordinates of a vector change contravariantly, while the vectors themselves
of the basis change covariantly : indeed we have

∂

∂x̄ j
=
∂x i

∂x̄ j
∂

∂x i

and the change of basis matrix here is the inverse of the one that we find in
(7). Luckily, we can relax: the partial derivative notation helps us write the
correct form in any context.

5.1.4. Vector fields on subsets. Let M be a smooth manifold. It is
sometimes useful to have vector fields defined not on the whole of M, but only
on some subset S ⊂ M. By definition, a vector field in S is a smooth partial
section S → TM of the tangent bundle, see Section 4.4.2. The following
example may be quite common.

Example 5.1.3. If f : N ↪→ M is an embedding, every vector field X in N
induces a vector field Y on the image S = f (N) by setting

Y
(
f (p)

)
= dfp(X(p)).

We now rephrase Proposition 4.4.1 in this context:

Proposition 5.1.4. If S ⊂ M is a closed subset, every vector field on S
may be extended to a global one on M.

We may also require that the extended vector field vanishes outside of an
arbitrary neighbourhood of S.

Corollary 5.1.5. Let N ⊂ M be a closed submanifold. Every vector field
in N extends to a vector field in M that vanishes outside of any given neigh-
bourhood of N.

5.2. Flows

It is hard to overestimate the importance of vector fields in differential
topology: they appear naturally everywhere, not only as intrinsically interesting
objects, but also as very powerful tools to prove deep theorems.

In this section, we show that a vector field X on a smooth manifold M
defines an infinitesimal way to deform M through a flow which moves every
point of p along an integral curve, a curve that is tangent to X at every point.

Flows are powerful tools, and we will use them here to promote isotopies
to ambient isotopies on every compact manifold.
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5.2.1. Integral curves. LetM be a smooth manifold and X a given vector
field on M. An integral curve of X is a smooth curve γ : I → M such that

γ′(t) = X
(
γ(t)

)
for all t ∈ I.

Example 5.2.1. The curve γ(t) = 1√
m

(cos t, sin t, . . . , cos t, sin t) is an
integral curve of the vector field in Sn described in Example 5.1.1.

An integral curve γ : I → M is maximal if there is no other integral curve
η : J → M with I ( J and γ(t) = η(t) for all t ∈ I. Every integral curve can
be extended to a maximal one by enlarging the domain as much as possible.
A straightforward application of the Cauchy – Lipschitz Theorem 1.3.5 proves
the existence and uniqueness of maximal integral curves:

Proposition 5.2.2. Let X be a vector field in M. For every p ∈ M there is
a unique maximal integral curve γp : Ip → M with γ(0) = p.

Proof. Pick a chart ϕ : U → Rn and translate locally everything into Rn.
The vector field X transforms into a smooth map Rn −→ Rn, that we still
denote by X for simplicity. An integral curve γ satisfies γ′(t) = X

(
γ(t)

)
.

The local existence and uniqueness of γ follows from the Cauchy – Lipschitz
Theorem 1.3.5. The maximal integral curve is also clearly unique. �

5.2.2. Flows. One very nice feature of the Cauchy – Lipschitz Theorem
is that the unique solution depends smoothly on the initial data. This allows us
to gather all the integral curves into a single smooth global dynamical object
called flow.

For every p ∈ M we have an interval Ip ⊂ R and a maximal integral curve
γp : Ip → M. We first gather all the intervals into a set

U =
⋃
p∈M

(
{p} × Ip

)
⊂ M × R.

Then we define the map Φ: U → M by gathering all the integral curves:

Φ(p, t) = γp(t).

The Cauchy –Lipschitz Theorem 1.3.5, applied locally at every point (p, t) ∈
U, implies that U is open and Φ is smooth.

The map Φ is the flow of the vector field X. If U = M × R we say that
the vector field X is complete. A vector field is complete if all its maximal
integral curves are defined over R.

Example 5.2.3. Pick M = Rn and X = ∂
∂x1 constantly. In this case we

have U = M × R and Φ(x, t) = x + te1, so X is complete. If we remove
from M a random closed subset the resulting vector field X is probably not
complete anymore.
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Here is a simple completeness criterion.

Lemma 5.2.4. If M × (−ε, ε) ⊂ U for some ε > 0, then X is complete.

Proof. If at every moment of your life you are guaranteed to live at least
ε more seconds, you never die.

More details follow. We fix an arbitrary point p ∈ M and we must prove
that Ip = R. Pick any t ∈ Ip. The integral curves emanating from p and
Φ(p, t) differ only by a translation of the domain: hence Ip = IΦ(p,t) + t and

(8) Φ
(

Φ(p, t), u
)

= Φ(p, t + u)

for every u ∈ IΦ(p,t). By hypothesis (−ε, ε) ⊂ IΦ(p,t) and hence (t−ε, t+ε) ⊂
Ip. Since this holds for every t ∈ Ip we get Ip = R. �

Corollary 5.2.5. Every vector field on a compact M is complete.

Proof. By compactness any neighbourhood U of M × {0} in M ×R must
contain M × (−ε, ε) for some ε > 0. �

Let now X be a complete vector field on a smooth manifold M and Φ be
its flow. We denote by Φt : M → M the level map Φt(p) = Φ(p, t).

Proposition 5.2.6. The map Φt is a diffeomorphism for all t ∈ R. Moreover

Φ−t = Φ−1
t , Φt+s = Φt ◦Φs

for all t, s ∈ R.

Proof. The equality (8) implies that Φt+s = Φt ◦Φs for all t, s ∈ R. This
in turn gives Φ−t = Φ−1

t and hence Φt is a diffeomorphism. �

A smooth map Φ: M ×R→ M with these properties is also called a one-
parameter group of diffeomorphisms. Indeed we may consider this family as a
group homomorphism R→ Diffeo(M), t 7→ Φt where Diffeo(M) is the group
of all diffeomorphisms M → M.

It is indeed a remarkable fact that by constructing different vector fields
on a compact manifold M we get plenty of one-parameter families of diffeo-
morphisms for M.

Example 5.2.7. The vector field on Sn constructed in Example 5.1.1 gen-
erates the flow

Φ(x1, . . . , x2m, t) =
(
x1 cos t − x2 sin t, x2 cos t + x1 sin t, . . .).

5.2.3. Straightening a vector field. Let X be a vector field on a smooth
manifold M, and p ∈ M a point. Among the infinitely many possible charts
near p, is there one that transports X into a reasonably nice vector field in
Rn? The answer is positive if X does not vanish at p.

Proposition 5.2.8 (Straightening vector fields). If X(p) 6= 0, there is a
chart U → V with p ∈ U that transports X into ∂

∂x1 .
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x1

x2

x1

x2

Figure 5.2. Using the flow we may construct a map ψ that sends the
horizontal lines to the integral lines of X. This map straightens X.

Proof. After taking a chart we may suppose that M = Rn, p = 0, and
X(p) = ∂

∂x1 . We now use the flow Φ of X to construct a chart that straightens
the field X as sketched in Figure 5.2. We set

ψ(x1, . . . , xn) = Φ
(

(0, x2, . . . , xn), x1
)
.

The vector field X may not be complete, so ψ(x) is well-defined only for
sufficiently small ‖x‖. We get a map ψ : B(0, ε)→ Rn for some ε > 0.

We prove that the differential dψ0 is the identity. We first note that
ψ(0, x2, . . . , xn) = (0, x2, . . . , xn), so ψ is the identity on the hyperplane x1 =

0, and hence dψ0(ei) = ei for i = 2, . . . , n. Moreover γ(t) = ψ(t, 0, . . . , 0) =

Φ(0, t) is an integral curve of X, hence dψ0(e1) = γ′(0) = ∂
∂x1 = e1.

Since dψ0 is invertible, the map ψ is a local diffeomorphism at 0. By
construction ψ sends the lines x+te1 to some integral curves of X as sketched
in Figure 5.2, so it sends the vector field ∂

∂x1 to X. �

5.3. Ambient isotopy

The previous discussion on flows and diffeomorphisms leads us naturally
to a stronger form of isotopy, called ambient isotopy, that involves a smooth
distortion of the ambient space.

5.3.1. Definition. Let M be a smooth manifold.

Definition 5.3.1. An ambient isotopy in M is an isotopy F between the
identity id : M → M and some diffeomorphism ϕ : M → M, such that every
level Ft : M → M is a diffeomorphism.

For instance, every flow Φ generated by some complete vector field X on
M is an ambient isotopy between the identity Φ0 and the diffeomorphism Φ1.

Let now M,N be two manifolds. We say that two embeddings f , g : M →
N are ambiently isotopic if there is an ambient isotopy F on N with F0 = id
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Figure 5.3. The vertical vector field X on M × [0, 1] is transported via
G into a vector field Y defined only on the compact set B.

and F1 = ϕ such that g = ϕ ◦ f . We check that this notion is indeed stronger
than that of an isotopy.

Proposition 5.3.2. If f , g are ambiently isotopic, they are isotopic.

Proof. An isotopy Gt between f and g is Gt(x) = Ft(f (x)). �

We now use the flows to show that, if M is compact, the two notions
actually coincide.

Theorem 5.3.3. If M is compact, any two embeddings f , g : M → N are
isotopic ⇐⇒ they are ambiently isotopic.

Proof. Let F : M × R→ N be an isotopy relating f and g. We define

G : M × R −→ N × R

by setting G(p, t) =
(
F (p, t), t

)
. We note that G is time-preserving and

proper (because M is compact, exercise). Moreover

dG(p,t) =

(
d(Ft)p ∗

0 1

)
and hence G is an injective immersion. Being proper, the map G is an embed-
ding (see Exercise 3.8.5) and therefore its image G(M × R) is a submanifold
of N × R.

The vertical vector field X = ∂
∂t on M × [0, 1] is transported via G to a

vector field Y defined only on the compact set B = G
(
M × [0, 1]

)
, by setting

Y
(
G(p, t)

)
= dG(p,t)

(
∂
∂t

)
as in Example 5.1.3. See Figure 5.3.

The vector field Y is defined only on the compact subset B ⊂ N ×R, but
we extend it to a vector field on the whole of N × R that vanishes outside of
some compact neighbourhood V of B. After that, we abruptly modify it by
setting everywhere its t-component to be constantly 1. The resulting vector
field (that we still name Y for simplicity) has two keys properties:

(1) it coincides with the original Y on B, since its t-component was
already 1 from the beginning by construction;
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Figure 5.4. The trivial and the trefoil knot are not isotopic. This is
certainly true... but how can we prove it?

(2) it coincides with ∂
∂t outside of V .

We now consider the flow Φ of Y in N×R. The vector field Y is complete:
to show this, we note that V is compact and Φt(p, u) = (p, u + t) outside V ,
and these two facts easily imply that there is an ε > 0 such that Φ is defined
at every time |t| < ε, so Lemma 5.2.4 applies.

Since the t-component of Y is constantly 1 we get

Φt(p, 0) =
(
H(p, t), t

)
for some smooth map H : N×R→ N. We write Ht(p) = H(p, t) and note that
Ht : N → N is diffeomorphism for every t, since Φt is. Moreover H0 = id and
hence H furnishes an ambient isotopy. Finally, we have H

(
f (p), t

)
= F (p, t)

for every (p, t) ∈ M × [0, 1] because Y = dG
(
∂
∂t

)
on B. Therefore H is an

ambient isotopy relating f and g. �

Corollary 5.3.4. Every connected smooth manifold M is homogeneous,
that is for every two points p, q ∈ M there is a diffeomorphism f : M → M

isotopic to the identity such that f (p) = q.

Proof. There is a smooth arc γ : R → M with γ(0) = p and γ(1) = q

(exercise). This arc may be interpreted as an isotopy between two embeddings
{pt} → M that send a single point to p and to q, respectively. This isotopy
may be promoted to an ambient isotopy, that sends p to q. �

How can we prove that two given homotopic embeddings are actually not
isotopic? For instance, how can we prove the intuitive fact that the two knots
in Figure 5.4 are not isotopic? Recall that a knot is an embedding S1 ↪→ R3.
Here is one answer: if they were isotopic, they would also be ambiently iso-
topic (because S1 is compact), and hence there would be a diffeomorphism
of the whole R3 sending the first to the second. This implies in particular
that they would have homeomorphic complements. One can then try to cal-
culate the fundamental groups of the complements and prove that they are
not isomorphic: this strategy works for the two knots depicted in the figure.
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5.4. Lie brackets

We now introduce an operation on vector fields called Lie bracket. The
Lie bracket [X, Y ] of two vector fields X and Y in M is a third vector field that
measures the “lack of commutativity” of X and Y .

5.4.1. Vector fields as derivations. Let X be a vector field on a smooth
manifold M. For every open subset U ⊂ M and every smooth function f ∈
C∞(U) we may define a new function Xf ∈ C∞(U) by setting

(Xf )(p) = X(p)(f )

for every p ∈ U. Recall that X(p) ∈ TpM is a derivation and hence transforms
any locally defined function f into a real number X(p)(f ), so the definition of
the function Xf makes sense.

In coordinates, the vector field X is written as

X i
∂

∂x i

and the new function Xf is simply

X i
∂f

∂x i
.

This shows in particular that Xf is smooth.
We have just discovered that we can employ vector fields to “derive” func-

tions. We use the term “derivation” here, because the Leibniz rule

X(f g) = (Xf )g + f (Xg)

is satisfied by construction for every functions f and g defined on some com-
mon open set U ⊂ M. Of course the derived function Xf depends heavily on
the vector field X.

Another way of seeing Xf is as the result of a contraction of the differential
df , a tensor field of type (0, 1), with X, a tensor field of type (1, 0). The result
is a tensor field Xf of type (0, 0), that is a smooth function.

5.4.2. Lie brackets. Let X and Y be two vector fields on a smooth man-
ifold M. The Lie bracket [X, Y ] of X and Y is a new vector field, uniquely
determined by requiring that

[X, Y ]f = XY f − Y Xf

for every function f defined on any open subset U ⊂ M.

Proposition 5.4.1. The vector field [X, Y ] is well-defined.

Proof. For the moment, the bracket [X, Y ] = XY −Y X is just an operator
on smooth functions defined on any open subset U ⊂ M. For every f , g ∈
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C∞(U) we get

XY (f g) = X
(

(Y f )g
)

+X
(
f (Y g)

)
= (XY f )g + (Y f )(Xg) + (Xf )(Y g) + f (XY g),

Y X(f g) = (Y Xf )g + (Xf )(Y g) + (Y f )(Xg) + f (Y Xg)

from which we deduce that

[X, Y ](f g) =
(

[X, Y ]f
)
g + f

(
[X, Y ]g

)
.

We have proved that [X, Y ] is also a derivation. This allows us to define [X, Y ]

as a vector field, by setting

[X, Y ](p)(f ) = [X, Y ](f )(p)

for every p ∈ M and every f defined near p. The proof is complete. �

5.4.3. Lie algebra. We introduce an important concept.

Definition 5.4.2. A Lie algebra is a real vector space A equipped with an
antisymmetric bilinear operation [, ] called Lie bracket that satisfies the Jacobi
identity [

[x, y ], z
]

+
[
[y , z ], x

]
+
[
[z, x ], y

]
= 0

for every x, y , z ∈ A.

Let M be a smooth manifold. Recall that X(M) is the vector space con-
sisting of all the vector fields in M.

Exercise 5.4.3. The space X(M) with the Lie bracket [ , ] is a Lie algebra.

5.4.4. In coordinates. The definition of the Lie bracket is quite abstract
and it is now due time to write an explicit formula that is valid in coordinates
with respect to any chart.

Exercise 5.4.4. In coordinates we get

[X, Y ]i = X j
∂Y i

∂x j
− Y j

∂X i

∂x j
.

The reader may also wish to define [X, Y ] directly via this formula, but
in that case she needs to verify that this definition is chart-independent, a
fact that is not immediately obvious: if we modify the formula randomly, for
instance by inserting a factor 2 after the minus sign, the definition is not
chart-independent anymore.

In the definition of the Lie bracket of two vector fields we have seen the
appearance of a recurrent theme in differential topology and geometry: the
eternal quest for intrinsic (that is, chart-independent) definitions. One may ful-
fil this task either working entirely in coordinates, or using some more abstract
arguments as we just did. As usual, both viewpoints are important.

The following exercises may be solved working in coordinates.
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Exercise 5.4.5. For every X, Y ∈ X(M) and f , g ∈ C∞(M) we have

[f X, gY ] = f g[X, Y ] + f (Xg)Y − g(Y f )X.

Exercise 5.4.6. On an open set of Rn, for every i , j we have[
∂

∂x i
,
∂

∂x j

]
= 0.

More generally, we have[
∂

∂x i
, Y j

∂

∂x j

]
=
∂Y j

∂x i
∂

∂x j
=
∂Y

∂x i
.

Exercise 5.4.7. Let A,B be two n× n matrices. Consider the vector fields
in Rn defined as

X(x) = Ax, Y (x) = Bx.

Their Lie bracket is
[X, Y ](x) = (BA− AB)x.

If you get (AB − BA)x , you made a (quite common) mistake. This is a very
instructing exercise.

5.4.5. Diffeomorphism invariance. The Lie bracket [X, Y ] is an impor-
tant object because it is intrinsically defined given X and Y only, and this is
enough to dignify it: in differential topology and geometry we long for intrin-
sically defined objects, because they usually have nice functorial properties.
Indeed it follows readily from the definition that the bracket commutes with
diffeomorphisms: a diffeomorphism f : M → N between manifolds that sends
the fields X1, X2 to Y1, Y2 respectively, necessarily sends [X1, X2] to [Y1, Y2].

More than that, one can show the following. If f : M → N is any smooth
map between manifolds, we say that two vector fields X ∈ X(M) and Y ∈
X(N) are f -related if dfp(X(p)) = Y (f (p)) for all p ∈ M.

Exercise 5.4.8. If X1, X2 are f -related to Y1, Y2 respectively, then [X1, X2]

is f -related to [Y1, Y2].

Corollary 5.4.9. Let N ⊂ M be a submanifold. If X, Y are vector fields on
N, and X̄, Ȳ are any extensions of X, Y to some open subset U ⊂ M containing
N, then at every point p ∈ N we get

[X, Y ](p) = [X̄, Ȳ ](p).

We now introduce a more geometric interpretation of the Lie bracket.

5.4.6. Non-commuting flows. Let X and Y be two vector fields on a
smooth manifold M, and let Φ,Ψ be their corresponding flows. Consider a
point p ∈ M. In general, the two flows do not commute, that is Φs(Ψt(p))

may be different from Ψt(Φs(p)) whenever they are defined. We now show
that the Lie bracket [X, Y ] at p measures this possible lack of commutation.
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Proposition 5.4.10. On any chart, we have

Ψt(Φs(p))−Φs(Ψt(p)) = st[X, Y ](p) + o(s2 + t2).

Note that the whole expression makes sense only on a chart, that is on
some open subset V ⊂ Rn with p ∈ V and with s, t sufficiently small. On a
general smooth manifoldM the points Ψt(Φs(p)) and Φs(Ψt(p)) are probably
distinct points in M and there is no way of estimating their “distance”. The
expression is however very useful because it holds on every chart.

Proof. We fix p and consider the smooth function

F (s, t) = Ψt(Φs(p))−Φs(Ψt(p)).

We have F (s, 0) = F (0, t) = 0 for all s, t. Since F ≡ 0 on the axis s = 0 and
t = 0, the second-order Taylor expansion of F reduces to

F (s, t) = st
∂2F

∂s∂t

∣∣∣
s=t=0

+ o(s2 + t2).

There is only one second-order term that we now calculate. We have
∂

∂t
Ψt(Φs(p))

∣∣∣
t=0

= Y
(

Φs(p)
)

and then
∂2

∂s∂t
Ψt(Φs(p))

∣∣∣
s=t=0

=
∂

∂s
Y
(

Φs(p)
)∣∣∣
s=0

= X j(p)
∂Y

∂x j
(p).

Therefore
∂2F

∂s∂t
(0, 0) = X j(p)

∂Y

∂x j
(p)− Y j(p)

∂X

∂x j
(p) = [X, Y ](p)

by Exercise 5.4.4. The proof is complete. �

We say that two vector fields X and Y commute if [X, Y ] = 0 everywhere.
The corresponding flows Φ and Ψ commute locally if

Φs(Ψt(p)) = Ψt(Φs(p))

for every p and sufficiently small s, t. These two notions coincide:

Proposition 5.4.11. Two vector fields commute⇐⇒ their flows do locally.

Proof. If the flows commute, then [X, Y ] = 0 because of Proposition
5.4.10. Conversely, suppose that [X, Y ] = 0.

Consider a point p ∈ M. If X(p) = Y (p) = 0, we get Φs(p) = Ψt(p) = p

and we are done. Otherwise, suppose that X(p) 6= 0. On a chart we can
straighten X and get X = ∂

∂x1 and Φs(p) = p + se1.
Now [X, Y ] = 0 and Exercise 5.4.6 imply that

∂Y

∂x1
= 0.

The field Y is hence invariant by translations along e1. Therefore Ψt(p+se1) =

Ψt(p) + se1, that is Ψt commutes with Φs . �
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Exercise 5.4.12. If both X and Y are complete, their flows Φ and Ψ

commute locally if and only if they commute globally, that is Φs(Ψt(p)) =

Ψt(Φs(p)) for every p, s, t.

5.4.7. Multiple straightenings. Can we straighten two or more vector
fields simultaneously? It should not be a surprise now that the answer depends
on their Lie brackets. Let X1, . . . , Xk be vector fields on a smooth manifold
M, and p ∈ M be a point.

Proposition 5.4.13. Suppose that X1(p), . . . , Xk(p) are independent vec-
tors. There is a chart U → V that transports X1, . . . , Xk into ∂

∂x1 , . . . ,
∂
∂xk

⇐⇒ [Xi , Xj ] = 0 for all i , j on some neighbourhood of p.

Proof. If there is a chart of this type, then clearly [Xi , Xj ] = 0. We now
prove the converse and suppose [Xi , Xj ] = 0 for all i , j . The proof is similar to
that of Proposition 5.2.8.

By taking a chart we may suppose that M is an open set in Rn, p = 0,
and Xi(0) = ∂

∂x i
for all i = 1, . . . , k . Let Φi

t be the flow of Xi . Define

ψ(x1, . . . , xn) = Φk
xk (· · · (Φ1

x1 (0, . . . , 0, xk+1, . . . , xn)) · · · ).

The differential dψ0 is the identity, because

ψ(0, . . . , 0, xk+1, . . . , xn) = (0, . . . , 0, xk+1, . . . , xn)

and γi(t) = ψ(tei) with i = 1, . . . , k is an integral curve for Xi , so γ′i (0) = ∂
∂x i

.
We deduce that ψ is a local diffeomorphism. It is clear that ψ sends the

lines x+tek to integral curves for Xk , so it sends ∂
∂xk

to Xk . Since [Xi , Xj ] = 0,
the flows Φi

t commute and we can permute them in the definition of ψ at our
pleasure: so we can put Φi

t at the end of the composition and the same
argument shows that ψ sends ∂

∂x i
to Xi for all i . �

5.4.8. Lie derivative. We have just noted that a vector field X may be
used to derive functions. Can we also use X to derive other objects, for
instance another vector field Y or more generally any tensor field s? The
answer is positive, and this operation is called the Lie derivative.

We first note that every diffeomorphism f : M → N induces an isomor-
phism between the corresponding tensor bundles

f∗ : T kh M −→ T kh N

induced from that of the tangent bundles f∗ : TM → TN, and we may use f∗
to transfer tensor fields from M to N and viceversa.

Let now X be a vector field on a smooth manifold M, and let s be any
tensor field on M, of some type (h, k). The Lie derivative LXs is a new tensor
field of the same type (h, k), morally obtained by deriving s along X, and
defined as follows.
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Let Φt be the flow generated by X. For every point p ∈ M, there is a
sufficiently small ε > 0 such that Φt is defined on a neighbourhood of p and
is a local diffeomorphism at p for all |t| < ε. Therefore (Φt)∗(s) is another
tensor field defined on a neighbourhood of Φt(p), that varies smoothly in t,
and we now want to compare s and (Φt)∗(s).

We note that the tensor

(Φ−t)∗
(
s(Φt(p))

)
is well-defined and lies in T kh (TpM) for every sufficiently small t and varies
smoothly in t, so it makes sense to define its derivative(

LXs
)

(p) =
d

dt

∣∣∣
t=0

(Φ−t)∗
(
s(Φt(p))

)
.

We have defined a linear map

LX : Γ
(
T kh (M)

)
−→ Γ

(
T kh (M)

)
that “derives” any tensor field along X.

Exercise 5.4.14. The following hold:

• if f ∈ C∞(M), then LXf = Xf ;
• if Y is a vector field, then LXY = [X, Y ];
• for every tensor fields S and T of any types we have

LX(S ⊗ T ) = (LXS)⊗ T + S ⊗ (LXT );

• the Lie derivative commutes with contractions.

The Lie derivative LXs measures how s changes along X, in fact it follows
readily from the definition that LXs ≡ 0 on M ⇐⇒ the tensor field s is
invariant under the flow Φt .

It is important to note here that, as opposite to the directional derivative
in Rn, the value of LXs at a point p depends on the local behaviour of X near
p, not on the directional vector X(p) alone! To get a derivation that, like the
directional derivative in Rn, depends in p only on the directional vector based
at p, we need to introduce an additional structure called connection. We will
do this later on in this book. The Lie derivative is the maximum we can get
on a smooth manifold without equipping it with some additional structure.

5.5. Foliations

We now introduce some higher-dimensional analogues of vector fields and
integral curves, where we replace vectors with k-dimensional subspaces, and
integral curves with k-dimensional submanifolds.
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5.5.1. Foliations. LetM be a smooth n-manifold. An immersed subman-
ifold in M is the image of an immersion S → M. A horizontal affine k-plane in
Rn = Rk×Rn−k is an affine k-plane of type Rk×{c} for some fixed c ∈ Rn−k .

Definition 5.5.1. A k-dimensional foliation in M is a partition F =
{
λi
}

of M into injectively immersed k-dimensional connected submanifolds λi ⊂ M
called leaves, such that the following holds: for every p ∈ M there is a chart
ϕ : U → Rn with p ∈ U such that ϕ(λi ∩ U) is the union of some parallel
horizontal affine k-planes, for every i .

In other words, at every point p there is a chart ϕ that transforms the
partition F near p into the partition of Rn into parallel horizontal k-planes.
We say that such a chart ϕ is compatible with the foliation.

Remark 5.5.2. For a fixed leaf λi , the image ϕ(λi ∩U) along a compatible
chart ϕ may consist of infinitely many k-planes. These are countable, because
λi is the image of an immersed submanifold S → M and S has countable base.

We also note that a foliation contains uncountably many leaves: this is
a consequence of the previous remark, or of the more general fact that the
union of countably many immersed manifolds of smaller dimension than M has
measure zero and hence cannot cover M.

Example 5.5.3. The following are foliations:
(1) the partition of Rn into all the affine spaces parallel to a fixed vector

subspace L ⊂ Rn;
(2) if E → B is a fibre bundle, the partition of E into the fibres Ep;
(3) for a fixed slope ν ∈ R, the family of all curves α : R→ S1 × S1 of

type α(t) =
(
e it , e i(νt+µ)

)
as µ varies.

Exercise 5.5.4. In the last example, the leaves are compact ⇐⇒ λ ∈ Q.
If λ ∈ R \Q every leaf is dense.

We now furnish an equivalent definition of foliation.

Definition 5.5.5. A k-dimensional foliation inM is an atlas
{
ϕi : Ui → Rn

}
compatible with the smooth structure of M whose transition maps ϕi j are all
locally of the following form:

ϕi j(x, y) =
(
ϕ1
i j(x, y), ϕ2

i j(y)
)
.

Here we represent Rn as Rk × Rn−k , both as a domain and as a codomain.

In other words, we require that the last n − k coordinates of ϕi j should
depend locally only on the last n− k coordinates of the point. By “locally” we
mean as usual that every point p in the domain of ϕi j has a neighbourhood
such that ϕi j is of that form.

The two definitions look very different but are indeed equivalent! If F is a
foliation in the partition sense, by considering only charts that are compatible
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with F we get an atlas as in Definition 5.5.5 (exercise). Conversely, given
an atlas A = {ϕi} of this kind, the transition maps preserve locally the k-
dimensional affine horizontal subspaces {y = c} which hence glue to form
immersed submanifolds in M.

To construct the immersed manifolds rigorously, we proceed as follows. We
assign to Rk and Rn−k respectively the Euclidean and the discrete topology,
and we give the product topology to Rk × Rn−k . Note that this topology is
finer than the Euclidean one. We now use this model to define a finer topology
on M, by declaring a set in M to be open if it intersects the domain Ui of every
chart ϕi ∈ A into a subset whose image in ϕi(Ui) ⊂ Rk ×Rn−k is open in the
new finer topology.

The manifold M with the finer topology decomposes into (uncountably
many) connected components {Mj}. The atlas

{
ϕi : Ui → Rn

}
furnishes

to every Mj a structure of smooth manifold: the only tricky part here is to
prove that it has a countable base, and is left as an exercise. Hint: Select
a countable sub-atlas A′ ⊂ A and prove that every leaf “propagates” only to
countably many nearby ones at each step.

5.5.2. Distributions. Let M be a smooth n-manifold. Here is another
natural geometric definition.

Definition 5.5.6. A k-distribution in M is a rank-k subbundle D of the
tangent bundle TM.

A distribution is a collection of k-subspaces Dp ⊂ TpM that vary smoothly
with p, see Exercise 4.6.6. On Rn, a distribution is like a smooth map Rn →
Grk(Rn) that places a subspace Dx ⊂ Rn = TxRn at every x ∈ Rn

Example 5.5.7. If F is a k-dimensional foliation on M, the k-spaces tan-
gent to the leaves of F form a k-distribution.

A distribution that is tangent to some foliation F is called integrable.
Note that a diffeomorphism ϕ : M → M ′ transforms a distribution D on M
into one D′ on M ′ in the obvious way, by setting D′ϕ(p) = dϕp(Dp) ∀p ∈ M.
The integrability condition may also be expressed without using foliations:

Proposition 5.5.8. D is integrable⇐⇒ ∀p ∈ M there is a chart ϕ : U → Rn
with p ∈ U that transforms D into the horizontal distribution.

The horizontal distribution in Rn is Dx = Rk ×{0} ⊂ Rk ×Rn−k ∀x ∈ Rn.

Proof. (⇒). If D is tangent to a foliation F , any chart compatible with
F transforms D into the horizontal one.

(⇐). All these charts define a foliation in the sense of Definition 5.5.5. �
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5.5.3. The Frobenius Theorem. We now state and prove a theorem that
characterises the integrable distributions via the Lie bracket of vector fields.

A vector field X on a manifold M is tangent to a distribution D if X(p) ∈
Dp for all p ∈ M. A distribution D is involutive if whenever X, Y are two
vector fields defined in some open set that are tangent to D, their Lie bracket
[X, Y ] is also tangent.

Theorem 5.5.9 (Frobenius Theorem). A distribution D on a manifold M
is integrable ⇐⇒ it is involutive.

Proof. If D is integrable, at every p ∈ M there is a chart that transforms
it into the horizontal distribution Dx = Rk × {0} in Rn. If X, Y are vector
fields in Rn tangent to D, they are of the form

X =

k∑
i=1

X i
∂

∂x i
, Y =

k∑
i=1

Y i
∂

∂x i

and by Exercise 5.4.4 we get [X, Y ]i = 0 for all i > k . Therefore [X, Y ] is also
tangent to D and D is involutive.

Conversely, suppose that D is involutive. For every p ∈ M we pick a chart
near p that transforms p in 0 and Dp into the horizontal space D0 = Rk×{0}.
For sufficiently small x every k-space Dx may not be horizontal, but it still
intersects the vertical space V = {0}×Rn−k in the origin. By projecting along
V we get canonical isomorphisms D0 → Dx that send the basis e1, . . . , ek to
a local frame on D of the type

X1 =
∂

∂x1
+

n∑
i=k+1

X i1
∂

∂x i
, . . . , Xk =

∂

∂xk
+

n∑
i=k+1

X ik
∂

∂x i
.

Exercise 5.4.4 gives [Xi , Xj ]
l = 0 for all i , j, l = 1, . . . , k , hence [Xi , Xj ] is

tangent to the vertical space V at every point. Since D is involutive, the
vector field [Xi , Xj ] must be tangent to D and this implies that [Xi , Xj ] = 0.

We have discovered that X1, . . . , Xk are commuting vector fields and by
Proposition 5.4.13 we can transform them via a chart into the coordinate
ones Xi = ∂

∂x i
. In this chart the distribution is horizontal so Proposition 5.5.8

applies. The proof is complete. �

As an example, the vector fields in R3

X1 =
∂

∂x
, X2 =

∂

∂y
+ x

∂

∂z

do not commute since [X1, X2] = ∂
∂z . Therefore they generate a non-integrable

plane distribution in R3, drawn in Figure 5.5.
The following criterion may be useful in some cases.

Exercise 5.5.10. A distribution D in M is involutive ⇐⇒ for every p ∈ M
there is a local frame X1, . . . , Xk for D such that [Xi , Xj ] is tangent to D ∀i , j .
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x

y

z

Figure 5.5. A non-integrable plane distribution in R3.

Figure 5.6. A tubular neighbourhood of a curve on the plane.

Hint. To prove ⇐, write any vector field X, Y tangent to D locally as a
combination of Xi , with coefficients that are smooth functions. Use Exercise
5.4.5 to deduce that [X, Y ] is also tangent to D. �

5.6. Tubular neighbourhoods

Let M be a smooth m-manifold. Among all the open neighbourhoods
of a given point p ∈ M, the simplest ones are undoubtedly those that are
diffeomorphic to Rm. These are certainly not unique, and there is no canonical
way to choose a preferred one; however, we will prove in this section that these
are unique up to isotopy, thus answering to Question 3.10.7.

More generally, we will show that not only points, but any submanifold
N ⊂ M has a similar kind of nice open neighbourhood, called a tubular neigh-
bourhood. The idea that we have in mind is that, for a curve on the plane, a
tubular neighbourhood should look like in Figure 5.6, and for a knot K ⊂ R3

it should be a little open tube around K. As in Figure 5.6, a tubular neigh-
bourhood should be a bundle over N.

We prove here the existence and uniqueness (up to isotopy) of tubular
neighbourhoods for any submanifold N ⊂ M.

5.6.1. Definition. Let M be a m-manifold and N ⊂ M a n-submanifold.
A tubular neighbourhood for N is a vector bundle E → N together with an
embedding i : E ↪→ M such that:
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Figure 5.7. To construct a tubular neighbourhood, we map the normal
bundle in Rn and pick a sufficiently small neighbourhood of N so that this
map is an embedding.

• i |N = idN , where we identify N with the zero-section in E;
• i(E) is an open neighbourhood of N.

We usually call a tubular neighbourhood simply the image i(E) of E in N, but
keeping in mind that it has a bundle structure with base N.

The second hypothesis implies that dimE = dimM, so E must have rank
m − n. Recall that the normal bundle νN of N inside M has precisely that
rank, so it seems a promising candidate.

5.6.2. Existence. We now prove the existence of tubular neighbourhoods
in two steps: in the first step we only consider the case M = Rm.

Proposition 5.6.1. Every submanifold N ⊂ Rm has a tubular neighbour-
hood with E = νN.

Proof. As shown in Example 4.3.6, we have

νN =
{

(p, v)
∣∣ p ∈ N, v ∈ νpN} ⊂ N × Rm ⊂ Rm × Rm.

We have identified νpN with TpN⊥. We now define the smooth map

f : νN −→ Rm,
(p, v) 7−→ p + v .

See Figure 5.7. We now study the differential df(p,0) at each p ∈ N. We have

T(p,0)νN = TpN × νpN ⊂ Rm × Rm.

If we identify TpN×νpN with Rm, we discover easily that the differential df(p,0)

is the identity. In particular, it is invertible, so f is an immersion at every point
in N. We now prove that there is an open neighourhood U of N in νN where
f is an embedding, see Figure 5.7.
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Since being an immersion is an open condition, there is an open neighbour-
hood U of N where f is an immersion. Since f |N is injective, after possibly
taking a smaller U we may also suppose that f |U is injective and an embedding
(exercise).

By shrinking νN as in Lemma 4.5.11 we can embed i : νN ↪→ U keeping
N fixed, and the composition f ◦ i is a tubular neighbourhood for N. �

We now turn to a more general case.

Theorem 5.6.2. Let M be a manifold. Every submanifold N ⊂ M has a
tubular neighbourhood with E = νN.

Proof. We may embed M in some Rk thanks to Whitney’s Theorem
3.11.8. Now for every p ∈ N we have the vector space inclusions

TpN ⊂ TpM ⊂ Rk .

We identify νpN with the orthogonal complement of TpN inside TpM, so that

TpN ⊕ νpN = TpM ⊂ Rk .

We consider the smooth map

F : νN −→ Rk ,
(p, v) 7−→ p + v .

LetW be a tubular neighbourhood ofM in Rk , with bundle projection π : W →
M. We set U = F−1(W ) and define the map

f : U −→ M,

(p, v) 7−→ π(p + v).

As above, the differential at N is just the identity and we conclude that f ◦ i
is a tubular neighbourhood for N for some appropriate bundle shrinking i . �

5.6.3. Uniqueness. It is a remarkable and maybe surprising fact that, de-
spite their quite general definition, tubular neighbourhoods are actually unique
if one considers them up to isotopy.

We must clarify what we mean by “isotopy” in this context. Let M be a
manifold and N ⊂ M a submanifold. Two tubular neighbourhoods i0 : E0 → M

and i1 : E1 → M are isotopic if there are a bundle isomorphism ψ : E0 → E1

and an isotopy F relating the embeddings i0 and i1 ◦ψ that keeps N pointwise
fixed, that is such that F (p, t) = p for all p ∈ N and all t.

Note that each embedding Ft = F (·, t) is a tubular neighbourhood of N,
so F indeed describes a smooth path of varying tubular neighbourhoods.

Theorem 5.6.3. Let M be a manifold and N ⊂ M a submanifold. Every
two tubular neighbourhoods of N are isotopic.

To warm up, we start by proving the following.
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Proposition 5.6.4. Every embedding f : Rn ↪→ Rn with f (0) = 0 is isotopic
to its differential df0 via an isotopy that fixes 0 at each time.

Proof. The isotopy for t ∈ (0, 1] is simply defined as follows:

F (x, t) =
f (tx)

t
.

We extend it to the time t = 0 by writing the first-order Taylor expansion

f (x) = h1(x)x1 + . . .+ hn(x)xn

where hi(0) = ∂f
∂x i

(0) for all i . For every t ∈ (0, 1] we get

F (x, t) = h1(tx)x1 + . . .+ hn(tx)xn

and this expression makes sense also for t = 0, yielding the equality F (x, 0) =

df0(x). The proof is complete.1 �

We can now prove Theorem 5.6.3.

Proof. Let E0 and E1 be two tubular neighbourhoods of N. We see E1 as
embedded directly inM, and we want to modify the given embedding f : E0 →
M via an isotopy so that it matches with E1.

We first prove that after an isotopy we may suppose that f (E0) ⊂ E1.
Indeed, Lemma 4.5.11 provides a shrinkage g : E0 → E0 with f ◦ g(E0) ⊂ E1

isotopic to the identity through a family gt of embeddings, and by composing
it with f we get an isotopy between f and f ◦ g.

Now that f (E0) ⊂ E1, we can construct the isotopy F : E0 × [0, 1]→ M

by mimicking the proof of Proposition 5.6.4: we simply write

F (v , t) =
f (tv)

t
.

Here f (tv) is a particular vector in E1 and hence its division by t makes sense.
This is certainly an isotopy for t ∈ (0, 1], and we now extend it to t = 0

similarly to what we did above.
Consider a v ∈ E0, with p = π(v) ∈ N. The point p has an open

neighbourhood U above which E1 is trivialised as U × Rm−n. There are also
a smaller neighbourhood V ⊂ U and a r > 0 such that E0|V is also trivialised
as V × Rm−n and moreover

f
(
V × B(0, r)

)
⊂ U × Rm−n.

This holds by continuity. See Figure 5.8. We may represent f on V ×B(0, r)

as a map
f (x, y) =

(
f1(x, y), f2(x, y)

)
.

We have f (x, 0) = (x, 0). Since f2(x, 0) = 0 we can write

f2(x, y) = h1(x, y)y1 + . . .+ hm−n(x, y)ym−n

1To be precise, we should substitute t with ρ(t) via a transition function ρ to get an
isotopy defined for all t ∈ R. We will tacitly assume this in other points in this book.
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Figure 5.8. By continuity, we can find two neighbourhoods V ⊂ U of
p above which both E0 and E1 trivialise, and a r > 0 such that f

(
V ×

B(0, r)
)
⊂ U × Rm−n (the yellow zone).

with

hi(x, 0) =
∂f2
∂y i

(x, 0).

We can then represent F as

F (x, y , t) =

(
f1(x, ty),

1

t
f2(x, ty)

)
=
(
f1(x, ty), h1(x, ty)y1 + . . .+ hm−n(x, ty)ym−n

)
.

This map is well-defined and smooth also at t = 0. The map at t = 0 is

F0(x, y) = F (x, y , 0) =

(
x,
∂f2
∂y

(x, 0)y

)
.

It sends every fibre of E0 to a fibre of E1 via a linear map, which is in fact an
isomorphism because f is an embedding and hence

df(x,0) =

(
In ∗
0 ∂f2

∂y (x, 0)

)
is an isomorphism. Therefore F0 : E0 → E1 is a bundle isomorphism. �

We have proved that the tubular neighbourhood of a submanifold N ⊂ M
is unique up to isotopy and bundle isomorphisms: in particular, this shows that
every tubular neighbourhood of N is isomorphic to the normal bundle νN.

5.6.4. Embedding open balls. The uniqueness theorem for tubular neigh-
bourhoods is quite powerful, and it has some remarkable consequences already
when N is a point.

Proposition 5.6.5. Let M be a connected smooth n-manifold. Two em-
beddings f , g : Rn ↪→ M are always isotopic, possibly after pre-composing g
with a reflection in Rn.
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Proof. We may see both f and g as tubular neighbourhoods of f (0) and
g(0). Since connected manifolds are homogeneous (Corollary 5.3.4), after
an ambient isotopy we may suppose that f (0) = g(0). By the uniqueness
of the tubular neighbourhood, the map f is isotopic to g ◦ ψ for some linear
isomorphism ψ : Rn → Rn. By Corollary 3.9.11 we may isotope ψ to be either
the identity or a reflection. �

The oriented version is more elegant to state:

Proposition 5.6.6. Let M be an oriented connected smooth n-manifold.
Two orientation-preserving embeddings f , g : Rn ↪→ M are always isotopic.

5.6.5. Hypersurfaces. Let M be a smooth manifold. A hypersurface in
M is a submanifold N ⊂ M of codimension 1.

Proposition 5.6.7. Let M be orientable. The normal bundle of a hypersu-
face N ⊂ M is trivial ⇐⇒ N is also orientable.

Proof. Fix an orientation for M. The normal bundle is a line bundle, and
it is trivial ⇐⇒ it has a nowhere-vanishing section.

If N is orientable, we fix an orientation on N. The two orientations of M
and N induce a locally coherent orientation on the normal line νNp for every
p ∈ N, which distinguishes between “positive” and “negative” normal vectors,
see Exercise 2.5.2. Fix a Riemannian metric on νN, and pick all the positive
vectors of norm one: they form a nowhere-vanishing section.

On the other hand, if the normal bundle is trivial, the normal orientation
and the orientation of M induce similarly an orientation on N. �

5.6.6. Continuous maps are homotopic to smooth maps. By combin-
ing the tubular neighbourhoods and Whitney’s Embedding Theorem, we may
now prove that every continuous map between smooth manifolds is homotopic
to a smooth map. Let M and N be two smooth manifolds.

Theorem 5.6.8. Let f : M → N be a continuous map, whose restriction
to some (possibly empty) closed subset S ⊂ M is smooth. The map f is
continuously homotopic to a smooth map g : M → N with f (x) = g(x) for all
x ∈ S, via a homotopy that is constant on S.

Proof. By Whitney’s Embedding Theorem 3.11.8 we may suppose that
N ⊂ Rn for some n. Let νN be a tubular neighbourhood of N. For every
p ∈ N we let r(p) be the distance from p to the boundary of the open set νN.

By Proposition 3.3.9 there is a smooth map h : M → Rn with ‖h(p) −
f (p)‖ < r(f (p)) and h(p) = f (p) ∀p ∈ S. The homotopy H(p, t) = (1 −
t)f (p) + th(p) lies entirely in νN and hence can be composed with the pro-
jection π : νN → N to give a homotopy G(p, t) = π(H(p, t)) between f and
the smooth g = π ◦ h. �
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Figure 5.9. Transversality depends on the ambient space: the two curves
are transverse in R2, not in R3.

The proof shows also that g may be chosen to be arbitrarily close to f ,
but to express “closeness” rigorously we need to see N embedded in some Rn.

Corollary 5.6.9. Two smooth maps f , g : M → N are continuously homo-
topic ⇐⇒ they are smoothly homotopic.

Proof. Every continuous homotopy F : M × [0, 1] → N can be extended
to a continuous map F : M × R → N and then be homotoped to a smooth
map G : M × R→ N by keeping F |M×{0} and F |M×{1} fixed. �

5.7. Transversality

We now show that any two smooth maps (and in particular, submanifolds
with their inclusion maps) can be perturbed to cross nicely. The notion of
“nice crossing” is surprisingly simple to define and is called transversality.

5.7.1. Definition. Let f : M → N and g : W → N be two smooth maps
between manifolds, sharing the same target N.

Definition 5.7.1. We say that f and g are transverse if for every p ∈ M
and q ∈ W with f (p) = g(q) we have

Im dfp + Im dgq = Tf (p)N.

In this case we write f t g.

If M ⊂ N is a submanifold and g : W → N is a map, we say that g and
M are transverse if g and the inclusion map M ↪→ N are, and in this case we
write g t M. Two submanifolds M,W ⊂ N are transverse if their inclusions
are, and in this case we write M t W to denote their intersection M ∩W .

Set m = dimM, w = dimW , and n = dimN. Note that if m + w < n

then f t g ⇐⇒ the maps f and g have disjoint images. See Figure 5.9.
If W = {q} is a point, then f t g ⇐⇒ g(q) is a regular value for f .
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5.7.2. Fibre bundles. Here is a basic example.

Proposition 5.7.2. Let π : E → M be a fibre bundle. A map f : N → E is
transverse to a fibre Eq ⇐⇒ q is a regular value for π ◦ f .

Proof. Pick p ∈ N with f (p) ∈ Eq. We have Tf (p)Eq = ker dπf (p), so

Im dfp + Tf (p)Eq = Tf (p)E ⇐⇒ Im d(π ◦ f )p = TqM.

The proof is complete. �

Exercise 5.7.3. A submanifoldW ⊂ E is the image of a section of a bundle
E → M ⇐⇒ it intersects transversely every fibre Eq in a single point.

5.7.3. Intersections. We now extend a theorem from the context of reg-
ular values to the wider realm of transverse maps.

Proposition 5.7.4. Let M ⊂ N be a submanifold and g : W → N a smooth
map. If g t M then X = g−1(M) is a submanifold of codimension n −m.

Proof. Pick p ∈ X. We look at a neighbourhood of q = g(p) ∈ M and
after taking a chart we suppose that (M,N) = (Rm×{0},Rm×Rn−m), q = 0.

Consider the projection π : Rm × Rn−m → Rn−m onto the second factor.
Near p we have X = g−1(Rm × {0}) = g−1(π−1(0)) = (π ◦ g)−1(0) and by
Proposition 5.7.2 the composition π ◦ g is a submersion at p. Therefore X is
a submanifold near p, and hence everywhere, of codimension n −m. �

In particular, the intersection X = M t W of two transverse submanifolds
M,W ⊂ N is a submanifold with codimX = codimM + codimW .

5.7.4. Thom’s Transversality Theorem. We now state a general theo-
rem, that will allow us to construct many transverse maps. Let M,S,N be
manifolds of arbitrary dimension.

Theorem 5.7.5. Let F : M × S → N be a smooth map. If F is transverse
to some submanifold Z ⊂ N, then Fs = F (·, s) : M → N is also transverse to
Z for almost every s ∈ S.

We mean as usual that the thesis holds for all the values s ∈ S that lie
outside of some zero measure subset.

Proof. Since F t Z, the preimage W = F−1(Z) ⊂ M × S is a smooth
submanifold. Consider the projection π : M × S → S and particularly its
restriction π|W : W → S. We now claim that if s is a regular value for π|W
then Fs t Z. From this we conclude: by Sard’s Lemma almost every s ∈ S is
a regular value for π|W .

Consider a point (p, s) ∈ W . Since s is regular for π|W we have

T(p,s)W + T(p,s)(M × {s}) = T(p,s)(M × S).
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Since F t Z we have

dF(p,s)

(
T(p,s)(M × S)

)
+ TF (p,s)Z = TF (p,s)N.

By combining the two equations we get

TF (p,s)N = dF(p,s)(T(p,s)W ) + dF(p,s)

(
T(p,s)(M × {s})

)
+ TF (p,s)Z

= dF(p,s)

(
T(p,s)(M × {s})

)
+ TF (p,s)Z

= d(Fs)p(TpM) + TF (p,s)Z.

In the second equality we have eliminated the first addendum since it is con-
tained in the third. We have proved that Fs t Z. �

5.7.5. Consequences. We now draw some consequences from Thom’s
Transversality Theorem. Here is an amazingly simple application.

Corollary 5.7.6. Let M be a manifold and f : M → Rn be a smooth map.
Let Z ⊂ Rn be a submanifold. For almost all s ∈ Rn, the translated map

fs(p) = f (p) + s

is transverse to Z.

Proof. The map F : M × Rn → Rn, F (p, s) = f (p) + s is a submersion
and is hence clearly transverse to any submanifold Z ⊂ Rn. So Thom’s
Transversality Theorem applies. �

Corollary 5.7.7. Let M,N ⊂ Rn be any two submanifolds. For almost
every s ∈ Rn the translate M + s and N are transverse.

Here is a perturbation theorem for a map between two arbitrary manifolds.

Corollary 5.7.8. Let f : M → N be a smooth map between manifolds and
W ⊂ N be a submanifold. There is a g : M → N homotopic to f that is
transverse to W .

Proof. Consider N embedded in some Rn and pick a tubular neighbourhood
νN ⊂ Rn of N with projection π : νN → N. Using a partition of unity, pick
a smooth positive function r : N → R such that B(q, r(q)) ⊂ νN for every
q ∈ N. We define the map

F : M × Bn −→ N, F (p, s) = π
(
f (p) + r(f (p))s).

Here Bn ⊂ Rn is the unit ball as usual. The map F is a submersion and is
hence transverse to any W ⊂ N. Therefore for some s ∈ Bn the map g = Fs
is transverse to W and is homotopic to f through Fts . �
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5.7.6. Stability. If we perturb a map (with compact domain) that is
transverse, it keeps being transverse: transversality is a stable property. We
introduce this concept in more generality.

A property P of a smooth map f : M → N is stable if for every smooth
homotopy ft : M → N, t ∈ R with f0 = f there is an ε > 0 such that all the
maps ft with |t| < ε share the property P .

Proposition 5.7.9. Let M be compact and f : M → N a smooth map. The
following properties are stable for f :

• f is an immersion,
• f is a submersion,
• f is an embedding,
• f is transverse to a fixed closed submanifold W ⊂ N.

Proof. Consider

F : M × R −→ N × R, F (x, t) =
(
ft(x), t

)
.

The map ft is an immersion or submersion at p ∈ M ⇐⇒ F is an immersion or
submersion at (p, t). Written in coordinates, this is an open condition, hence
it holds on a neighbourhood of M×{0} ⊂ M×R, which contains M× (−ε, ε)

since M is compact.
Suppose that f is an embedding. Then ft is an immersion for t ∈ (−ε, ε).

We prove that, after possibly taking a smaller ε > 0, each ft with t ∈ (−ε, ε) is
injective: if not, there are sequences ti → 0, pi , qi ∈ M with fti (pi) = fti (qi).
Since M is compact we may suppose that pi → p and qi → q. Since f is
injective we have p = q. This gives a contradiction because F is an immersion
at (p, 0) and is hence injective on a small neighbourhood. Finally, injective
immersions are embeddings because M is compact (again).

Stability of transversality is similar and left as an exercise. �

We warn the reader that being an embedding is a stable property (when
the base manifold is compact), while being only injective is not! Consider

ft(x) : R −→ R, ft(x) = (x2 − t2)x.

Here f0 is injective while ft is not so for any t 6= 0. One can use this homotopy
to construct another homotopy ft : S1 → S1 where f0 is a homeomorphism
and ft is not injective for any t 6= 0. Of course f0 is not a diffeomorphism,
since there must be a p ∈ S1 with trivial dfp.

5.8. The Ehresmann Theorem

We prove here a theorem that promotes every proper submersion to a fibre
bundle. We then apply it to the definition of some new fibre bundles.
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5.8.1. The theorem. A fibre bundle is a submersion, but the converse is
often not true: if pick a fibre bundle and remove a random closed subset from
the domain, we still get a submersion that is probably not a fibre bundle. The
converse is however guaranteed if the map is proper.

Theorem 5.8.1 (Ehresmann). Every proper submersion is a fibre bundle.

We start with a lemma.

Lemma 5.8.2. Let f : M → N be a submersion. For every vector field
Y ∈ X(N), there is one X ∈ X(M) that is f -related to Y .

Proof. Every p has an open neighbourhood U(p) where the submersion
looks like a projection Rn×Rk → Rn, and it is easy to construct a vector field
Xp ∈ X(U(p)) that is f -related to Y |f (U). We take a partition of unity {ρp}
subordinate to the covering {U(p)} and define

X(q) =
∑

ρp(q)Xp(q).

We get dfq(X(q)) =
∑
ρp(q)Y (f (q)) = Y (f (q)) and we are done. �

We leave the following as an exercise.

Exercise 5.8.3. Let f : M → N be a proper map, and X ∈ X(M), Y ∈ X(N)

two f -related vector fields. The field X is complete ⇐⇒ Y is.

Proof of the Ehresmann Theorem. Let f : M → N be a proper submer-
sion. Since the theorem is local in the codomain, we can suppose that N = Rn.

Let X1, . . . , Xn be fields in M that are f -related to ∂
∂x1 , . . . ,

∂
∂xn . These

are complete by Exercise 5.8.3. Let Φ1, . . . ,Φn be their flows. The map

f −1(0)× Rn −→ M

(p, x1, . . . , xn) 7−→ Φn
xn(· · · (Φ1

x1 (p)) · · · )

is a diffeomorphism with inverse

q 7−→ (Φ1
−x1 (· · · (Φn

−xn(p)) · · · ), f (q))

where f (q) = (x1, . . . , xn). Therefore f is a fibration. �

Corollary 5.8.4. A submersion between compact manifolds is a fibre bundle.

This corollary is quite useful, because proving that a map is a submersion
is much easier than verifying that it is a fibre bundle.

5.8.2. The Hopf fibration. Consider the 3-sphere in C2, written as

S3 = {(w, z) ∈ C2 | |w |2 + |z |2 = 1}.

The Hopf fibration is the map
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Figure 5.10. Some fibers of the Hopf fibration, projected stereograph-
ically on R3. The counterimage of the circular arcs in S2 shown on the
bottom are portions of tori foliated into circles n 3-space.

S3 −→ CP1

(w, z) 7−→ [w, z ]

Since CP1 is diffeomorphic to S2, we may consider it as a map S3 → S2.

Exercise 5.8.5. The Hopf fibration is a submersion, and hence a fibration
by Ehresmann’s Theorem.

If (w, z) ∈ S3, we find easily that

f −1(f (w, z)) =
{

(e iθw, e iθz)
∣∣ e iθ ∈ S1

}
and hence the fibre of the Hopf fibration is a geometric circle. The Hopf
fibration is a curious fibration S3 → S2 with fibres consisting of circles. It is
clearly not trivial, since the total space is not diffeomorphic to S2 × S1. We
also deduce the non intuitive fact that S3 may be foliated into circles!

Exercise 5.8.6. The stereographic projection Sn \ {N} → Rn sends circles
disjoint from N to circles, and circles containing N to lines.

We deduce that R3 may be foliated into 1-dimensional submanifolds that
consist of one single line and infinitely many circles. Can you visualize it? A
portion is shown in Figure 5.10. The line there is vertical.

We can define a Hopf bundle S2n+1 → CPn with fibre S1 for every n.

5.9. Exercises

Exercise 5.9.1. Let X be a vector field on M. Let γ : R→ M be an integral curve
and p ∈ M a point such that limt→+∞ γ(t) = p. Show that X(p) = 0.
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Exercise 5.9.2. Construct a nowhere-vanishing vector field on each lens space
L(p, q).

Exercise 5.9.3. Let M be a manifold and X, Y ∈ X(M) vector fields. Prove that

[LX ,LY ] = L[X,Y ].

This is an equality of operators on Γ(T hk (M)). The bracket [A,B] of two such opera-
tors is by definition [A,B] = AB − BA. Note that if (h, k) = (1, 0) this is equivalent
to the Jacobi equality on vector fields.

Exercise 5.9.4. Construct a foliation on the torus T = S1 × S1 that has both
compact and non-compact leaves.

Exercise 5.9.5. Let D be a rank-k distribution on a manifold M. Show that D is
integrable if and only if the following holds: for every p ∈ M there is a k-submanifold
S ⊂ M containing p with TqS = Dq for all q ∈ S.

Exercise 5.9.6. Show that each lens space L(p, q) has a foliation in circles.

Exercise 5.9.7. Consider S3 =
{

(z1, z2) ∈ C2 | |z |2 + |w |2 = 1
}
. For every

p = (z1, z2) ∈ S3, pick the complex line

rp =
{

(w1, w2) ∈ C2
∣∣ w1z̄1 + w2z̄2 = 0

}
.

(1) Show that rp ⊂ TpS
3. Therefore {rp}p∈S3 is a plane distribution in S3

called the Hopf distribution.
(2) Is the Hopf distribution integrable?

Exercise 5.9.8. Show that two embedding f , g : R ↪→ R2 are always isotopic.

Exercise 5.9.9. Let M be a connected manifold. Let N ⊂ M be a closed hyper-
surface. Show that M \ N has either one or two connected components. Describe
some examples in both cases.

Exercise 5.9.10. Let f : S1 ↪→ R3 be a knot (that is, a smooth embedding). Show
that there is an affine plane P ⊂ R3 such that π ◦ f : S1 ↪→ P is an immersion, where
π is the orthogonal projection onto P .

Exercise 5.9.11. Let X = M t W be the transverse intersection of two sub-
manifolds M,W ⊂ N. Show that every point p ∈ X has a neighbourhood U in N
and a chart ϕ : U → Rw−x × Rx × Rm−x that transforms W ∩ U and M ∩ U into
Rw−x × Rx × {0} and {0} × Rx × Rm−x with m = dimM,w = dimW, x = dimX.



CHAPTER 6

Cut and paste

Cutting and gluing are simple geometrical constructions which, given
some smooth manifolds (possibly with boundaries or corners) and
additional data where necessary, give rise to new manifolds. On
account of their perspicuity, these methods were much used in the
days of topology of surfaces, and they remain a very powerful tool

C. T. C. Wall, 1960

In this chapter we address the following question: how can we construct
new smooth manifolds? The most effective techniques known consist in build-
ing more complicated smooth manifolds out of simpler pieces, glued altogether
along smooth maps. A piece is usually amanifold with boundary, and the pieces
are glued along (portions of) their boundaries.

Among all kinds of decompositions of manifolds into simple pieces, a promi-
nent role is played by handle decompositions, some very general constructions
that may be used to build any compact smooth manifold in any dimension,
tightly related to the theory of Morse functions. We will then use handle
decompositions to classify all compact surfaces.

6.1. Manifolds with boundary

We introduce a variation of the definition of smooth manifold that allows
the presence of some particular boundary points. This is a very natural notion
and is present everywhere in differential topology and geometry.

Most of the definitions and theorems about smooth manifolds also apply
to manifolds with boundary, with appropriate modifications.

6.1.1. Definition. Consider the upper half-space

Rn+ =
{
x ∈ Rn

∣∣ xn ≥ 0
}

in Rn. Its boundary is the horizontal hyperplane ∂Rn+ = {xn = 0}, while its
interior is the open subset Rn+ \ ∂Rn+ = {xn > 0}.

We now redefine the notions of charts and atlases in a more general context
that allows the presence of boundary points: everything will be like in Section
3.1.1, only with Rn+ replacing Rn.

LetM be a topological space. A Rn+-chart is a homeomorphism ϕ : U → V

from an open set U ⊂ M onto an open set V ⊂ Rn+. A smooth Rn+-atlas in

147
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M is a set {ϕi} of Rn+-charts with ∪Ui = M such that the transition maps ϕi j
are smooth where they are defined. Note that the domain of ϕi j is an open
subset of Rn+ and may not be open in Rn, so the correct notion of smoothness
is that stated in Definition 3.3.5.

Definition 6.1.1. A smooth manifold with boundary is a Haussdorff second-
countable topological space M equipped with a smooth Rn+-atlas.

We will drop the symbol Rn+ from the notation. As in Section 3.1.1, two
compatible atlases are meant to give the same smooth structure.

6.1.2. The boundary. Let M be a smooth manifold with boundary. The
points p ∈ M that are sent to ∂Rn+ via some chart form the boundary ∂M.
There is no possible ambiguity here, since if one chart sends p inside ∂Rn+,
then all charts do (exercise).

The boundary ∂M is naturally a (n − 1)-dimensional smooth manifold
without boundary. Indeed by restricting the charts to ∂M we get an atlas for
∂M with values onto some open sets of the hyperplane ∂Rn+, that we identify
with Rn−1 in the obvious way.

Example 6.1.2. Every open subset U ⊂ Rn+ is a smooth manifold with
boundary ∂U = U ∩ ∂Rn+. The atlas consists of just the identity chart.

The interior of M is int(M) = M \ ∂M. It is a manifold without boundary.

6.1.3. Maps. The notions of smooth maps and diffeomorphisms extend
to manifolds with boundary without any modification. When we have a smooth
map f : M → N between manifolds with boundary, a boundary or interior point
of M may be sent to a boundary or interior point of N: all four combinations
may arise, and the reader is invited to construct examples of all four types.

A diffeomorphism f : M → N between two manifolds with boundary re-
stricts to a diffeomorphism f : ∂M → ∂N of their boundaries.

6.1.4. Regular domains. We now describe one important source of ex-
amples. Let M be a smooth n-manifold without boundary.

Definition 6.1.3. A regular domain is a subset D ⊂ M such that for every
p ∈ D there is a chart ϕ : U → V with p ∈ U and V ⊂ Rn that sends U ∩ D
onto V ∩ Rn+.

Every regular domain D has a natural structure of manifold with boundary,
obtained by taking as an atlas all the charts ϕ of this type. The boundary ∂D
is a codimension-1 submanifold of M.

Exercise 6.1.4. For every a < b, the closed segment [a, b] is a domain in
R and hence a manifold with boundary; the boundary consists of the points a
and b.
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Here is a concrete way to construct regular domains:

Proposition 6.1.5. Let M be a manifold without boundary and f : M → R
a smooth function. If y0 is a regular value, then D = f −1(−∞, y0] is a regular
domain with ∂D = f −1(y0).

Proof. Consider a point p ∈ D. If f (p) < y0, the point p has an open
neighbourhood fully contained in D that can be sent inside the interior of Rn+
via some chart.

If f (p) = y0, by Proposition 3.8.10 there are charts ϕ : U → Rn and
ψ : W → R with p ∈ U, ϕ(p) = 0, ψ(y0) = 0, f (U) ⊂ W such that ψ ◦
f ◦ ϕ−1(x1, . . . , xn) = xn and up to composing with a reversion we may also
require that ψ is orientation-reversing. Therefore ϕ(U ∩D) = Rn+. �

Corollary 6.1.6. The unit disc

Dn =
{
x ∈ Rn

∣∣ ‖x‖ ≤ 1
}

is a domain in Rn with boundary ∂Dn = Sn−1.

Proof. We pick f (x) = ‖x‖2 and get Dn = f −1(−∞, 1]. Every non-zero
value is regular for f . �

Remark 6.1.7. The square [−1, 1]× [−1, 1] is not a regular domain in R2,
because it has corners. More generally, the product M × N of two manifolds
with boundary is not necessarily a manifold with boundary, because if ∂M 6= ∅
and ∂N 6= ∅ then some corners arise. However, if ∂M = ∅ then M × N is
naturally a manifold with boundary and

∂(M × N) = M × ∂N.
For instance, the cylinder S1 × [−1, 1] is a surface with boundary, and the
boundary consists of the two circles S1 × {±1}. More generally Sm ×Dn is a
manifold with boundary and

∂
(
Sm ×Dn

)
= Sm × Sn−1.

6.1.5. Tangent space. The definition of tangent space via derivations
also extends verbatim to manifolds with boundary.1 For every point p ∈ Rn+,
included those on the boundary, we get TpRn+ = Rn. For a general n-manifold
M with boundary, the space TpM is a n-dimensional vector space ∀p ∈ M.

At every boundary point p ∈ ∂M the tangent space Tp∂M is naturally a
hyperplane inside TpM, that divides TpM into two components, the “interior”
and “exterior” tangent vectors, according to whether they point towards the
interior of M or the exterior. This subdivision between interior and exterior is
obvious in Rn+ and transferred to M unambiguously via charts.

As in the boundaryless case, every smooth map f : M → N induces a
differential dfp : TpM → Tf (p)N at every point p ∈ M.

1The definition through curves would need some modifications, so we just abandon it.
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Figure 6.1. The canonical orientation on the disc (given by the canonical
basis e1, e2) induces the counterclokwise orientation on the boundary circle
(left). We may write conveniently the orientations on a surface and on a
curve using (curved) arrows (right)

6.1.6. Orientation. The notion of an orientation for a manifold M also
extends as is to the boundary case, either as a locally coherent assignment of
orientations on the tangent spaces TpM, or equivalently as an oriented atlas.
One nice additional feature is that an orientation on M induces one on its
boundary ∂M, as we now explain.

Let M be an oriented manifold with boundary of dimension n ≥ 2. For
every p ∈ ∂M, we choose an exterior vector v ∈ TpM and note that

TpM = Span(v)⊕ Tp∂M.

With this subdivision, the orientation on TpM induces one on Tp∂M: we
say that a basis v2. . . . .vn for Tp∂M is positive ⇐⇒ the basis v , v2, . . . , vn is
positive for TpM.2 By looking on a chart we see that this is a locally coherent
assignment that does not depend on the choice of the exterior vector v .

We now consider the one-dimensional case, that is slightly different. First,
we define an orientation on a point to be the assignment of a sign ±1. When
not mentioned, a point is always equipped with the +1 orientation: points are
in fact the only manifolds that have a canonical orientation!

If M is an oriented 1-manifold, we orient every boundary point p ∈ ∂M as
+1 or −1 depending on whether the vectors pointing outside in the line TpM
are positive or negative.

Every domain in Rn is naturally oriented by the canonical basis e1, . . . , en,
so for instance the disc Dn has a canonical orientation. This canonical orien-
tation induces an orientation on the boundary sphere Sn−1. The case n = 2

is shown in Figure 6.1.

6.1.7. Immersions, embeddings, submanifolds. Let M,N be manifolds
with boundary. We define an immersion as usual as a map f : M → N

with injective differentials, and then an embedding as an injective immersion
f : M → N that is a homeomorphism onto its image.

2This is not the only possible choice one could make, and is usually called the outward-
first convention.
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Figure 6.2. Different kinds of compact 1-dimensional submanifolds in-
side the half-plane R2

+.

Definition 6.1.8. Let N be a manifold. A submanifold is the image of an
embedding f : M ↪→ N.

The reader should note that, as opposite to Definition 3.7.1, we are not
saying that a submanifold should look locally like some simple model. This is
by far not the case here: Figure 6.2 shows that many different kinds of local
configurations arise already when one embeds a segment in the half-plane R2

+.
In higher dimensions things may also get more complicated.

In some cases, we may require the submanifold to satisfy some require-
ments. For instance, a submanifold M ⊂ N is neat if

• ∂M = M ∩ ∂N, and
• M meets ∂N transversely, that is at every p ∈ ∂M we have TpM +

Tp∂N = TpN.

None of the embedded submanifolds in Figure 6.2 is neat.

6.1.8. Fibre bundles and vector bundles. The theory of bundles extends
harmlessly to manifolds with boundary with minor obvious modifications. On
a fibre bundle E → M, we can allow M to have boundary, and in that case
the trivialising neighborhoods will be diffeomorphic to open subsets of Rn+, or
we can allow the fibre F to have boundary; however, we do not admit both M
and F to have boundary, because some corners would arise and E would not
be a smooth manifold.

In particular the theory of vector bundles also work on manifolds M with
boundary. Every manifold M has its tangent bundle TM together with all the
other tensor bundles, so we can talk about vector fields and tensor fields in M.

6.1.9. Vector fields. The behaviour of a vector field X ∈ X(M) at the
boundary ∂M is often important. We say that X is tangent, pointing outward,
or inward at the boundary if X(p) is so at every boundary point p ∈ ∂M.

If a vector field X ∈ X(M) is tangent to the boundary, many facts on vector
fields that we proved in the previous chapters are still valid for X with only
minor obvious modifications: every point is contained in a maximal integral
curve, if X is complete we get a flow on M, and if M is compact then X is
necessarily complete. A flow on M restricts to a flow on ∂M. We can define
the Lie derivative LX of any tensor field along X.
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If X is not tangent to the boundary the notions of integral curve and flow
are evidently more problematic, but it still possible to define the Lie derivative
LX . Details are left to the reader.

6.1.10. Homotopy, isotopy, ambient isotopy. The notions of smooth
homotopy, isotopy, and ambient isotopy extend verbatim to manifolds with
boundary. An ambient isotopy of a manifold M with boundary restricts to an
ambient isotopy of its boundary. An appropriate isotopy extension theorem
holds in this context, where the target manifold is allowed to have boundary
as long as the isotopy does not cross it:

Theorem 6.1.9. Let M be compact without boundary, and let N may pos-
sibly have boundary. Let f , g : M → int(N) be embbeddings that are isotopic
through embeddings ft : M → int(N). There is an ambient isotopy of N relat-
ing f and g which is constantly the identity on ∂N.

Proof. The same proof of Theorem 5.3.3 applies; it suffices to stay away
from the boundary ∂N in all the arguments, so that the vector field Y will be
constantly vertically tangent to it. �

6.1.11. The unit disc bundle. Let E → M be a vector bundle over a
manifold M without boundary. Fix a Riemannian metric g for E. The unit
disc bundle is the submanifold with boundary

D(E) =
{
v ∈ E

∣∣ ‖v‖ ≤ 1
}
.

The projection π restricts to a projection π : D(E) → M and one sees as in
Proposition 4.5.7 that this is a disc bundle (a fibre bundle with F = Dk) and
that it does not depend on g up to isotopy (that is, up to an isomorphism of
E → M that is isotopic to the identity).

The boundary of D(E) is the unit sphere bundle S(E), already consid-
ered in Section 4.5.5. The interior of D(E) may be given a bundle structure
isomorphic to E → M by shrinking E.

6.1.12. Closed tubular neighbourhoods. Let N ⊂ int(M) be a com-
pact submanifold without boundary contained in the interior of a manifold
M possibly with boundary. We know that the submanifold N has a tubular
neighbourhood νN in the interior int(M) of M.

Definition 6.1.10. A closed tubular neighbourhood of N in M is the unit
disc bundle of any tubular neighbourhood νN of N.

To better distinguish a tubular neighbourhood from a closed tubular neigh-
bourhood, we can call the first an open tubular neighbourhood. We will use
the notation ν̄N for a closed tubular neighbourhood; note that the interior of
a closed tubular neighbourhood may in turn be given the structure of an open
tubular neighbourhood, so one can switch easily from open to closed and back.
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A closed tubular neighbourhood is a fibre bundle with compact base N and
compact fibre Dk , and is hence also compact (exercise). For this reason it is
sometimes better to work with closed tubular neighbourhoods; for instance,
we may promote isotopy to ambient isotopy:

Theorem 6.1.11. Let M be a manifold possibly with boundary and N ⊂
int(M) be a compact submanifold without boundary. The submanifold N has
a unique closed tubular neighbourhood ν̄N up to ambient isotopy in M.

Proof. We already know that tubular neighbourhoods are isotopic, and
hence also the closed tubular neighbourhoods are. Since these are compact,
the isotopy may be promoted to an ambient isotopy. �

The same results apply ifM has boundary, as long as N is entirely contained
in the interior of M.

6.1.13. Collar. Let M be a manifold with boundary, and N be the union
of some connected components of ∂M. A collar of N in M is an embedding

i : N × [0, 1) ↪−→ M

such that i(p, 0) = p for every p ∈ N. The collars should be interpreted as
the tubular neighbourhoods of the boundary.

Proposition 6.1.12. The manifold N has a unique collar up to isotopy.

The proof is the same as that for tubular neighbourhoods, and we omit
it. A closed collar is the restriction of an open collar to N × [0, 1/2]. If N is
compact, the closed collar is unique up to ambient isotopy.

Exercise 6.1.13. For every manifold M the inclusion int(M) ↪→ M is a
homotopy equivalence.

Hint. Use a collar for ∂M to define the homotopy inverse. �

6.1.14. One-dimensional manifolds. We leave to the reader to solve the
following exercise, that fully classifies all connected one-dimensional manifolds.

Exercise 6.1.14. Every connected one-dimensional manifold is diffeomor-
phic to one of the following:

S1, (0, 1), [0, 1), [0, 1].

In particular S1 is the unique connected compact one-dimensional manifold
without boundary.
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6.1.15. Discs. Let M be a n-manifold, possibly with boundary. A disc in
M is an embedding f : Dn ↪→ int(M). It may be seen as a closed tubular of
f (0). We can now prove this remarkable theorem.

Theorem 6.1.15 (The Disc Theorem). Let M be a connected smooth n-
manifold, possibly with boundary. Two discs f , g : Dn ↪→ int(M) are always
ambiently isotopic, possibly after pre-composing g with a reflection.

Proof. We argue as in Proposition 5.6.5 using Theorem 6.1.11. �

With a little abuse we sometimes call a disc the image of an embedding
f : Dn ↪→ M. With this interpretation, which disregards the parametrisation,
two discs are always ambiently isotopic. The reader should appreciate how
powerful this theorem is, already in the only apparently simpler case M = Rn,
for instance in dimension n = 2.

The Disc Theorem was proved by Palais in 1960.

6.1.16. Spheres. We end this section by describing how every sphere de-
composes beautifully into two simple submanifolds with boundary.

For every 0 < k < n we identify Rn = Rk × Rn−k and write a point of
Rn as (x, y) with x ∈ Rk and y ∈ Rn−k . By radial expansion we may easily
construct a homeomorphism between Dn and Dk ×Dn−k , which restricts to a
homeomorphism between Sn−1 and the topological boundary of Dk × Dn−k .
(Recall that Dk × Dn−k is not a smooth manifold because its boundary has
corners.) The latter in turn decomposes into two closed subsets

Sk−1 ×Dn−k , Dk × Sn−k−1

whose intersection is Sk−1×Sn−k−1. Having understood this simple topologi-
cal phenomenon, we write an analogous decomposition of Sn−1 in the smooth
setting. We write

Sn−1 =
{

(x, y) ∈ Rk × Rn−k
∣∣ ‖x‖2 + ‖y‖2 = 1

}
.

We now consider the subsets

A =
{

(x, y) ∈ Sn−1
∣∣ ‖x‖2 ≤ 1

2

}
, B =

{
(x, y) ∈ Sn−1

∣∣ ‖y‖2 ≤ 1
2

}
.

These are both domains, since 1
2 is a regular value for the maps (x, y) 7→ ‖x‖2

or ‖y‖2 restricted on Sn−1 (exercise). The common boundary

A ∩ B =
{

(x, y) ∈ Sn−1
∣∣ ‖x‖2 = ‖y‖2 = 1

2

}
is diffeomorphic to Sk−1 × Sn−k−1 via the map (x, y) 7→ (

√
2x,
√

2y). We
now identify the domains: the map

A −→ Dk × Sn−k−1, (x, y) 7−→
(√

2x,
y

‖y‖

)
is a diffeomorphism, with inverse (x, y) 7→

√
2

2

(
x,
√

2− ‖x‖2y
)
. We have an

analogous diffeomorphism between B and Sk−1 ×Dn−k .
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Figure 6.3. A solid torus is a 3-manifold diffeomorphic to D2×S1. The
stereographic projection sends the solid torus B ⊂ S3 to the standard one
shown here. Its complement in S3 is also a solid torus A. Can you see it?

We have discovered that Sn−1 decomposes into two domains A ∼= Dk ×
Sn−k−1 and B ∼= Sk−1 ×Dn−k with common boundary Sk−1 × Sn−k−1. We
also note that A and B are closed tubular neighborhoods of the spheres

Sn−k−1 × {0} {0} × Sk−1.

6.1.17. The 3-sphere. We analyse the 3-sphere with more details. The
discussion above shows that S3 decomposes into A ∼= S1×D2 and B ∼= D2×S1

along a middle torus A ∩ B ∼= S1 × S1. The stereographic projection

ϕ(x, y , z, w) =
2

1− w (x, y , z)

sends the middle torus

A ∩ B =

{√
2

2
(cos θ, sin θ, cosϕ, sinϕ)

}
to the subset {

2√
2− sinϕ

(cos θ, sin θ, cosϕ)

}
.

A simple computation shows that this is the standard torus of Example 3.8.6
with parameters a = 2 and b = 2

√
2. The interior of a standard torus is called

a solid torus and is the domain B ∼= D2 × S1 stereographically projected into
R3, see Figure 6.3. Its complement is another solid torus A. The 3-sphere S3

decomposes into two solid tori.

6.2. Cut and paste

We now introduce some basic cut and paste manipulations that allow to
modify the topology of a smooth manifold.

6.2.1. Punctures. Let M be a connected smooth n-manifold, possibly
with boundary. The simplest topological modification we can make on M is to
remove a point p ∈ int(M). By Corollary 5.3.4, the new manifoldM ′ = M\{p}
does not depend (up to diffeomorphism) on p, and we say that it is obtained
by puncturing M.
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Figure 6.4. How to cut a manifold along a two-sided hypersurface.

A variation of this modification consists of picking a disc D ⊂ int(M) and
removing its interior: the new manifold

M ′′ = M \ int(D)

has the same boundary components as M, plus one new sphere ∂D. The
manifold M ′′ does not depend (up to diffeomorphisms) on the chosen disc D
by the Disc Theorem 6.1.15.

Exercise 6.2.1. The manifolds M ′ and M ′′ \ ∂D are diffeomorphic.

Exercise 6.2.2. If M = Sn, we get M ′ ∼= Rn and M ′′ ∼= Dn.

Exercise 6.2.3. If M = Dn then M ′′ ∼= Sn−1 × [−1, 1].

Exercise 6.2.4. If dimM ≥ 3 then π1(M ′) ∼= π1(M ′′) ∼= π1(M).

Hint. Use Van Kampen. �

6.2.2. Cutting along submanifolds. We now extend the above manipu-
lation from points to arbitrary compact submanifolds.

Let M be a smooth manifold and N ⊂ int(M) a compact submanifold of
some codimension k ≥ 1. The complement M ′ = M \N is a new manifold. As
above, a variation consists in taking a closed tubular neighbourhood ν̄N and
considering

M ′′ = M \ int(ν̄N).

The manifold M ′′ has a new compact boundary component ∂ν̄N, which is a
Sk−1-bundle over N. The manifold M ′′ only depends on N and not on the
tubular neighbourhood ν̄N since it is unique up to ambient isotopy.

This operation is particularly interesting if N has codimension 1 and is
two-sided, that is has trivial normal bundle νN ∼= N × R. For instance, this
holds if both M and N are orientable: see Proposition 5.6.7. In this case the
new manifold M ′′ has two new boundary components, both diffeomorphic to
N. See Figure 6.4. We say that M ′′ is obtained by cutting M along N.

Example 6.2.5. By cutting Sn along its equator Sn−1 we get two discs.
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Figure 6.5. How to paste two boundary components N1 and N2 via a
diffeomorphism ϕ. To get a new smooth manifold, we pick two collars
and we make them overlap.

If N ⊂ M are both connected and N has codimension one, the new man-
ifold M ′′ may be connected or not; in the first case, we say that N is non-
separating, and separating in the second.

6.2.3. Pasting along the boundary. Pasting is of course the inverse of
cutting. Let M be a (possibly disconnected) manifold, let N1, N2 be two
boundary components of M, and ϕ : N1 → N2 be a diffeomorphism. We now
define a new manifold M ′ obtained by pasting M along ϕ.

A naïve construction would be to define M ′ as M/∼ where ∼ is the equiv-
alence relation that identifies p ∼ ϕ(p) for all p ∈ N1. The result is indeed a
topological manifold, but it is not obvious to assign a smooth atlas toM/∼. So
we abandon this route, and we define M ′ instead by overlapping open collars
as suggested by Figure 6.5.

Here are the details. We identify two disjoint closed collars of N1 and N2

in M with N1× [0, 1] and N2× [0, 1], where Ni = Ni×{0}. The manifold M ′ is
obtained from M by first removing N1 and N2, and then identifying the open
subsets N1×(0, 1) and N2×(0, 1) via the gluing map Φ: (p, t) 7→

(
ϕ(p), 1−t

)
.

The smooth structure on M ′ is now easily induced by that of M: it suffices to
take as an atlas all the charts ϕ◦ (π|U)−1 : U ′ → V where π : M \ (N1∪N2)→
M ′ is the projection and ϕ : U → V is a chart of M \ (N1 ∪ N2) such that
π|U : U → U ′ is a diffeomorphism.

Proposition 6.2.6. The manifold M ′ depends up to diffeomorphism only
on M and on the isotopy class of ϕ.

Proof. Different closed collars are ambiently isotopic and hence produce
diffeomorphic manifoldsM ′. Let us identify the glued part ofM ′ with the open
product N1× (0, 1). Let Ft be an isotopy between ϕ0 = F0 and ϕ1 = F1, that
we rescale as being constant at t ∈ [0, ε] and t ∈ [1− ε, 1]. A diffeomorphism
between the resulting manifolds M ′0 and M ′1 is constructed as follows: it is the
identity outside the open product, and (p, t) 7→

(
F−1
t (ϕ0(p)), t

)
on it. �

The manifold M ′ contains a copy N of N1
∼= N2, embedded as N =

N1 × {1/2} in the glued product N1 × (0, 1) ⊂ M ′. If we cut M ′ along N we
recover back our original M.
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Figure 6.6. If the gluing map ϕ is orientation-reversing, the orientations
extend to the new manifold M ′.

Remark 6.2.7. Suppose that M is oriented. Both N1 and N2 inherit an
orientation. If ϕ is orientation-reversing, the gluing map Φ is orientation-
preserving and hence the orientation of M induces naturally an orientation on
M ′. So, if you want orientations to extend, you need to glue along orientation-
reversing maps ϕ. See Figure 6.6.

Exercise 6.2.8. The smooth manifold M ′ is homeomorphic to the topolog-
ical manifold M/∼ obtained from M by identifying p ∼ ϕ(p) for every p ∈ N1.

In light of this fact, we will often think of M ′ simply as the topological
space M/∼, equipped with an appropriate smooth atlas induced by ϕ.

6.2.4. Self-diffeomorphisms. Proposition 6.2.6 suggests that it is impor-
tant to understand the self-diffeomorphisms of a manifold up to isotopy. We
now solve this (generally difficult) problem for S1.

Two self-diffeomorphisms of an orientable manifold M are cooriented if
they either both preserve or both invert the orientation.

Exercise 6.2.9. If two self-diffeomorphisms of an orientable manifold M
are isotopic, they are cooriented.

The converse is also sometimes true.

Proposition 6.2.10. Two cooriented diffeomorphisms of S1 are isotopic.

Proof. Let ϕ0, ϕ1 : S1 → S1 be two cooriented diffeomorphisms. They
lift to smooth maps ϕ̃0, ϕ̃1 : R → R between their universal covers, that are
monotone (that is, ϕ̃′0(t), ϕ̃′1(t) > 0 (or < 0) ∀t) and periodic (that is,
ϕi(t + 2π) = ϕi(t) + 2π ∀t). The convex combination

ϕ̃t(x) = (1− t)ϕ̃0(x) + tϕ̃1(x)

is also periodic and monotone, hence it descends to a monotone map ϕt : S1 →
S1. Each ϕt is hence a covering, but since it is homotopic to ϕ0 it is a
diffeomorphism: we get an isotopy between ϕ0 and ϕ1. �

This fact has important consequences when we want to glue two surfaces
along their boundaries. Let Σ be a (possibly disconnected) surface and let
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C1, C2 be two compact boundary components of Σ. Each Ci is diffeomorphic
to S1 by Exercise 6.1.14. We want to glue them along a diffeomorphism
ϕ : C1 → C2 as in Figure 6.5. The proposition tells us that there are only two
possible gluing maps ϕ up to isotopy.

6.2.5. Doubles. Here is a simple kind of pasting that applies to every
manifold with boundary.

The double DM of a manifold M with boundary is obtained by taking two
identical copies M1,M2 of M and defining ϕ : ∂M1 → ∂M2 as the identity
map, that is the one that sends every point in ∂M1 to its corresponding point
in ∂M2. Then DM is obtained by pasting M1 tM2 along ϕ.

The doubled manifold DM has no boundary. If M is compact, then DM
also is.

Exercise 6.2.11. The double of Dn is diffeomorphic to Sn. The double of
a cylinder S1 × [0, 1] is diffeomorphic to a torus S1 × S1. What is the double
of a Möbius strip?

6.2.6. More theorems extended to manifolds with boundary. We note
that the double DM contains a copy of M as a closed domain, so in partic-
ular we have proved that every manifold with boundary is contained in some
manifold without boundary as a closed domain. This fact is often useful to
quickly extends theorems from manifolds without boundary to manifolds with
boundary. This applies for instance to Whitney’s embedding theorem.

Theorem 6.2.12. For every smooth m-manifold M with boundary there is
a proper embedding M ↪→ R2m+1.

Proof. The Whitney embedding Theorem 3.11.3 furnishes a proper em-
bedding DM ↪→ R2m+1. The inclusion M ↪→ DM is also a proper embedding,
so the composition M ↪→ R2m+1 also is. �

It also applies to smoothenings of continuous maps.

Theorem 6.2.13. Every continuous map f : M → N between manifolds
with boundary is homotopic to a smooth one.

Proof. Using a collar for N we can easily push f inside the interior of
N, that is we can homotope f to a map whose image lies in int(N). The
resulting map doubles to a continuous map DM → int(N), which is in turn
homotopic to a smooth map g by Theorem 5.6.8. We conclude by restricting
g to M ⊂ DM. �

Theorem 6.2.14. Two smooth maps f , g : M → N between manifolds with
boundary are continuously homotopic ⇐⇒ they are smoothly homotopic.

Proof. Let f and g be continuously homotopic. Using collars for M and
N we can smoothly homotope f and g so that their images lie in int(N) and
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each f and g is constant along the fibres of the collar of M. By doubling,
these maps extend to smooth maps DM → int(N), that are still homotopic.
By Corollary 5.6.9 there is a smooth homotopy relating them, that restricts
to a smooth homotopy between f and g. �

6.2.7. Exotic spheres. We now investigate the following apparently in-
nocuous construction: we pick a self-diffeomorphism ϕ : Sn−1 → Sn−1 and
we glue two copies of Dn along ϕ, thus getting a new manifold M without
boundary. What kind of smooth manifold M do we get?

Exercise 6.2.11 says that if ϕ = id then M is diffeomorphic to Sn. More
generally, in the topological category, the answer does not depend on ϕ.

Proposition 6.2.15. The manifold M is homeomorphic to Sn. If ϕ extends
to a self-diffeomorphism of Dn, then M is also diffeomorphic to Sn.

Proof. By Exercise 6.2.8 the manifold M is homeomorphic to the topo-
logical manifold D1 ∪ϕ D2 obtained by identifying p with ϕ(p). We define a
continuous map

F : D1 ∪id D2 −→ D1 ∪ϕ D2

by coning ϕ, that is: if x ∈ D1 then F (x) = x , while if x ∈ D2 we set

F (x) =

{
‖x‖ϕ

(
x
‖x‖
)

if x 6= 0

0 if x = 0

The map F is a homeomorphism. By Exercise 6.2.11 we have D1∪idD2
∼= Sn,

and this completes the proof that M is homeomorphic to Sn.
If ϕ extends to a diffeomorphism Φ: Dn → Dn, we can replace F |D2

with
Φ and get a diffeomorphism. More precisely, to get a smooth map we need to
smoothen it at the equator ∂Dn like when we compose two smooth isotopies
(details are left as an exercise). �

Corollary 6.2.16. If n = 2 then M is diffeomorphic to S2.

Proof. Up to isotopy, the gluing map ϕ : S1 → S1 is either the identity or
a reflection z 7→ z̄ , and they both extend to self-diffeomorphisms of D2. �

The striking fact here is that when n ≥ 7 the smooth manifold M may
not be diffeomorphic to Sn, despite being homeomorphic to it. This implies
in particular that there are some crazy self-diffeomorphisms of Sn that are not
isotopic neither to the identity nor to a reflection, and moreover they do not
extend to self-diffeomorphisms of Dn.

Remark 6.2.17. A smooth manifold homeomorphic but not diffeomorphic
to Sn is called an exotic sphere. In dimension n ≥ 7 there are many exotic
spheres, and they are all constructed in this way. On the other hand, there
are no exotic spheres in dimensions n = 1, 2, 3, 5, 6. The dimension 4 remains
a total mystery: we do not know if there are exotic spheres, and if there are,
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they are certainly not constructed in this way (that is, by gluing two discs).
Even more puzzling, we know that the number of exotic spheres (considered
up to diffeomorphism) is finite in every dimension – for instance these are 27
in dimension 7 – except in dimension four, where the number of exotic spheres
could be any value from 0 to ∞, both extremes included, as far as we know.

6.3. Connected sums and surgery

We have learned how to cut a manifold along a submanifold, and how to
glue two boundary components along a diffeomorphism. We now introduce
some more elaborate manipulations that combine cutting and pasting. The
most important ones are the connected sum that “connects” two manifolds
along a tube, and the more general surgery that roughly replaces a k-sphere
(with trivial normal bundle) with a (n− k − 1)-sphere. The boundary versions
of these manipulations are also important.

6.3.1. Definition. LetM1 andM2 be two connected oriented n-manifolds,
possibly with boundary. We now define a new oriented manifoldM1#M2 called
the connected sum of M1 and M2.

To do so, we consider the orientation-reversing diffeomorphism

α : int(Dn) \ {0} −→ int(Dn) \ {0}, α(v) =
(

1− ‖v‖
) v
‖v‖

and two arbitrary embeddings

f1 : Dn ↪−→ int(M1), f2 : Dn ↪−→ int(M2)

such that f1 is orientation-preserving and f2 is orientation-reversing. Then we
glue the punctured manifolds M1 \ f1(0) and M2 \ f2(0) via the diffeomorphism

f2 ◦ α ◦ f −1
1 : f1

(
int(Dn) \ {0}

)
−→ f2

(
int(Dn) \ {0}

)
.

The resulting smooth manifold is the connected sum of M1 and M2 and is
denoted as

M1#M2.

Since f2 ◦ α ◦ f −1
1 is orientation-preserving, the manifold M1#M2 is naturally

oriented. You may visualise an example in Figure 6.7. By the Disc Theorem
6.1.15 the manifold M1#M2 does not depend, up to orientation-preserving
diffeomorphisms, on the maps ϕ1 and ϕ2.

Remark 6.3.1. The connected sum M1#M2 may also be described as a
two-steps cut-and-paste operation, where:

(1) first, we remove fi
(

int(Di)
)
from Mi , thus creating a new boundary

component fi(∂Di) for Mi , ∀i = 1, 2;
(2) then, we paste the two new boundary components via the diffeomor-

phism f2 ◦ f −1
1 : ∂D1 → ∂D2.
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M M'

M#M'

Figure 6.7. The connected sum of two compact surfaces.

We leave as an exercise to prove that this definition ofM1#M2 is equivalent to
the one given above. In light of the exotic spheres construction, it is important
to require the gluing map to be f2 ◦ f −1

1 and not any map.

We may see # as a binary operation on the set3 of all oriented connected
n-manifolds considered up to diffeomorphism.

Proposition 6.3.2. The connected sum is commutative and associative,
and Sn is the neutral element. That is, there are diffeomorphisms

M#N ∼= N#M, M#(N#P ) ∼= (M#N)#P, M#Sn ∼= M.

Proof. Commutativity is obvious. Associativity holds because we can sep-
arate the discs using isotopies, so that both connected sums can be performed
simultaneously.

To construct M#Sn we follow Remark 6.3.1. We choose ϕ2 : Dn ↪→ Sn

to be the standard parametrisation of the upper hemisphere. The two-steps
operation consists of substituting the upper hemisphere with the lower one
along the same map, and this does not change the manifold M. �

The connected sum may be defined also for non-oriented manifolds, but in
this case the resulting manifoldM#N is not unique: there are two possibilities,
and these may produce non-diffeomorphic manifolds in some cases. We have
used orientations here only to simplify the theory.

6.3.2. Compact surfaces. Enough for the theory, we need some exam-
ples. One-dimensional manifolds are not very exciting, so we turn to surfaces.
We already know some compact connected surfaces, possibly with boundary:

S2, RP2, D2, S1 × [0, 1], S1 × S1, M, K

3The suspicious reader may object that smooth manifolds do not form a set. However,
if we consider them up to diffeomorphism, we may use Whitney’s embedding theorem and
see them as subsets of some Rn, and the subsets of Rn of course form a set.
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Figure 6.8. The ∂-connected sum of two manifolds with boundary.

whereM and K are the compact Möbius strip, considered with its (connected!)
boundary, and the Klein bottle. Can we add more surfaces to this list?

Definition 6.3.3. The genus-g surface Sg is the connected sum

Sg = T# . . .#T︸ ︷︷ ︸
g

of g copies of the torus T = S1 × S1.

By convention, the surface of genus zero S0 is the sphere S2, and that of
genus one S1 is the torus. We have

Sg#Sh ∼= Sg+h.

Figure 6.7 shows that S2#S1
∼= S3. Note that the torus T is mirrorable, so

each time we make a connected sum with T it is not really important which
orientation we put on T . In fact each Sg is easily seen to be mirrorable.

6.3.3. ∂-connected sum. A ∂-connected sum is an operation similar to
the connected sum, where a bridge is added to connect two portions of the
boundaries as in Figure 6.8.

The construction goes as follows. We consider the half-disc Dn+ = Dn ∩
Rn+. We define Dn−1 = Dn+ ∩ {xn = 0} and int(Dn+) = Dn+ ∩ {‖x‖ < 1}. We
consider the same orientation-reversing diffeomorphism as above

α : int(Dn+) \ {0} −→ int(Dn+) \ {0}, α(v) =
(

1− ‖v‖
) v
‖v‖ .

LetM1 andM2 be two oriented n-manifolds with boundary. Pick two embedded
half-discs

f1 : Dn+ ↪−→ M1, f2 : Dn+ ↪−→ M2

such that f −1
i (∂Mi) = Dn−1 as in Figure 6.8-(left). We require f1 to be

orientation-preserving and f2 orientation-reversing. Then we glue the manifolds
M1 \ f1(0) and M2 \ f2(0) via the diffeomorphism

f2 ◦ α ◦ f −1
1 : f1

(
int(Dn+) \ {0}

)
−→ f2

(
int(Dn+) \ {0}

)
.
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Figure 6.9. The ∂-connected sum with a disc does not change the man-
ifold up to diffeomorphism.

The resulting oriented smooth manifold with boundary is the ∂-connected sum
of M1 and M2 and is denoted as

M1#∂M2.

See Figure 6.8. As above one proves that the resulting manifold depends only
on the connected components of ∂M1 and ∂M2 intersecting the half-discs.
In particular, if both M1 and M2 have connected boundary, then M1#∂M2 is
uniquely determined.

Proposition 6.3.4. If ∂M1 and ∂M2 are connected, we have

∂(M1#∂M2) ∼= ∂M1#∂M2.

In general we have M#∂D
n ∼= M.

Proof. The manipulation restricted to the boundaries is a connected sum,
so the first isomorphism holds. The second is sketched in Figure 6.9, and
we leave the tedious exercise of writing the correct diffeomorphism to the
courageous reader. �

6.3.4. Pasting manifolds along submanifolds. We now introduce a gen-
eralisation of the connected sum, in which we glue manifolds along disc bundles
instead of just discs.

Pick 0 ≤ k < n. Let M1 and M2 be two n-manifolds possibly with bound-
ary, and let N1 ⊂ int(M1) and N2 ⊂ int(M2) be two diffeomorphic compact
k-submanifolds without boundary. We suppose that there is a vector bundle
isomorphism ϕ : νN1 → νN2 between the two normal bundles, both realised
as tubular neighborhoods νN1 ⊂ int(M1) and νN2 ⊂ int(M2). We fix a Rie-
mannian metric on one normal bundle νN1 and transport it to the other νN2

along ϕ, to get an induced isomorphism of the corresponding closed tubular
neighbourhoods ϕ : ν̄N1 → ν̄N2.

As above, we define the self-diffeomorphism

α : int(ν̄N1) \ N1 −→ int(ν̄N1) \ N1, α(v) =
(

1− ‖v‖
) v
‖v‖ .
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We now glue the manifolds M1 \ N1 and M2 \ N2 via the diffeomorphism

ϕ ◦ α : int(ν̄N1) \ N1 −→ int(ν̄N2) \ N2.

The resulting manifold M is obtained by pasting M1 and M2 along the sub-
manifolds N1 and N2. It is an operation that can be done as soon as the
submanifolds N1 and N2 have isomorphic normal bundles; note however that,
as opposite to connected sum, the choice of the vector bundle isomorphism ϕ

is important here, because two different isomorphisms may not be isotopic in
many interesting cases, even if they are co-oriented.

Remark 6.3.5. As in Remark 6.3.1, the construction ofM may be described
alternatively as a two-steps cut-and-paste operation, where:

(1) first, we remove from Mi the open submanifold int(ν̄Ni), thus creat-
ing a new boundary component ∂ν̄Ni ;

(2) then, we paste the two new boundary components via ϕ.

6.3.5. Surgery. There is a particular type of pasting that is so important
to deserve a separate name.

Let M be a n-manifold, possibly with boundary, and Σ ⊂ int(M) be a k-
sphere (that is, a submanifold diffeomorphic to Sk) with trivial normal bundle,
for some 0 ≤ k ≤ n − 1.

As in Section 6.1.16, we set Rk+1×Rn−k = Rn+1 and consider Sk×{0} ⊂
Sn. We have seen that the normal bundle of Sk ×{0} in Sn is also trivial. We
can therefore paste M and Sn along the k-spheres Σ and Sk ×{0}. To do so,
we must choose a normal bundle isomorphism ϕ : νΣ→ νSk . This operation
is called a surgery along the sphere Σ ⊂ int(M). The resulting manifold M ′

depends on the chosen isomorphism ϕ.

Remark 6.3.6. We have seen in Section 6.1.16 that Sn decomposes into
Sk ×Dn−k and Dk+1 × Sn−k−1. Therefore, by Remark 6.3.5, a surgery may
also be described as follows: whenever we find a domain in M diffeomorphic
to Sk × Dn−k , we first remove its interior, thus creating a new boundary
Sk×Sn−k−1, and then glue Dk+1×Sn−k−1 to it via the identity map. Shortly:
we substitute Sk ×Dn−k with Dk+1 × Sn−k−1.

Remark 6.3.7. A surgery along a 0-sphere is like a connected sum: we
replace S0 × Dn, that is two disjoint discs, with D1 × Sn−1, that is a tube.
When both points in S0 are contained in the same connected component, this
may be interpreted as a self-connected sum of that component.

The inverse operation of a surgery along a k-sphere is naturally a surgery
along a (n − k − 1)-sphere.

Example 6.3.8. Le M be an orientable 3-manifold, possibly with boundary.
A knot in M is a submanifold K ⊂ int(M). Since M is orientable, we will
prove that the normal bundle νK of K in M is trivial. The closed tubular TBD alla fine
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neighbourhood ν̄K ⊂ int(M) is therefore diffeomorphic to a solid torus S1 ×
D2. A surgery along K consists of replacing the solid torus S1 × D2 with
another solid torus D2 × S1. This operation typically modifies drastically the
topology of the ambient manifold.

6.3.6. Pasting along submanifolds in the boundary. There is of course
a boundary version of pasting along submanifolds, where the submanifolds lie
in the boundary. This operation generalises the ∂-connected sum and will be
fundamental in the next section.

Let M1 and M2 be two n-manifolds with boundary, and let N1 ⊂ ∂M1 and
N2 ⊂ ∂M2 be two compact k-submanifolds without boundary. Let ϕ : νN1 →
νN2 be an isomorphism of their normal bundles in ∂M1 and ∂M2.

We now define a new manifold M ′ obtained by pasting M1 and M2 along
the submanifolds N1 and N2. The operation is the same as above, only with
half-discs instead of disc bundles.

Each closed tubular neighbourhood ν̄Ni ⊂ Mi is a Dn−k−1-bundle over Ni ,
and using collars we may extend it to a half-disc Dn−k+ -bundle ν̄+Ni that is a
“half”-tubular neighbourhood of Ni in Mi . The diffeomorphism ϕ also extends
to ϕ : ν̄+N1 → ν̄+N2. We glue the manifolds M1 \ N1 and M2 \ N2 via the
diffeomorphism

ϕ ◦ α : int(ν̄+N1) \ N1 −→ int(ν̄+N2) \ N2

where α and int(ν̄Ni) are defined on every fibreDn−k+ as we did for ∂-connected
sums.

The ∂-connected sum corresponds to the case where N1 and N2 are points.

6.4. Handle decompositions

We now show that every compact manifold M decomposes into finitely
many simple blocks, called handles. This important procedure is called a handle
decomposition.

6.4.1. Handles. We have described in the previous section the operation
of pasting two manifolds along submanifolds in their boundaries. We now
introduce a particularly important case.

Let M be a n-manifold with boundary. Let Σ ⊂ ∂M be a (k − 1)-sphere
with trivial normal bundle νΣ ⊂ ∂M, with 0 < k ≤ n. A k-handle addition
on M is the operation that consists of pasting M with Dn along the (k − 1)-
spheres Σ and Sk−1 × {0} ⊂ Sn−1. As in Section 6.1.16, we see Dn inside
Rn = Rk × Rn−k .

The result is a new smooth manifold M ′, which depends on the (isotopy
class of the) chosen identification of the trivial normal bundles of Σ and of
Sk−1 × {0}.

A n-handle addition is the glueing of a disc Dn to a boundary component
Σ ⊂ ∂M diffeomorphic to Sn−1 via a diffeomorphism ∂Dn → Σ. We also
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Figure 6.10. An alternative description of the attachment of a k-handle
to M.

define a 0-handle addition to be simply the addition of a disjoint connected
component Dn, with no attachment.

6.4.2. Local model. To better visualise what is going on, we furnish a
concrete local model of a k-handle addition, drawn in Figure 6.10.

Let Σ ⊂ ∂M be a (k − 1)-sphere with trivial normal boundary. It has a
half-tubular neighbourhood in M is diffeomorphic to Σ × Rn−k × R+ and we
identify it with the manifold with boundary

U =
{

(x, y) ∈ Rn−k × Rk
∣∣ ‖y‖ ≥ 1

}
via the map (u, v , t) 7→ (v , (t + 1)u). With this identification we have

Σ = {0} × Sk−1, ∂U = U ∩ ∂M = Rn−k × Sk−1.

Let ρ : [−1, 1] → R+ be a continuous positive function that is smooth on
(−1, 1) and such that all derivatives of ρ tend to ±∞ as t → ±1 (correspond-
ing signs). We define a bigger manifold M ′ by substituting U with the bigger
set

U ′ = U ∪
{
‖y‖ < 1, ‖x‖ < ρ(‖y‖)

}
.

Exercise 6.4.1. The manifold M ′ is diffeomorphic to M with a k-handle
attached to Σ.

See Figure 6.10. Note that with this description the original manifold M
is naturally a submanifold of M ′.

6.4.3. Topological handles. We can make one further step towards visu-
alization and intuition by using topological handles. These capture the topo-
logical structure ofM ′ while being a little bit imprecise on its smooth structure.
See Figure 6.11.
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Figure 6.11. The attachment of a 1-handle and of a topological 1-
handle along the same map ϕ. The resulting topological manifold is the
same in both constructions, but the smooth structure is well-defined only
with the first. For practical purposes, we usually think of a handle as a
topological handle whose corners have been somehow “smothened.”

A topological handle is what we get if we take ρ(t) = 1 constantly in
the previous construction. The result is not smooth, but it still works up to
homeomorphisms.

In other words, we use Dk × Dn−k instead of Dn. This is not a smooth
manifold because of its corners; its topological boundary decomposes into the
horizontal Dk × Sn−k−1 and the vertical Sk−1 ×Dn−k . For every embedding

ϕ : Sk−1 ×Dn−k ↪−→ ∂M

we define a new topological space

M ′ = M ∪ϕ
(
Dk ×Dn−k

)
obtained by attaching Dk × Dn−k to M along ϕ. This operation is the at-
tachment of a topological k-handle to M. The attaching of a handle or a
topological handle along the same map ϕ produce homeomorphic manifolds
M ′: the only difference between the two constructions is that in the topo-
logical setting the smooth structure on M ′ is not obvious to see – some new
corners arise that should be smoothened, see Figure 6.11. From now on, we
will always think as a handle as a topological handle whose corners have been
smoothened.

One should think of a topological k-handle Dk ×Dn−k as a thickened k-
dimensional disc. Here is some useful terminology: the number k is the index
of the handle; the sphere Sk−1×{0} is the attaching sphere, while the sphere
{0}×Sn−k−1 is the belt sphere. The discs Dk ×{0} and {0}×Dn−k are the
attaching and belt discs. See some examples in Figure 6.12.
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Figure 6.12. A three-dimensional topological 1-handle (left) and 2-
handle (right), with the attaching and belt spheres in blue.

Figure 6.13. Some handle decompositions in dimension two and three.
On the left, we have two 0-handles (yellow), one 1-handle (orange), and
one 2-handle (red) in dimension two. On the right, we have two 0-handles
(yellow) and one 1-handle (orange) in dimension three.

Remark 6.4.2. If M ′ is obtained from M by the attachment of a k-handle
to the (k − 1)-sphere S ⊂ M, the new boundary ∂M ′ is obtained from the old
∂M by surgery along the sphere S. This follows readily from the definition.

6.4.4. Handle decomposition. Let M be a compact smooth n-manifold,
possibly with boundary. A handle decomposition for M is the realisation of M
as the result of a finite number of operations

∅ = M0  M1  · · · Mk = M

where each Mi+1 is obtained by attaching some handle to Mi . Since the only
handle that can be attached to the empty set is a 0-handle, the manifold M1

is the result of a 0-handle attachment to ∅ and is hence a n-disc.

Example 6.4.3. The sphere Sn, and more generally each of the exotic
spheres described in Section 6.2.7, decomposes into two n-discs. We may
interpret this decomposition as a n-handle attached to a 0-handle. Therefore
Sn has a handle decomposition with one 0-handle and one n-handle.

Conversely, if a compact manifold M without boundary decomposes into
two handles only, then these must be a 0- and a n-handle, and so M is either
Sn or an exotic sphere (in all cases, it is homeomorphic to Sn).
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Figure 6.14. If h ≤ k, we can always slide a k-handle away from a
previously attached h-handle. Here h = k = 1.

6.4.5. Reordering handles. More examples are shown in Figure 6.13. In
both examples in the figure the handle decomposition goes as follows: we first
attach some 0-handles (that is, we create discs out of nothing), then we attach
some 1-handles, then we attach some 2-handles. We think at the 1-handles in
the (left) figure as attached simultaneously. We now show that every handle
decomposition can be modified to be of this type.

Proposition 6.4.4. Every handle decomposition can be modified so that we
first attach all 0-handles, then all 1-handles, then all 2-handles ... and so on.

Proof. Suppose that Mi+1 is obtained from Mi by attaching a k-handle
Hk , and Mi+2 is obtained from Mi+1 by attaching a h-handle Hh. We write

Mi+1 = Mi ∪ϕ Hk , Mi+2 = Mi+1 ∪ψ Hh.

We show below that if h ≤ k then Hh can be slid away from Hk as in
Figure 6.14. After this move, the handles Hh and Hk are disjoint and hence
we can obtain the same manifold Mi+2 by first attaching Hh and then Hk .

By applying finitely many exchanges of this type we transform every handle
decomposition into one where handles are attached with non-decreasing index.
Moreover, the handles with the same index can be slid to be disjoint, and hence
can be thought to be attached simultaneously. This proves the proposition.

We now show how to slide Hh aways from Hk . The attaching sphere of
Hh is a (h−1)-sphere Σ ⊂ ∂Mi+1, while the belt sphere of Hk is a (n−k−1)-
sphere Σ′ ⊂ ∂Mi+1. If h ≤ k , we have (h − 1) + (n − k − 1) < n − 1. By
transversality, we may isotope Σ away from Σ′.

The handles Hk and Hh intersect ∂M into two closed tubular neighbour-
hoods of Σ′ and Σ. Since Σ′ ∩Σ = ∅, we can isotope the tubular neighbour-
hood of Σ to be disjoint from that of Σ′. That is, we can slide the handle Hh

away from Hk , as stated. �

As stressed in the proof, the handles of the same index are disjoint and
can be attached simultaneously, as in Figure 6.13.
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Our next goal is to show that every compact smooth manifold decomposes
into handles. To this purpose we study the critical points of functions M → R
and we introduce the Morse functions, that are of independent interest.

6.4.6. Hessian at a critical point. LetM be a manifold without boundary
and f : M → R a smooth function. Let p ∈ M be a critical point of f . The
Hessian of f at p is a symmetric bilinear form

Hess (f )p : TpM × TpM −→ R

defined as follows. Given v , w ∈ TpM, extend them to two arbitrary vector
fields X, Y in some neighbourhood of p. Then we set

Hess (f )p(v , w) = X
(
Y (f )

)
(p).

Lemma 6.4.5. The map Hess (f )p is well-defined, bilinear, and symmetric.

Proof. Since p is a critical point we have u(f ) = 0 for every tangent vector
u ∈ TpM. This holds in particular for u = [X, Y ](p) and gives v(Y (f )) =

w(X(f )). The left member does not depend on the extension X, and the right
does not depend on the extension Y : therefore both do not depend on the
extensions, and the bilinear form is manifestly symmetric. �

It is crucial here that dfp = 0. Alternatively, we can also define the Hessian
in coordinates: we pick p = 0 for simplicity and get

f (x) = f (0) + 1
2

txHx + o
(
‖x‖2

)
.

On some other chart with variables x̄ , we get x = Jx̄ + o
(
‖x̄‖
)
where J is the

differential of the coordinates change at x = 0 and therefore

f (x) = f (0) + 1
2

t(
Jx̄ + o

(
‖x̄‖
))
H
(
Jx̄ + o

(
‖x̄‖
))

+ o
(
‖x‖2

)
= f (0) + 1

2
tx̄ tJHJx̄ + o

(
‖x̄‖2

)
.

Therefore H changes to tJHJ and hence describes a chart-independent bilinear
form on TpM. The two definitions just given coincide because

Hess (f )0(ei , ej) =
∂2f

∂xi∂xj
= Hi j .

6.4.7. Non-degenerate critical points. Let M be a manifold without
boundary and f : M → R a smooth function. We say that a critical point
p ∈ M for f is non-degenerate if the bilinear form Hess (f )p on TpM is non-
degenerate. We now study the non-degenerate critical points. We start by
exhibiting an alternative definition.

Proposition 6.4.6. A critical point p is non-degenerate⇐⇒ the section df
of T ∗M is transverse to the zero-section at p.
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Proof. On a chart, we have f : U → R for some open set U ⊂ Rn. We see
df as the gradient ∇f : U → Rn. Now ∇f is transverse to the zero-section at
p ∈ U ⇐⇒ the differential of ∇f is invertible in p. The differential of ∇f is
Hess (f )p, so we are done. �

Corollary 6.4.7. Non-degenerate critical points are isolated.

If p is a non-degenerate critical point, then Hess (f )p is a scalar product on
TpM and has some signature (k, n−k) for some 0 ≤ k ≤ n. The integer n−k
is the index of the critical point p. The following Morse Lemma determines
the behaviour of f near p, according to its index.

Lemma 6.4.8 (Morse Lemma). Let p be a non-degenerate critical point of
index n − k . On some appropriate chart near p the function f is read as

f (x) = f (p) + x2
1 + . . .+ x2

k − x2
k+1 − . . .− x2

n .

The chart sends p to 0.

Proof. On a chart we get f : Rn → R with p = 0. Since 0 is a critical
point, Taylor’s Theorem 1.3.1 gives

f (x) = f (0) +
1

2

n∑
i ,j=1

hi j(x)xixj

for some smooth maps hi j such that hi j = hj i . The Hessian H = hi j(0) has
signature (k, n − k).

To transform f into the desired form, we follow the usual procedure to
diagonalise scalar products, and extend it smoothly on a neighbourhood of 0.
We proceed by induction: suppose that on some coordinates we write

f (x) = ±x2
1 ± · · · ± x2

r−1 +
∑
i ,j≥r

hi j(x)xixj .

After a linear change of coordinates we may suppose that hr r (x) 6= 0 at x = 0

and hence on some small neighbourhood around 0. We pick new coordinates{
yi = xi for i 6= r,

yr =
√
‖hr r (x)‖

(
xr +

∑
i>r

hi r (x)xi
hr r (x)

)
.

This is indeed a new coordinate systems around 0 by the Inverse Function
Theorem. With these new coordinates we easily get

f (y) = ±y2
1 ± · · · ± y2

r +
∑
i ,j>r

h′i j(y)yiyj

for some functions h′i j defined near p, and we conclude by induction on r . �
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6.4.8. Morse functions. LetM be a manifold without boundary. AMorse
function on M is a function f : M → R whose critical points are all non-
degenerate. In other words, the differential df is transverse to the zero-section.

We now prove that there are plenty of Morse functions. Via the Whitney
embedding theorem we may suppose that M ⊂ Rm for some m.

Lemma 6.4.9. Let M ⊂ Rm be a submanifold and f : M → R any smooth
function. For almost every v ∈ Rm, the modified function

fv : M −→ R, fv (x) = f (x) + 〈v , x〉

is a Morse function.

Proof. Consider the map

F : M × Rn −→ T ∗M

(p, v) −→ d(fv )p.

If we prove that F is transverse to the zero-section s0 ⊂ T ∗M, the Thom
Transversality Theorem 5.7.5 implies that dfv is transverse to s0 for almost
every v ∈ Rm and we conclude.

To prove that F is transverse to s0, we first note that

d(fv )p = dfp + 〈v , ·〉.

We deduce that F (p, ·) : Rn → T ∗pM is affine and surjective for every p ∈ M.
This implies easily that F is transverse to any section s of T ∗M. �

Corollary 6.4.10. Let f : M → R a smooth function. For every ε > 0 there
is a Morse function g : M → R with |f (p)− g(p)| < ε for all p ∈ M.

Proof. Embed M in a ball of Rm, and then apply Lemma 6.4.9 with suffi-
ciently small ‖v‖. �

We have proved in particular that every M has some Morse function
f : M → R. It is sometimes useful to add the following requirement.

Theorem 6.4.11. Every manifold M without boundary has a proper Morse
function f : M → R where the critical values form a discrete closed subset of
R and distinct critical points have distinct critical values.

Proof. Start with a proper function M → R and perturb it to a proper
Morse function using Corollary 6.4.10. The critical points form a closed dis-
crete subset of M, hence there are only finitely many of them in the compact
subset f −1([a, b]) for every a < b. Therefore the critical values form a discrete
closed subset of R. By choosing a generic small v in the proof of Corollary
6.4.10 we also get that distinct critical points have distinct values. �
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Figure 6.15. On this torus, the height function f (x, y , z) = z is a Morse
function with four non-degenerate critical points of index 0, 1, 1, and 2.
The level sets f −1(t) are manifolds, except when t is a critical value.

Figure 6.16. Each time a non-degenerate critical point of index k is
crossed, a k-handle is added. We show here the two critical points of
index 1, and the core segment of the 1-handle in each case.

6.4.9. Existence of handle decompositions. We have introduced Morse
functions as a fundamental tool to prove the following remarkable theorem.

Theorem 6.4.12. Every compact manifold M without boundary has a han-
dle decomposition.

Proof. Let f : M → R be a Morse function where critical points have
distinct images. Since M is compact, it has finitely many critical points. For
instance, Figure 6.15 shows a Morse function on the torus with four critical
points. For every a ∈ R we define

Ma = f −1(−∞, a].

When a is regular, Ma is a domain in M, that is a submanifold with boundary.
Consider two regular values a < b. We now prove two facts:

(1) If [a, b] contains no critical values, thenMa andMb are diffeomorphic.
(2) If [a, b] contains a single critical value, image of a critical point of

index k , then Mb is diffeomorphic to Ma with a k-handle attached.

An example is shown in Figure 6.16. When a crosses a critical point of index
k , a k-handle is attached to Ma. So the torus decomposes into one 0-handle,



6.4. HANDLE DECOMPOSITIONS 175

two 1-handles, and one 2-handle. The claims (1) and (2) clearly imply that M
decomposes into handles, one for each critical point of M.

We first prove (1). Fix an arbitrary Riemannian metric on M, that is on
the tangent bundle TM. Every TpM is equipped with a scalar product 〈, 〉,
and we use it to transform the covector field df into a vector field ∇f in the
usual way, by requiring that

dfp(v) =
〈
∇f (p), v

〉
.

The field ∇f vanishes at the critical points. On a curve γ : I → M we get

(f ◦ γ)′(t) = dfγ(t)

(
γ′(t)

)
=
〈
∇f , γ′(t)

〉
.

Let ρ : M → R be a smooth function that equals 1/〈∇f ,∇f 〉 on the compact
set f −1[a, b] and which vanishes outside some bigger compact subset. We
define a new vector field

X(p) = ρ(p)∇f (p).

Since M is compact, the vector field X is complete and generates a flow Φ.
Consider a maximal integral curve γ(t) = Φ(p, t). If γ(t) ∈ f −1[a, b] then

(f ◦ γ)′(t) =
〈
∇f , γ′(t)

〉
=
〈
∇f , X

〉
= 1.

Therefore the flow defines a diffeomorphism

Ma −→ Mb, p 7−→ Φ(p, b − a).

We turn to (2). Let p ∈ M be the unique critical point in f −1[a, b]. We
suppose for simplicity that f (p) = 0. By (1) we may choose a = −ε and b = ε

for some small ε > 0. By the Morse Lemma, on a chart U ∼= Rn = Rn−k ×Rk
the function f is

f (x, y) = ‖x‖2 − ‖y‖2

where (x, y) ∈ Rn−k×Rk and p = (0, 0). The manifoldsMε andM−ε intersect
the chart Rn−k × Rk as in Figure 6.17-(left).

We now substitute Mε with a diffeomorphic submanifold M ′ that still con-
tains M−ε, and which has the additional property that M ′ \M−ε lies entirely
in the chart Rn−k × Rk as shown in Figure 6.17-(right). To this purpose, we
pick a smooth function φ : R→ R such that

φ(0) > ε, φ(t) = 0 ∀t ≥ 2ε, −1 ≤ φ′(t) ≤ 0 ∀t.

We now define another smooth function F : M → R, by requiring that F (p) =

f (p) outside the chart, and

F (x, y) = f (x, y)− φ
(

2‖x‖2 + ‖y‖2
)

inside the chart. We then set

M ′ = F−1(−∞,−ε].
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Figure 6.17. The manifolds Mε and M−ε intersect the chart Rn−k ×Rk
as shown here (left). We replace Mε with a diffeomorphic submanifold M ′,
still containing M−ε, so that the yellow zone M ′ \M−ε lies entirely in this
chart. The yellow zone is a k-handle (right).

Clearly M ′ ⊃ M−ε and M ′ \M−ε is contained in the chart. We show that

Mε = F−1(−∞, ε].

Indeed, we obviously have Mε ⊂ F−1(−∞, ε], and conversely if F (x, y) ≤ ε

and φ(2‖x‖2 + ‖y‖2) > 0 we get 2‖x‖2 + ‖y‖2 < 2ε; therefore

f (x, y) = ‖x‖2 − ‖y‖2 ≤ ‖x‖2 + 1
2‖y‖

2 < ε.

In the chart we have
∂F

∂x i
= 2x i − φ′(2‖x‖2 + ‖y‖2)x i ≥ 2x i ,(9)

∂F

∂y i
= −2y i − φ′(2‖x‖2 + ‖y‖2)y i ≤ −y i .(10)

This implies that dF vanishes only at the origin, so F has the same critical
points as f . Since F (p) < −ε, the function F has no critical values in [−ε, ε]

and (1) implies that M ′ and Mε are diffeomorphic.
Finally, we need to show that M ′ is diffeomorphic to M−ε with a k-handle

attached, painted in yellow in Figure 6.17-(right). To this purpose we fix
y0 ∈ Rk and consider

F (x, y0) = ‖x‖2 − ‖y0‖2 − φ(2‖x‖2 + ‖y0‖2).

The horizontal slice y = y0 of M ′ has the form

M ′ ∩
{
y = y0

}
=
{

(x, y)
∣∣ F (x, y0) ≤ −ε

}
.

Since φ(t) > ε− t for all t ≥ 0, we get

F (0, y0) = −‖y0‖2 − φ(‖y0‖2) < −ε
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Figure 6.18. A 1-handle attached to two distinct 0-handles: the result
is diffeomorphic to a disc.

and hence (0, y0) belongs to the horizontal slice. The function F (x, y0) de-
pends only on ‖x‖ and increases with ‖x‖ by (9), so the horizontal slice is a
disc with some radius r(y0) > 0 depending smoothly on y0. When ‖y0‖2 > 2ε

we get r(y0) =
√
‖y0‖2 − ε.

One concludes by showing that Figure 6.17-(right) is in fact diffeomorphic
to Figure 6.10-(right). Therefore M ′ is M−ε with a k-kandle attached. The
explicit diffeomorphism is left as an exercise. �

6.5. Classification of surfaces

In the previous section we have seen that every compact smooth manifold
without boundary decomposes into simple pieces called handles. We now use
this construction to classify all compact surfaces.

6.5.1. The main theorem. We defined in Section 6.3.2 the genus-g sur-
face Sg as the connected sum of g tori.

Theorem 6.5.1. Every compact connected and orientable surface S with-
out boundary is diffeomorphic to Sg, for some g ≥ 0.

Proof. We pick a handle decomposition of S. This consists of some 0-
handles, then 1-handles attached to these 0-handles, and finally 2-handles
attached to the result.

We first make an observation that is valid in all dimensions: if we attach
a 1-handle to two distinct 0-handles as in Figure 6.18, this is equivalent to
making a boundary connected sum of two discs, so the result is again a disc.
Therefore we can replace the two 0-handles and the 1-handle altogether with
a singe 0-handle, thus simplifying the handle decomposition.

After finitely many such moves, we may suppose that in the handle decom-
position of S every 1-handle is attached twice to the same 0-handle. Since S
is connected, this easily implies that there is only one 0-handle.

A dual argument works for the 2-handles. Note that every 1-handle is
incident to two 2-handles, attached to the two long sides of the 1-handle. If
the 2-handles are distinct, then the 1-handle together with the two incident
2-handles form again a picture like in Figure 6.18, and can thus be replaced by
a single disc, that is a single 2-handle. After finitely many moves of this type,
we easily end with a single 2-handle.
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Figure 6.19. The 0-handle and some 1-handles (left). Two interlaced
1-handles (centre). Two interlaced handles form a handle decomposition
of a holed torus, seen here as a square with opposite edges identified, with
the white hole removed (right).

We have simplified the handle decomposition of S so that it has only one
0- and one 2-handle. If there are no 1-handles, then S decomposes into a 0-
and a 2-handle and is hence diffeomorphic to S2 by Corollary 6.2.16.

Suppose that there are 1-handles. Every 1-handle is a topological rectangle
attached to the 0-handle along its short sides, as in Figure 6.19-(left). Up to
diffeomorphism, there are two ways of attaching a 1-handle: with or without
a twist. However, twists produce Möbius strips, which are excluded since S is
orientable. So every 1-handle is attached without a twist, as in the figure.

Since there is only one 2-handle, the union of the 0- and 1-handles is a
surface with connected boundary. This implies that every 1-handle must be
interlaced with some other 1-handle as in Figure 6.19-(centre). Let S′ ⊂ S

be the subsurface consisting of the 0-handle and these two 1-handles. Figure
6.19-(right) shows that S′ is diffeomorphic to a torus with a hole. Therefore if
we substitute S′ with a single 0-handle, that is a disc, we find a simpler handle
decomposition of a new surface S′′ such that

S = S′′#T.

We conclude by induction on the number of 1-handles that S is a connected
sum of some g tori. �

In the next chapters we will prove that Sg is not diffeomorphic to Sg′
if g 6= g′, so the genus of a surface fully characterises the surface up to
diffeomorphism.

6.6. Exercises

The Euler characteristic of a surface Sg is χ(Sg) = 2− 2g. This can be taken as
a definition here.

Exercise 6.6.1. Pick any positive integers g, g′, d ≥ 1. Show that if χ(Sg) =

dχ(Sg′) then there is a degree-d covering Sg → Sg′ .
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Exercise 6.6.2. LetM and N be two connected oriented n-manifolds of dimension
n ≥ 3. Show that

π1(M#N) ∼= π1(M) ∗ π1(N)

where ∗ is the free product of groups.





CHAPTER 7

Differential forms

Smooth functions from R to R can be summed, multiplicated, composed,
derived, and integrated. Is there any kind of tensor field on a general manifold
M for which these five possible types of manipulations still make sense? Yes!
These are the differential forms, and they are, together with vector fields,
among the most powerful objects one can encounter on a smooth manifold.

Differential forms can be summed, multiplicated, pulled back along any
smooth map, derived, and integrated along submanifolds. They can be used
to talk about volumes on manifolds. Their derivation generalises the notions
of gradient, curl, and divergence in Euclidean space. The interplay between
derivation and integration culminates with the Stokes’ Theorem which gener-
alises various statements that one encounter in analysis relating the integration
of objects on domains of Rn and on their boundaries.

7.1. Differential forms

We introduce the main protagonist of this chapter.

7.1.1. Definition. LetM be a smooth n-manifold, possibly with boundary.
A differential k-form (shortly, a k-form) is a section ω of the alternating bundle

Λk(M)

over M, see Section 4.3.4. In other words, for every p ∈ M we have an
antisymmetric multilinear form

ω(p) : TpM × · · · × TpM︸ ︷︷ ︸
k

−→ R

that varies smoothly with p ∈ M.

Example 7.1.1. A 1-form is a section of Λ1(M) = T ∗M, that is a covector
field. As an important example, the differential df of a smooth function
f : M → R is a 1-form, see Section 4.3.2. This example is not exhaustive: we
will see that some 1-forms are not the differential of any function.

By Corollary 2.4.10, every k-form with k > n is necessarily trivial. The
vector space of all the k-forms on M is denoted by

Ωk(M) = Γ(ΛkM).

181
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7.1.2. Exterior product. Recall from Section 2.4.3 that the exterior al-
gebra Λ∗(V ) of a real vector space V is equipped with the exterior product ∧.
Let now ω and η be a k-form and a h-form on a manifold M. Their exterior
product is the (k + h)-form ω ∧ η defined pointwise by setting

(ω ∧ η)(p) = ω(p) ∧ η(p).

As in Section 2.4.3, the space

Ω∗(M) =
⊕
k≥0

Ωk(M)

inherits the structure of an anticommutative associative algebra such that

ω ∧ η = (−1)hkη ∧ ω
and if k is odd we get

ω ∧ ω = 0.

This holds in particular for every 1-form ω.

7.1.3. In coordinates. As usual, differential forms may be written quite
conveniently in coordinates.

Let U be an open subset of Rn or Rn+. Recall that for some notational
reasons it is preferable to denote the canonical basis of Rn by

∂

∂x1
, . . . ,

∂

∂xn
.

For similar reasons, we will now write the dual basis of (Rn)∗ = Rn as

dx1, . . . , dxn.

The notation is appropriate because dx i is the differential of the linear map
x 7→ x i . We have seen in Section 2.4.4 that the vector space Λk(Rn) has
dimension

(
n
k

)
and a basis consists of all the elements

dx i1 ∧ · · · ∧ dx ik

where 1 ≤ i1 < . . . < ik ≤ n vary. Therefore we can write any k-form ω in U
in the following way:

ω =
∑

i1<···<ik

fi1,...,ikdx
i1 ∧ · · · ∧ dx ik

where fi1,...,ik is a smooth function on U. We may simplify the notation by
considering multi-indices I = (i1, . . . , ik) with i1 < · · · < ik and writing

ω =
∑
I

fIdx
I .

Here of course dx I = dx i1 ∧ · · · ∧ dx ik .

Example 7.1.2. The differential of a function f : U → R is

df =
∂f

∂x1
dx1 + . . .+

∂f

∂xn
dxn.
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Example 7.1.3. The following are 1-forms in R3:

x2dy − xeydz, xdx + ydy + zdz

and the following are 2-forms:

xdx ∧ dy + x3dy ∧ dz, xdy ∧ dz − ydx ∧ dz + zdx ∧ dz.

Remark 7.1.4. Every n-form in U ⊂ Rn is of the type

f dx1 ∧ · · · ∧ dxn

for some smooth function f : U → R. Therefore n-forms on open sets U ⊂ Rn
are somehow like smooth functions on U, but one should not go too far with
this analogy, because forms and functions are intrinsically different objects!

It is sometimes useful to write a form as a linear combination of elements
dx i1 ∧ · · · ∧ dx ik without the strict hypothesis i1 < . . . < ik . One has to take
care that the notation is not unique in this case, for instance

ω = dx ∧ dy = −dy ∧ dx =
1

2
dx ∧ dy −

1

2
dy ∧ dx.

It suffices to keep in mind the following relations:

dx i ∧ dx j = −dx j ∧ dx i , dx i ∧ dx i = 0.

Example 7.1.5. With these rules in mind, it is also easy to write the wedge
product of two differential forms. For instance:

(xz2dy + xdz) ∧ (eydx ∧ dz) = −xeyz2dx ∧ dy ∧ dz.

7.1.4. Change of coordinates. On a chart, every form ω may be ex-
pressed uniquely as a linear combination

ω =
∑

i1<···<ik

fi1,...,ikdx
i1 ∧ · · · ∧ dx ik

If we use another chart with variables x̄ we get

ω =
∑

i1<···<ik

f̄i1,...,ikdx̄
i1 ∧ · · · ∧ dx̄ ik

for some new functions f̄ . How can we pass from one expression to the other?
The differentials dx i are elements of (Rn)∗ and hence change as follows

dx̄ i =
∂x̄ i

∂x j
dx j .

The notation dx i is designed to help us write this equation correctly. We can
then plug this expression in the linear combination to pass from one notation
to the other.
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Example 7.1.6. Consider the 2-form ω = zdx ∧ dy on the open set U =

{x, y , z > 0}. We change the coordinates via x = x̄2, y = ȳ + z̄ , z = ȳ . Then

dx = 2x̄d x̄ , dy = dȳ + dz̄ , dz = dȳ

and by substituting we see that ω in the new coordinates is read as

ω = (ȳ)(2x̄d x̄) ∧ (dȳ + dz̄) = 2x̄ ȳ d x̄ ∧ dȳ + 2x̄ ȳ d x̄ ∧ dz̄ .

An interesting case occurs when we consider n-forms in a n-dimensional
manifold. Here on a chart we have

ω = f dx1 ∧ · · · ∧ dxn

and Proposition 2.4.15 yields the following simple formula:

(11) ω = f det

(
∂x i

∂x̄ j

)
dx̄1 ∧ · · · ∧ dx̄n.

This equality is very much similar to the change of coordinates formula for
integration given in Section 1.3.8, and this is in fact a crucial feature of dif-
ferential forms: they can be meaningfully integrated on manifolds, as we will
soon see.

7.1.5. Support. Let M be a n-manifold and ω be a k-form on M. We
define the support of ω to be the closure in M of the set of all the points p
such that ω(p) 6= 0. Using bump functions, one can easily construct plenty of
non-trivial k-forms in Rn and Rn+ having compact support.

Moreover, for every k-form ω on M and every open covering Ui of M, we
can pick a partition of unity ρi subordinate to the covering and write

ω =
∑
i

ρiω.

The support of ρiω is contained in Ui for every i , and this possibly infinite sum
makes sense because it is finite at every point p ∈ M. One can in this way
write every k-form ω as a (possibly infinite, but locally finite) sum of compactly
supported k-forms ρiω. If ω is already compactly supported, the sum is finite.

7.1.6. Pull-back. When we introduced tensors in Chapter 2, the roles of
V and V ∗ were somehow interchangeable, because each space is just the dual
of the other. This symmetry is now broken when we talk about manifolds and
tensor fields, and it turns out that tensor fields of type (0, k) are sometimes
better behaved than those of type (h, 0).

We explain this phenomenon. Let f : M → N be any smooth map between
two manifolds. We have already alluded to the fact that a vector field cannot
be transported along f in general, neither forward from M to N nor backwards
from N to M. On the other hand, every tensor field α of some type (0, k) on
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N may be transported back to a tensor field f ∗α of the same type (0, k) on
M, by setting

(12) f ∗α(p)(v1, . . . , vk) = α
(
f (p)

)(
dfp(v1), . . . , dfp(vk)

)
for every p ∈ M and every v1, . . . , vk ∈ TpM. The tensor field f ∗α is the
pull-back of α along f . If α is (anti-)symmetric, then f ∗α also is.

In particular, the pull-back of a k-form ω in N is a k-form f ∗ω in M. We
get a morphism of algebras

f ∗ : Ω∗(N) −→ Ω∗(M).

In particular, we have

(13) f ∗(ω ∧ η) = f ∗(ω) ∧ f ∗(η).

As usual, we can describe this operation in coordinates: let f : U → V be a
smooth map between two open subsets U ⊂ Rm and V ⊂ Rn, and

ω =
∑

i1<...<ik

gi1,...,ikdx
i1 ∧ . . . ∧ dx ik

be a k-form in V . We get

f ∗ω =
∑

i1<...<ik

(
gi1,...,ik ◦ f

)
df i1 ∧ · · · ∧ df ik

where f i : U → R is the i-th coordinate of f and df i its differential. This
equality is proved (exercise) by showing that it satisfies (12), using (13).

Example 7.1.7. Consider f : R3 → R2, f (t, u, v) = (tu, uv) and the 2-
form ω = xdx ∧ dy on R2. We get

f ∗ω = tudf1 ∧ df2 = tu(udt + tdu) ∧ (vdu + udv)

= tu2vdt ∧ du + tu3dt ∧ dv + t2u2du ∧ dv.

7.1.7. Contraction. Let M be a manifold and X be a vector field in M.
The contraction defined in Section 2.4.6 extends pointwise to a linear map

ιX : Ωk(M) −→ Ωk−1(M)

that sends ω ∈ Ωk(M) to the (k − 1)-form ιX(ω) that acts as

ιX(ω)(p)(v1, . . . , vk−1) = ω(X(p), v1, . . . , vk−1).

7.2. Integration

We now show that k-forms are designed to be integrated along k-submanifolds.
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7.2.1. Integration. Consider a n-form

ω = f dx1 ∧ · · · ∧ dxn

on some open subset V of Rn or Rn+, having compact support. We define the
integral of ω over V simply and naïvely as∫

V

ω =

∫
V

f .

Let now ψ : V → V ′ be an orientation-preserving diffeomorphism between open
sets in Rn or Rn+, and denote by ψ∗ω = (ψ−1)∗ω the n-form transported along
ψ. Here is the crucial property that characterises differential forms:

Proposition 7.2.1. We have∫
V

ω =

∫
V ′
ψ∗ω.

Proof. Combine (11), where det > 0 since ψ is orientation-preserving, with
the change of coordinates law for multiple integrals, see Section 1.3.8. �

It is really important that ψ be orientation-preserving: if ψ is orientation-
reversing, then a minus sign appears in the equality. Encouraged by this result,
we now want to extend integration of forms from open subsets of Rn to
arbitrary oriented manifolds.

Let M be an oriented n-manifold, possibly with boundary, and ω be a
n-form on M with compact support. We now define the integral of ω over M∫

M

ω

as follows. If the support of ω is fully contained in the domain U of a chart
ϕ : U → V we set ∫

M

ω =

∫
V

ϕ∗ω.

The definition is well-posed because it is chart-independent thanks to
Proposition 7.2.1. More generally, if the support of ω is not contained in
the domain of any chart, we pick an oriented atlas {ϕi : Ui → Vi} on M and a
partition of unity ρi subordinated to the covering Ui . We decompose ω as a
finite sum ω =

∑
i ρiω and define∫

M

ω =
∑
i

∫
M

ρiω.

Proposition 7.2.2. This definition is well-posed.

Proof. Let {ϕ′j : U ′j → V ′j } be another compatible oriented atlas and ρ′j a
partition of unity subordinated to U ′j . We find∫

M

ω =
∑
i

∫
M

ρiω =
∑
i

∫
M

(∑
j

ρ′j

)
ρiω =

∑
i ,j

∫
M

ρ′jρiω.



7.2. INTEGRATION 187

In this expression the roles of ρi and ρ′j can be interchanged, so if we use the
partition of unity ρ′j to calculate the integral we get the same result. �

The following properties follow readily from the definitions. Let ω be
a compactly supported n-form on an oriented n-manifold M, possibly with
boundary. We denote as −M the manifold M with the opposite orientation.

Proposition 7.2.3. We have∫
−M

ω = −
∫
M

ω.

If f : M → N is an orientation-preserving diffeomorphism, then∫
M

ω =

∫
N

f∗ω.

Remark 7.2.4. We observed in Remark 7.1.4 that on a chart a n-form
looks like a function, but we warned the reader that the two notions are quite
different on a general manifold M. As opposite to n-forms, functions in M
cannot be integrated in any meaningful way; conversely, the value ω(p) of a n-
form ω at p ∈ M is not a number, in any reasonable sense. Shortly: functions
can be evaluated at points, and n-forms can be integrated on sets, but not
the converse.

7.2.2. Examples. In practice, nobody uses partitions of unity to integrate
a n-form on a manifold, because the partition of unity is typically not explicit.
Instead, we prefer to subdivide the manifold into small pieces where the n-form
may be integrated easily. We explain briefly the details.

Let M be a smooth n-manifold, possibly with boundary. Recall the notion
of Borel subset from Section 3.11.1. If ω is a compactly supported n-form on
M, we can define the integral

∫
S ω over a Borel set S ⊂ M using a partition

of unity in the same way as we did above.

Proposition 7.2.5. If the support of ω is contained in a Borel set S that is
a countable disjoint union of Borel sets Si , then∫

S

ω =
∑
i

∫
Si

ω.

Proof. The equality holds for Borel sets in Rn because it is a property of
Lebesgue integration; via a partition of unity we can extend it to M. �

Recall that having measure zero is a well-defined property for Borel subsets
of any smooth manifold. If the complement of S ⊂ M has measure zero, then∫

M

ω =

∫
S

ω

because the integral over M \ S is zero. So we can remove from M any
zero-measure set to get a more comfortable domain S and integrate ω there.
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Example 7.2.6. Consider the n-dimensional torus T = S1×· · ·×S1 where
every point has some coordinates (θ1, . . . , θn), and the n-form

ω = dθ1 ∧ · · · ∧ dθn.

We have ∫
T

ω =

∫
U

ω =

∫
(0,2π)×···×(0,2π)

1 = (2π)n

by using the open chart U = (0, 2π) × · · · × (0, 2π) whose complement has
measure zero.

We can integrate n-forms on oriented n-manifolds, for all n ≥ 1. It is
sometimes useful to extend this operation to zero-dimensional manifolds. Re-
call that an orientation for a point p is the assignment of a sign ±1 and a
0-form on p is just a function f , that is a number f (p). We define the integral
of f on p as ±f (p) according to the orientation of p.

7.2.3. Integration on submanifolds. By combining pull-backs and inte-
gration, we get a nice new tool: we can integrate k-forms along k-submanifolds.

Let M be a smooth manifold, possibly with boundary, and ω be a fixed
compactly supported k-form on M. For every oriented closed submanifold
S ⊂ M of dimension k , possibly with boundary, we may define the integral of
ω along S as follows: ∫

S

ω =

∫
S

i∗ω

where i : S ↪→ M is the inclusion map. Quite remarkably, we can use ω to
assign a real number to every closed k-submanifold S ⊂ M.

Remark 7.2.7. Since the submanifold S is closed, the support of i∗ω is
compact and the integral makes sense. More generally, it suffices that the
intersection of the support of ω with S be compact for the integral to make
sense. For instance, this holds for every ω ∈ Ωk(M) if S is itself compact.

Shortly: functions can be evaluated at points, and k-forms can be inte-
grated along oriented k-submanifolds.

Exercise 7.2.8. Consider the torus T = S1 × S1 with coordinates (θ1, θ2)

and the 1-form ω = dθ1. Consider the 1-submanifold γi =
{
θi = 0

}
for

i = 1, 2, oriented like S1. We have∫
γ1

ω = 0,

∫
γ2

ω = 2π.

7.2.4. Submanifolds of (co-)dimension 1 in Rn. The integration of a
k-form along a k-submanifold of Rn may be expressed in a nice geometric way
when k = 1 or k = n − 1, by interpreting the form as a vector field. This
discussion is particularly relevant for R3 since it involves both 1- and 2-forms.
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Every 1-form
ω = f1dx

1 + · · ·+ fndx
n

in Rn defines a vector field X with coordinates X i = fi , and viceversa every
vector field X in Rn defines a 1-form ω. Here we are using implicitly the
identification of Rn with its dual (Rn)∗ furnished by the canonical basis, that
is by the Euclidean metric tensor: there is no way to pass from 1-forms to
vector fields on a generic smooth manifold (we need a metric tensor for that).

Let C ⊂ Rn be an oriented closed 1-submanifold, possibly with boundary
(a curve). Let τ be the unit tangent field to C, oriented coherently with C.
We suppose that ω has compact support.

Proposition 7.2.9. We have∫
C

ω =

∫
C

X · τ.

Proof. We parametrise locally C as the image of an embedding γ : (a, b)→
Rn and write γ(t) = (x1(t), . . . , xn(t)). We get∫

γ(a,b)

ω =

∫
γ(a,b)

f1dx
1 + · · ·+ fndx

n =

∫ b

a

(
f1
dx1

dt
+ · · ·+ fn

dxn

dt

)
dt

=

∫ b

a

X · γ′(t)dt =

∫ b

a

X · t ‖γ′(t)‖dt =

∫
C

X · τ.

The proof is complete. �

We have discovered that the integral of a 1-form on a curve C equals the
integral of the tangential component of the corresponding vector field. We
now look at the codimension-1 case. A (n − 1)-form in Rn may be written as

ω =

n∑
i=1

fidx
1 ∧ · · · ∧ d̂x i ∧ · · · ∧ dxn

where d̂x i indicates that this symbol is missing. This also defines a vector field
X with coordinates X i = (−1)i+1fi , and conversely a vector field defines a (n−
1)-form. (Again, we can do this in Rn, but beware that no natural identification
between (n − 1)-forms and vector fields exists on a generic manifold.)

Let S ⊂ Rn be an oriented closed codimension-1 submanifold, possibly
with boundary, for instance a surface in R3. The orientation of S defines a
unit normal vector field ν on S, determined by requiring that ν, v1, . . . , vn−1 be
a positive basis for Rn if v1, . . . , vn−1 is a positive basis for TpS at any p ∈ S.
Suppose that ω has compact support.

Proposition 7.2.10. We have∫
S

ω =

∫
S

X · ν.
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Proof. We can parametrise S locally as the image of a map ϕ : U → Rn
for some open subset U ⊂ Rn−1. We use the coordinates t1, . . . , tn−1 for U
and x1, . . . , xn for Rn. We write ϕ(t) = x(t) and get∫

ϕ(U)

ω =

∫
ϕ(U)

n∑
i=1

fidx
1 ∧ · · · ∧ d̂x i ∧ · · · ∧ dxn

=

∫
U

n∑
i=1

fi
∂x1

∂t j1
dt j1 ∧ · · · ∧

∂xn

∂t jn−1
dt jn−1

=

∫
U

n∑
i=1

fiJidt
1 · · · dtn−1

=

∫
U

n∑
i=1

X i(−1)i−1Jidt
1 · · · dtn−1

where Ji is the determinant of the matrix obtained by deleting the i-th row of
∂x j

∂tk
. The vector J = (J1,−J2, . . . , (−1)n−1Jn) is a positive multiple of ν and

its norm is the infinitesimal volume of S. Therefore we get∫
ϕ(U)

ω =

∫
U

X · J dt1 · · · dtn =

∫
U

X · ν ‖J‖dt1 · · · dtn =

∫
ϕ(U)

X · ν.

The proof is complete. �

We have proved that the integral of a (n−1)-form along a hypersurface S
equals the integral of the normal component of the corresponding vector field.

7.2.5. Volume form. A smooth manifold is not equipped with any canon-
ical notion of “volume” for its Borel subsets. The most convenient way to
introduce one is to select a preferred differential form called a volume form.

Let M be an oriented n-manifold, possibly with boundary.

Definition 7.2.11. A volume form in M is a n-form ω such that

ω(p)(v1, . . . , vn) > 0

for every p ∈ M and every positive basis v1, . . . , vn of TpM.

Let ω be a volume form on M and S ⊂ M be a Borel set with compact
closure. It makes sense to define the volume of S as

Vol(S) =

∫
S

ω.

Example 7.2.12. The Euclidean volume form on Rn or Rn+ is

ω = dx1 ∧ · · · ∧ dxn.

The volume that it defines on Rn or Rn+ is the ordinary Lebesgue measure.

Here is the crucial property of volume forms:
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Proposition 7.2.13. We have Vol(S) ≥ 0 for every Borel subset S ⊂ M

with compact closure. If S has non-empty interior, then Vol(S) > 0.

Proof. If we use only orientation-preserving charts, the form ω transforms
into n-forms f dx1 ∧ · · · dxn with f (x) > 0 for every x . �

As in ordinary Lebesgue measure theory, we can now define Vol(S) for
every Borel set S, as the supremum of the volumes of the Borel sets with
compact closure contained in S. The volume may (or may not) be infinite if
S has not compact closure. We have obtained a measure on all the Borel sets
in M, that is we have the countable additivity

Vol(S) =
∑

Vol(Si)

whenever S is the disjoint union of countably many Borel sets Si .
Of course different selections of the volume form ω give rise to different

measures, and there is no way to choose a “preferred” volume form ω on an
arbitrary oriented manifold M.

Proposition 7.2.14. If ω is a volume form and f : M → R is a strictly
positive function, then ω′ = f ω is another volume form. Every volume form
ω′ may be constructed from ω in this way.

Proof. The first assertion is obvious, and the converse follows from the
fact that Λn(TpM) has dimension 1 and hence for every ω,ω′ we may define
f (p) as the unique positive number such that ω′(p) = f (p)ω(p). �

We also note that volume forms always exist:

Proposition 7.2.15. If M is oriented, there is always a volume form on M.

Proof. Pick an oriented atlas {ϕi : Ui → Vi} and a partition of unity ρi
subordinate to the covering {Ui}. We define

ω(p) =
∑
i

ρi(p)ϕ∗i (dx1 ∧ · · · ∧ dxn)

and get a volume form ω. Indeed for every p ∈ M and positive basis v1, . . . , vn
at TpM the number ω(p)(v1, . . . , vn) is a finite sum of strictly positive numbers
with strictly positive coefficients ρi(p), so it is strictly positive. �

7.3. Exterior derivative

At various places in this book we introduce some objects, typically some
tensor fields, and then we try to “derive” them in a meaningful way. We now
show that differential forms can be derived quite easily, through an operation
called exterior derivative, that transforms k-forms into (k + 1)-forms and ex-
tends the differential of functions (that transform functions, that is 0-forms,
into 1-forms).
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7.3.1. Definition. Let ω be a k-form in a smooth manifold M, possibly
with boundary. We define the exterior derivative dω, a new (k + 1)-form on
M. We first consider the case where M is an open set in Rn or Rn+. Then

ω =
∑

i1<···<ik

fi1,...,ikdx
i1 ∧ · · · ∧ dx ik

and we define

dω =
∑

i1<···<ik

dfi1,...,ik ∧ dx
i1 ∧ · · · ∧ dx ik .

Recall that dfi1,...,ik is a 1-form, hence dω is a (k + 1)-form. When ω is a
0-form, that is a function ω = f , then dω is the ordinary differential.

Example 7.3.1. Consider the form ω = xydx + xydz in R3. We get

dω = xdy ∧ dx + ydx ∧ dz + xdy ∧ dz.

We now extend this definition to an arbitrary smooth manifold M, as usual
by considering charts: we just define dω on any open chart as above.

Proposition 7.3.2. The definition of dω using charts is well-posed. The
derivation induces a linear map

d : Ωk(M) −→ Ωk+1(M)

such that, for every ω ∈ Ωk(M) and η ∈ Ωh(M) the following hold:

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη,(14)

d(dω) = 0.(15)

Proof. We first prove the properties (14) and (15) on a fixed chart, and
later we use these properties to show that the definition of dω is chart-
independent and hence well-posed.

Linearity of d is obvious, and using it we may suppose that ω = f dx I and
η = gdxJ where I, J are some multi-indices. We get

d(ω ∧ η) = d(f g) ∧ dx I ∧ dxJ = df ∧ dx I ∧ gdxJ + dg ∧ f dx I ∧ dxJ

= dω ∧ η + (−1)kω ∧ dη.

If ω = f dx I then

d(dω) =

n∑
i ,j=1

∂2f

∂x i∂x j
dx i ∧ dx j ∧ dx I = 0

because dx i ∧ dx j = −dx j ∧ dx i so the terms cancel in pairs.
Finally, we can prove that the definition is chart-independent, via the fol-

lowing trick: on open subsets U ⊂ Rn, the derivation d may be characterised
(exercise) as the unique linear map d : Ωk(U) → Ωk+1(U) that is the ordi-
nary differential for k = 0 and that satisfies (14) and (15). Therefore two
definitions of d on overlapping charts must coincide in their intersection. �
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The exterior derivative commutes with the pull-back:

Exercise 7.3.3. If ϕ : M → N is smooth and ω ∈ Ωk(N), we get

d(ϕ∗ω) = ϕ∗(dω).

Hint. Prove it when ω = f is a function, and when ω = df is the differ-
ential of a function. Use Proposition 7.3.2 to extend it to any ω = fIdx

I . �

7.3.2. Action on vector fields. We may characterise the exterior deriva-
tive of k-forms by describing how it interacts with vector fields. For instance,
the differential df of a function f acts on vector fields X ∈ X(M) as

df (X) = X(f ).

Concerning 1-forms, we get the following:

Exercise 7.3.4. If ω ∈ Ω1(M) is a 1-form and and X, Y ∈ X(M) are vector
fields, we get

dω(X, Y ) = X
(
ω(Y )

)
− Y

(
ω(X)

)
− ω

(
[X, Y ]

)
.

Hint. Again, everything is local, so work in coordinates. �

A similar formula holds also for the differential dω of a k-form.

7.3.3. Gradient, curl, and divergence. We now show that the inspiring
formula d(dω) = 0 generalises a couple of familiar equalities about functions
and vector fields in R3.

Let U ⊂ R3 be an open set. Recall that the gradient of a function f : U →
R is the vector field

∇f =

(
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

)
.

If X is a vector field in U, its divergence is the function

divX =
∂X1

∂x1
+
∂X2

∂x2
+
∂X3

∂x3

while its curl is the vector field

rotX =

(
∂X3

∂x2
−
∂X2

∂x3
,
∂X1

∂x3
−
∂X3

∂x1
,
∂X2

∂x1
−
∂X1

∂x2

)
.

As in Section 7.2.4, we may interpret a vector field X in U as a 1-form

ω = X1dx1 +X2dx2 +X3dx3

and vice-versa. We can also interpret a vector field X as a 2-form

ω = X1dx2 ∧ dx3 +X2dx3 ∧ dx1 +X3dx1 ∧ dx2

and viceversa. Finally, we can interpret a 3-form as a function. Beware as
usual that this interpretation is not allowed in an arbitrary smooth manifold.
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Exercise 7.3.5. With this interpretation, the differential of a 0-, 1-, and
2-form in R3 corresponds to the gradient, curl, and divergence. That is we
get a commutative diagram where vertical arrows are isomorphisms:

Ω0(R3)
d // Ω1(R3)

��

d // Ω2(R3)

��

d // Ω3(R3)

��
C∞(R3)

∇ // X(R3)
rot // X(R3)

div // C∞(R3)

Here d ◦ d = 0 transforms into the two well-known equalities

rot ◦ ∇ = 0, div ◦ rot = 0.

7.3.4. Cartan’s magic formula. Let now M be a manifold, possibly with
boundary, and let X a vector field inM. Our toolbox contains an abundance of
operators on k-forms, some being determined by X. We find the Lie derivative
along X, the contraction along X, and the exterior derivative:

LX : Ωk(M)→ Ωk(M), ιX : Ωk(M)→ Ωk−1(M), d : Ωk(M)→ Ωk+1(M).

These three operators behave similarly with respect to the wedge product:

Proposition 7.3.6. For every ω ∈ Ωk(M) and η ∈ Ωh(M) we have:

LX(ω ∧ η) = (LXω) ∧ η + ω ∧ (LXη),

ιX(ω ∧ η) = (ιXω) ∧ η + (−1)kω ∧ (ιXη).

Proof. This follows from Exercises 5.4.14 and 2.7.4. �

Compare with Proposition 7.3.2. We say that LX is a derivation, while
ιX and d are anti-derivations because of the (−1)k sign in the formula. Note
also that ιX ◦ ιX = 0 and d ◦ d = 0.

Proposition 7.3.7. The following operators commute:

LX ◦ d = d ◦ LX ,

LX ◦ ιX = ιX ◦ LX .

Proof. This first equality holds because the exterior derivative d commutes
with diffeomorphisms and with derivations of paths of forms. Hence

LX(dω)(p) =
d

dt

∣∣∣
t=0

(Φ−t)∗
(
dω(Φt(p))

)
=
d

dt

∣∣∣
t=0
d(Φ−t)∗

(
ω(Φt(p))

)
= d

(
d

dt

∣∣∣
t=0

(Φ−t)∗
(
ω(Φt(p))

))
= d

(
LX(ω)

)
(p).

Here Φt is the flow associated to X. The second is proved analogously. �
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The operators ιX and d do not commute in general. The three are con-
nected by a nice formula called Cartan’s magic formula:

Theorem 7.3.8 (Cartan’s magic formula). The following holds:

LX = d ◦ ιX + ιX ◦ d.

Proof. On a function f , the formula holds because ιX(f ) = 0 and

LX(f ) = X(f ) = ιX(df ).

On the 1-form df , the formula holds because d(df ) = 0 and

LX(df ) = dLX(f ) = d(ιX(df )).

Propositions 7.3.2 and 7.3.6 show that both operators LX and d ◦ ιX + ιX ◦ d
are derivations (the composition of two antiderivations is a derivation).

Every k-form ω may be written locally as a sum of wedge products f dx I

of functions f and 1-forms dx i . Cartan’s equality holds for each factor f and
dx i . Since both sides of the equality are derivations, it holds also for ω. �

7.4. Stokes’ Theorem

We end up this chapter with Stokes’ Theorem, that relates elegantly ex-
terior derivatives and integration along manifolds with boundary.

7.4.1. The theorem. We first note that the whole theory of differential
forms and integration applies also to manifolds with boundary with no modifi-
cation. We then highlight a fascinating analogy: when we talk about forms ω
we have

d(dω) = 0,

while when we deal with manifolds M with boundary we also get

∂(∂M) = ∅,

since the boundary of M is a manifold without boundary. Note also that d
transforms a k-form into a (k+1)-form, while ∂ transforms a (k+1)-manifold
into a k-manifold. The operations d and ∂ are beautifully connected by the
Stokes’ Theorem.

Let M be an oriented (n + 1)-manifold with (possibly empty) boundary,
and equip ∂M with the orientation induced by M.

Theorem 7.4.1 (Stokes’ Theorem). For every compactly supported n-form
ω in an oriented (n + 1)-manifold M possibly with boundary, we have∫

M

dω =

∫
∂M

ω.
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Proof. We first prove the theorem for M = Rn+1
+ . We have

ω =

n+1∑
i=1

ωi

with

ωi = fidx
1 ∧ · · · ∧ d̂x i ∧ · · · ∧ dxn+1

where the hat indicates that the i-th term is missing. By linearity it suffices
to prove the theorem for each ωi individually. We have

dωi = dfi ∧ dx1 ∧ · · · ∧ d̂x i ∧ · · · ∧ dxn+1

=
∑
j

∂fi
∂x j

dx j ∧ dx1 ∧ · · · ∧ d̂x i ∧ · · · ∧ dxn+1

=
∂fi
∂x i

dx i ∧ dx1 ∧ · · · ∧ d̂x i ∧ · · · ∧ dxn+1

= (−1)i−1 ∂fi
∂x i

dx1 ∧ · · · ∧ dxn+1.

In the third equality the terms with j 6= i vanish because dx j ∧ dx j = 0. We
now consider two cases separately. If i ≤ n we have∫

Rn+1
+

dωi = (−1)i−1

∫
Rn+1

+

∂fi
∂x i

dx1 ∧ · · · ∧ dxn+1

= (−1)i−1

∫
Rn+1

+

∂fi
∂x i

dx1 · · · dxn+1

= (−1)i−1

∫
Rn+

(∫
R

∂fi
∂x i

dx i
)
dx1 · · · d̂x i · · · dxn+1 = 0.

When the ∧ is not present in the expression, it means that we are just doing
the usual Lebesgue integration of functions on some Euclidean space. In the
last equality we have used that∫

R

∂fi
∂x i

dx i = lim
t→∞

[
fi(x

1, . . . , x i−1, t, x i+1, . . . , xn+1)

− fi(x1, . . . , x i−1,−t, x i+1, . . . , xn+1)
]

= 0− 0 = 0

because fi has compact support. On the other hand, we also have∫
∂Rn+1

+

ωi = 0

because ωi contains dxn+1 whose pull-back to ∂Rn+1
+ vanishes.
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If i = n + 1 we get∫
Rn+1

+

dωn+1 = (−1)n
∫
Rn

(∫ +∞

0

∂fn+1

∂xn+1
dxn+1

)
dx1 · · · dxn

= (−1)n
∫
Rn

(
0− fn+1(x1, . . . , xn, 0)

)
dx1 · · · dxn

= (−1)n+1

∫
Rn
fn+1(x1, . . . , xn, 0)dx1 · · · dxn

=

∫
∂Rn+1

+

fn+1dx
1 ∧ · · · ∧ dxn =

∫
∂Rn+1

+

ωn+1.

The mysterious disappearance of the (−1)n+1 sign at the end is due to the fact
that the orientations on Rn and ∂Rn+1

+ match only when n is odd (exercise).
We have proved the theorem for M = Rn+1

+ . On a general M we pick an
atlas {ϕi : Ui → Vi} with Vi ⊂ Rn+1

+ and a partition of unity ρi subordinate to
Ui , so that ω =

∑
i ρiω is a finite sum (because ω has compact support). By

linearity, it suffices to prove the theorem for each addendum ρiω, but in this
case we can transport it via ϕi to a form in Rn+1

+ and we are done. �

Corollary 7.4.2. If M is an oriented n-manifold without boundary, for every
compactly supported (n − 1)-form ω we have∫

M

dω = 0.

7.4.2. Some consequences. Some familiar theorems in multivariate anal-
ysis in R, R2, or R3 may be seen as particular instances of Stokes’ Theorem.

In the line R, Stokes’ Theorem is just the fundamental theorem of calculus.
A bit more generally, we may consider an embedded oriented arc γ ⊂ R3 with
endpoints p and q and a smooth function f defined on it. Stokes says that∫

γ

df = f (q)− f (p).

So in particular the result depends only on the endpoints of γ, not of γ itself.
In the plane R2, we may consider a 1-form

ω = f dx + gdy

and calculate

dω =

(
∂g

∂x
−
∂f

∂y

)
dx ∧ dy.

For every compact domain D ⊂ R2 bounded by a simple closed curve C = ∂D,
Stokes’ Theorem transforms into Green’s Theorem:∫

C

f dx + gdy =

∫
D

(
∂g

∂x
−
∂f

∂y

)
dxdy.

In the space R3, the boundary ∂D of a compact domain D ⊂ R3 is some
surface, and we pick a vector field X on D. After interpreting X as a 2-form as



198 7. DIFFERENTIAL FORMS

in Sections 7.2.4 and 7.3.3, we apply Stokes’ Theorem and get the Divergence
Theorem: ∫

D

divX =

∫
∂D

X · n

where n is the normal vector to ∂D.
Finally, we can also consider an oriented surface S ⊂ R3 with some (pos-

sibly empty) boundary ∂S, and a vector field X in R3 supported on S. By
interpreting X as a 1-form as in Sections 7.2.4 and 7.3.3 and applying Stokes’
Theorem we get the Kelvin – Stokes Theorem:∫

S

rotX · n =

∫
∂S

X · t

where n is the unit normal field to S and t is the unit tangent field to ∂S,
both oriented coherently with the orientations of S and R3.

We have proudly proved all these theorems (and many more!) at one time.

7.5. Metric tensors and differential forms

The theory of differential forms on a manifold M may be enriched by the
presence of a metric tensor g. Metric tensors will be the protagonist of the
third part of this book, and they make here only a fleeting appearance.

7.5.1. Metric tensors. A metric tensor on a manifold M, possibly with
boundary, is a section g of the symmetric bundle

S2(M)

such that g(p) is a scalar product (that is, it is non-degenerate) for every
p ∈ M. In other words, for every p ∈ M we have a scalar product

g(p) : TpM × TpM −→ R

that varies smoothly with p. This notion will be of fundamental importance
when we introduce Riemannian geometry in Chapter 9.

The scalar product g(q) at q ∈ M has some signature (p,m). One verifies
easily that if M is connected the pair (p,m) does not depend on the chosen
point q ∈ M and we simply call it the signature of g.

Example 7.5.1. The Euclidean metric tensor gE on Rn is

gE(x, y) =

n∑
i=1

x iy i

where we have identified TpRn with Rn as usual.
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7.5.2. A metric tensor induces a volume form. If M is oriented, every
metric tensor g induces a natural volume form ω on M as follows. At every
point p ∈ M, the tangent space TpM is equipped with an orientation and a
scalar product g(p), and as in Section 2.5.3 we define ω unambiguously by
requiring

ω(p)(v1, . . . , vn) = 1

on every positive orthornormal basis v1, . . . , vn of TpM. To show that ω varies
smoothly with p we calculate ω on coordinates.

Proposition 7.5.2. If gi j is a metric tensor on U ⊂ Rn, then

ω =
√
| det gi j |dx1 ∧ . . . ∧ dxn.

Proof. Let v1, . . . , vn be a positive g-orthonormal basis for (Rn)∗. We get

ω = v1 ∧ . . . ∧ vn = detAdx1 ∧ . . . ∧ dxn

where v i = Aije
j . Now Alig

i jAkj = δlk gives (detA)2 det g−1 = 1 and hence we

get detA =
√
| det g|. �

In particular the volume of a Borel subset S ⊂ U is

Vol(S) =

∫
S

√
| det gi j |dx1 · · · dxn.

7.5.3. Euclidean volume form. The Euclidean metric tensor induces the
Euclidean volume form

ωE = dx1 ∧ . . . ∧ dxn

on Rn, already encountered in Example 7.2.12, which acts as

ωE(p)(v1, . . . , vn) = det
(
v1 · · · vn

)
at every p ∈ Rn.

More generally, we may define a Euclidean volume form ω on every ori-
ented k-submanifold M ⊂ Rn. We do this in two steps: first, we restrict the
Euclidean metric tensor from Rn to its subspace TpM for every p ∈ M, thus
obtaining a (positive definite) metric tensor on M. Then we use this metric
tensor on M to get a volume form ω. Again ω(p) is characterised by the prop-
erty that ω(p)(v1, . . . , vk) = 1 on every positive orthonormal basis v1, . . . , vk
for TpM. It is also characterised by the fact that the integral of ω along a
Borel subset D ⊂ M is the ordinary k-volume of D as defined in multivariable
analysis.

Note that we are using the Euclidean scalar product here to define ω on
M. A volume form on a smooth manifold N does not induce in general a
volume form on a lower-dimensional submanifold M. The metric tensor is
needed here.

The codimension-1 case is particularly simple.
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Proposition 7.5.3. Let M ⊂ Rn be an oriented (n − 1)-manifold. The
volume form on M is the pull-back of

ω =

n∑
i=1

(−1)i−1nidx1 ∧ · · · ∧ d̂x i ∧ · · · ∧ dxn

where n = (n1, . . . , nn) is the unit normal vector field on M.

Proof. Proposition 7.2.10 says that∫
D

ω =

∫
D

n · n =

∫
D

1 = Vol(D)

for every Borel subset D ⊂ S, so this is the correct volume form. Alternatively,
we may easily verify that for every positive orthonormal basis v1, . . . , vn−1 of
TpM we have

ω(p)(n, v1, . . . , vn−1) = det(n, v1, . . . , vn−1) = 1.

In either way, the proof is complete. �

Following the language of Section 7.2.4, the form ω corresponds to the
unit normal vector field n. In particular, the Euclidean volume form on S2 is
the pull-back of

ω = dy ∧ dz + dz ∧ dx + dx ∧ dy.

More generally, the n-form ω in Rn+1 \ {0} given by

ω =
1

‖x‖

n+1∑
i=1

(−1)i−1x idx1 ∧ · · · ∧ d̂x i ∧ · · · ∧ dxn+1

pulls back simultaneously to the volume form on the sphere S(0, r) centred in
0 and of radius r > 0, for every r > 0.

7.5.4. Scalar product on compactly supported k-forms. Let M be a
manifold, possibly with boundary, equipped with a metric tensor g. As shown
in Section 2.4.11, the scalar product g(p) induces a rescaled scalar product
〈, 〉 on Λk(TpM) at each p ∈ M. By letting p vary, we may couple any two
k-forms α, β ∈ Ωk(M) to get a smooth function 〈α, β〉 ∈ C∞(M).

Let Ωk
c (M) be the space of compactly supported k-forms. We can define

a bilinear form on Ωk
c (M) by setting

(α, β) =

∫
M

〈α, β〉ω.

Here ω is the volume form induced by g. If g(p) is positive definite for
every p ∈ M, then 〈, 〉 and (, ) are also both positive definite. In that case we
can define the norm ‖α‖ =

√
(α,α) of a compactly supported k-form α.
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7.5.5. The Hodge star operator. Let M be an oriented n-manifold pos-
sibly with boundary, equipped with a metric tensor g. We may identify k-forms
and (n − k)-forms via the Hodge star operator, introduced in Section 2.5.4.

Indeed, if we apply it simultaneously to all points of M, the Hodge star
operator becomes a linear map

∗ : Ωk(M) −→ Ωn−k(M).

The map is uniquely determined by requiring that

α ∧ (∗β) = 〈α, β〉ω

for all α ∈ Ωk(M). Here ω is the volume form induced by g.

Example 7.5.4. Let us consider Rn with its Euclidean metric tensor. It
follows from Exercise 2.5.3 that

∗(dx1 ∧ · · · ∧ dxk) = dxk+1 ∧ · · · ∧ dxn.

More generally,

∗(dx i1 ∧ · · · ∧ dx ik ) = ±dx ik+1 ∧ · · · ∧ dx in

where the sign is that of the permutation (i1, . . . , in).

If α, β are compactly supported k-forms, by integrating on M we get∫
M

α ∧ ∗β = (α, β).

7.5.6. (Anti-)self-dual differential forms. If the metric tensor g is pos-
itive definite, we deduce from Exercise 2.5.3 that ∗ : Ωk

c (M) → Ωk
c (M) is an

isometry and

∗ ∗ β = (−1)k(n−k)β

for every β ∈ Ωk(M). In particular, when n = 2k we get an endomorphism

∗ : Ωk(M) −→ Ωk(M)

whose square is ∗2 = (−1)k . If k is even (so n is divisible by 4) we get ∗2 = 1

and as explained in Section 2.5.4 we get a pointwise splitting into eigenspaces
Λk(TpM) = Λk+(TpM)⊕ Λk−(TpM) and hence a global splitting of bundles

Λk(M) = Λk+(M)⊕ Λk−(M).

This gives a splitting of sections

Ωk(M) = Ωk
+(M)⊕Ωk

−(M).

The k-forms in Ωk
+(M) and in Ωk

−(M) are called respectively self-dual and
anti-self-dual.
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7.5.7. Codifferential. Let M be an oriented n-manifold possibly with
boundary, equipped with a metric tensor g. We define the codifferential

δ : Ωk(M) −→ Ωk−1(M)

by setting
δ = (−1)k ∗−1 d ∗ .

It is immediate to prove that δ(δω) = 0 for any ω ∈ Ωk(M).

Exercise 7.5.5. Consider Rn with its Euclidean metric tensor. We have

δ(f dx1 ∧ · · · ∧ dxk) = (−1)i
k∑
i=1

∂f

∂x i
dx1 ∧ · · · ∧ d̂x i ∧ · · · ∧ dxk .

The following proposition says that when ∂M = ∅ the operator δ is the
formal adjoint1 of d with respect to the scalar product (, ).

Proposition 7.5.6. Let M have empty boundary. For every α ∈ Ωk
c (M)

and β ∈ Ωk+1
c (M) we get

(α, δβ) = (dα, β).

Proof. We note that α ∧ ∗β is a (n − 1)-form and Stokes gives

0 =

∫
M

d(α ∧ ∗β) =

∫
M

(dα ∧ ∗β) +

∫
M

(−1)kα ∧ d(∗β)

= (dα, β) +

∫
M

(−1)kα ∧ (−1)k+1 ∗ δβ = (dα, β)− (α, δβ).

The proof is complete. �

Note that we do not require g to be positive-definite. After checking all
signs very carefully, we may also write

δ = (−1)kn+n+m+1 ∗ d∗

where (p,m) is the signature of g.

7.5.8. Laplacian. By combining differentials and codifferentials we can
define the Laplacian of k-forms:

∆: Ωk(M) −→ Ωk(M)

by setting
∆ = (δ + d)2 = δd + dδ.

In the second equality we used that d2 = 0 and δ2 = 0.

1The term formal adjoint is employed for operators that behave formally like adjoints
on spaces that are not necessarily Hilbert spaces.
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Exercise 7.5.7. On Rn equipped with the Euclidean metric tensor, the
Laplacian of a function (that is, of a 0-form) is the usual one (with a sign):

∆f = −
n∑
i=1

∂2f

∂x2
i

.

Exercise 7.5.8. The following equalities hold:

∗δ = (−1)kd∗, δ∗ = (−1)k+1 ∗ d, ∗dδ = δd∗, ∗δd = dδ∗, ∗∆ = ∆ ∗ .

If ∂M = ∅, the Laplacian is formally self-adjoint:

Exercise 7.5.9. Let M have no boundary. For every α, β ∈ Ωk
c (M) we get

(1) (∆α, β) = (δα, δβ) + (dα, dβ) = (α,∆β),
(2) (∆α,α) = ‖δα‖2 + ‖dα‖2 ≥ 0 if g is positive definite,

7.5.9. Harmonic forms. A k-form α ∈ Ωk(M) is harmonic if ∆α = 0.

Proposition 7.5.10. Let M have no boundary and be equipped with a pos-
itive definite metric tensor g. A compactly supported k-form α ∈ Ωk

c (M) is
harmonic ⇐⇒ dα = 0 and δα = 0.

Proof. If dα = 0 and δα = 0 then of course ∆α = 0. Conversely, if
∆α = 0 then Exercise 7.5.9-(2) gives dα = 0 and δα = 0. �

Let Hk(M) ⊂ Ωk(M) denote the vector subspace consisting of all har-
monic k-forms. Since ∗∆ = ∆∗, we deduce that

∗ : Hk(M) −→ Hn−k(M)

is an isomorphism. If M is compact and g is positive definite, the spaces
Hk(M) are equipped with the positive-definite scalar product (, ) and ∗ is also
an isometry.

Proposition 7.5.11. Let M be connected. Then
• H0(M) ∼= R consists of the constant functions.
• Hn(M) ∼= R consists of the n-forms λω with λ ∈ R, where ω is the
volume form induced by g.

Proof. A function f on M is harmonic ⇐⇒ df = 0 ⇐⇒ f is locally
constant ⇐⇒ f is constant (since M is connected). The second assertion
follows since ∗ : H0(M)→ Hn(M) is an isomorphism that sends the constant
function 1 to the volume form ω, see Exercise 2.5.3. �

7.6. Special relativity and electromagnetism

We now use all the mathematical background exposed in the previous pages
to introduce two major physical theories, that is Einstein’s special relativity
and Maxwell’s equations of electromagnetism. Both theories have a strong
geometric nature and can be described concisely and elegantly using metric
tensors and differential forms. We start with the former.
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7.6.1. Minkowski space. In special relativity, the spacetime is modeled
as the Minkowski space. This is simply R4 with coordinates t = x0, x1, x2, x3,
equipped with a specific metric tensor η. Since the tangent plane at every
point x ∈ R4 is identified with R4 itself, a metric tensor is specified by a 4× 4

invertible symmetric matrix that depends smoothly on x ∈ R4. The tensor
field η used here is just constantly the matrix

η =


−c2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
The positive real number c is the speed of light. From now on, to make life
easier we choose some appropriate units such that c = 1. The first thing to
note is that η is a non positive definite scalar product, having signature (3, 1).
The Minkowski space is sometimes denoted as R3,1. We interpret η both as
a matrix and as a scalar product, so for every v , w ∈ R3,1 we write

η(v , w) = ηi jv
iw j .

The tangent space at every point x ∈ R3,1 has a rich structure, that is
of fundamental importance in special relativity and in the way we understand
our universe. A vector v 6= 0 in the tangent space is timelike, lightlike, or
spacelike according to whether η(v , v) is negative, null, or positive. See Figure
7.1-(left). Timelike vectors v are partitioned into two open cones, depending
on the sign of their time component v0, called future and past. Timelike
(spacelike) vectors v with η(v , v) = −1 (respectively, η(v , v) = 1) are called
unit timelike (spacelike) vectors and form a hyperboloid with two (one) sheets:
see Figure 7.2.

A point in R3,1 is called an event. A world path is any curve in R3,1 whose
tangents are all future directed timelike vectors, as in Figure 7.1-(right). In
special relativity, nothing can travel faster than light: massless particles (like
photons) travel straight with constant speed c , while the velocity of every
massive particle is always strictly smaller than c . Therefore photons travel
along straight lines with lightlike slope, and massive particles travel along world
paths.

Let γ be a world path. Up to reparametrising we may always suppose that
the derivative γ′(t) is a unit vector for all t, and this will be always assumed
tacitly in the following.

A crucial aspect of Minkowski space is that it comes naturally equipped
with a group of symmetries called Lorentz tranformations, that mix space and
time in a counterintuitive way.

7.6.2. Lorentz transformations. A Lorentz transformation is a linear iso-
morphism f (x) = Ax of R4 that preserves the bilinear form η, that is such
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Figure 7.1. The tangent space of every point x ∈ R3,1 contains points
of three types: timelike, lightlike, and spacelike. The timelike points are
divided into two components, future and past. The picture displays the
tangent space with one spacial dimension omitted (left). A world line is a
curve with future-directed timelike tangent vectors (right)

Figure 7.2. The spacelike vectors v with η(v, v) = 1 form a hyperboloid
with one sheet, the lightlike vectors form a cone (called the light cone),
and the timelike vectors v with η(v, v) = −1 form a hyperboloid with two
sheets (future and past).
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that tAηA = η as matrices. In coordinates we write this as

AijηikA
k
l = ηj l .

The group of all Lorentz transformations is denoted by O(3, 1).
A Lorentz basis is a basis v0, v1, v2, v3 of vectors such that η(vi , vj) = ηi j .

The canonical basis e0, e1, e2, e3 is an example. A matrix A defines a Lorentz
transformation ⇐⇒ its columns form a Lorentz basis.

Every orthogonal matrix B ∈ O(3) gives rise to a Lorentz transformation

(16) A =

(
1 0

0 B

)
.

These matrices represent the usual isometries of three-dimensional space
and have no effect on time. For instance one finds the usual rotation of angle
θ around a coordinate axis

1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

 .
A somehow similar kind of Lorentz transformation is the Lorentz boost

A =


cosh ζ − sinh ζ 0 0

sinh ζ cosh ζ 0 0

0 0 1 0

0 0 0 1

 .
This is the simplest kind of Lorentz transformation that mixes space and

time. As opposite to rotations, different values of ζ ∈ R yield distinct trans-
formations (no periodicity!). The following exercise can be proved much in the
same way as we did in Proposition 3.9.2 for O(n).

Exercise 7.6.1. The group O(3, 1) is a 6-dimensional submanifold ofM(4),
hence a Lie group.

Note that O(3, 1) has the same dimension as O(4). This means that,
despite Minkowski space may look less natural than the familiar Euclidean
space R4, it has roughly the same amount of symmetries.

As opposite to O(n), one sees by looking at Lorentz boosts that O(3, 1)

is not compact. Like O(n), the group O(3, 1) is not connected, and we now
check that it has as much as four components (whereas O(n) has only two).

Since η = tAηA, every matrix A ∈ O(3, 1) must have detA = ±1, and
we get a homomorphism det : O(3, 1) → {±1}. The kernel is denoted as
SO(3, 1). An additional homeomorphism onto the cyclic group of order two
is constructed by sending A ∈ O(3, 1) to the sign of the top-left element
A0

0. The matrix A sends the timelike vector e0 to a timelike vector that is
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either future or past directed, depending on the sign of A0
0. The kernel of this

homomorphism is denoted as O+(3, 1). We also write

SO+(3, 1) = SO(3, 1) ∩O+(3, 1).

The subgroup SO+(3, 1) consists of all Lorentz transformations that pre-
serve the orientations of both R3,1 and time.

Proposition 7.6.2. The manifold O(3, 1) has four connected components:
the normal subgroup O+(3, 1), and its cosets.

Proof. We prove that O+(3, 1) is path-connected. This is equivalent to
show that a positive Lorentz basis v0, v1, v2, v3 with future directed v0 may
be continuously deformed through Lorentz basis to the canonical e0, e1, e2, e3.
With a composition of boosts along different axis we may first send continu-
ously v0 to e0 (exercise), and then the remaining three spacelike vectors can
be moved to e1, e2, e3 continuously (keeping e0 fixed) since O(3) is connected.

Points in different cosets cannot be path-connected because the two ho-
momorphisms O(3, 1)→ {±1} constructed above are continuous. �

During the proof we have also shown (actually, left as an exercise to prove)
that the Lorentz group acts transitively on future-directed time-like vectors
v normalized so that η(v , v) = −1. These form the upper sheet of the
hyperboloid shown in Figure 7.2-(right). The stabilizer of one such vector is
isomorphic to O(3). Indeed, we may suppose that this vector is e0, and the
Lorentz transformations that fix e0 are clearly those of the form (16).

The Poincaré group is the group of all affine transformations f (x) = Ax+b

of the Minkowski space R3,1 with A ∈ O(3, 1). These are precisely the affine
transformations f that preserve the tensor field η, that is such that f ∗(η) = η.
The Poincaré group is the natural automorphisms group of R3,1.

7.6.3. Lorentz frame. An important feature of Minkowski space is that
its identification with R3,1 is actually not absolute, but it strongly depends on
the point of view of the observer. Suppose that you happily travel in Minkowski
space along some world path γ : (−ε, ε)→ R3,1. Your tangent vector γ′(t) is
unit timelike and future directed for all t.

You may complete γ′(0) to a Lorentz basis v0 = γ′(0), v1, v2, v3. Note
that v0 is determined by your world path, while the spacelike orthonormal basis
v1, v2, v3 is not unique: you choose it arbitrarily by indicating three orthogonal
directions in space with your arms (and feet).

Having settled a Lorentz basis, you may use it as a new frame for Minkowski
space, where you put (quite egoistically) yourself at the center of the universe
and v0, v1, v2, v3 as the new axis. The resulting frame is called a Lorentz frame
for an observer (you) moving along γ at time t = 0.
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Figure 7.3. Two observers that meet at A with different speed model
the universe with different Lorentz frames (x, t) and (x ′, t ′). Foliations do
not match: the event B is in the present for one observer, and lies in the
future for the other.

7.6.4. Simultaneity is not an absolute notion! There is no way of
choosing an absolute frame in the Minkowski universe. Each observer has
her own natural Lorentz frame at every instant of her life, whose time axis is
tangent to her world path.

An immediate consequence of this viewpoint is the lack of any notion of
absolute time, and more dramatically of any notion of simultaneity of events.
It may look natural to foliate R3,1 by the 3-dimensional sheets x0 = k , and
to say that two events are simultaneous if they belong to the same sheet.
Unfortunately, this foliation is not invariant under Lorentz transformations,
because it is not invariant under Lorentz boosts.

An observer traveling on a world path γ may define her foliation by taking
all affine 3-spaces that are orthogonal to γ′(0) with respect to η. Any ob-
server has thus a well-defined notion of simultaneity for the events occurring
in the whole Minkowski universe. However, two observers traveling on distinct
world lines with different tangent vectors γ′1(0) 6= γ′2(0) will obtain different
foliations, and therefore different notions of simultaneity: see an example in
Figure 7.3. A fully egoistic perspective is also not easy to handle, because the
foliations that you obtain at different times t1 and t2 of your world path γ
may differ if γ′(t1) 6= γ′(t2). An event that was “occurring in the past” with
respect to your natural frame yesterday may have now jumped to the future
after that you accelerated your spaceship this morning.



7.6. SPECIAL RELATIVITY AND ELECTROMAGNETISM 209

7.6.5. Spacetime interval, chronology, and causality are absolute no-
tions. The old absolute notions of past and future are not completely de-
stroyed: in Minkowski space we still have the absolute notions of causality,
chronology, and of spacetime interval between events.

Given two events A and B in the Minkowski space R3,1, we consider the
vector

−→
AB = B − A and define the spacetime interval η(

−→
AB,
−→
AB) between

A and B. Since η is preserved by any transformation of the Poincaré group,
the spacetime distance between two events is a number that actually does not
depend on the particular Lorentz frame chosen to calculate it. So it is an
intrinsic invariant of Minkowski space. Note also that the spacetime interval
is symmetric – it does not change if we reverse the roles of A and B. The
spacetime interval is a positive/null/negative real number ⇐⇒ the vector

−→
AB

is spacelike/lightlike/timelike.
Being spacelike/lightlike/timelike is a well-defined notion for

−→
AB that is

independent of the chosen Lorentz frame. This allows us to define two partial
orderings between events, the chronological and the causal orderings, both of
physical relevance. Let A and B be two events. In the chronological order, we
write A < B if and only if

−→
AB is a future-directed timelike vector, while in the

causal order we write A < B if and only if
−→
AB is a future-directed timelike or

lightlike vector. In both the chronological and causal settings we really get a
partial ordering (exercise).

In the chronological ordering, one sees easily that A < B ⇐⇒ there is a
world path from A to B. From a physical point of view, this means that it is
(at least in principle) possibile for a massive body to travel from A to B. In
the causal ordering, we get A < B ⇐⇒ there is either a world path or a light
line from A to B. This means that it is possible (at least in principle) that the
event A has some consequences on the event B, because some particle (with
or without mass) might have gone from A to B.

7.6.6. Proper time. Consider a massive body that travels in Minkowski
space along some world line γ. We define the proper time of the body as the
integral of

√
−η(γ′(t), γ′(t)) along the path. This is a Lorentz transformation

independent notion and is therefore intrinsic: it measures how time passes as
perceived by the massive body.

As already noted, up to reparametrising we can (and usually do) always
assume that γ′(t) is a unit vector for all t. In this setting, the world-line
γ : [a, b]→ R3,1 is parametrised by proper time: the body perceives that b− a
units of time have elapsed between the events A = γ(a) and B = γ(b). Of
course two bodies that meet at A and B passing through different world lines
may have perceived different time intervals. It is natural now to ask what is
the quickest path between A and B, and the answer should not be surprising.
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Exercise 7.6.3. Let A,B be two events such that
−→
AB is a future timelike

vector. The world path with shortest time length from A to B is the segment.

Every other path from A to B has time length bigger than
√
−η
(−→
AB,
−→
AB
)
.

7.6.7. Four-velocity and four-momentum. Let us consider again a mas-
sive body traveling along a world path γ, that we suppose parametrised by
proper time. At every time t, the body has a four-velocity γ′(t). This is a
unit time-like tangent vector at γ(t).

Mass and energy enter into this picture in the simplest way. Every massive
body has a rest mass m > 0 that is constant along its journey and intrinsic
(that is, frame independent). At each time of its world path we define the four-
momentum of the body as P (t) = mγ′(t). Note that m =

√
−η(P (t), P (t)).

The four-momentum is of course a tangent vector. Its coordinates may
be denoted as P (t) = (E, px , py , pz). The quantity E is called the energy,
and the vector (px , py , pz) is the momentum. While the four-momentum is
an intrinsic object, its components “energy” and “momentum” are not: they
strongly depend on the chosen Lorentz frame. If the body is at rest in the
frame, we get P (t) = (E, 0, 0, 0) and hence m = E. This is the famous
Einstein equivalence E = mc2 expressed with c = 1. In general, we have

m2 = −η(P (t), P (t)) = E2 − (px)2 − (py )2 − (pz)2.

If we write p =
√
p2
x + p2

y + p2
z we find

E =
√
m2 + p2.

Analogously, we write the four-velocity γ′(t) = (v0, vx , vy , vz), the velocity

component is (vx , vy , vz), and its norm v =
√
v2
x + v2

y + v2
z , and we get

E =
√
m2 +m2v2 = m

√
1 + v2 = m +

1

2
mv2 + · · ·

If the body travels at a velocity v much smaller than c = 1, its energy is the
rest mass + the kinetic energy + small order terms. The kinetic energy has
appeared quite unexpectedly out of the blue!

As we said, the energy E is not an intrinsic quantity. A massive body with
four-momentum P , examined by an observer traveling with four-velocity v ,
has energy E = −η(P, v).

7.6.8. The electromagnetic field tensor. Special relativity has been in-
troduced by Einstein to resolve an incompatibility between Maxwell’s equations
of electrodynamics and the Netwon mechanics. It should then not surprise the
reader that Maxwell’s equations fit naturally and elegantly within the geometric
frame of Minkowski space.
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We are used to interpret an electric field E and a magnetic field B as
vector fields in R3. We now see that both E and B may actually be seen as
components of an antisymmetric tensor field F of type (0, 2), that is a 2-form.

The electromagnetic tensor field is a 2-form F on the Minkowski space
R3,1. A 2-form in R3,1 is simply a 4 × 4 antisymmetric matrix that depends
smoothly on the point. The components of F may be written as

F =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 .
In other words,

F = −E1dt ∧ dx1 − E2dt ∧ dx2 − E3dt ∧ dx3

+ B3dx
1 ∧ dx2 + B2dx

3 ∧ dx1 + B1dx
2 ∧ dx3.

Here E = (E1, E2, E3) and B = (B1, B2, B3) are the usual electric and
magnetic fields. The crucial fact is the following: the tensor field F is intrinsic,
while E and B strongly depend on the chosen Lorentz frame.

7.6.9. The Lorentz force law. We write the Lorentz force law, that eval-
uates the acceleration of a particle with mass m and charge q crossing the
field with four-velocity v . We use η to transform the (0, 2) tensor field F into
a (1, 1) tensor field, that we still denote by F . In coordinates, we are raising
an index as F ij = Fkjη

ik . Recall that ηik is the inverse matrix of ηik , so they
are the same matrix, and in coordinates the (1, 1) tensor field F is

F =


0 E1 E2 E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 .
Recall that a (1, 1) tensor is an endomorphism. Let a particle with mass m
and charge q move along its world line γ(t) parametrised by proper time t,
and let v = γ′(t) be its four-velocity. The Lorentz force law states that

dv

dt
=
q

m
F (v).

In coordinates we get

dv i

dt
=
q

m
F ijv

j .
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One checks immediately that this equality is equivalent to the familiar non-
relativistic Lorentz force law:

dE

dt
= qE · u,

du

dt
=
q

m
(E + u × B)

where u = (v1, v2, v3) is the spacial velocity and E is the energy of the particle.

7.6.10. Maxwell’s equations. We are ready to write Maxwell’s equa-
tions. We calculate the exterior derivative

dF =

(
∂B3

∂t
+
∂E2

∂x1
−
∂E1

∂x2

)
dt ∧ dx1 ∧ dx2

+

(
∂B2

∂t
+
∂E1

∂x3
−
∂E3

∂x1

)
dt ∧ dx3 ∧ dx1

+

(
∂B1

∂t
+
∂E3

∂x2
−
∂E2

∂x3

)
dt ∧ dx2 ∧ dx3

+

(
∂B1

∂x1
+
∂B2

∂x2
+
∂B3

∂x3

)
dx1 ∧ dx2 ∧ dx3

and deduce that the two Maxwell equations rotE = −
∂B

∂t
,

divB = 0

are equivalent to the very concise single equation

dF = 0.

The remaining two Maxwell equations also reduce to a single equality in-
volving differential forms, but in order to write them we need to formalise
charges and currents. It should not be much of a surprise at this point that
charges and currents are unified into a single object called four-current density,
a vector field J on Minkowski space. Its components are J = (ρ, J1, J2, J3).
The time component ρ is the charge density and j = (J1, J2, J3) is the current
density. As for the four-momentum, the four-current density is intrinsic, while
its components “charge” and “current” density depend on the Lorentz frame.
The word “density” is sometimes omitted.

The equation dF = 0 is in fact unrelated to the metric tensor η. On the
contrary, the next equation that we will write depends on η. The link between
differential forms and metric tensors is furnished by the Hodge ∗ operator.

We can write everything explicitly for R3,1. The canonical orientation of
R3,1 together with η induce the volume form

ω = dt ∧ dx1 ∧ dx2 ∧ dx3.
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The Hodge star operator transforms a k-form into a (4 − k)-form. In
particular we deduce from Exercise 2.5.3 the following equalities:

∗1 = dt ∧ dx1 ∧ dx2 ∧ dx3, ∗(dt ∧ dx1 ∧ dx2 ∧ dx3) = −1,

∗dt = −dx1 ∧ dx2 ∧ dx3, ∗dx1 = −dt ∧ dx2 ∧ dx3,

∗dx2 = −dt ∧ dx3 ∧ dx1, ∗dx3 = −dt ∧ dx1 ∧ dx2,

∗(dt ∧ dx1) = −dx2 ∧ dx3, ∗(dt ∧ dx2) = −dx3 ∧ dx1,

∗(dt ∧ dx3) = −dx1 ∧ dx2, ∗(dx1 ∧ dx2) = dt ∧ dx3,

∗(dx2 ∧ dx3) = dt ∧ dx1, ∗(dx3 ∧ dx1) = dt ∧ dx2.

We have ∗2 = 1 on 1- and 3-forms and ∗2 = −1 on 0-, 2-, and 4-forms.
By applying these equalities to the electromagnetic field tensor F we get

∗F = E1dx
2 ∧ dx3 + E2dx

3 ∧ dx1 + E3dx
1 ∧ dx2

+ B1dt ∧ dx1 + B2dt ∧ dx2 + B3dt ∧ dx3.

The components of the 2-form ∗F may be written as

∗F =


0 B1 B2 B3

−B1 0 E3 −E2

−B2 −E3 0 E1

−B3 E2 −E1 0

 .
We now turn to the four-current J. The four-current is a vector field, and

we can transform it into a 1-form (still denoted by J) by contracting it with
the metric tensor η. In coordinates Ji = J jηi j and hence

J = −ρdt + J1dx1 + J2dx2 + J3dx3.

By applying the Hodge star operator we find

∗J =ρdx1 ∧ dx2 ∧ dx3 − J1dt ∧ dx2 ∧ dx3

− J2dt ∧ dx3 ∧ dx1 − J3dt ∧ dx1 ∧ dx2.

It is now immediate to prove that the last two Maxwell equations rotB = j +
∂E

∂t
,

divE = ρ

are equivalent to the following:

d(∗F ) = ∗J.
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7.6.11. Comments. We have described a magnetic field as a 2-form F

in Minkowski space. Maxwell’s equations are

(17)
{
dF = 0,

d(∗F ) = ∗J.

We now make some comments on this construction.

Covariant form. The most important property of Maxwell’s equations
(17) is probably that they are expressed in covariant form. This means that
they represent some relations between the tensor fields η, F, J that are true
independently on the particularly chosen coordinates chart.

Invariants from F . We can extrapolate from the tensor field F some
other tensor fields. For instance, the may consider the rescaled scalar product
of forms from Section 2.4.11 and get

〈F, F 〉 =
1

2
Fi jη

ikηj lFkl = B2 − E2

where B2 = B2
1 + B2

2 + B2
3 and E2 = E2

1 + E2
2 + E2

3 . The squared norms B2

and E2 of the magnetic and electric field are not separately invariant, but the
difference B2 − E2 is. Using the Hodge star we also find

〈F, ∗F 〉 =
1

2
Fi jη

ikηj l(∗F )kl = 2E · B

and hence also the scalar product E · B = E1B1 + E2B2 + E3B3 is invariant.
In particular, if E and B are orthogonal in some Lorentz frame, they are so in
any Lorentz frame.

Continuity equation. Since ∗J = d(∗F ), we deduce that

d(∗J) = d(d(∗F )) = 0.

This is the continuity equation

∂ρ

∂t
+ div j = 0.

Codifferential. Using the codifferential δ defined in Section 7.5.7, Maxwell’s
equations (17) can be written as follows:{

dF = 0,

δF = J.
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Stokes. Stokes’ Theorem implies that for any domain D ⊂ R3,1 we have∫
∂D

∗J =

∫
D

d(∗J) = 0.

This very general fact furnishes different kinds of physical information de-
pending on the shape of the four-dimensional domain D. For instance, if
D = D′ × [t0, t1] for some domain D′ ⊂ R3 the equation says that the dif-
ference between the total charge of D′ at the times t1 and t0 is equal to the
flow of current along ∂D′.2

Potential. We will see in the next chapter that dF = 0 on Rn implies
that F = dA for some 1-form A called potential. We write it as

A = −V dt + A1dx
1 + A2dx

2 + A3dx
3.

The potential has the disadvantage of not being unique, and the advantage
of containing only 4 parameters instead of the 6 parameters that define F . If
we write a = (A1, A2, A3) as a vector, we see that in coordinates V and a are
the usual potentials for the electric and magnetic fields, that is

E = −∇V −
∂a

∂t
, B = rota.

Concerning Maxwell’s equations, the first dF = ddA = 0 is now automatic
since d2 = 0. The second one δF = J becomes δdA = J.

Recall that A is not unique: we can modify A to A′ = A + df for any
function f and get another potential A′ for F . If we find a f that satisfies

(18) ∆f = −δA

then we easily get δA′ = 0. Here ∆ = dδ + δd , see Section 7.5.8. With
this potential the second Maxwell equation δdA′ = J can be written using the
Laplacian as

∆A′ = J.

Exercise 7.6.4. Let f be a function on R3,1. The Laplacian of f is ∆f =

−�f where � is the d’Alambertian

�f = −
∂2f

∂t2
+
∂2f

∂x2
1

+
∂2f

∂x2
2

+
∂2f

∂x2
3

.

The equation (18) is thus of type �f = δA. This PDE is an inhomoge-
neous wave equation and solutions are known to exist in many cases. Fonte?

2The subset D is not strictly a domain because its boundary is not smooth, however
corners can be smoothened and Stokes’ Theorem still applies.
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7.7. Exercises

Exercise 7.7.1. Let M be a n-manifold. Show that ω ∈ Ωn(M) is a volume form
with respect to some orientation of M if and only if ω(p) is nowhere vanishing. In
particular M is orientable ⇐⇒ there is a nowhere vanishing n-form.

Exercise 7.7.2. Let M be a n-manifold without boundary. Let ω ∈ Ω1(M) be
nowhere vanishing and with dω = 0. Since ω(p) 6= 0 for all p ∈ M, the functional
ω(p) : TpM → R is non-trivial and hence we can define a distribution of hyperplanes:

D(p) = kerω(p).

Show that D is integrable and so gives rise to a foliation on M, uniquely determined
by ω.

Exercise 7.7.3. Let D be a 2-dimensional distribution on a 3-manifold M. Show
that D is integrable⇐⇒ for every nowhere-vanishing 1-form α defined on some open
set with kerα = D we have α ∧ dα = 0.

Exercise 7.7.4. Consider the n-torus M = S1 × · · · × S1 with its coordinates
(θ1, . . . , θn). Each tangent space is canonically identified with Rn and we assign it the
Euclidean metric tensor gi j = δi j . Show that each harmonic k-form on the n-torus is
a linear combination of the k-forms

dx i1 ∧ · · · ∧ dx ik

and hence

dimHk(M) =

(
n

k

)
.



CHAPTER 8

De Rham cohomology

We now exploit the relation d(dω) = 0 on differential forms to build an al-
gebraic construction called De Rham cohomology. This algebraic construction
has some similarities with the fundamental group: it assigns groups to mani-
folds, and it is functorial, that is smooth maps induce groups homomorphisms.
It can be used in particular to distinguish manifolds.

Cohomology is however different from fundamental groups, and may be
used to accomplish some tasks that the fundamental group is unable to carry
out. For instance, we will use it to prove that the smooth manifolds

S4, S2 × S2, CP2

are pairwise non-homeomorphic, and not even homotopy equivalent, although
they are all simply-connected compact four-manifolds.

8.1. Definition

8.1.1. Closed and exact forms. Let M be a smooth n-manifold, possibly
with boundary.

Definition 8.1.1. A k-form ω on M is closed if dω = 0, and is exact if
there is a (k − 1)-form η such that ω = dη.

Since d(dη) = 0, every exact form is also closed, but the converse does
not always hold, and this is the key point that motivates everything that we
are going to say in this chapter. We now list some motivating examples.

Example 8.1.2. Every n-form ω in M is closed, since dω is a (n+ 1)-form,
and every (n + 1)-form is trivial on M. On the other hand, if M is compact,
oriented, and without boundary, and ω is a volume form, then ω is not exact:
if ω = dη by Stokes’ Theorem we would get∫

M

ω =

∫
M

dη = 0

but the integral of a volume form is always strictly positive, a contradiction.

More generally, the following holds.

217
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Proposition 8.1.3. If ω ∈ Ωk(M) is exact, for every compact oriented
k-submanifold S ⊂ M without boundary we have∫

S

ω = 0.

Proof. If ω = dη then Stokes applies. �

Example 8.1.4. On the torus T = S1 × S1 with coordinates θ1, θ2, the
1-form ω = dθ1 of Exercise 7.2.8 is closed but is not exact: indeed note that
θ1 is only a locally defined function (whose value has a +2kπ indeterminacy),
so ω is locally exact, which suffices for getting closedness d(dθ1) = 0 but not
for global exactness, since the integral of ω over the curve γ2 does not vanish.

Example 8.1.5. Pick U = R2 \ {0}. Using polar coordinates ρ, θ we may
define the closed non-exact form ω = dθ on U, like in the previous example.
In Euclidean coordinates the form is

ω =
xdy − ydx
x2 + y2

and the skeptic reader may check that dω = 0 via direct calculation. As above,
the 1-form is not exact because its integral above the curve S1 ⊂ U is 2π 6= 0.

In the last example, it is tempting to think that ω is not exact because
there is a “hole” in U where the origin has been removed (note that ω does not
extend to the origin). We will confirm this intuition in the next pages: closed
non-exact forms detect some kinds of topological holes in the manifold M,
and this precious information is efficiently organised into the more algebraic
De Rham cohomology.

8.1.2. De Rham cohomology. Let M be a smooth manifold, possibly
with boundary. We define

Zk(M), Bk(M)

respectively as the vector subspaces of Ωk(M) consisting of all the closed and
all the exact k-forms.

As we said, we have the inclusion Bk(M) ⊂ Zk(M) and hence we may
define the De Rham cohomology group as the quotient

Hk(M) = Zk(M)/Bk(M).

This is actually a vector space, but the term “group” is usually employed in
analogy with some more general constructions where all these spaces are mod-
ules over some ring.
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8.1.3. The Betti numbers. The k-th Betti number ofM is the dimension

bk(M) = dimHk(M).

Of course this number may be infinite, but we will see that it is finite in the
most interesting cases. This is a remarkable and maybe unexpected fact, since
both Zk(M) and Bk(M) are typically infinite-dimensional.

For every k > dimM we have bk(M) = 0, since there are no non-trivial
k-forms on M for k > n.

8.1.4. The Euler characteristic. Let M be a smooth n-manifold whose
Betti numbers bk are all finite. The Euler characteristic of M is the integer

χ(M) =

n∑
i=0

(−1)ibi(M).

This is an ubiquitous invariant, defined also for more general topological spaces.

8.1.5. The zeroest group. As a start, we may easily identify H0(M) for
any smooth manifold M. We first make a general remark: if M has finitely
many connected components M1, . . . ,Mh, we naturally get

Hk(M) = Hk(M1)⊕ · · · ⊕Hk(Mh).

For this reason, we usually suppose that M be connected.

Proposition 8.1.6. If M is connected, there is a natural isomorphism

H0(M) ∼= R.

Proof. The space Z0(M) consists of all the functions f : M → R such that
df = 0, and B0(M) is trivial. By taking charts, we see that df = 0 ⇐⇒ f is
locally constant (that is, every p ∈ M has a neighbourhood where f is constant)
⇐⇒ f is constant, sinceM is connected. Therefore H0(M) = Z0(M) consists
of the constant functions and is hence naturally isomorphic to R. �

For a possibly disconnected M, we get the following.

Corollary 8.1.7. The Betti number b0(M) equals the number of connected
components of M.

8.1.6. The cohomology algebra. Let M be a smooth manifold, possibly
with boundary. We may define the vector space

H∗(M) =
⊕
k≥0

Hk(M).

Proposition 8.1.8. The exterior product ∧ descends to H∗(M) and gives
it the structure of an associative algebra.
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Proof. If ω ∈ Zk(M) and η ∈ Zh(M) then

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη = 0

and hence ω∧η ∈ Zk+h(M). If moreover ω ∈ Bk(M), that is ω = dζ, we get

ω ∧ η = dζ ∧ η = d(ζ ∧ η)− (−1)k−1ζ ∧ dη = d(ζ ∧ η)

and hence ω ∧ η ∈ Bk+h(M). Therefore the wedge product passes to the
quotients Hk(M) and Hh(M). �

If ω ∈ Hp(M) and η ∈ Hq(M), then ω ∧ η ∈ Hp+q(M). As for Ω∗(M),
the algebra H∗(M) is anticommutative, that is

ω ∧ η = (−1)pqη ∧ ω.

In particular, if p is odd we get

ω ∧ ω = 0.

8.1.7. Functoriality. Every smooth map f : M → N induces a linear map

f ∗ : Ωk(N) −→ Ωk(M)

by pull-back. The map commutes with d and hence it sends close forms to
close forms, and exact forms to exact forms. Therefore it induces a map

f ∗ : Hk(N) −→ Hk(M)

and more generally a morphism of algebras

f ∗ : H∗(N) −→ H∗(M).

We may say that cohomology is a contravariant functor, where contravariant
means that arrows are reversed (we go backwards from Hk(N) to Hk(M)),
and functor means that (f ◦ g)∗ = g∗ ◦ f ∗ and id∗M = idH∗(M).

Every diffeomorphism f : M → N induces an isomorphism f ∗ : H∗(N) →
H∗(M). In particular M and N have the same Betti numbers.

The reader should compare this functor with the covariant functor fur-
nished by the fundamental group, that sends pointed topological spaces (X, x0)

to groups π1(X, x0).

8.1.8. The line. The De Rham cohomology of R can be calculated easily.

Proposition 8.1.9. We have H0(R) = R and Hk(R) = 0 for all k > 0.

Proof. There are no k-forms with k ≥ 2, so the only thing to prove is that
H1(R) = 0. Given a 1-form ω = f (x)dx , we can define

F (x) =

∫ x

0

f (t)dt

and we get ω = dF . Therefore every 1-form is exact and H1(R) = 0. �
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We say that the cohomology of a manifold M is trivial if H0(M) = R and
Hk(M) = 0 for all k > 0. We will soon discover that the cohomology of Rn is
also trivial for every n.

8.1.9. Integration along submanifolds. Let M be a n-manifold and S ⊂
M an oriented compact k-submanifold without boundary. Remember that
every k-form ω ∈ Ωk(M) may be integrated over S, so furnishing a linear map∫

S

: Ωk(M) −→ R.

By Stokes’ Theorem, the integral of an exact form vanishes, and hence this
linear map descends to a map in cohomology∫

S

: Hk(M) −→ R.

If M is itself compact, oriented, and without boundary, the map∫
M

: Hn(M) −→ R

is surjective, since as we already remarked every volume form ω has a non-
trivial image. This implies that bn(M) ≥ 1. We will prove (as a consequence
of Poincaré’s duality) that bn(M) = b0(M) equals the number of connected
components of M in this case. It is very important that M be compact,
oriented, and without boundary to get this equality.

8.2. The Poincaré Lemma

One important feature of the fundamental group is that it is unaffected
by homotopies. We prove here the same thing for the De Rham cohomology.
As a consequence, we will show that the cohomology of Rn is trivial, as that
of any contractible manifold. This fact is known as the Poincaré Lemma and
can be stated as follows: every closed k-form in Rn is exact if k ≥ 1. Despite
the simplicity of this sentence, its proof is quite involved.

8.2.1. Cochain complexes. Some of the properties of De Rham coho-
mology may be deduced by purely algebraic means, and work in more general
contexts. For these reasons we now reintroduce cohomologies with a purely
algebraic language.

A cochain complex C is a sequence of vector spaces C0, C1, C2, . . . with
linear maps dk : Ck → Ck+1 such that dk+1 ◦ dk = 0 for all k . We usually
indicate dk by d and write the cochain complex as

C0 d−→ C1 d−→ C2 d−→ . . .

The elements in Zk = ker dk are called cocycles, and those in Bk = Im dk−1

are the coboundaries. The cohomology of C is constructed as Hk = Zk/Bk
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for every k ≥ 0. We may indicate it as Hk(C) to stress its dependence on the
cochain complex C.

Of course when Ck = Ωk(M) we obtain the De Rham cohomology of M,
but this general construction applies to many other contexts, so it makes sense
to consider it abstractly.

Remark 8.2.1. A chain complex is a sequence of vector spaces C0, C1, . . .

equipped with maps dk : Ck → Ck−1 such that d ◦ d = 0. The theory of chain
complexes is similar and somehow dual to that of cochain complexes: one
defines the cycles as Zk = ker dk , the boundaries as Bk = Im dk+1, and the
homology group Hk = Zk/Bk .

A morphism between two cochain complexes C and D is a map f k : Ck →
Dk for all k ≥ 0 such that the following diagram commutes

· · · d // Ck−1

f
��

d // Ck

f
��

d // Ck+1

f
��

d // · · ·

· · · d // Dk−1 d // Dk
d // Dk+1 d // · · ·

We have denoted f k simply by f . Since f commutes with d , it sends cocycles
to cocycles and coboundaries to coboundaries, and hence induces a homomor-
phism f∗ : Hk(C)→ Hk(D) for every k .

8.2.2. Cochain homotopy. We introduce an algebraic notion of homo-
topy that will reflect the notion of homotopy between maps. Let f , g : C → D

be two morphisms between cochain complexes. A cochain homotopy between
them is a linear map hk : Ck → Dk−1 for all k ≥ 1 such that

f k − gk = dk−1 ◦ hk + hk+1 ◦ dk

for all k ≥ 0. Shortly, we may write

(19) f − g = dh + hd.

It is useful to visualise everything by drawing the following diagram:

· · · d // Ck−1

f
��

g
��

d //

h

||

Ck

f
��

g
��

d //

h

||

Ck+1

f
��

g
��

d //

h

||

· · ·
h

||
· · · d // Dk−1 d // Dk

d // Dk+1 d // · · ·

Two morphisms f , g are homotopic if there is a cochain homotopy between
them. The relevance of homotopies relies in the following fact.

Proposition 8.2.2. If two cochain maps f , g are homotopic, they induce
the same maps in cohomology.
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Proof. For every a ∈ Ck we have

f (a)− g(a) = d(h(a)) + h(d(a)).

If a ∈ Zk(C) we get d(a) = 0 and hence

f (a)− g(a) = d(h(a)) ∈ Bk(D).

Therefore f and g induce the same maps on cohomology. �

Having settled the basic algebraic machinery, we now turn back to De
Rham cohomology.

8.2.3. Homotopy invariance. We prove the homotopy invariance of De
Rham cohomology. Let M and N be smooth manifolds of dimension m and n,
possibly with boundary.

Theorem 8.2.3. Two homotopic smooth maps f , g : M → N induce the
same homomorphisms f ∗ = g∗ : H∗(N)→ H∗(M) in De Rham cohomology.

Proof. Let F : M×[0, 1]→ N be the homotopy between f and g. We may
suppose that F is smooth by Corollary 5.6.9. We build a cochain homotopy

h : Ωk(N) −→ Ωk−1(M)

between the morphisms f ∗, g∗ : Ω∗(N)→ Ω∗(M). This will imply that f ∗ = g∗

in cohomology. The map h is defined as follows: for every ω ∈ Ωk(N) we define
h(ω) ∈ Ωk−1(M) by setting

h(ω)(p) =

∫ 1

0

i∗t

((
ι ∂
∂t
F ∗(ω)

)
(p, t)

)
dt

for every p ∈ M. Here ∂
∂t is the constant vector field along t ∈ [0, 1] and

it : M → M × [0, 1] is the embedding it(p) = (p, t). In other words:

h(ω)(p)(v1, . . . , vk−1) =

∫ 1

0

F ∗(ω)(p, t)
( ∂
∂t
, v1, . . . , vk−1

)
dt.

We now prove that h is indeed a cochain homotopy between f ∗ and g∗. We
drop the point p from the notation. We get:

g∗(ω)− f ∗(ω) = F ∗1 (ω)− F ∗0 (ω) =

∫ 1

0

∂

∂t
F ∗t (ω)dt =

∫ 1

0

i∗t L ∂
∂t
F ∗(ω)dt

=

∫ 1

0

i∗t dι ∂
∂t
F ∗(ω)dt +

∫ 1

0

i∗t ι ∂
∂t
dF ∗(ω)dt

= d

∫ 1

0

i∗t ι ∂
∂t
F ∗(ω)dt +

∫ 1

0

i∗t ι ∂
∂t
F ∗(dω)dt

= dhω + hdω.

The third equality follows from the definition of Lie derivative, the fourth is
Cartan’s magic formula, and the fifth holds because the differential commutes
with pull-backs and with integrating along a path of forms. �
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Here is an important consequence.

Corollary 8.2.4. Two homotopically equivalent manifolds have isomorphic
De Rham cohomologies.

Proof. Let f : M → N and g : N → M be homotopy equivalences. We may
suppose that they are smooth, and the homotopy is also smooth, by Theorems
6.2.13 and 6.2.14. Then f ◦ g ∼ idN and g ◦ f ∼ idM and hence f ∗ ◦ g∗ = id

and g∗ ◦ f ∗ = id. �

In particular, two homeomorphic manifolds have the same De Rham coho-
mology. This is a quite remarkable fact: the cohomology groups H∗(M) are
defined in an analytic way through k-forms, but the result is in fact independent
of the smooth structure.

Corollary 8.2.5. Every contractible manifold has trivial cohomology.

Proof. The point (or R, if you prefer) has trivial cohomology. �

Corollary 8.2.6 (Poincaré’s Lemma). Every closed k-form in Rn is exact,
for every k ≥ 1.

IfM is a manifold with boundary, the inclusion int(M) ↪→ M is a homotopy
equivalence by Exercise 6.1.13, and therefore induces isomorphisms between
the cohomology groups of M and int(M).

8.2.4. Compact orientable manifolds without boundary. We now use
the De Rham cohomology to prove a non-trivial topological fact.

Proposition 8.2.7. A compact oriented manifold M without boundary with
dimM ≥ 1 is never contractible.

Proof. The manifold M has a volume form ω by Proposition 7.2.15, and
Example 8.1.2 shows that ω is closed but not exact. Therefore Hn(M) 6= 0

for n = dimM. In particular the cohomology of M is not trivial. �

Note that the hypothesis “compact” and “without boundary” are both nec-
essary, as the counterexamples Rn and Dn show. The orientability hypothesis
may be removed, but more work is needed for that (for instance, one may use
a different kind of cohomology).

With the same techniques, we can in fact prove more.

Proposition 8.2.8. A compact oriented manifold M without boundary is
never homotopy equivalent to any manifold N with dimN < dimM.

Proof. If m = dimM, we have Hm(M) 6= 0 and Hm(N) = 0. �
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8.3. The Mayer – Vietoris sequence

We have calculated the De Rham cohomology of contractible spaces, and
we are ready for more complicated manifolds. The main tool for calculating
H∗(M) for general manifolds M is the Mayer – Vietoris sequence, and we
introduce it here.

8.3.1. Exact sequences. We now introduce some algebra. A (finite or
infinite) sequence of real vector spaces and linear maps

. . . −→ Vi−1
fi−1−→ Vi

fi−→ Vi+1 −→ . . .

is exact if Im fi = ker fi+1 for all i such that fi and fi+1 are both defined. We
let 0 denote a 0-dimensional vector space; the maps 0 → U and W → 0 are
of course trivial. For instance, the following sequence

0 −→ V
f−→ W

is exact ⇐⇒ f is injective, and

V
g−→ W −→ 0

is exact ⇐⇒ g is surjective. The sequence

0 −→ U
f−→ V

g−→ W −→ 0

is exact⇐⇒ f is injective, g is surjective, and Im f = ker g. An exact sequence
of this last type is called a short exact sequence.

Exercise 8.3.1. If a sequence

. . . −→ Vi−1
fi−1−→ Vi

fi−→ Vi+1 −→ . . .

is exact, the following sequences are also exact:

. . .←− V ∗i−1

f ∗i−1←− V ∗i
f ∗i←− V ∗i+1 ←− . . .

. . . −→ Vi−1 ⊗W
fi−1⊗id−→ Vi ⊗W

fi⊗id−→ Vi+1 ⊗W −→ . . .

for every vector space W .

Exercise 8.3.2. For every finite exact sequence of finite-dimensional spaces

0 −→ V1
f1−→ V2

f2−→ . . .
fk−1−→ Vk −→ 0

we have
k∑
i=1

(−1)i dim Vi = 0.
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8.3.2. The long exact sequence. The notion of exact sequence applies
also to other algebraic notions like groups, modules, etc. and also to cochain
complexes: a short exact sequence of cochain complexes is an exact sequence

0 −→ A
f−→ B

g−→ C −→ 0

where A,B, C are cochain complexes and f , g are morphisms. Exactness means
that f is injective, g is surjective, and Im f = ker g. That is, we have a big
planar commutative diagram of morphisms

(20)
...

d
��

...

d
��

...

d
��

0 // Ak−1

d
��

f // Bk−1

d
��

g // Ck−1

d
��

// 0

0 // Ak

d
��

f // Bk

d
��

g // Ck

d
��

// 0

0 // Ak+1

d��

f // Bk+1

d��

g // Ck+1

d��

// 0

...
...

...

where every horizontal line is a short exact sequence of vector spaces.

Theorem 8.3.3. Every short exact sequence of cochain complexes

(21) 0 −→ A
f−→ B

g−→ C −→ 0

induces naturally an exact sequence in cohomology

(22) · · · −→ Hk(A)
f∗−→ Hk(B)

g∗−→ Hk(C)
δ−→ Hk+1(A) −→ · · ·

for some appropriate morphism δ.

Proof. The morphism

δ : Hk(C) −→ Hk+1(A)

is defined as follows. Given a cocycle γ ∈ Ck , by surjectivity of g there is a
β ∈ Bk with g(β) = γ. We have

g(dβ) = dg(β) = dγ = 0

because γ is a cocycle. Since Im f = ker g there is an α ∈ Ak+1 such that
f (α) = dβ, and we set

δ([γ]) = [α].

There are now a number of things to check, and we leave to the reader the
pleasure of proving all of them through “diagram chasing.” Here are they:
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• α is a cocycle, that is dα = 0;
• the class [α] ∈ Hk+1(A) does not depend on the choices of β and α;
moreover, it only depends on the class [γ] of γ;
• if γ is a coboundary then α also is.

This shows that δ is well-defined. Finally, we have to show that the sequence
(22) is exact. Have fun! �

The sequence (22) is called the long exact sequence induced by the short
exact sequence (21).

8.3.3. The Mayer – Vietoris sequence. It is now time to go back to
smooth manifolds and their De Rham cohomology.

Let M be a smooth manifold, possibly with boundary, and U, V ⊂ M be
two open subsets covering M, that is with U ∪ V = M. The inclusions

U
l

  
U ∩ V

i

<<

j ""

M

V

m

>>

induce the morphisms in cohomology

Hk(U)
dd

l∗

Hk(U ∩ V )
yy

i∗

ee

j∗

Hk(M)

Hk(V )
zz m∗

Theorem 8.3.4 (Mayer – Vietoris Theorem). There is an exact sequence

· · · −→ Hk(M)
(l∗,m∗)−→ Hk(U)⊕Hk(V )

i∗−j∗−→ Hk(U ∩ V )
δ−→ Hk+1(M) −→ · · ·

for some canonically defined map δ.

Proof. This is the long exact sequence obtained via Theorem 8.3.3 from
the short exact sequence of cochain complexes

0 −→ Ω∗(M)
(l∗,m∗)−→ Ω∗(U)⊕Ω∗(V )

i∗−j∗−→ Ω∗(U ∩ V ) −→ 0.

We only need to check that this short sequence is indeed exact. Note that the
morphisms l∗, m∗, i∗, and j∗ are just restrictions of k-forms to open subsets.
There are four things to check, and these are easily proved by keeping in mind
that these morphisms are just restrictions:



228 8. DE RHAM COHOMOLOGY

• The map (l∗, m∗) is injective: if l∗(ω) = m∗(ω) = 0, then ω = 0.
• Since i∗ ◦ l∗ = j∗ ◦m∗, we get (i∗ − j∗) ◦ (l∗, m∗) = 0.
• If (α, β) is such that i∗(α) = j∗(β), then α and β agree on U ∩ V
and hence are restrictions of a global form in M.
• To prove that i∗ − j∗ is surjective, pick a partition of unity ρU , ρV
subordinate to {U, V }. Given ω ∈ Ωk(U∩V ), note that ρV ω extends
smoothly to U simply by setting it constantly zero on U\V . Therefore
ρV ω ∈ Ωk(U) and ρUω ∈ Ωk(V ) and we can write

(i∗ − j∗)(ρV ω,−ρUω) = (ρU + ρV )ω = ω.

The proof is complete. �

The exact sequence resulting from Theorem 8.3.4 is called the Mayer –
Vietoris long exact sequence induced by the covering {U, V } of M. Recall that
Hk(M) = 0 whenever k > n = dimM, so the Mayer – Vietoris sequence may
be long but is certainly finite. It starts and ends as follows:

0 −→ H0(M) −→ H0(U)⊕H0(V ) −→ · · · −→ Hn(U ∩ V ) −→ 0.

Note that U and V are not necessarily connected. The four morphisms
i∗, j∗, l∗, m∗ are simply restrictions of k-forms. The morphism δ is a bit more
complicated, and for most applications we do not need to understand it, so
the reader may decide to jump to the next section. Just in case, here is a
description of δ. Let ρU , ρV be a partition of unity subordinated to {U, V }.
Given a closed k-form ω ∈ Ωk(U ∩ V ), we may consider the (k + 1)-form

η = dρV ∧ ω = −dρU ∧ ω ∈ Ωk+1(U ∩ V ).

The two expressions coincide since dρU + dρV = 0. The 1-forms dρV and
dρU are actually defined on M and with support in U ∩ V . This implies that
we can extend η to a form η ∈ Ωk+1(M) by setting it to be zero on any point
in M \ (U ∩ V ).

Proposition 8.3.5. We have δ([ω]) = [η].

Proof. The proofs of Theorems 8.3.3 and 8.3.4 show that δ([ω]) is con-
structed by picking the preimage (ρV ω,−ρUω) of ω, then differentiating(

d(ρV ω),−d(ρUω)
)

= (dρV ∧ ω,−dρU ∧ ω)

using dω = 0, and finally noting that the pair is the image of η. �

8.3.4. Cohomology of spheres. As a reward for all the effort that we
made with short and long exact sequences, we can now easily calculate the
De Rham cohomology of spheres.

Proposition 8.3.6. For every n ≥ 1 we have

H0(Sn) ∼= Hn(Sn) ∼= R, Hk(Sn) = 0 ∀k 6= 0, n.
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Proof. Using stereographic projections along opposite poles we may cover
Sn as Sn = U∪V with U ∼= V ∼= Rn and also U∩V ∼= Sn−1×R. By homotopy
equivalence, we have H∗(U ∩ V ) ∼= H∗(Sn−1).

We first examine the case n = 1. Remember that Hk(M) = 0 whenever
k > dimM and Hk(Rn) = 0 for all k > 0. The Mayer – Vietoris sequence is

0 −→ H0(S1) −→ H0(R1)⊕H0(R1) −→ H0(S0)
δ−→ H1(S1) −→ 0

which translates as

0 −→ R −→ R⊕ R −→ R⊕ R −→ H1(S1) −→ 0.

since S0 has two connected components. Exercise 8.3.2 gives H1(S1) ∼= R.
We now consider the case n ≥ 2. The Mayer – Vietoris sequence breaks

into pieces since Hk(Rn)⊕Hk(Rn) = 0 for all k > 0. It starts with

0 −→ H0(Sn) −→ H0(Rn)⊕H0(Rn) −→ H0(Sn−1)
δ−→ H1(Sn) −→ 0

which translates as

0 −→ R −→ R⊕ R −→ R −→ H1(Sn) −→ 0.

Therefore H1(Sn) = 0. Then for every 2 ≤ k ≤ n we get

0 −→ Hk−1(Sn−1)
δ−→ Hk(Sn) −→ 0

and therefore Hk(Sn) ∼= Hk−1(Sn−1). We conclude by induction on n. �

8.3.5. Complex projective spaces. The De Rham cohomology of the
complex projective spaces is quite different from that of the spheres, and is in
fact very interesting:

Proposition 8.3.7. We have

Hk(CPn) =

{
R if k is even and k ≤ 2n,

0 otherwise.

Proof. When n = 1 we have CP1 ∼= S2 and the theorem is proved. So we
proceed by induction on n and suppose n ≥ 2. Let H ⊂ CPn be a hyperplane.
Of course H is diffeomorphic to CPn−1, and the inclusion i : H ↪→ CPn induces
a morphism

i∗ : Hk(CPn) −→ Hk(H) ∼= Hk(CPn−1).

We will prove that i∗ is an isomorphism for all k < 2n and that H2n(CPn) ∼= R.
From this we conclude by our induction hypothesis.

Pick a point p ∈ CPn not contained in H. Choose the open sets

U = CPn \H, V = CPn \ {p}.

We have the diffeomorphisms

U ∼= R2n, U ∩ V ∼= R2n \ {p} ∼= S2n−1 × R.
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The pencil of complex lines passing through p gives V the structure of a C-
bundle over H ∼= CPn−1. In fact for our purposes it suffices to note that V
deformation retracts onto H. In particular, we have the homotopy equivalences

U ∼ {pt}, U ∩ V ∼ S2n−1, V ∼ CPn−1.

The Mayer – Vietoris sequence starts as

0 −→H0(CPn)
(i∗,j∗)−→ H0(CPn−1)⊕H0(pt) −→ H0(S2n−1)

δ−→H1(CPn)
i∗−→ H1(CPn−1) −→ 0.

This is isomorphic to

0 −→ R (i∗,j∗)−→ R⊕ R −→ R −→ H1(CPn)
i∗−→ H1(CPn−1) −→ 0

and we deduce easily that both i∗ are isomorphisms. If 1 < k < 2n− 1 we get

0 = Hk−1(S2n−1) −→ Hk(CPn)
i∗−→ Hk(CPn−1) −→ Hk(S2n−1) = 0

and therefore i∗ is again an isomorphism. The end of the sequence is

0 = H2n−2(S2n−1) −→H2n−1(CPn)
i∗−→ H2n−1(CPn−1)

−→ H2n−1(S2n−1) −→H2n(CPn) −→ 0.

This is isomorphic to

0 −→ H2n−1(CPn)
i∗−→ 0 −→ R −→ H2n(CPn) −→ 0.

Therefore i∗ is a (trivial) isomorphism also in this case and H2n(CPn) ∼= R. �

Corollary 8.3.8. The manifolds S2n and CPn are not diffeomorphic, and in
fact not even homotopy equivalent, when n > 1.

Proof. The Betti numbers of S2n and CPn are respectively

1,0, 0, 0, . . . , 0, 0, 1;

1,0, 1, 0, . . . , 1, 0, 1.

These sequences differ when n > 1. �

Along the proof of Proposition 8.3.7 we have also shown that the inclusion
i : H ↪→ CPn of any hyperplane H induces a surjective map i∗ in cohomology.
By iteration, this remains true if we substitute H with a projective subspace S
of any dimension.

8.4. Compactly supported forms

We now introduce a variation of De Rham cohomology that considers only
forms with compact supports. We will see that this variation has a somehow
dual behaviour with respect to the ordinary De Rham cohomology.
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8.4.1. Definition. Let M be a smooth manifold, possibly with boundary.
For every k ≥ 0 we define the vector subspace

Ωk
c (M) ⊂ Ωk(M)

that consists of all the k-forms having compact support. Of course if M is
compact we have Ωk

c (M) = Ωk(M). The differential restrict to a map

d : Ωk
c (M) −→ Ωk+1

c (M)

with d2 = 0. As above, we get a cochain complex Ω∗c(M), and its cohomology
is called the De Rham cohomology with compact support

Hkc (M).

The wedge product of two compactly supported forms is also compactly
supported, hence the operation ∧ is defined also in this context and gives
H∗c(M) = ⊕kHkc (M) the structure of an associative algebra.

Of course when M is compact we get nothing new, but Hkc (M) may differ
considerably from Hk(M) when M is not compact, as we now show.

8.4.2. The zeroeth group. We now study H0
c (M) and notice immediately

a difference between the compact and the non compact case.
As with De Rham cohomology, if M has finitely many connected compo-

nents M1, . . . ,Mk we get H0
c (M) = H0

c (M1) ⊕ · · · ⊕ H0
c (Mk), so one usually

considers only connected manifolds.

Proposition 8.4.1. LetM be connected. IfM is compact then H0
c (M) = R,

while if M is not compact then H0
c (M) = 0.

Proof. The space H0
c (M) consists of all the compactly supported constant

functions. Non-trivial such functions exist only if M is compact. �

Let bkc (M) = dimHkc (M) be the compactly supported k-th Betti number.
We have discovered that b0

c(M) equals the number of compact connected
components of M. As in ordinary De Rham cohomology, we have bkc (M) = 0

for every k > dimM.

8.4.3. The n-th group. Let M be an oriented n-manifold without bound-
ary. A compactly supported n-form in M can be integrated, so we get a map∫

M

: Ωn
c(M) −→ R.

By Stokes’ Theorem, the integral of an exact form vanishes (since ∂M = ∅)
hence this linear map descends to a map in cohomology∫

M

: Hnc (M) −→ R.

This map is non-trivial (pick a bump n-form), hence it is surjective. This
shows in particular that bnc (M) > 0. As opposite to the ordinary De Rham
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cohomology, the compactly supported one detects the dimension n of the
manifold M, that is equal to the maximum k such that bkc (M) 6= 0.

8.4.4. The line. As usual we start by considering the line R.

Proposition 8.4.2. We have H1
c (R) ∼= R and Hkc (R) = 0 for all k 6= 1.

Proof. We already know that Hkc (R) = 0 for k = 0 and k ≥ 2, so we turn
to the case k = 1. The integration map∫

R
: H1

c (R) −→ R

is surjective. If ω = g(x)dx is such that
∫
ω = 0, we may define f (x) =∫ x

−∞ g(t)dt and get a compactly supported f with ω = df . Therefore the
integration map is also injective. �

We note that Hkc (R) ∼= H1−k(R). This is not an accident, as we will see.

8.4.5. Functoriality? If f : M → N is a proper map, the pull-back f ∗ω
of ω ∈ Ωk

c (N) is compactly supported also in M and we get a morphism

f ∗ : Ωk
c (N) −→ Ωk

c (M)

that commutes with d and hence passes to cohomology groups

f ∗ : Hkc (N) −→ Hkc (M).

However, if f is not proper the pull-back is not defined in this context. So we
can say that contravariant functoriality holds only for proper maps.

On the other hand, the compactly supported cohomology displays some
covariant behaviour: every inclusion map i : U ↪→ M of some open subset U
induces the extension morphism

i∗ : Ωk
c (U) −→ Ωk

c (M)

defined simply by extending k-forms to be zero outside of U. This does not
work for general k-forms (extensions would not be smooth, nor continuous, in
general). Extensions commute with d and hence we get

i∗ : Hkc (U) −→ Hkc (M).

8.4.6. Poincaré Lemma. We now prove a version of the Poincaré Lemma
for compactly supported k-forms in Rn.

Theorem 8.4.3. We have Hnc (Rn) = R and Hkc (Rn) = 0 for all k 6= n.

Proof. We identify Rn with Sn \ {p} for some p ∈ Sn. We first consider
the case 0 < k < n. Let ω ∈ Ωk

c (Rn) be a closed k-form with 0 < k < n. We
need to prove that it is exact.

Since ω has compact support we may extend it to a form in Sn. Since
Hk(Sn) = 0, we have ω = dη for some η ∈ Ωk−1(Sn). The support of η may
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not be contained in Rn, so we now modify η to another form η′ with support
in Rn that still satisfies dη′ = ω.

Let B ⊂ Rn be a ball of some radius containing the support of ω. Note
that dη = 0 on Sn \ B. If k = 1, then η is a function on Sn that has some
constant value c on Sn \ B. By setting η′ = η − c we get dη′ = dη = ω and
η′ has support in B, so we are done.

We suppose that k > 1. Since Sn \ B is contractible, there is an α ∈
Ωk−2(Sn \ B) such that dα = η. Pick a bump function ρ with support in
Sn \ B that equals 1 on a neighbourhood of p. Now ρα extends to Sn and

η′ = η − d(ρα) ∈ Ωk−1(Sn)

vanishes near p, so it gives a compactly supported form in Rn. We have
dη′ = dη = ω and hence we are done.

In the case k = n we need to prove that the integration map∫
Rn

: Hnc (Rn) −→ R

is injective. Let ω ∈ Ωn
c(Rn) be a closed form with

∫
Rn ω = 0. We extend it

to a form in Sn. We already know that
∫
Sn : Hn(Sn)→ R is an isomorphism.

Since
∫
Sn ω = 0, the form ω is exact in Sn and we conclude as above. �

Corollary 8.4.4. Every compactly supported closed k-form in Rn with k 6= n

is the differential of a compactly supported (k − 1)-form.

Example 8.4.5. Every electromagnetic tensor field F ∈ Ω2
c(R3,1) with

compact support is closed by Maxwell’s equations; hence it is the differen-
tial F = dA of a potential 1-form A ∈ Ω1

c(R3,1) with compact support.

We keep observing that Hkc (Rn) = Hn−k(Rn) for all n and k . We also
note that the compactly supported cohomology is evidently not invariant under
homotopy equivalence.

8.4.7. The Mayer – Vietoris sequence. The compactly supported ver-
sion of De Rham cohomology also has a Mayer – Vietoris sequence, which
however presents some important differences with respect to the ordinary one.

Let M be a smooth manifold possibly with boundary, and U, V ⊂ M be
two open subsets covering M. The inclusions

U
l

  
U ∩ V

i

<<

j ""

M

V

m

>>
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induce the extension morphisms in cohomology

Hkc (U)

l∗

$$
Hkc (U ∩ V )

i∗
99

j∗ %%

Hkc (M)

Hkc (V )

m∗

::

Theorem 8.4.6 (Mayer – Vietoris Theorem). There is an exact sequence

· · · −→ Hkc (U∩V )
(i∗,−j∗)−→ Hkc (U)⊕Hkc (V )

l∗+m∗−→ Hkc (M)
δ−→ Hk+1

c (U∩V ) −→ · · ·

for some canonically defined map δ.

Proof. The sequence of complexes

0 −→ Ω∗c(U ∩ V )
(i∗,−j∗)−→ Ω∗c(U)⊕Ω∗c(V )

l∗+m∗−→ Ω∗c(M) −→ 0

is easily seen to be exact: use a partition of unity to show that l∗ + m∗ is
surjective. �

Note that this Mayer – Vietoris sequence is different in nature from the
one that we obtained from Theorem 8.3.4.

Exercise 8.4.7. Use the Mayer – Vietoris sequence to confirm that

Hkc (Sn) = Hk(Sn) =

{
R if k = 0, n,

0 otherwise.

We cannot refrain from noting again that Hkc (Sn) = Hn−k(Sn). As in
ordinary De Rham cohomology, we can write δ explicitly. Let ρU , ρV be a
partition of unity subordinate to {U, V }. Given ω ∈ Ωk

c (M) we can define

η = dρV ∧ ω = −dρU ∧ ω ∈ Ωk+1
c (U ∩ V )

and as in the ordinary case we find that δ([ω]) = [η].

8.4.8. Countably many connected components. We point out another
difference between Hk(M) and Hkc (M). Remember that

∏
i Vi is the space

of all sequences (v1, v2, . . .) with vi ∈ Vi while ⊕iVi is the subspace of all
sequences having only finitely many non-zero elements.

Proposition 8.4.8. Let M have countably many connected components
M1, M2, . . . We have the canonical isomorphisms

Hk(M) =
∏
i

Hk(Mi), Hkc (M) =
⊕
i

Hkc (Mi).
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Proof. We have

Ωk(M) =
∏
i

Ωk(Mi), Ωk
c (M) =

⊕
i

Ωk
c (Mi).

The point is that a k-form ω in M is like a k-form ωi in each Mi , and ω has
compact support⇐⇒ each ωi has and only finitely many ωi are non-zero. �

8.4.9. Integration along fibres. Let π : M → N be a submersion between
oriented manifolds without boundary of dimension m ≥ n.

For every p ∈ N the fibre F = π−1(p) is a manifold of dimension h = m−n,
with an orientation induced by that of M and N as follows: for every q ∈ F
we say that v1, . . . , vh ∈ TqF is a positive basis if it may be completed to a
positive basis v1, . . . , vm of TqM such that vh+1, . . . , vm project to a positive
basis of TpN.

We now define a map

π∗ : Ωk
c (M) −→ Ωk−h

c (N)

called integration along fibres, as follows. For every p ∈ N and v1, . . . , vk−h ∈
Tp(N) we set

π∗(ω)(p)(v1, . . . , vk−h) =

∫
F

β

where F = π−1(p) and β ∈ Ωh
c(F ) is defined as

β(q)(w1, . . . , wh) = ω(w1, . . . , wh, ṽ1, . . . , ṽk−h)

where ṽi is any vector in Tq(F ) such that dπq(ṽi) = vi .

Proposition 8.4.9. The form β is well-defined.

Proof. For any other lift ṽ ′i we get ṽ
′
i = ṽi +λ1w1 + . . .+λhwh and hence

ω(w1, . . . , wh, . . . , ṽ
′
i , . . .) = ω(w1, . . . , wh, . . . , ṽi , . . .)

since ω(w1, . . . , wh, . . . , λjwj , . . .) = 0. �

The definition is a bit abstract, so we describe an important example more
explicitly. Consider the projection

π : Rn × Rh −→ Rn

on the first factor, and use variables x1, . . . , xn for Rn and y1, . . . , yh for Rh.
We examine the k-form

ω = f dx I ∧ dy J

where f has compact support and I, J are multi-indices.

Exercise 8.4.10. If J = (1, . . . , h) then

π∗(ω) =

(∫
Rh
f (x, y)dy J

)
dx I ,

while if J 6= (1, . . . , n) we have π∗(ω) = 0.
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Proposition 8.4.11. The linear map π∗ commutes with differentials and
hence descends to a map in cohomology

π∗ : Hkc (M) −→ Hk−hc (N).

Proof. We must prove that π∗(dω) = dπ∗(ω) for every ω ∈ Ωk
c (M). By

the normal form of submersions every p ∈ M has an open neighbourhood U(p)

such that π|U(p) looks like a projection

π : Rn × Rh −→ Rn

onto the first factor. Using a partition of unity we may write ω as a finite sum
of k-forms, each with support contained in some U(p). By linearity it suffices
to prove the theorem for one such k-form. Summing up, it suffices to consider
the case where π : Rn × Rh → Rn and ω ∈ Ωk

c (Rn × Rh).
Again by linearity we may restrict to the case

ω = f dx I ∧ dy J

already studied above. If J = (1, . . . , h) we get

π∗(ω) =

(∫
Rh
f (x, y)dy J

)
dx I

and hence

dπ∗(ω) =

n∑
i=1

∂

∂x i

(∫
Rh
f (x, y)dy J

)
dx i ∧ dx I

=

(∫
Rh

n∑
i=1

∂f

∂x i
(x, y)dy J

)
dx i ∧ dx I = π∗d(ω).

If J 6= (1, . . . , h) we get π∗(ω) = 0 and π∗(dω) = 0. The only non-trivial case
is when |J| = h − 1, so consider for simplicity J = (2, . . . , h). We get

π∗(dω) =

(∫
Rh

∂f

∂y1
(x, y)dy J

)
dx I = 0

because f has compact support. (Here we need ∂M = ∅.) �

We have discovered that every submersion f : M → N between oriented
manifolds induces a linear map

π∗ : Hkc (M) −→ Hk−hc (N).

The map π∗ is called integration along fibres. It may be characterised by the
following geometric property. Let S ⊂ N be an oriented (k − h)-submanifold.
Then W = f −1(S) is an oriented k-submanifold of M.

Exercise 8.4.12. For every ω ∈ Ωk
c (M) we have∫

S

π∗(ω) =

∫
W

ω.
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In particular when k = h we get a linear map π∗ : Ωh
c(M) → C∞c (N) that

sends ω to the function

f (p) = π∗(ω)(p) =

∫
F

ω

where F = π−1(p).

8.4.10. Smooth coverings. Let M → N be a smooth covering between
smooth n-manifolds without boundary. A covering is a submersion, and the
integration along fibres is a map

π∗ : Hkc (M) −→ Hkc (N).

In this case the integration along the fibres is just a summation, that is

π∗(ω)(p)(v1, . . . , vn) =
∑

π(q)=p

ω(q)(ṽ1, . . . , ṽn)

where vi ∈ TpN and ṽi = dπ−1
q (vi). Here is a remarkable application.

Proposition 8.4.13. If π : M → N is a covering of finite degree d , then
π∗ : Hkc (N)→ Hkc (M) is injective.

Proof. We have 1
dπ∗ ◦ π

∗ = id on Hkc (N). �

If the covering has infinite degree the maps in cohomology need not to be
injective, as the universal covering R→ S1 easily shows.

8.5. Poincaré duality

We have already noted that Hk(M) ∼= Hn−kc (M) on many n-manifolds M,
and we now prove this equality in a much wider generality. We emphasize that
all the manifolds considered in this section are oriented and without boundary!

8.5.1. The Poincaré bilinear map. Let M be an oriented smooth mani-
fold without boundary. We define the Poincaré bilinear map

Ωk(M)×Ωn−k
c (M) −→ R

by sending the pair (ω, η) to the real number

〈ω, η〉 =

∫
M

ω ∧ η.

The map is well-defined since ω ∧ η has compact support. We can see easily
using Stokes and ∂M = ∅ that it passes to cohomology groups

Hk(M)×Hn−kc (M) −→ R.

As every bilinear form, it induces a map

PD: Hk(M) −→ Hn−kc (M)∗

that sends [ω] to the functional [η] 7→ 〈[ω], [η]〉. We dedicate this section to
proving the following.
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Theorem 8.5.1 (Poincaré duality). The map PD is an isomorphism.

As usual, we will need a bit of preliminary homological algebra.

8.5.2. The Five Lemma. The following lemma is solved by diagram chas-
ing, and we leave it to the reader as an exercise – there is certainly much more
fun in trying to solve it alone than in reading a boring sequence of implications.

Exercise 8.5.2 (The Five Lemma). Given the following commutative dia-
gram of abelian groups and morphisms

A
f //

α
��

B
g //

β
��

C
h //

γ
��

D
i //

δ
��

E

ε
��

A′
j
// B′

k
// C′

l
// D′

m
// E′

in which the rows are exact, if α, β, δ, ε are isomorphisms then γ also is.

8.5.3. Induction on open subsets. Let M be a smooth manifold. We
want to prove the Poincaré duality Theorem by induction on open subsets ofM,
starting with those diffeomorphic to Rn and then passing to more complicated
ones in a controlled way. We will need the following.

Let A be the collection of open subsets in M determined by the rules:

(1) A contains all the open subsets diffeomorphic to Rn,
(2) if U, V, U ∩ V ∈ A, then U ∪ V ∈ A,
(3) if Ui ∈ A are pairwise disjoint, then ∪Ui ∈ A.

Note that in the last point there can be infinitely many disjoint sets Ui (they
are always countable, since M is second countable).

Lemma 8.5.3. Every open subset of M belongs to A.

Proof. The proof is subdivided into steps.

(1) If U1, . . . , Uk ∈ A and all their intersections lie in A, then also U1 ∪
· · · ∪ Uk ∈ A.

(2) If {Ui} ⊂ A is a locally finite countable family, with Ui compact for
all i , and such that all the finite intersections also lie in A, then
∪Ui ∈ A.

(3) If U ⊂ M is diffeomorphic to an open subset V ⊂ Rn, then U ∈ A.
(4) Every open subset of M belongs to A.

Point (1) is a simple exercise (prove it by induction on k). Concerning (2),
we may suppose that U = ∪Ui is connected, and note that every Ui intersects
only finitely many Uj .

We define some new open subsets by setting W0 = U0 and defining Wi+1

as the union of all the Uj that intersect Wi and are not contained in ∪a≤iWa.



8.5. POINCARÉ DUALITY 239

Each Wi contains finitely many Uj and hence Wi ∈ A by (1). Note that
Wi ∩Wi+2 = ∅ for all i . We set

Z0 = tiW2i , Z1 = tiW2i+1.

We easily get Z0, Z1 ∈ A and also Z0 ∩ Z1 ∈ A, so U = Z0 ∪ Z1 ∈ A.
Concerning (3), we note that V is covered by multi-rectangles (a1, b1) ×

· · ·×(an, bn) whose closure is contained in V . Every finite intersection is again
a product, so all these sets and their intersections are diffeomorphic to Rn and
hence lie in A. This cover can be made locally finite using an exhaustion of V
by compact sets. Now (2) applies and we get U ∈ A.

Finally, by taking an adequate atlas for M (see Proposition 3.3.2) we find
a locally finite covering Ui such that every Ui is diffeomorphic to Rn and has
compact closure. The intersections are diffeomorphic to open subsets of Rn
and hence are in A by (3). We conclude again by (2). �

We have proved in particular that M ∈ A.

8.5.4. Proof of the Poincaré duality. We can now prove Theorem 8.5.1.

Proof. Let B be the collection of the open subsets U of M where Poincaré
duality holds, that is such that PD: Hk(U) → Hn−kc (U)∗ is an isomorphism
for all k . Our aim is of course to prove that M ∈ B, so we prove that B fulfills
the 3 rules necessary to apply induction on open sets.

(1). If U ∼= Rn then U ∈ B. We only have to prove that PD: H0(Rn) →
Hnc (Rn)∗ is an isomorphism. Both spaces have dimension one, so it suffices to
check that the map is not trivial: if η is a compactly supported n-form over
Rn with

∫
η = 1 and 1 is the constant function we get 〈1, η〉 = 1 and hence

1 ∈ H0(Rn) is mapped to a nontrivial element PD(1) ∈ Hnc (Rn)∗.
(2). If U, V, U ∩ V ∈ B, then U ∪ V ∈ B. To show this, we consider the

following diagram that contains both Mayer – Vietoris sequences:

// Hk−1(U ∩ V )

PD
��

δ // Hk(U ∪ V )

PD
��

// Hk(U)⊕Hk(V )

PD
��

//

//Hn−k+1
c (U ∩ V )∗

δ∗
// Hn−kc (U ∪ V )∗ //Hn−kc (U)∗⊕Hn−kc (V )∗ //

The bottom row is obtained by dualising the Mayer – Vietoris exact se-
quence in the compactly supported cohomology. This diagram commutes up to
sign: the two simplest types of squares easily commute, while the more compli-
cated one containing δ commutes only up to sign. Indeed if [ω] ∈ Hk−1(U∩V )

and ρU , ρV is a partition of unity subordinated to {U, V }, by Proposition 8.3.5
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for every [α] ∈ Hn−kc (U ∪ V ) we get

PD
(
δ([ω])

)
([α]) =

∫
U∪V

dρV ∧ ω ∧ α,

δ∗
(

PD([ω])
)

([α]) = PD([ω])(δ([α])) =

∫
U∩V

ω ∧ dρV ∧ α

and we get the same number up to a sign (−1)k−1. We can modify the sign
of some maps δ to get a genuine commutative diagram and then apply the
Five Lemma, which says that if PD is an isomorphism for U, V , and U ∩ V ,
then it is so also for U ∪ V .

(3). If U = tiUi and Ui ∈ B, then U ∈ B. This is a simple consequence
of Proposition 8.4.8 and of the natural equality (⊕iVi)∗ =

∏
i V
∗
i . We get

Hk(U) −→
∏
i

Hk(Ui)

∏
i PD
−→

∏
i

Hn−kc (Ui)
∗ −→

(
⊕iHn−kc (Ui)

)∗ −→ Hn−kc (U)∗

where all arrows are natural isomorphisms and their composition is PD.
By Proposition 8.5.3 we have M ∈ B and the proof is complete. �

8.5.5. Betti numbers. As a first consequence of Poicaré Duality, for ev-
ery orientable manifold M without boundary we have

bk(M) = bn−kc (M).

When M is also compact we get bk(M) = bn−k(M). In particular we have
b0(M) = bn(M) = 1 when M is compact and connected.

We can prove the finiteness of Betti numbers for any compact manifold.

Theorem 8.5.4. Let M be a compact manifold, possibly with boundary
and/or non orientable. The Betti numbers bk(M) are finite for all k .

Proof. We consider first the case whereM is orientable and without bound-
ary. We have the canonical Poincaré isomorphisms

Hk(M) ∼= Hn−k(M)∗, Hn−k(M) ∼= Hk(M)∗.

By combining them we deduce that the canonical embedding Hk(M) ↪→
Hk(M)∗∗ is an isomorphism, and we know that this holds if and only if the
vector space is finite-dimensional. If M non-orientable and without boundary,
it has an orientable double cover and we conclude using Proposition 8.4.13.

If M has boundary, we consider the double DM. We can cover DM with
two open subsets U, V such that U ∼= V ∼= int(M) ∼ M and U ∩ V ∼= ∂M ×
(0, 1) ∼ ∂M. Here ∼ denotes homotopy equivalence. The Betti numbers of
M = U ∪ V and U ∩ V are finite, and hence also those of U and V are, as one
deduces easily from the Mayer–Vietoris sequence. �

In particular the Euler characteristic χ(M) =
∑n
i=0 b

i(M) of a compact
manifold M, possibly with boundary, is always a well-defined finite number.
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Corollary 8.5.5. If M is a compact orientable manifold without boundary
of odd dimension n, then χ(M) = 0.

Proof. We have bi(M) = bn−i(M), so everything cancels out. �

8.5.6. Orientability. We now show that the De Rham cohomology dis-
tinguishes between orientable and non-orientable manifolds. This works only
for manifolds without boundary.

Proposition 8.5.6. Let M be a connected smooth n-manifold without
boundary. We have

Hnc (M) =

{
R if M is orientable,

0 otherwise.

Proof. If M is oriented, the map∫
M

: Hnc (M) −→ R

is an isomorphism: we know that
∫
M is surjective and bnc (M) = b0(M) = 1.

If M is not orientable, it has an orientable double cover π : M̃ → M, with
orientation-reversing deck involution ι : M̃ → M̃. The induced map

π∗ : Hnc (M)→ Hnc (M̃)

is injective by Proposition 8.4.13. Moreover, for every n-form ω ∈ Ωn(M),
the pull-back π∗ω is well-defined since π is proper, and is ι-invariant; since ι
reverses the orientation of M̃ we get∫

M̃

π∗ω =

∫
−M̃

ι∗π∗ω = −
∫
M̃

π∗ω.

Hence this integral vanishes, and by what said above we get [π∗ω] = 0 in
cohomology. Since π∗ is injective we get Hnc (M) = 0. �

We note that the identification H0(M) = R is canonical, while Hnc (M) = R
depends on the chosen orientation for M (so it is canonical up to sign).

8.5.7. Real projective spaces. We can now easily calculate the De Rham
cohomology of RPn.

Proposition 8.5.7. We have

Hk(RPn) =

{
R if k = 0 or k = n is odd,

0 otherwise.

Proof. This works for every manifold M that is covered by Sn. Since the
pull-back π∗ : Hk(M) → Hk(Sn) is injective, the only indeterminacy is for
k = n and is determined by whether M is orientable or not. Projective spaces
are orientable only in odd dimension. �
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We introduced the lens spaces L(p, q) in Section 3.5.6. The same proof
shows the following.

Corollary 8.5.8. We have

Hk(L(p, q)) =

{
R if k = 0, 3,

0 otherwise.

8.5.8. Signature. IfM is an oriented compact manifold without boundary
of even dimension 2n, Poincaré duality furnishes a non-degenerate bilinear form

Hn(M)×Hn(M) −→ R

that is symmetric or antisymmetric according to whether n is even or odd.
This is because of the formula ω ∧ η = (−1)n

2
η ∧ ω.

When M has dimension 4k , the non-degenerate bilinear form on H2k is
symmetric and hence has a signature (p,m), see Section 2.3.1. The signature
of M is the integer

σ(M) = p −m.
A nice feature of this invariant is that it reacts to orientation reversals.

Proposition 8.5.9. We have σ(−M) = −σ(M)

Proof. We have
∫
M ω = −

∫
−M ω, hence the orientation reversal modifies

the bilinear form by a sign and its signature changes from (p,m) to (m, p). �

Recall that an orientable manifold M is mirrorable if it has an orientation-
reversing diffeomorphism.

Corollary 8.5.10. A mirrorable orientable 4k-manifold M has σ(M) = 0.

We deduce that for every k ≥ 1 the complex projective space CP2k is
not mirrorable: its middle Betti number is b2k = 1 and hence its signature
is σ = ±1. In particular the complex projective plane CP2 is not mirrorable
(while the complex projective line CP1 ∼= S2 is mirrorable).

8.5.9. The Künneth formula. We now prove an elegant formula that
relates the cohomology of a product M × N with the cohomologies of the
factors. This formula is known as the Künneth formula.

LetM and N be two smooth manifolds, possibly with boundary (not both).
The two projections

πM : M × N −→ M, πN : M × N −→ N

give rise to a bilinear map

Ωk(M)×Ωh(N) −→ Ωk+h(M × N)

(ω, η) 7−→ π∗Mω ∧ π∗Nη
that passes to a bilinear map

Hk(M)×Hh(N) −→ Hk+h(M × N).
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By the universal property of tensor products, this induces a linear map

Hk(M)⊗Hh(N) −→ Hk+h(M × N).

These linear maps when k and h vary can be grouped altogether as

Ψ: H∗(M)⊗H∗(N) −→ H∗(M × N).

We will henceforth suppose that the Betti numbers of N are all finite: this
holds for instance if N is compact, but also for many other manifolds. Vedere se riusciamo a di-

mostrare che è un isomor-
fismo di algebre?Theorem 8.5.11 (Künneth’s formula). The map Ψ is an isomorphism.

Before entering into the proof, we note that this implies that

Hk(M × N) ∼=
⊕
p+q=k

Hp(M)⊗Hq(N).

Proof. As in the proof of Poincaré Duality, we define B to be the set of all
the open subsets U ⊂ M such that the theorem holds for the product U ×N.
Our aim is to show that M ∈ B and to this purpose we verify the three rules
that are necessary to apply the induction along open subsets.

(1). If U ∼= Rn, then U ∈ B. The manifold U × N is homotopically
equivalent to N and everything holds by homotopy invariance.

(2). If U, V, U ∩ V ∈ B, then U ∪ V ∈ B. To show this, we fix k ≥ 0, pick
p ≤ k and consider the Mayer – Vietoris sequence

· · · −→ Hp−1(U ∩ V ) −→ Hp(U ∪ V ) −→ Hp(U)⊕Hp(V ) −→ · · ·

If we tensor it with Hk−p(N) and sum over p = 0, . . . , k we still get an exact
sequence by Exercise 8.3.1. Here it is:

· · · −→
k⊕
p=0

(
Hp−1(U ∩ V )⊗Hk−p(N)

)
−→

k⊕
p=0

(
Hp(U ∪ V )⊗Hk−p(N)

)

−→
k⊕
p=0

(
Hp(U)⊗Hk−p(N)

) k⊕
p=0

(
Hp(V )⊗Hk−p(N)

)
−→ · · ·

We now send via Ψ this sequence to the Mayer – Vietoris sequence for M×N:

· · ·→Hk−1
(

(U∩V )×N
)
→Hk

(
(U∪V )×N

)
→Hk(U×N)⊗Hk(V ×N)→· · ·

The resulting diagram commutes (exercise) and has two exact rows. Using
the Five Lemma we conclude that U ∪ V ∈ B.

(3). If U = tiUi and Ui ∈ B, then U ∈ B. This is a consequence of
Exercise 2.1.17 and of the fact that dimHp(N) <∞ for all p.

By Lemma 8.5.3 we have M ∈ B and we are done. �

Remark 8.5.12. When M = N = Z, the map Ψ is not an isomorphism
(exercise). We really need one of the factors to have finite-dimensional coho-
mology here.
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Corollary 8.5.13. Let M and N be manifolds with finite Betti number (for
instance, this holds if they are compact). For every k we have:

bk(M × N) =

k∑
i=0

bi(M)bk−i(N).

Corollary 8.5.14. The torus T = S1 × S1 has Betti numbers

b0(T ) = 1, b1(T ) = 2, b2(T ) = 1.

Corollary 8.5.15. The Betti numbers of T n = S1 × · · · × S1︸ ︷︷ ︸
n

are

bk(T n) =

(
n

k

)
.

Corollary 8.5.16. The Betti numbers of S2 × S2 are

b0 = 1, b1 = 0, b2 = 2, b3 = 0, b4 = 1.

We deduce that the compact four-manifolds

S4, CP2, S2 × S2

are pairwise not homotopy equivalent (although they are all simply connected)
because their Betti numbers are respectively

1 0 0 0 1,

1 0 1 0 1,

1 0 2 0 1.

Exercise 8.5.17. If M and N are manifolds with finite Betti numbers, then

χ(M × N) = χ(M) · χ(N).

8.5.10. Connected sums. The following exercises can be solved using
the Mayer – Vietoris sequence carefully.

Exercise 8.5.18. LetM be a smooth connected n-manifold without bound-
ary and N be obtained from M by removing a point. We have:

bi(N) = bi(M) ∀i ≤ n − 2

bn−1(N) =

{
bn−1(M) if M is compact and oriented,

bn−1(M) + 1 otherwise,

bn(N) =

{
bn(M)− 1 if M is compact and oriented,

bn(M) otherwise,

Hint. Use the Mayer – Vietoris sequence with M = U ∪ V , U = N, and V
an open ball containing the removed point. �

Note that in all cases we get χ(N) = χ(M)− 1 if they are defined.
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Exercise 8.5.19. Let M#N be the connected sum of two oriented con-
nected compact manifolds M and N without boundary. We have

bi(M#N) = 1 for i = 0, n,

bi(M#N) = bi(M) + bi(N) for 0 < i < n.

We can finally calculate the cohomology of a genus-g surface Sg.

Corollary 8.5.20. The Betti numbers of Sg are

b0 = 1, b1 = 2g, b2 = 1.

Therefore χ(Sg) = 2− 2g.

8.6. Intersection theory

We now combine transversality and De Rham cohomology to build a geo-
metric theory on submanifolds called intersection theory.

8.6.1. The Poincaré dual of a closed oriented submanifold. Let M be
an oriented smooth n-manifold without boundary. Let S ⊂ M be an oriented
closed k-submanifold without boundary. We have already observed that inte-
gration along S yields a linear map∫

S

: Hkc (M) −→ R.

By Poincaré Duality, this linear map corresponds to some cohomology
element [S] ∈ Hn−k(M) called the Poincaré dual of S. A closed (n− k)-form
ωS that represents [S] is characterised by satisfying the equality∫

M

ωS ∧ η =

∫
S

η

for every closed η ∈ Ωk
c (M). We have just discovered that we can naturally

transform oriented closed submanifolds S into cohomology classes [S].

Exercise 8.6.1. LetM be connected, oriented and without boundary. Then:
• the Poincaré dual of M itself is [M] = 1 in H0(M) = R,
• the Poincaré dual of a point p ∈ M lies in Hn(M) = H0

c (M)∗, which is
canonically isomorphic to R or 0 depending on whetherM is compact
or not. In the first case [p] = 1, in the second [p] = 0.

8.6.2. Homotopy invariance. The Poincaré dual may be defined for ev-
ery smooth proper map f : S → M defined on some k-dimensional oriented
manifold S without boundary. Every such map f induces a linear functional

Hkc (M) −→ R

[η] 7−→
∫
S

f ∗η

which is by Poincaré Duality an element [f ] ∈ Hn−k(M).
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Proposition 8.6.2. If f , g are homotopic we have [f ] = [g].

Proof. Let F : S× [0, 1]→ M be a smooth homotopy relating f = F0 and
g = F1. Set W = S × [0, 1]. For every [η] ∈ Hkc (M) we have∫

S

g∗η −
∫
S

f ∗η =

∫
∂W

F ∗η =

∫
W

dF ∗η =

∫
W

F ∗(dη) = 0

by Stokes. �

Corollary 8.6.3. Isotopic oriented submanifolds have equal Poincaré duals.

8.6.3. Manifolds of finite type. We say that a manifold M is of finite
type if the Betti numbers bi(M) of M are all finite. For instance, a compact
manifoldM is of finite type. The interior of a compact manifold with boundary
is of finite type.

LetM be a finite type oriented smooth n-manifold without boundary. Since
all the cohomology groups are finite, the Poincaré duality isomorphisms

Hk(M) ∼= Hn−kc (M)∗

also induce the dual isomorphisms

Hn−kc (M) ∼= Hk(M)∗

that send [η] to the functional

[ω] 7−→ 〈[ω], [η]〉 =

∫
M

ω ∧ η.

Let S ⊂ M be a compact oriented k-submanifold without boundary. Then∫
S

: Hk(M) −→ R

corresponds to some element [S] ∈ Hn−kc (M) that we call again the Poincaré
dual of S. The novelty with respect to Section 8.6.1 is that [S] may be
represented as a compactly supported closed form ηS, and this is quite relevant
for the discussion that follows. It is characterised by satisfying the equality

(23)
∫
M

ω ∧ ηS =

∫
S

ω

for every closed ω ∈ Ωk(M). We now show that the Poincaré dual [S] is
natural with respect to inclusions. Let U ⊂ M be any open set of finite type
containing S. The inclusion i : U ↪→ M induces a map

i∗ : Hn−kc (U)→ Hn−kc (M).

Proposition 8.6.4. We have i∗([S]) = [S].

Proof. The Poincaré dual [S] ∈ Hn−kc (U) is represented by a compactly
supported closed form ηS ∈ Ωm−k

c (U) which satisfies∫
U

ω ∧ ηS =

∫
S

ω
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for every closed ω ∈ Ωk(U). Therefore i∗(ηS) ∈ Ωm−k
c (M) satisfies (23) for

every ω ∈ Ωk(M) and hence represents [S] ∈ Hn−kc (M). �

Concretely, this implies that we can shrink the support of a closed form ηS
representing the Poincaré dual [S] so that it is contained in an arbitrary open set
U of finite type containing S; we may pick for instance a tubular neighbourhood
U = νS, which is of finite type since it is homotopically equivalent to S.

By shrinking their compact support we have reduced the study of Poincaré
duals to the case where the ambient manifold is a vector bundle over S.

8.6.4. Poincaré duals on vector bundles. Let E → S be an oriented
rank-r vector bundle over a compact oriented k-manifold without boundary
S. We think of S embedded in E as the zero-section. The Poincaré dual [S]

in the compactly supported version is an element in Hrc(E). Here is a simple
characterisation of which closed forms represent [S]. Controlla che sia spiegato

bene prima cosa vuol dire che
E è orientato.Proposition 8.6.5. A closed r -form η ∈ Ωr

c(E) represents [S] ⇐⇒∫
Ep

η = 1

for every p ∈ S.

Before discussing the proof, we note that if S is connected the integral∫
Ep
η of any closed η ∈ Ωr

c(E) yields a real number that is independent of p,
because two distinct fibers are clearly isotopic.

Proof. (⇐=) We must prove that

(24)
∫
E

ω ∧ η =

∫
S

ω

for every closed ω ∈ Ωk(E). The map i ◦ π : E → E is homotopic to the
identity, hence in cohomology we get [ω] = (i ◦ π)∗[ω] and therefore∫

E

ω ∧ η =

∫
E

π∗i∗ω ∧ η.

On a trivialising chart the bundle is like Rk × Rr → Rk . We use the variables
x i and y j for Rk and Rr . The restriction of ω to Rk × Rr may be written as

ω =
∑
I,J

f I,J(x, y)dx I ∧ dy J

where the sum is on all pairs I, J of multi-indices with |I| + |J| = k . Since
i∗(dy j) = 0 we get

i∗ω = f (x)dx1 ∧ · · · ∧ dxk

with f (x) = f {1,...,k},∅(x, 0), and π∗i∗ω has the same expression as i∗ω. On
the other hand, we have

η =
∑
I,J

gI,J(x, y)dx I ∧ dy J
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where the sum ranges over muti-indices with |I|+ |J| = r . By hypothesis

1 =

∫
{x}×Rr

η =

∫
Rr
g(x, y)dy

for all x , where g = g∅,{1,...,r}. We deduce that∫
Rk×Rr

π∗i∗ω ∧ η =

∫
Rk×Rr

f (x)dx1 ∧ · · · ∧ dxk ∧
∑
I,J

gI,J(x, y)dx I ∧ dy J

=

∫
Rk×Rr

f (x)g(x, y)dx1 ∧ · · · ∧ dxk ∧ dy1 ∧ · · · ∧ dy r

=

∫
Rk
f (x)

(∫
Rr
g(x, y)dy

)
dx =

∫
Rk
f (x) =

∫
Rk
ω.

(=⇒) Suppose that S is connected for simplicity. We have
∫
Ep
η = k inde-

pendently on p. Pick a volume form ω0 on S and set ω = π∗ω0. We have∫
S

ω =

∫
E

ω ∧ η = k

∫
S

ω.

The second equality is proved on trivialising charts as above. Hence k = 1. �

8.6.5. Transverse intersection. Let N be an oriented n-manifold without
boundary, and letM,W ⊂ N be two oriented compact transverse submanifolds
without boundary of dimension m,w < n. Recall that

X = M t W

is also a compact submanifold of dimension x = m + w − n. We now show
that X inherits an orientation from those of M,W,N.

Ifm+w = n, then X consists of finitely many points, and we assign to each
point p ∈ X the sign +1 ⇐⇒ two positive basis u1, . . . , um and u′1, . . . , u

′
w of

TpM and TpW combine to a positive basis u1, . . . , um, u
′
1, . . . , u

′
w of TpN.

If m+w > n we proceed similarly. At p ∈ X, a basis v1, . . . , vx of TpM is
positive if it may be completed to two positive basis v1, . . . , vx , ux+1, . . . , um
and v1, . . . , vxu

′
x+1, . . . , u

′
w of TpU and TpW such that the resulting basis

v1, . . . , vx , ux+1, . . . , um, u
′
x+1, . . . , u

′
w of TpN is positive.

Exercise 8.6.6. We haveNotazione coerente −M?

M t W = (−1)mwW t M.

The same type of equality ω ∧ η = (−1)khη ∧ ω holds for any k- and
h-forms ω and η on a manifold, and this is not a coincidence! The following
theorem, which is the heart of intersection theory, shows that, via Poincaré
duality, the transverse intersection of oriented submanifolds corresponds to the
wedge products of cohomology classes.

Theorem 8.6.7. We have

[M t W ] = [M] ∧ [W ].
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Figure 8.1. A symplectic basis for H1(S3) ∼= R6 consists of the Poincaré
duals of the oriented curves α1, α2, α3 (red) and β1, β2, β3 (blue).

Proof. We have
νX = νM ⊕ νW.

If ωM , ωW represent the Poincaré duals [M], [W ] in the tubular neirhbourhoods
νM, νW , the wedge product ωM ∧ωW represents [X] in νX = νM⊕ νW . �

Example 8.6.8. Each hyperplane H ⊂ CPn is naturally oriented. Since
hyperplanes are all isotopic (exercise), the Poincaré dual [H] ∈ H2(CPn) is
independent of the choice of H. Every codimension-k projective subspace
S ⊂ CPn is the transverse intersection of k hyperplanes, and hence [S] =

[H] ∧ · · · ∧ [H] = [H]k . In particular [H]n ∈ H2n(CPn) is the Poincaré dual of
a point, which is a generator of H2n(CPn).

We deduce that the algebra H∗(CPn) is isomorphic to

H∗(CPn) ∼= R[x ]/(xn+1)

where x = [H] ∈ H2(CPn).

8.6.6. Algebraic intersection. We now consider the case where M and
W have complementary dimension. In this situation X = M t W is a finite
collection of oriented points p, each equipped with a sign ±1 depending on
whether the orientation of TpM⊕TpW matches with that of TpN. We let the
algebraic intersection i(M,W ) of M and W be the sum of these values ±1.

Let us now suppose for simplicity that N is connected. Then

[M] ∧ [W ] ∈ Hn(N) = R

is a canonical real number, which coincides by Theorem 8.6.7 with the algebraic
intersection i(M,W ). Here is an immediate consequence.

Corollary 8.6.9. The algebraic intersection i(M,W ) depends only on the
isotopy classes of M and W .

When N has even dimension 2k and dimM = dimW = k , this furnishes a
concrete way to represent and calculate the intersection form in Hk(N).

Example 8.6.10. We examine the genus-g surface Sg. The intersection
form on H1(Sg) ∼= R2g is non-degenerate and antisymmetric. Consider the 2g
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oriented curves α1, . . . , αg, β1, . . . , βg depicted in Figure 8.1. Their algebraic
intersections are apparent from the figure:

i(αi , αj) = i(βi , βj) = 0, i(αi , βj) = δi j , i(βi , αj) = −δi j .

The intersection form of their respective Thom classes is the antisymmetric
matrix J =

(
0 I
−I 0

)
. Since J is invertible, we can deduce by elementary linear

algebra that these 2g classes form a basis of H1(Sg). A basis with such an
intersection matrix J is called a symplectic basis.

Example 8.6.11. We calculate the intersection form of some compact ori-
ented 4-manifolds M by determining some surfaces in M whose Poincaré dual
form a basis of H2(M).

If we pick two distinct projective lines l , l ′ ⊂ CP2, we have [l ] = [l ′] and l , l ′

intersect transversely and positively in a single point. The intersection form
on H2(CP2) with respect to the basis [l ] is hence just the matrix

(1).

In S2 × S2, we pick the spheres S = S2 × {q} and S′ = {p} × S2. They
intersect transversely and positively in one point (p, q), hence [S] ∧ [S′] = 1 .
Moreover each sphere S2 × {q} is disjoint from the isotopic copy S2 × {q′},
hence [S] ∧ [S] = 0 and analogously [S′] ∧ [S′] = 0. Summing up, the classes
[S], [S′] form a basis for H2(S2 × S2) and the intersection form with respect
to this basis is (

0 1

1 0

)
.

We deduce that S2 × S2 has signature zero (which is coherent since S2 × S2

is mirrorable).

8.7. Exercises

Exercise 8.7.1. Calculate the Betti numbers of the manifold M obtained from R3

by removing the x and y axis.

Exercise 8.7.2. Prove that the surface C \ Z has b1 =∞.

Exercise 8.7.3. Let K ⊂ S3 be a knot. Prove that H1(S3 \K) ∼= R.

Exercise 8.7.4. Let M and N be compact manifolds with boundary and ϕ : ∂M →
∂N a diffeomorphism. Let W be obtained by glueing M and N via ϕ. Show that

χ(W ) = χ(M) + χ(N)− χ(∂M).

Exercise 8.7.5. Let T = S1 × S1 be a torus and p ∈ T a point. Consider the
4-manifold M = T × T and the submanifolds N1 = T × {p} and N2 = {p} × T .
Calcolate the cohomology groups of the 4-manifold

X = M \ (N1 ∪ N2).

Exercise 8.7.6. Let L, L′ be two affine subspaces of Rn.
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(1) Show that the manifolds Rn \L and Rn \L′ are homotopically equivalent if
and only if dimL = dimL′.

(2) Show that if dimL > dimL′ every continuous map f : (Rn \L)→ (Rn \L′)
is homotopic to a constant.

Exercise 8.7.7. Let r1, r2, r3 be three lines in CP2 with empty intersection r1 ∩
r2 ∩ r3 = ∅.

(1) Calculate the cohomology groups of the smooth manifold X = CP2 \ (r1 ∪
r2 ∪ r3).

(2) Show that there is a map f : X → X such that f ∗ : H∗(X) → H∗(X) is
neither the identity nor trivial.

Exercise 8.7.8. Let π : En+k → Mn be a fibre bundle with fibre F k . Suppose that
M,E, F are all compact, orientable, and without boundary. Show that if s : M → E is
a section, then the Poincaré dual of s(M) is a non-trivial element in Hk(E). Deduce
that the Hopf fibration S3 → S2 has no sections.

Hint. Use the relation between ∧ and transverse intersection. �





Part 3

Differential geometry





CHAPTER 9

Pseudo-Riemannian manifolds

We have warned the reader multiple times that a smooth manifoldM lacks
many natural geometric notions, such as distance between points, length of
curves, volumes, angles, geodesics. It is now due time to introduce all these
concepts, by enriching M with an additional structure g, called metric tensor.

A metric tensor g onM is just a smoothly varying scalar product on all tan-
gent spaces. If g is positive definite the pair (M, g) is called a Riemannian man-
ifold. If positive definiteness is not assumed, the pair is called more generally
a pseudo-Riemannian manifold. Riemannian manifolds are fundamental con-
cepts in mathematics, while the theory of the more general pseudo-Riemannian
manifolds plays a key role in general relativity.

9.1. The metric tensor

It is a quite remarkable fact that all the various natural geometric notions
that we are longing for can be introduced by equipping a smooth manifold with
a single additional structure, that of a metric tensor.

9.1.1. Pseudo-Riemannian manifolds. Let M be a smooth manifold,
possibly with boundary. Recall from Section 7.5.1 that a metric tensor g
is a section of the symmetric bundle that defines a scalar product g(p) on
TpM, for every p ∈ M.

Definition 9.1.1. A pseudo-Riemannian manifold is a pair (M, g) where M
is a smooth manifold and g is a metric tensor on M.

If M is connected the scalar product g has the same signature (p, q) at
every point of M and we simply call it the signature of g. Of course p + q =

n = dimM. Two types of signatures are particularly important in mathematics
and in physics: if g is positive definite, that is it has signature (n, 0), we say
that (M, g) is a Riemannian manifold ; if the signature is (n − 1, 1), we say
that (M, g) is a Lorentzian manifold.

The reader may wonder why we are allowing non positive definite scalar
products. The reason is twofold. First, pseudo-Riemannian manifolds play a
fundamental role in general relativity: as we will see, the universe is modeled
as a Lorentzian manifold with signature (3, 1). Second, perhaps quite surpris-
ingly, the positive definite hypothesis is not really needed to introduce most

255
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of the powerful and beautiful tools in Riemannian geometry, like connections,
geodesics, covariant derivatives, and curvature.

Example 9.1.2. A fundamental example of positive definite metric tensor
is the Euclidean metric tensor gE on Rn. The pair (Rn, gE) is a Riemannian
manifold called the Euclidean space.

Example 9.1.3. The Minkowski space (R4, η) introduced in Section 7.6.1
is a Lorentzian manifold, denoted as R3,1. More generally, for every p+ q = n

we may define a pseudo-Riemannian structure on Rn by assigning at every
x ∈ Rn the metric tensor

ηp,q =

(
−Iq 0

0 Ip

)
of signature (p, q). We indicate this pseudo-Riemannian manifold as Rp,q.

Remark 9.1.4. We have shown in Section 4.5 that every bundle carries a
Riemannian metric. Therefore every smooth manifoldM has a positive definite
metric tensor, that is a structure of Riemannian manifold. The metric tensor
is however not unique in any reasonable sense.

Note that the proof of Proposition 4.5.2 does not apply to metrics with any
signature (p, q), since these do not form a convex cone! A convex combination
of some matrices with signature (p, q) may not have signature (p, q). We
cannot guarantee the existence of Lorentzian structures on any M. In fact, as
we will see, there are manifolds that do not admit any Lorentzian structure.TBD

If (M, g) is a pseudo-Riemannian manifold, every open subset U ⊂ M

inherits a structure of pseudo-Riemannian manifold, just by restricting g.

9.1.2. In coordinates. Let (M, g) be a Riemannian manifold and ϕ : U →
V a chart. The tensor g on U may be transported along ϕ into a metric tensor
ϕ∗g on V , whose coordinates are denoted by

gi j(x).

Here gi j(x) is a non-degenerate symmetric matrix that depends smoothly on
x . For instance, the coordinates of the Euclidean metric tensor are gi j = δi j .

9.1.3. Vector types, vector lengths, and angles. Let (M, g) denote a
pseudo-Riemannian manifold. The tangent space TpM is equipped with a
scalar product at every point p ∈ M. Given two tangent vectors v , w ∈ TpM,
we often write their scalar product g(p)(v , w) simply as 〈v , w〉, omitting p.

As in Section 7.6, a vector v ∈ TpM is called spacelike, timelike, or lightlike
if 〈v , v〉 is (respectively) positive, negative, or null. In all cases, its length is

‖v‖ =
√
|〈v , v〉|.
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In particular the length of v is zero⇐⇒ v is lightlike. If the scalar product
is positive definite, we get a norm ‖ · ‖ on TpM, and we can also define the
angle θ between two non-zero vectors v , w ∈ TpM with the usual formula

θ = arccos
〈v , w〉
‖v‖‖w‖ .

Angles are not defined if the scalar product is not positive definite.

9.1.4. Conformal modifications. Let (M, g) be a pseudo-Riemannian
manifold. There are some very simple ways to modify the metric tensor g.

The simplest possible modification one can make consists of fixing a non-
zero scalar λ ∈ R and multiplying the tensor g(p) by λ at every p ∈ M, thus
getting a new metric tensor g′(p) = λg(p). This modification is called a
metric rescaling. If λ > 0, this corresponds intuitively to inflating or deflating
our manifold depending on whether λ > 1 or λ < 1. This modification changes
the geometry of the manifold only very mildly. If λ < 0, the signature of the
metric tensor changes from (p, q) to (q, p).

More generally, we may allow the scalar λ to vary smoothly from point
to point. If we pick a positive smooth function λ : M → (0,+∞), we may
replace g with a new metric tensor g′ = λg. At every point we have g′(p) =

λ(p)g(p). This modification does not alter the signature of the metric and is
called a conformal modification. Two metrics g and g′ related by a conformal
modification are called conformally equivalent: this is an equivalence relation
on the set of metrics on M with any fixed signature.

Unlike rescalings, conformal modifications alter much of the geometry of
the manifold, as we will see. They are characterised, in the positive definite
case, by the fact that they preserve angles:

Proposition 9.1.5. Two positive definite metric tensors g and g′ on M are
conformally equivalent ⇐⇒ they measure the same angles. That is, for every
p ∈ M and v , w ∈ TpM, the angle between v and w is the same for g and g′.

Proof. If g′(p) = λ(p)g(p), the two scalar products on TpM differ only
by a rescaling and hence measure the same angles. Conversely, it is a linear
algebra exercise to show that if g(p) and g′(p) measure the same angles then
there is a λ(p) 6= 0 such that g(p) = λ(p)g′(p). �

The lengths of any v ∈ TpM with respect to g and g′ = λg are related as

‖v‖g′ =
√
λ(p)‖v‖g.

Example 9.1.6. We can pick an open subset U ⊂ Rn, a positive func-
tion λ : U → (0,+∞), and define a new Riemannian manifold (U, λgE), that
is conformally equivalent to the original Euclidean (U, gE). This conformal
modification rescales the tangent vectors by

√
λ, preserving the angles be-

tween them: this quite useful feature sometimes helps to visualize part of the
geometry of (U, λgE).
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Figure 9.1. A tessellation of the hyperbolic plane H2 into heptagons.
All the heptagons shown here are isometric. We will soon see that their
sides are “straight”, that is geodesic, although they do not look so at our
Euclidean eyes.

9.1.5. Hyperbolic space. We introduce an important Riemannian mani-
fold. The hyperbolic space, described via the half-space model, is the manifold

Hn = {x ∈ Rn | xn > 0}

equipped with the metric tensor

g =
1

(xn)2
gE .

This metric tensor is obtained from the Euclidean gE by conformal mod-
ification. Angles are not changed, but all vectors v based at a point x are
stretched by a factor 1/xn. Note that 1/xn →∞ as xn → 0.

The effect of this stretching can be seen in Figure 9.1, which shows a
tessellation of the hyperbolic plane into isometric heptagons. All the heptagons
actually have the same size, although those closer to the horizontal line x2 = 0

look smaller at our Euclidean eyes. On the other hand, the interior angles that
we see at the vertices are correct: they are 2π/3 everywhere.

The ball model for the hyperbolic space is the manifold

Bn =
{
x ∈ Rn | ‖x‖ < 1

}
equipped with the metric tensor

g =

(
2

1− ‖x‖2

)2

gE .

Also here we perform a conformal modification of the Euclidean tensor and
thus angles are not changed, but all vectors v based at x ∈ Bn are stretched by
a factor 2/(1−‖x‖2). Again note that the factor tends to infinity as ‖x‖ → 1.
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Figure 9.2. A tessellation of the hyperbolic plane B2 into heptagons.
All the heptagons shown here are isometric.

Figure 9.2 shows a tessellation into infinitely many heptagons. Although
those closed to ∂B2 = S1 look smaller, they are actually all isometric.

We have in fact described twice the same space: the two Riemannian man-
ifolds Hn and Bn are isometric, a fundamental notion that we now introduce.

9.1.6. Isometries. Every category has its own morphisms; in the presence
of pseudo-Riemannian metrics, one typically introduces only isomorphisms.

Definition 9.1.7. A diffeomorphism ϕ : M → N between two pseudo-
Riemannian manifolds (M, g) and (N, h) is an isometry if

〈v , w〉 =
〈
dϕp(v), dϕp(w)

〉
for every p ∈ M and v , w ∈ TpM.

The reader should be aware that the same symbol 〈, 〉 may denote scalar
products on different spaces: in the definition these are g(p) and h(ϕ(p)).

Two pseudo-Riemannian manifolds M and N are isometric if there is an
isometry relating them. Inverses and compositions of isometries are isometries.
The isometries M → M of a pseudo-Riemannian manifold M form a group
denoted with Isom(M) and called the isometry group of M.

Exercise 9.1.8. For any matrix A ∈ O(n) and any vector b ∈ Rn, the affine
transformation f (x) = Ax + b is an isometry of the Euclidean space Rn.

We will soon prove that, conversely, every isometry of the Euclidean space
is of the kind described in the exercise.
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C

Dn

Hn

O

Figure 9.3. The inversion along the sphere with center C = −en =

(0, . . . , 0,−1) and radius
√

2 is an isometry between the ball and the half-
space models of hyperbolic space.

A smooth map f : M → N is a local isometry at p ∈ M if there are open
neighbourhoods U and V of p and f (p) such that f (U) = V and f |U : U → V

is an isometry. The map f is a local isometry if it is so ∀p ∈ M.

9.1.7. Sphere inversions. We have defined two models for the hyperbolic
space and we now prove that they are indeed isometric. We need the following.

Definition 9.1.9. Given x0 ∈ Rn and r > 0, consider the sphere

S =
{
x ∈ Rn

∣∣ ‖x − x0‖ = r
}

centered at x0 and with radius r . The inversion along S is the map ϕ : Rn \
{x0} → Rn \ {x0} defined as

ϕ(x) = x0 + r2 x − x0

‖x − x0‖2
.

Inversions along spheres have many nice properties and should be inter-
preted as the analogue of reflections along hyperplanes. In the following Bn

and Hn denote the ball and half-disc models of hyperbolic space, each equipped
with its metric tensor. We need inversions here to get the following.

Exercise 9.1.10. The inversion ϕ along the sphere with center −en and
radius

√
2 sends Bn diffeomorphically onto Hn. See Figure 9.3. It is an

isometry between the ball and the half-space models of the hyperbolic space.

We denote the n-dimensional hyperbolic space by Hn. This important
Riemannian manifold may be represented by one of its isometric models Bn or
Hn. Actually, we will discover a third model soon...

Exercise 9.1.11. The following diffeomorphisms are isometries of Hn, Bn:
• The map ϕ : Bn → Bn, ϕ(x) = Ax for any A ∈ O(n).
• The map ϕ : Hn → Hn, ϕ(x) = λx for any λ > 0.
• The map ϕ : Hn → Hn, ϕ(x) = x + b, for any b ∈ Rn with bn = 0.
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9.1.8. Submanifolds. Let (M, g) be a Riemannian manifold. Here is a
simple albeit crucial observation: every submanifold N ⊂ M, of any dimension,
inherits a positive definite metric tensor g|N simply by restricting g to the
subspace TpN ⊂ TpM at every p ∈ N. Therefore every smooth submanifold
of a Riemannian manifold is itself naturally a Riemannian manifold.

In particular, every submanifold S ⊂ Rn inherits a Riemannian manifold
structure by restricting gE to S. Using Whitney’s Embedding Theorem, we
find here another proof that every manifold M carries a Riemannian structure.

A fundamental example is of course the sphere Sn−1 ⊂ Rn.

Exercise 9.1.12. For every A ∈ O(n), the map ϕ(x) = Ax restricts to an
isometry ϕ : Sn−1 → Sn−1.

If M is a more general pseudo-Riemannian manifold, it is not true that any
submanifold N ⊂ M inherits a pseudo-Riemannian structure! To get this, we
need the restriction of g to TpN to be non-degenerate ∀p ∈ N. If this is the
case, we say that N is a pseudo-Riemannian submanifold of M.

Exercise 9.1.13. Consider the Minkowski space Rn,1 with its constant met-
ric tensor 〈x, y〉 = −x1y1+x2y2+· · · xnyn. The upper sheet of the hyperboloid

In =
{
〈x, x〉 = −1, x1 > 0

}
is a smooth submanifold. The tangent space at p ∈ In is

TpI
n = p⊥ = {x ∈ Rn,1 | 〈x, p〉 = 0}.

(This is completely analogous to Sn, see Exercise 3.7.4.) In particular all the
tangent vectors in TpIn are spacelike: hence the restriction of 〈, 〉 to TpIn is
positive definite, and In inherits a structure of Riemannian submanifold, inside
the Lorentzian manifold Rn,1.

The Riemannian manifold In is yet another model for the n-dimensional
hyperbolic space Hn!

Exercise 9.1.14. Consider the ball model Bn ⊂ Rn of hyperbolic space,
embedded in Rn,1 by sending (x1, . . . , xn) to (0, x1, . . . , xn). Construct a
diffeomorphism ϕ : In → Bn by projecting along lines passing through P =

(−1, 0, . . . , 0) as in Figure 9.4. Show that ϕ is an isometry.

The Riemannian manifold In is called the hyperboloid model for the hyper-
bolic space. We have discovered as many as three models Bn, Hn, and In for
the hyperbolic space Hn. None of them is prevalent: one can use the model
that she prefers according to the problem she has to solve from case to case.
The first two models are easier to visualize, the third one is harder to see but
has better algebraic properties.
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P

Bn

I n

Figure 9.4. By projecting along P = (−1, 0, . . . , 0) we get an isometry
between the two models In and Bn of the hyperbolic space. The metric
tensor of In is the restriction of the Minkowksi constant metric tensor.
The metric tensor of Bn is the conformal tensor (2/(1− ‖x‖2))2gE .

As in Section 7.6.2, we denote by O(n, 1) the group of matrices that
preserve the Minkowski scalar product, and by O+(n, 1) the index-two sub-
group consisting of those that preserve the time orientation. The following is
analogous to Exercise 9.1.12.

Exercise 9.1.15. For every A ∈ O+(n, 1), the map ϕ(x) = Ax restricts to
an isometry ϕ : In → In.

We have discovered that the hyperbolic space Hn has plenty of isometries,
much as the Euclidean space Rn and the sphere Sn. We will see in the next
pages that the Riemannian manifolds Hn, Rn and Sn are the most symmetric
and (for many reasons) important Riemannian manifolds in dimension n.

9.1.9. Products. The product M × N of two pseudo-Riemannian mani-
folds (M, g) and (N, h) carries a natural pseudo-Riemannian structure g × h.
Recall that T(p,q)M × N = TpM × TqN and define〈

(v1, w1), (v2, w2)
〉

= 〈v1, v2〉+ 〈w1, w2〉
for every v1, v2 ∈ TpM and w1, w2 ∈ TqN. The signature of the product is
the sum of the signatures of the factors, so if both M and N are Riemannian
then M × N also is.

Example 9.1.16. The torus T = S1 × S1 with the product metric is the
flat torus. It is important to note that the flat torus is not isometric to the
torus of Figure 3.4. The first is flat, but the second is not: we will introduce
the notion of curvature to explain that.

9.1.10. Length of curves. As we promised, we now start to show how
the metric tensor alone generates a wealth of fundamental geometric concepts.
We start by defining the lengths of smooth curves.
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Let γ : I → M be a smooth curve in a pseudo-Riemannian manifold M.
We define its length as

L(γ) =

∫
I

‖γ′(t)‖dt.

Recall that the norm of a vector v ∈ TpM is ‖v‖ =
√
|〈v , v〉|. A reparametrisa-

tion of the curve γ is obtained by picking an interval diffeomorphism ϕ : J → I

and setting η = γ ◦ ϕ.

Proposition 9.1.17. The length of γ is independent of the parametrisation.

Proof. We have

L(γ) =

∫
I

‖γ′(t)‖dt =

∫
J

∥∥γ′(ϕ(u)
)∥∥|ϕ′(u)|du =

∫
J

‖η′(u)‖du = L(η).

The proof is complete. �

More generally, the length L(γ) is also invariant if we pre-compose γ with a
smooth surjective monotone map ϕ : J → I, that is with ϕ′(t) ≥ 0 everywhere
(or ϕ′(t) ≤ 0 everywhere). With some abuse of language we also call this
change of variables a reparametrisation.

A curve γ is spacelike, timelike, or lightlike if γ′(t) is spacelike, timelike, or
lightlike for every t ∈ I. We note that γ is lightlike precisely when L(γ) = 0.

On a Riemannian manifold M we call ‖γ′(t)‖ the speed of the curve γ at
the time t. In this context, a curve γ is immersed ⇐⇒ it has positive speed
at every time t.

9.1.11. Metric space. A connected Riemannian manifold (M, g) is also a
metric space, with the following distance: for every p, q ∈ M we define d(p, q)

as the infimum of the lengths of all the paths connecting p to q, that is

d(p, q) = inf
{
L(γ)

∣∣ γ : [a, b]→ M, γ(a) = p, γ(b) = q
}
.

Proposition 9.1.18. This is a distance compatible with the topology of M.

Proof. We clearly have d(p, p) = 0. We now prove that p 6= q ⇒
d(p, q) > 0. Pick a small open chart ϕ : U → V with p ∈ U, ϕ(p) = 0,
and q 6∈ U. Choose a disc D ⊂ V of some small radius r centred at the origin.
The transported metric tensor on D is some gi j depending smoothly on x ∈ D.

For every x ∈ D and v ∈ TxRn, we indicate with ‖v‖E and ‖v‖g the
Euclidean and g-norm of v . Since D is compact, there are M > m > 0 with

m‖v‖E < ‖v‖g < M‖v‖E
for every x ∈ D and every v ∈ TxRn. Let α be a curve in V that goes from 0

to some point in ∂D. We know that the Euclidean length of α is ≥ r , and we
deduce that the g-length of α is > rm. Since every curve γ connecting p and
q must cross ϕ−1(∂D), we deduce that L(γ) ≥ rm and hence d(p, q) ≥ rm.

We clearly have d(p, q) = d(q, p). To show transitivity, we note that if γ
is a curve from p to q and η is a curve from q to r , we can concatenate γ
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and η to a smooth curve from p to r : to get smoothness it suffices to priorly
reparametrise γ and η using transition functions.

In our discussion we have also shown that for every neighbourhood U of p
there is an ε > 0 such that the d-ball of radius ε is entirely contained in U.
Conversely, it is also clear that an open d-ball is open in the topology of M.
Therefore d is compatible with the topology of M. �

Remark 9.1.19. The infimum defining d(p, q) may not be a minimum! On
M = R2\{0} with the Euclidean metric tensor, we have d

(
(1, 0), (−1, 0)

)
= 2

but there is no curve in M joining (1, 0) and (−1, 0) having length precisely 2.

If g is not positive definite, one may still define d as above on M, but it
usually fails to be a distance: if two distinct points p, q ∈ M are connected by
a lightlike curve, we get d(p, q) = 0.

9.1.12. Volume form. Recall from Section 7.5.1 that a metric tensor on
an oriented manifold induces a volume form. Therefore every oriented pseudo-
Riemannian manifold (M, g) has a canonical volume form ω. In coordinates,

ω =
√
| det gi j |dx1 ∧ . . . ∧ dxn.

Note for instance that all the pseudo-Riemannian manifolds Rp,q share the
same volume form ω = dx1 ∧ . . . ∧ dxn. If the metric tensor g is altered by
a conformal modification by multiplication with a positive function λ : M →
(0,+∞), the volume form ω changes accordingly to λ

n
2ω.

Example 9.1.20. The volume form of the half-space model Hn is

ω =
1

(xn)n
dx1 ∧ . . . ∧ dxn.

9.1.13. Lorentzian manifolds. While Riemannian manifolds form the lan-
guage of modern geometry, Lorentzian manifolds are of fundamental impor-
tance in general relativity. The prototypical Lorentzian manifold is the already
encountered (n+ 1)-dimensional Minkowski space Rn,1, for which it is natural
to use the coordinates x0 = t, x1, . . . , xn.

Most of the discussion of Section 7.6.2 extends obviously from R3,1 to
Rn,1. The group O(n, 1) of all linear transformations of Rn,1 that preserve
the scalar product has two homomorphisms onto {±1} telling whether a given
isomorphism preserves the orientation of Rn,1 and of time. The kernels of
these homomorphisms are denoted by

SO(n, 1), O+(n, 1)

and their intersection

SO+(n, 1) = SO(n, 1) ∩O+(n, 1)
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consists of all isomorphisms that preserve both the orientations of Rn,1 and
of time. This group is one of the four connected components of O(n, 1), see
Proposition 7.6.2.

More generally, let V be a vector space equipped with a scalar product 〈, 〉
with signature (n − 1, 1). The timelike vectors in V form two open cones. A
time orientation for V is the choice of an open cone, called future, while the
other open cone is then called (not surprisingly) past.

Definition 9.1.21. A Lorentzian manifold M is time orientable if there is a
locally coherent time orientation on all tangent spaces.

Here locally coherent means that the time orientation on TpM should not
jump discontinuously when we move p ∈ M. We express this by requiring that
for every p ∈ M there is a non vanishing vector field X on a neighbourhood U
of p such that for every q ∈ U the vector X(q) is future timelike.

Proposition 9.1.22. A Lorentzian manifold M is time orientable⇐⇒ there
is a global timelike vector field X.

Proof. If there is such a X, we can use it to define an orientation: at every
p ∈ M the future cone is the one containing X(p). Conversely, given a time
orientation we can find a future timelike vector field on an open neighbourhood
U(p) of every p ∈ M, and using a partition of unity we can patch all these
to a single future timelike vector field on M. Everything works since future
timelike vectors form a convex subset of TpM. �

The Minkowski space Rn,1 is naturally oriented and time oriented. Note
that being orientable and time orientable are two independent properties:

Exercise 9.1.23. Construct a Lorentzian time orientable and not time ori-
entable structure on both the annulus S1 × R and the Möbius strip.

We can always obtain orientability after passing to a double cover, and the
same holds (with a similar proof) for time orientability:

Exercise 9.1.24. If a connected Lorentzian M is not time orientable, it has
a double cover M̃ → M whose induced Lorentzian structure is orientable.

Riemannian and Lorentzian manifolds share many features, but are also
quite different in some aspects: for instance, every manifold M has a Rie-
mannian structure, but not necessarily a Lorentzian one, as we now see.

Proposition 9.1.25. Let M be a manifold. The following are equivalent:

(1) There exists a Lorentzian structure on M.
(2) There exists a time orientable Lorentzian structure on M.
(3) There is a nowhere vanishing vector field on M.
(4) Either M is non compact, or with boundary, or χ(M) = 0.
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Proof. (2) ⇒ (1) is obvious and (4) ⇔ (3) is well-known. TBD!

(3) ⇒ (2). Pick any Riemannian metric g on M. If X is a non-vanishing
vector field on M, up to normalising we may suppose that ‖X(p)‖ = 1 for all
p ∈ M and then define a new tensor field

g′(v , w) = g(v , w)− 2g(v ,X)g(w,X).

In arbitrary coordinates, we have

g′i j = gi j − 2gikX
kgj lX

l .

We extend X(p) to an orthonormal basis, so that gi j = δi j and g′i j =
(−1 0

0 In

)
with respect to this basis. Therefore g′ is a metric tensor of signature (n, 1).

(1) ⇒ (3). If M is time orientable, there is a global non-vanishing vector
field by Proposition 9.1.22. If M is not time orientable, its double cover M̃ is,
hence it has a non-vanishing vector field, hence we get (4) for M̃, which in
turn implies (4) also for M, that is equivalent to (3). �Here we use χ(M̃) = dχ(N).

9.2. Connections

We now want to define geodesics. On a Riemannian manifold, it would
be natural to define them as curves that minimise locally the distance; how-
ever, differential geometers usually prefer to take a different perspective: they
introduce geodesics as curves that go as “straight” as possible.

To formalise this notion of “straight curve” we need somehow to compare
tangent vectors at nearby points. This comparison may be formalised via a
powerful additional structure called a connection. This structure has many
interesting features that go beyond the definition of geodesics: it is also a
way to derive vector fields along tangent vectors, and for that reason it is also
called with another appropriate name: covariant derivative. The two notions
– connection and covariant derivative – are in fact the same thing, a powerful
structure that can be employed for different purposes, which applies to any
pseudo-Riemannian manifold, and more generally to any smooth manifold. In
fact, we do not need a metric tensor to define a connection. However, we may
use the metric tensor to get a preferred one, called the Levi-Civita connection.

9.2.1. Definition. As we said in the previous chapters, one of the re-
curring themes in differential topology is the quest for a correct notion of
derivation of vector (more generally, tensor) fields on a smooth manifold M.
Without equipping M with an additional structure, the best thing that we can
do is to derive a vector field Y with respect to another vector field X via the
Lie derivative LX(Y ) = [X, Y ].

As we have already noted, the definition of LX(Y ) is local, in the sense that
its value at p ∈ M depends only on the values of X and Y in any neighbourhood
of p, but it is not a pointwise definition, in the sense that it is not determined by
the vector v = X(p) alone, as it happens in the usual directional derivative of
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smooth functions in Rn. We are then urged to introduce a somehow stronger
notion of derivation that depends only on the tangent vector v = X(p).

Let M be a smooth manifold.

Definition 9.2.1. A connection ∇ is an operation that assigns to every v ∈
TpM at every p ∈ M, and to every vector field X defined on a neighbourhood
of p, another tangent vector

∇vX ∈ TpM
called the covariant derivative of X along v , such that the following holds:

(1) if X and Y agree on a neighbourhood of p, then ∇vX = ∇vY ;
(2) we have linearity in both terms:

∇v (λX + µY ) = λ∇v (X) + µ∇v (Y ),

∇λv+µwX = λ∇v (X) + µ∇w (X),

where λ, µ ∈ R are arbitrary scalars;
(3) the Leibniz rule holds:

∇v (f X) = v(f )X(p) + f (p)∇vX
for every function f defined in a neighbourhood of p;

(4) ∇ depends smoothly on p.
We must explain the last condition. For every two vector fields X, Y defined
in a common open subset U ⊂ M, we require

p 7→ ∇Y (p)X

to be another vector field in U, that we denote simply by ∇Y X. That is, we
require ∇Y (p)X to vary smoothly with respect to the point p ∈ U.

9.2.2. Christoffel symbols. We now examine a given connection ∇ on a
chart. If we consider the coordinate constant vector fields ei = ∂

∂x i
, we get

∇ei ej = Γkijek

where we have used the Einstein summation convention, for some real numbers
Γkij that depend smoothly on p because of the smoothness assumption (4).

The smooth functions Γkij are called the Christoffel symbols of the con-
nection. On a chart, these determine the connection completely: indeed, for
every vector field X = X jej and tangent vector v = v iei at some point we get

∇vX = v i∇ei (X
jej) = v i

∂X j

∂x i
ej + v iX j∇ei ej

= v i
∂X j

∂x i
ej + v iX jΓkijek

by applying linearity and the Leibniz rule. We may rewrite this equality as

(25) ∇vX =

(
v i
∂Xk

∂x i
+ v iX jΓkij

)
ek .
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The formula says that the covariant derivative ∇v is the usual directional
derivative along v plus an additional correction term that is determined by the
Christoffel symbols Γkij . In particular

∇eiX =
∂X

∂x i
+X jΓkijek .

Note that the directional derivative is not a chart-independent operation!
If it were, we would use it as a preferred connection – but we cannot. In fact,
on a manifold M there is usually no preferred connection.

You may think at Γkij as some additional correction term that transforms
the directional derivative into a chart-independent operation. It is worth noting
that the additional correction term v iX jΓkijek is not as ugly as it might look
at a first glance – in fact, it is actually very nice: it only depends linearly on
v and X(p), and not on the derivatives of X at p. The directional derivative
is also linear in v , but it depends on the behaviour of X on a neighbourhood
of p and not only on X(p). So the additional correction term is of a simpler
nature than the directional derivative.

Conversely, on any open subset U in Rn or Rn+, for every choice of smooth
maps Γkij : U → R there is a connection ∇ whose Christoffel symbols are Γkij .
The connection ∇ is defined via (25), and one verifies that the axioms (1)-(4)
are satisfied.

When the connection is read on another chart the Christoffel symbols
modify in some appropriate way. Now we must admit that their transformation
formula is not very nice. Luckily, we will never need it, so we can forget it.

Exercise 9.2.2. If the coordinates change as

∂

∂x̂ i
=
∂xk

∂x̂ i
∂

∂xk

the Christoffel symbols modify accordingly as follows:

Γ̂kij =
∂xp

∂x̂ i
∂xq

∂x̂ j
Γrpq

∂x̂k

∂x r
+
∂x̂k

∂xm
∂2xm

∂x̂ i∂x̂ j
.

If only the first term were present, the Christoffel symbols Γkij would vary
like a tensor field of type (1, 2). Unfortunately, the second term with its second
derivatives forbids us to interpret the Christoffel symbols Γkij as coordinates of
some tensor field. In fact, this is not surprising: if ∇ were a tensor field, the
value of ∇vX in p would depend only on X(p), and this would contradict any
reasonable idea of derivative, because the derivative of an object like a vector
field X measures (in some sense) how the object X varies in the direction v ,
and it cannot be determined only by the value X(p) that the object has in p.

Remark 9.2.3. Like tensor fields and many other objects, connections can
be transported along diffeomorphisms. If ϕ : M → N is a diffeomorphism and
∇ is a connection onM, we define the connection ϕ∗∇ on N in the obvious way
as (ϕ∗∇)dϕp(v)Y = dϕp(∇vϕ∗Y ) for any Y ∈ X(N), p ∈ M, and v ∈ TpM.
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Figure 9.5. This vector field on an immersed curve is not induced by a
vector field on M, since it gives distinct vectors at the same point of M.

9.2.3. Curves suffice. We know that ∇vX ∈ TpM depends only on the
behaviour of X on any neighbourhood of p. In fact, its restriction to a smaller
subset suffices to determine ∇vX.

Proposition 9.2.4. The covariant derivative ∇vX ∈ TpM depends only on
v and on the restriction of X to any curve tangent to v .

Proof. On a chart, the equation (25) shows that ∇vX depends only on
v ,X(p), and the directional derivative of X along v . These in turn depend
only on the restriction of X to any curve tangent to v . �

In particular, two vector fields that coincide on some curve tangent to v
have the same covariant derivative along v . This leads us to study vector fields
along curves, and to define their covariant derivatives.

9.2.4. Vector fields along curves. We define a notion of vector field
along a curve that is valid in wide generality, for any kind of curve. We then
use a connection ∇ to derive these vector fields along the curve.

Definition 9.2.5. Let M be a manifold and γ : I → M a curve. A vector
field along γ is a smooth map X : I → TM with X(t) ∈ Tγ(t)M for all t ∈ I.

The vector field X is tangent to γ if X(t) is a multiple of γ′(t) for all t.
For instance, the velocity field of γ is the vector field γ′(t) and is of course
tangent to γ. The vector fields along γ form naturally a vector space.

Every vector field X defined in some open neighbourhood U ⊂ M of the
support of γ induces a vector field X(t) = X(γ(t)) on γ. If γ is an embedding,
every vector field X on γ is induced by some vector field X onM by Proposition
4.4.1. This is false if γ is not an embedding, see for instance Figure 9.5.

Let ∇ be a fixed connection on M. For every vector field X along γ, we
define another vector field DtX on γ called its covariant derivative, as follows.

If γ is an embedding, the vector field X is induced by a vector field X on
M and for every t ∈ I we define

DtX = ∇γ′(t)X.
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The vector field DtX does not depend on the extension of X outside of γ
thanks to Proposition 9.2.4. If γ is an immersion, it is locally an embedding
and hence the above definition applies locally. On a chart we get

(26) DtX = X ′(t) + γ′(t)iX j(t)Γkij(γ(t))ek .

The definition of Dt may also be extended to curves γ that are not im-
mersions, using this formula and showing that it is chart-independent, or by
pinpointing a complete list of axioms for Dt as in Exercise 9.4.1 below.

9.2.5. Parallel transport. When we introduce some kind of derivative, it
is natural to investigate the objects whose derivative is everywhere zero.

LetM be a smooth manifold equipped with a connection∇. Let γ : I → M

be any curve. A vector field X along γ is parallel if

DtX = 0

for all t ∈ I. Here is a very important existence and uniqueness property:

Proposition 9.2.6. For every t0 ∈ I and every v ∈ Tγ(t0)M there is a unique
parallel vector field X on γ with X(t0) = v .

Proof. We first consider the case where γ(I) is entirely contained in the
domain U of a chart ϕ : U → V . Using (26), the problem reduces to solving a
system of n linear differential equations in Xk(t) with k = 1, . . . , n, that is:

(27)
dXk

dt
+ γ′(t)iX j(t)Γkij(γ(t)) = 0.

The system has a unique solution satisfying the initial condition Xk(t0) = v k

for all k . The solution exists for all t ∈ I because the system is linear.
For every t ∈ I we can cover the segment [t0, t] or [t, t0] with finitely

many charts and we conclude. �

For every t ∈ I, we think at the vector X(t) as the one obtained from
v = X(t0) by parallel transport along γ. We have just discovered a very
nice (and maybe unexpected) feature of connections: they may be used to
transport tangent vectors along curves. This is a crucial property.

It is sometimes useful to denote the parallel-transported vector X(t) as

X(t) = Γ(γ)tt0 (v)

to stress the dependence on all the objects involved. We get a map

Γ(γ)tt0 : Tγ(t0)M −→ Tγ(t)M

called the parallel transport map.

Proposition 9.2.7. The parallel transport map is a linear isomorphism.

Proof. The map is linear because (27) is a linear homogeneous system of
differential equations, so solutions form a vector space. It is an isomorphism
because its inverse is Γ(γ)t0t . �
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Figure 9.6. By parallel-transporting a vector v along the edges of a
spherical triangle in S2, from A to N to B and back to A, we end up with
another vector w that makes some angle α with the original v . In S2 the
angle α is proportional to the area of the triangle ABN, and in general it
is connected to the curvature of the manifold. The connection ∇ that we
are using here is the Levi - Civita connection naturally associated to the
metric, yet to be defined in Section 9.3.

Note that
Γ(γ)t2t0 = Γ(γ)t2t1 ◦ Γ(γ)t1t0

for every triple t0, t1, t2 ∈ I. The smooth dependence on initial values tells us
that Γ(γ)t

′
t depends smoothly on t and t ′, when read on charts.

We now understand where the name “connection” comes from: the opera-
tor ∇ can be used to connect via isomorphisms all the tangent spaces TpM at
the points p = γ(t) visited by any curve γ. It is important to stress here that
the isomorphisms depend heavily on the chosen curve γ: two distinct curves
γ1 and γ2, both connecting the same points p and q, produce in general two
different isomorphisms between the tangent spaces TpM and TqM. This may
hold also if γ1 and γ2 are homotopic. As we will see, the curvature of ∇
measures precisely this discrepancy. See Figure 9.6.

Remark 9.2.8. A continuous map γ : I → M is piecewise smooth if it is a
concatenation of finitely many smooth curves. Parallel transport extends to
piecewise smooth curves in the obvious way, see Figure 9.6.

9.2.6. Connections form an affine space. Does every smooth manifold
admit some connection ∇? And if it does, how many connections are there?
The answer to the first question is positive but we postpone it to the next
section. We can easily answer the second one here.

Recall that a tensor field T of type (1, 2) on M is a bilinear map

T (p) : TpM × TpM −→ TpM

that depends smoothly on p.
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Proposition 9.2.9. If ∇ is a connection on M and T ∈ Γ
(
T 2

1 (M)
)
is a

tensor field of type (1, 2), then the operator ∇′ = ∇+ T , defined as

∇′vX = ∇vX + T (p)(v ,X(p))

for every p ∈ M, v ∈ TpM, and vector field X near p, is also a connection.
Every connection ∇′ on M arises in this way.

Proof. To prove that ∇′ is a connection, we show that it satisfies the
Leibniz rule (the other axioms are obvious). We have:

∇′v (f X) = ∇v (f X) + T (p)
(
v , f (p)X(p)

)
= v(f )X + f (p)∇vX + f (p)T (p)

(
v ,X(p)

)
= v(f )X + f (p)∇′vX.

Conversely, if ∇′ is another connection, we consider the expressions in coordi-
nates (25) for both ∇′vX and ∇vX and discover that

∇′vX −∇vX = v iX j
(

(Γ′)kij − Γkij
)
ek .

The right-hand expression describes a tangent vector at p that depends (lin-
early) only on the tangent vectors v and X(p). If we indicate this vector as
T (p)(v ,X(p)), we get a tensor field T of type (1,2). In coordinates, we have

T kij = (Γ′)kij − Γkij .

The proof is complete. �

A connection is not a tensor field, but the difference of two connections
is. The space of all connections ∇ on M is naturally an affine space on the
(infinite-dimensional) space Γ

(
T 2

1 (M)
)
.

Remark 9.2.10. We can use Exercise 9.2.2 to confirm that T kij = (Γ′)kij−Γkij
are the coordinates of a tensor (the second partial derivatives cancel).

9.2.7. Covariant derivative of tensor fields. A covariant derivative ∇
on M gives rise to parallel transport, and parallel transport in turn generates
a more powerful notion of covariant derivative that applies to any tensor field.
We explain this phenomenon here.

The short description is that parallel transport allows us to identify all the
tangent spaces along a curve, and with this tool we can differentiate any kind
of tensor field that is defined on this curve.

More precisely, let T be a tensor field of type (h, k) on a neighbourhood
of p ∈ M. For any v ∈ TpM, we would like to define

∇vT ∈ T kh (TpM).

We do this using parallel transport along curves as follows. Choose an em-
bedded curve γ : I → M with 0 ∈ I, γ(0) = p and γ′(0) = v . The parallel
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transport Γ(γ)t1t0 along γ is an isomorphism between tangent spaces, which
extends canonically to an isomorphism of tensor spaces:

Γ(γ)t1t0 : T kh (Tγ(t0)M) −→ T kh (Tγ(t1)M).

We define

∇vT =
d

dt
Γ(γ)0

t

(
T (γ(t))

)∣∣∣
t=0
.

Proposition 9.2.11. The definition is independent of the choice of γ. In
coordinates we get

(∇vT )i1,...,ihj1,...,jk
=v i

∂

∂x i
(T i1,...,ihj1,...,jk

) + v iT j,i2...,ihj1,...,jk
Γi1i j + · · ·+ v iT

i1,...,ih−1,j
j1,...,jk

Γihi j

− v iT i1...,ihl ,j2,...,jk
Γli j1 − · · · − v

iT i1...,ihj1,...,jk−1,l
Γli jk .

Proof. We pick a chart and write everything in coordinates in Rn or Rn+.
We would like to study how the canonical basis of Rn and (Rn)∗ are transported
along γ. We set p = 0 and wi(t) = Γ(γ)t0(ei). From (27) we deduce that

ẇi(t) + γ′(t)jw ki (t)Γljk(γ(t))el = 0.

In particular at t = 0 we get

ẇi(0) + v jΓlj i(0)el = 0,

from which we deduce (exercise) that the derivative of the dual basis satisfies

ẇ i(0)− v jΓij l(0)e l = 0.

At any time t ∈ I we can write

(28) T = T i1,...,ihj1,...,jk
wi1 ⊗ · · · ⊗ wih ⊗ w

j1 ⊗ · · · ⊗ w jk .

By definition the covariant derivative of T is

∇vT = Ṫ i1,...,ihj1,...,jk
(0)ei1 ⊗ · · · ⊗ eih ⊗ e

j1 ⊗ · · · ⊗ e jk .

All the terms in (28) depend on time, so we now derive it with respect to
t. We omit the symbol ⊗ for simplicity and get

v i
∂T

∂x i

∣∣∣
x=0

=
dT

dt

∣∣∣
t=0

= Ṫ i1,...,ihj1,...,jk
(0)ei1 · · · eihe

j1 · · · e jk

+ T i1,...,ihj1,...,jk
(0)ẇi1 (0)ei2 · · · eihe

j1 · · · e jk + · · ·

+ T i1,...,ihj1,...,jk
(0)ei1 · · · eih ẇ

j1 (0)e j2 · · · e jk + · · ·

= ∇vT − T i1,...,ihj1,...,jk
(0)v jΓlj i1 (0)elei2 · · · eihe

j1 · · · e jk − · · ·

+ T i1,...,ihj1,...,jk
(0)v jΓj1j l (0)ei1 · · · eihe

le j2 · · · e jk + · · ·

The conclusion follows by renaming indices. �
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The general principle is always the same: in coordinates the covariant de-
rivative is the directional derivative plus some linear correction terms governed
by the Christoffel symbols. Despite its slightly awe-inspiring appearance due to
the presence of many indices, we could not have hoped for a simpler formula.

In particular, when T = f is a function we get ∇v f = v(f ) and when
T = X is a vector field we recover the original definition of ∇X (and this is
quite reassuring). If ω is a 1-form, then

∇vω = v i
∂ω

∂x i
− v iωlΓli je j = v i

(
∂ωj
∂x i
− ωlΓli j

)
e j .

If g is a metric tensor, then

(29) (∇vg)jk = v i
(
∂gjk
∂x i
− glkΓli j − gj lΓlik

)
.

Corollary 9.2.12. The following hold:

(1) If T and U agree on a neighbourhood of p, then ∇vT = ∇vU.
(2) ∇vT is linear both in v and T .
(3) The Leibniz rule is satisfied for any pair of tensor fields T, U near p:

∇v (T ⊗ U) = (∇vT )⊗ U(p) + T (p)⊗∇vU.

(4) ∇ depends smoothly on p, in the sense that ∇XT is a tensor field
for every vector field X.

(5) ∇v commutes with contractions.

We may interpret the connection ∇ as a particular linear map

∇ : Γ(T kh (M)) −→ Γ(T k+1
h (M))

determined by requiring that ∇(T ) sends a vector field X to ∇XT . The
coordinates of ∇T are

∇iT i1,...,ihj1,...,jk
=

∂

∂x i
(T i1,...,ihj1,...,jk

) + T j,i2...,ihj1,...,jk
Γi1i j + · · ·+ T

i1,...,ih−1,j
j1,...,jk

Γihi j

− T i1...,ihl ,j2,...,jk
Γli j1 − · · · − T

i1...,ih
j1,...,jk−1,l

Γli jk .

It is often convenient, as in the formula, to write the i-th coordinate of
∇T as a pedix of ∇ to stress its peculiar role and avoid potential ambiguities.

Remark 9.2.13. Using the covariant derivative we have defined parallel
transport along curves; conversely, we have just seen that parallel transport
along curves determines the covariant derivative. So covariant derivative and
parallel transport are essentially the same thing.

9.3. The Levi-Civita connection

On a Riemannian manifold we can talk about distances between points
and length of curves. On a more general pseudo-Riemannian manifold M we
can talk about volumes. We now show that a pseudo-Riemannian manifold M
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also has a preferred connection, called the Levi-Civita connection. We will use
it to define geodesics in the next section.

9.3.1. Introduction. A smooth manifold M carries many different con-
nections, and we are now looking at some reasonable way to discriminate
between them. The main motivation is the following ambitious question: if M
has a metric tensor g, is there a connection ∇ that is more suited to g?

An elegant and useful way to understand a connection ∇ consists of exam-
ining some tensor fields that are assigned canonically to ∇. We now introduce
one of these.

9.3.2. Torsion. Let ∇ be a connection on a smooth manifold M. The
torsion T of ∇ is a tensor field of type (1, 2) defined as follows. For every
p ∈ M and v , w ∈ TpM we set

T (p)(v , w) = ∇vY −∇wX − [X, Y ](p)

where X and Y are any vector fields defined in a neighbourhood of p extending
the tangent vectors v and w . Of course we need to prove that this definition
is well-posed, a fact that is not evident at all at first sight.

Proposition 9.3.1. The tangent vector T (p)(v , w) is independent of the
extensions X and Y .

Proof. In coordinates we have

T (p)(v , w) =

(
v i
∂Y k

∂x i
+ v iY jΓkij − w i

∂Xk

∂x i
− w iX jΓkij − v i

∂Y k

∂x i
+ w i

∂Xk

∂x i

)
ek

=
(
v iw jΓkij − w iv jΓkij

)
ek = v iw j(Γkij − Γkji)ek .

The proof is complete. �

Along the proof we have also shown that in coordinates we have

T kij = Γkij − Γkji .

A connection ∇ is symmetric if its torsion vanishes, that is if Γkij = Γkji on
any coordinate chart. The torsion is clearly an antisymmetric tensor, that is
T (p)(v , w) = −T (p)(w, v) for all v , w . Finally, if we contract the torsion T
with two vector fields X and Y we get the elegant equality of vector fields:

T (X, Y ) = ∇XY −∇Y X − [X, Y ].

Remark 9.3.2. If the torsion vanishes, we get

[X, Y ] = ∇XY −∇Y X.

This equality may be interpreted by saying that the Lie bracket [X, Y ] can be
defined in a coordinate-independent way using the covariant derivative ∇ in
place of the (coordinate-dependent) directional derivative (see Exercise 5.4.4).
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Remark 9.3.3. The torsion is natural, that is it commutes with diffeomor-
phisms. We mean that if ϕ : M → N is a diffeomorphism and∇ is a connection
for M with torsion T , the transported tensor field ϕ∗T is the torsion of ϕ∗∇.
In particular ∇ is symmetric ⇐⇒ ϕ∗∇ is.

9.3.3. Bilinear operators on vector fields. We have already encountered
in this book three bilinear operators

X(M)× X(M) −→ X(M)

that are quite dissimilar in nature, and it is important to recognise their mutual
differences. These are the Lie bracket [, ] (that is intrinsic of M), the connec-
tion ∇ (that is not intrinsic and has to be added to M), and the torsion T
(that depends on ∇). In all three cases, given two vector fields X and Y , we
can define a third one

[X, Y ], ∇XY, T (X, Y ).

The main difference between these three operators is the following:
• [X, Y ] at p depends on X and Y ;
• ∇XY at p depends on X(p) and Y ;
• T (X, Y ) at p depends on X(p) and Y (p).

When we write that “[X, Y ] at p depends on X and Y ”, we mean that the
datum of X(p) and Y (p) is not enough to determine [X, Y ](p). We need
to know the behaviour of both X and Y in a neighbourhood of p. These
differences express the fact that the operator T is the only one among the
three that is in fact a tensor field.

Remark 9.3.4. Some authors describe these differences by saying that the
operator T is C∞(M)-bilinear, that is T (f X, gY ) = f gT (X, Y ) for every f , g ∈
C∞(M). Analogously, ∇ is left C∞(M)-linear, that is ∇f XY = f∇XY , but is
not right C∞(M)-linear. The Lie bracket is neither left nor right C∞(M)-linear.

9.3.4. Compatible connections. We now consider a pseudo-Riemannian
manifold (M, g). As we said above, we would like to assign an appropriate
conection ∇ to g. We start by defining a reasonable compatibility condition.

We say that a connection ∇ is compatible with g if every parallel transport
isomorphism

Γ(γ)t1t0 : Tγ(t0)M −→ Tγ(t1)M

is actually an isometry, for every curve γ : I → M and every t0, t1 ∈ I. This
condition is quite strong, since we are imposing it on every curve γ.

As the following proposition shows, this is a robust definition,1 because
it may be expressed in various different and simple ways: by requiring that

1In mathematics, we may say that a definition is robust if it can be expressed in various
different ways. This is of course not a rigorous concept, but it is an evident fact that defini-
tions that are both robust and simple to state are by far those preferred by mathematicians:
the main reason is that our brain storage for definitions is very limited, and it is important
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∇g = 0, which translates into a concrete equation (30) relating g and Γkij ,
or by asking that a natural version of the Leibniz rule applies. Note that
if X, Y ∈ X(U) are vector fields, their scalar product 〈X, Y 〉 ∈ C∞(U) is a
smooth function.

Proposition 9.3.5. The following conditions are equivalent:

(1) the connection ∇ is compatible with g;
(2) ∇g = 0, that is on every chart we have

(30)
∂gi j
∂xk

= Γlkigl j + Γlkjgl i ;

(3) for every p ∈ M, v ∈ TpM, and vector fields X, Y near p we get

v〈X, Y 〉 = 〈∇vX, Y (p)〉+ 〈X(p),∇vY 〉;

(4) for every curve γ : I → M and vector fields X, Y on it we get

d

dt
〈X, Y 〉 = 〈DtX, Y 〉+ 〈X,DtY 〉.

Proof. (1)⇒(2). Since every parallel transport Γ(γ)0
t is an isometry, its ac-

tion on (0, 2) tensors sends g(γ(t)) to g(γ(0)), independently of t. Therefore
by definition we get ∇g = 0. Apply (29) to get (30).

(2)⇒(3). Using Corollary 9.2.12-(3) we get

∇v (g ⊗X ⊗ Y ) = g ⊗∇vX ⊗ Y + g ⊗X ⊗∇vY

and we conclude by contracting (allowed by Corollary 9.2.12-(5)).
(3)⇒(4). Pick v = γ′(t).
(4)⇒(1). If X and Y are parallel, the function 〈X, Y 〉 is constant, hence

parallel transport is an isometry. �

We note that if (30) holds on all the charts of an atlas, then it also does
at any compatible chart, since it is equivalent to ∇g = 0.

9.3.5. The Levi-Civita connection. As promised, we now assign to any
pseudo-Riemannian manifold (M, g) a canonical connection ∇ called the Levi-
Civita connection.

Theorem 9.3.6. Every pseudo-Riemannian manifold (M, g) has a unique
symmetric compatible connection ∇. On any chart, its Christoffel symbols are

(31) Γli j =
1

2
gkl
(
∂gjk
∂x i

+
∂gki
∂x j
−
∂gi j
∂xk

)
.

to choose a small number of good ones that are powerful enough to apply to a big number
of different complex situations.



278 9. PSEUDO-RIEMANNIAN MANIFOLDS

Proof. We start by proving uniqueness. Let ∇ be a symmetric compatible
connection. On a chart, we write (30) three times

∂gi j
∂xk

= Γlkigl j + Γlkjgl i ,
∂gjk
∂x i

= Γli jglk + Γlikgl j
∂gki
∂x j

= Γljkgl i + Γlj iglk .

with i , j, k permuted cyclically, and using symmetry Γkij = Γkji we get

∂gjk
∂x i

+
∂gki
∂x j
−
∂gi j
∂xk

= 2Γli jglk .

By multiplying both members with the inverse matrix gkm we find

Γmij =
1

2
gkm

(
∂gjk
∂x i

+
∂gki
∂x j
−
∂gi j
∂xk

)
.

This shows that Γli j and hence ∇ are uniquely determined.
Concerning existence, we now use (31) to define ∇ locally on a chart. The

connection is clearly symmetric and it is also compatible because

Γlkigl j+Γlkjgl i =
1

2

(
∂gi j
∂xk

+
∂gjk
∂x i
−
∂gki
∂x j

)
+

1

2

(
∂gj i
∂xk

+
∂gik
∂x j
−
∂gkj
∂x i

)
=
∂gi j
∂xk

.

The resulting ∇ is chart-independent: if not, we would get two different
symmetric and compatible connections on some open set, which is impossible.
Therefore all the ∇ constructed along charts glue to a global ∇ on M. �

The unique symmetric compatible connection ∇ is called the Levi-Civita
connection of (M, g).

Example 9.3.7. If Rn is equipped with the Riemannian metric g, the
Christoffel symbols Γkij = 0 vanish everywhere and the Levi-Civita connec-
tion coincides with the usual directional derivative. More generally, this holds
for any pseudo-Riemannian manifold Rp,q since gi j is constant.

We will since now equip every pseudo-Riemannian manifold (M, g) with its
Levi-Civita connection ∇.

Remark 9.3.8. The Levi-Civita connection is natural, that is it commutes
with isometries. We mean that every isometry ϕ : (M, g) → (N, h) between
pseudo-Riemannian manifolds sends the Levi-Civita connection ∇ of g to the
Levi-Civita connection ϕ∗∇ of h. This holds because ϕ∗∇ is symmetric and
compatible with h, see Remark 9.3.3.

Remark 9.3.9. While the compatibility assumption looks natural, the rea-
sons for preferring a symmetric connection may look obscure at this point. We
can express three arguments in its favour: (i) this seems the only (or at least
the simplest) way to get a canonical and natural connection; (ii) symmetry
has some nice consequences at various points, for instance we get that the
Levi-Civita connection behaves well with submanifolds (see the next section);
(iii) symmetry is assumed in general relativity based on physical grounds.
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Remark 9.3.10. If we rescale the metric g by some constant λ 6= 0, we
get a new metric g′ = λg with the same Levi-Civita connection ∇′ = ∇. We
can verify this by looking at the formula for Γkij in coordinates, or by noticing
that ∇ is still symmetric and compatible with g′.

If g is modified by a more complicated conformal transformation, the con-
nection ∇ may be altered dramatically, as we will see in some important ex-
amples like the conformal models for the hyperbolic space.

9.3.6. Submanifolds. Let M be a pseudo-Riemannian manifold without
boundary and N ⊂ M a pseudo-Riemannian submanifold. Both M and N
have their Levi-Civita connections ∇M and ∇N . We now show that ∇N is
easily determined by ∇M . This is particularly useful when the ambient space
is M = Rp,q since here ∇M is just the usual directional derivative.

Let p ∈ N be a point and v ∈ TpN a tangent vector. Let X be a vector
field tangent to N defined on a neighbourhood of p in N. Extend X arbitrarily
to a vector field on a neighbourhood of p in M. Let π : TpM → TpN be the
orthogonal projection.

Proposition 9.3.11. The following holds:

∇Nv X = π
(
∇Mv X

)
.

Proof. At every p ∈ N we may choose coordinates such that p = 0,
M = Rn × Rk , N = Rn × {0}, and after a linear transformation we may
also require that gi j(0) is diagonal, and hence the inverse gi j(0) also is. In
these coordinates we can easily check, by looking at (31), that the Christoffel
symbols Γli j(0) of N are precisely those of M with 1 ≤ i , j, l ≤ n. Note that
this holds only at the point p = 0, not in the nearby.

Using the formula (25) we easily deduce that ∇Nv X = π(∇Mv X). �

Let γ : I → N be a curve and X be a vector field on γ. We denote by
DMt X and DNt X the covariant derivatives of X along γ with respect to the
two connections ∇M and ∇N .

Corollary 9.3.12. The following holds:

DNt X = π
(
DMt X

)
where π : Tγ(t)M → Tγ(t)N is the orthogonal projection.

In particular the vector field X is parallel on N if and only if its covariant
derivative on M is everywhere orthogonal to N. The case where M is the
Euclidean Rm or more generally Rp,q is particularly simple to describe since
the covariant derivative DMt is just the ordinary directional derivative.

Corollary 9.3.13. Consider a pseudo-Riemannian submanifold N ⊂ Rp,q
and a curve γ : I → N. A vector field X on γ is parallel (on N) if and only if
its derivative X ′(t) in Rp,q is orthogonal to Tγ(t)N for every t ∈ I.
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Of course, orthogonality is to be intended with respect to the metric tensor
ηp,q of the pseudo-Riemannian manifold Rp,q.

9.4. Exercises

Exercise 9.4.1. [Definition of DtX via axioms] Prove that there is a unique way
to assign to any vector field X on a curve γ ∈ I → M another vector field DtX on γ
such that

(1) If X and X ′ agree on a subinterval J ⊂ I, then DtX and DtX ′ do.
(2) The map Dt is linear on vector fields on γ.
(3) Dt(f X) = f ′X + f DtX for any function f : I → R.
(4) If the restriction of X to a subinterval J ⊂ I is induced by a vector field Y

on an open subset of M, then DtX = ∇γ′(t)Y for all t ∈ J.

Exercise 9.4.2. Prove Proposition 9.3.11 by defining ∇vX = π
(
∇Mv X

)
and show-

ing that the so obtained ∇ is a symmetric connection on N compatible with the metric
g. By uniqueness of the Levi-Civita connection, ∇ = ∇N .

Exercise 9.4.3. Calculate the area of the following domain

[−a, a]× [b,∞)

in the half-plane model H2 of hyperbolic space.

Exercise 9.4.4. Write the Euclidean metric g on R2 \ {0} in polar coordinates
(ρ, θ). Determine the Christoffel symbols of the Levi-Civita connection with respect
to the variables (ρ, θ).

Exercise 9.4.5. Let (M, g) be a pseudo-Riemannian manifold. Prove that in any
coordinates the following hold:

Γjj i =
1√

det g

∂

∂x i

√
det g,

div(X) =
1√

det g

∂

∂x i

(
X i
√

det g
)
,

∆f =
1√

det g

∂

∂x i

(
∂f

∂x j
gi j
√

det g

)
.

Here on Γjj i we use the Einstein summation convention.



CHAPTER 10

Geodesics

We know that every pseudo-Riemannian manifold (M, g) has a preferred
connection ∇, and now we use ∇ to define geodesics. In fact, a connection
∇ is enough to define the geodesics, the background metric g plays no role.

On a Riemannian manifold we finally respond to one of our primary moti-
vations, by showing that geodesics are precisely the curves that minimise the
path length, at least locally (not necessarily globally). Although geodesics are
defined quite indirectly through ∇, their relation with g is very tight.

10.1. Geodesics

10.1.1. Definition. Let M be a manifold equipped with a connection ∇.

Definition 10.1.1. A smooth curve γ : I → M is a geodesic if the velocity
field γ′(t) is parallel along γ.

Recall that this means that Dtγ′ = 0 for every t ∈ I. A quite simple (and
not much exciting) example of geodesic is the constant map γ(t) = p, that
has γ′(t) = 0 for al t. Such a geodesic is called trivial or constant.

Proposition 10.1.2. Every non-trivial geodesic is an immersion.

Proof. Since the field γ′(t) is parallel, it is null at some t ∈ I ⇐⇒ it is
null everywhere ⇐⇒ γ is trivial. �

A geodesic ismaximal if it is not the restriction of a longer geodesic η : J →
M with I ( J. Geodesics have many nice properties; the first important one
is that they exist, uniquely once a starting point and a direction are fixed:

Proposition 10.1.3. For every p ∈ M and v ∈ TpM there is a unique
maximal geodesic γ : I → M with 0 ∈ I, γ(0) = p, and γ′(0) = v .

Proof. In coordinates, a curve γ(t) = x(t) is a geodesic if and only if the
following holds for all k , see (26):

(32)
d2xk

dt2
+
dx i

dt

dx j

dt
Γkij = 0.

This is a second-order system of ordinary differential equations. The Cauchy–
Lipschitz Theorem 1.3.5 ensures that the system has locally a unique solution
with prescribed initial data x(0) = p and dx

dt (0) = v . �

281
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We write the unique maximal geodesic γ tangent to v ∈ TpM at t = 0 as

γv : Iv −→ M.

Note that the interval domain Iv ⊂ R also depends on v . When v = 0 we get
the trivial constant geodesic γ0 : R→ M, γ0(t) = p.

This is a quite remarkable fact: a connection ∇ furnishes at every point
p a canonical family of curves exiting from p at every possible direction like
a firework starbust. The second-order system of differential equations (32)
make sense in any coordinate system. These may be written as simply as

(33) ẍk + ẋ i ẋ jΓkij = 0.

To define geodesics we only need a connection∇, not a pseudo-Riemannian
metric. If ∇ is the Levi-Civita connection of a Riemannian metric g, the num-
ber 〈γ′(t), γ′(t)〉 is clearly independent of t all along the geodesic γ. If this
number is positive, null, or negative, the geodesic is correspondingly a spacelike,
timelike, or lightlike curve. The norm ‖γ′(t)‖ =

√
|〈γ′(t), γ′(t)〉| is constant.

On a Riemannian manifold every geodesic travels at constant speed. One
may wonder if the same geodesic run at a different constant speed is still a
geodesic. This is true thanks to the following more general fact, that holds
for all connections ∇, without the need of a background metric.

Proposition 10.1.4. If γ is a geodesic, then η(t) = γ(ct) is also a geodesic,
for every non-zero c ∈ R.

Proof. If ∇vX = 0, then also

∇cvcX = c2∇vX = 0.

This concludes easily the proof. �

In particular, we have γcv (t) = γv (ct).

10.1.2. Examples. We study the geodesics in some pseudo-Riemannian
manifolds encountered in the previous pages.

Example 10.1.5. On Rn with the Euclidean metric we have Γi j = 0 and
hence the geodesics are precisely the straight lines γ(t) = p + tv . More
generally, this holds also for Rp,q, where the geodesic is timelike, lightlike, or
spacelike according to the type of v .

Example 10.1.6. Let N ⊂ Rp,q be a Riemannian submanifold. By Corollary
9.3.13, a curve γ : I → N is a geodesic if and only if γ′′(t) is orthogonal to
Tγ(t)N for all t ∈ I.

Example 10.1.7. By the previous example, every maximal circle on Sn run
at constant speed is a geodesic. In other words, for every p ∈ Sn, every unitary
vector v ∈ TpSn = p⊥, and every c > 0, the curve γ : R→ Sn defined as

γ(t) = cos(ct) · p + sin(ct) · v
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is the maximal geodesic that starts from p in the direction v at speed c . To
prove this it suffices to check that γ(t) ∈ Sn and γ′′(t) is parallel to γ(t),
hence orthogonal to Tγ(t)S

n. By Proposition 10.1.3 these are precisely all the
maximal geodesics in the sphere Sn.

Example 10.1.8. We have already remarked some analogies between Sn

and the hyperboloid model In for the hyperbolic space. Using exactly the
same argument as in the previous example (with the Lorentzian scalar product
replacing the Euclidean one) we see easily that for every p ∈ In, every unitary
vector v ∈ TpIn = p⊥, and every c > 0, the curve γ : R→ In,

γ(t) = cosh(ct) · p + sinh(ct) · v

is the maximal geodesic that starts from p in the direction v at speed c .

In both the previous examples the support of the geodesic γ is the inter-
section of Sn or In with the plane generated by p and v . We get a circle in
Sn and a hyperbola in In.

Example 10.1.9. If we calculate the Christoffel symbols for the half-plane
model H2 of the hyperbolic space, with coordinates (x, y), we find (exercise)

Γ1
11 = Γ2

12 = Γ2
21 = Γ1

22 = 0, Γ2
11 =

1

y
, Γ1

12 = Γ1
21 = Γ2

22 = −
1

y
.

The geodesic equations are then

ẍ −
2

y
ẋ ẏ = 0, ÿ +

1

y

(
(ẋ)2 − (ẏ)2

)
= 0.

A family of solutions is

x = c, y = edt .

The supports are vertical lines and their speed is |d |. Another family is

x = λ tanh dt + c, y = λ
1

cosh dt
.

The supports are half-circles of equation (x − c)2 + y2 = λ2, y > 0 and the
speed is |d |. These two family of geodesics describe all the maximal geodesics
of H2 since any tangent vector at any point is tangent to one of these.

Summing up, the (supports of the) maximal geodesics of H2 are vertical
lines and half-circles orthogonal to the horizontal axis as in Figure 10.1.

Remark 10.1.10. Like the Levi-Civita connection, geodesics are natural,
that is they are preserved by isometries. If ϕ : M → N is an isometry between
pseudo-Riemannian manifolds, a curve γ : I → M is a geodesic ⇐⇒ ϕ ◦ γ is.
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Figure 10.1. The supports of the maximal geodesics in the half-plane
model H2 of the hyperbolic plane are lines and half-circles orthogonal to
the horizontal axis.

10.1.3. Geodesic flow. Let M be a smooth manifold equipped with a
connection ∇. It would be nice if we could represent all the geodesics in
M as the integral curves of some fixed vector field on M. However, this is
clearly impossible! On a vector field, there is only one integral curve crossing
each point p, but there are infinitely many geodesics through p, one for each
direction v ∈ TpM. To make this strategy work we only need to replace M
with its tangent bundle TM.

We first note that using the derivative we may lift canonically every curve
η : I → M to a curve η′ : I → TM, and that it makes sense to consider the
second derivative η′′(t) ∈ Tη′(t)TM.

Let M be equipped with a connection ∇. We define the geodesic vector
field X in TM as follows: for every v ∈ TM, let γv : Iv → M be the unique
maximal geodesic with γ′v (0) = v . We define X(v) = γ′′v (0).

The geodesic vector field X is smooth because the geodesic γv depends
smoothly on the initial data. By construction its maximal integral curves are
precisely all the lifts of all the maximal geodesics in M. The vector field X
generates a flow Φ on TM called the geodesic flow. The flow Φ moves the
points in TM along the lifted geodesics.

The geodesic flow Φ is defined on some maximal open subset U of TM×R
containing TM × {0}. We have U ∩

(
{v} × R

)
= {v} × Iv . With moderate

effort, mostly relying on theorems proved in the previous chapters, we have
defined a quite general and fascinating geometric flow on (the tangent bundle
of) every manifold M equipped with a connection ∇.

10.1.4. Exponential map. We now define a useful map that is tightly
connected with the geodesic flow, called the exponential map. We start by
defining the following subset of the tangent bundle:

V =
{
v ∈ TM

∣∣ 1 ∈ Iv
}
⊂ TM.
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Recall that Iv ⊂ R is the domain of γv . In words, the set V consists of all the
tangent vectors v such that the geodesic γv exists for at least 1 unit of time,
so that γv (1) makes sense. The exponential map is

exp: V −→ M

v 7−→ γv (1).

For every p ∈ M we define

Vp = V ∩ TpM, expp = exp |Vp .
We see as usual M embedded in TM as the zero-section.

Proposition 10.1.11. The domain V is an open neighbourhood of M and
exp is smooth. Each Vp is open and star-shaped with respect to 0. We have

γv (t) = expp(tv)

for every v ∈ TM and t ∈ R such that both members are defined.

Proof. Let U be the open domain of the geodesic flow Φ. We have V =

{v ∈ TM | v ×{1} ∈ U
}
and hence V is open. The map exp(v) = π(Φ(v , 1))

is smooth. Proposition 10.1.4 gives

exp(tv) = γtv (1) = γv (t)

hence Vp is star-shaped and γv (t) = exp(tv). �

Here is one important fact about the exponential map:

Proposition 10.1.12. The map expp is a local diffeomorphism at 0 ∈ Vp.

Proof. We have d(expp)0 : T0(TpM) → TpM, but since TpM is a vector
space we get T0(TpM) = TpM and hence d(expp)0 is an endomorphism. For
every v ∈ TpM we have expp(tv) = γv (t) for all sufficiently small t. Therefore
d(expp)0(v) = γ′v (0) = v . We have proved that d(expp)0 = id. In particular,
it is invertible and hence expp is a local diffeomorphism at 0. �

The proposition says that the exponential map expp may be used as a
parametrisation of a sufficiently small open neighbourhood of p. After many
pages, we recover here a very intuitive idea: the tangent space TpM should ap-
proximate the manifold near the point p. This idea may be realised concretely,
via the exponential map, only after fixing a connection on M.

Example 10.1.13. In the space Rp,q the geodesics are just the Euclidean
lines run at constant speed. Therefore V = TRp,q = Rp,q × Rp,q and

exp: Rp,q × Rp,q −→ Rp,q, exp(p, v) = p + v .

Example 10.1.14. Consider the sphere Sn. Example 10.1.7 shows that for
this Riemannian manifold we have V = TSn and

exp(v) = cos ‖v‖ · p + sin ‖v‖ ·
v

‖v‖
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Figure 10.2. If we model the Earth as S2 and look at the exponential
map from the north pole N, the disc D of radius π in TNS2 is mapped to
S2 as shown here. The points in ∂D are all sent to the south pole.

for every p ∈ Sn and v ∈ TpSn. Note that when ‖v‖ = π we get exp(v) = −p.
The map expp sends the open disc B(0, π) ⊂ TpM of radius π diffeomor-

phically onto Sn \ {−p}, while its boundary sphere ∂B(0, π) goes entirely to
the antipodal point −p. See Figure 10.2. Note in particular that expp is not
a local diffeomorphism at the points in ∂B(0, π). In general, it is guaranteed
to be a local diffeomorphism only at the origin.

Example 10.1.15. On the hyperboloid model In of the hyperbolic space,
Exercise 10.1.8 shows that V = T In and

exp(v) = cosh ‖v‖ · p + sinh ‖v‖ ·
v

‖v‖
for every p ∈ In and v ∈ TpIn. The map expp : TpI

n → In is a diffeomorphism,
with inverse

exp−1
p (q) =

q + 〈p, q〉p
‖q + 〈p, q〉p‖ arccosh

(
− 〈p, q〉

)
.

10.2. Normal coordinates

The exponential map furnishes some nice local parametrisations called nor-
mal coordinates, that we now investigate. These are extremely useful in many
computations and play an important role in general relativity.

10.2.1. Definition. Consider a pseudo-Riemannian manifold (M, g) and
pick a point p ∈ M. Recall that the exponential map is a local diffeomorphism
at the origin of TpM and hence furnishes a diffeomorphism expp : U → expp(U)

on some sufficiently small open neighbourhood U ⊂ TpM of 0.
If we fix an orthonormal basis at TpM we get an isometric identification of

TpM with Rp,q, the vector space Rn equipped with the diagonal metric tensor
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ηp,q, where (p, q) is the signature of M. With this identification, the map
expp is a parametrisation from an open neighbourhood U ⊂ Rp,q of 0 to an
open neighbourhood expp(U) of p.

The neighbourhood expp(U) of p inherits from this parametrisation some
coordinates x1, . . . , xn called normal coordinates, with p = 0. The normal
coordinates are the best kind of coordinates that we can hope for near a fixed
point p: they are uniquely determined up to a linear isometry of Rp,q, since
they only depend on the choice of an orthonormal basis in TpM, and they have
many nice properties that we now investigate.

10.2.2. Properties. The first notable feature of normal coordinates is the
following, which follows from Proposition 10.1.11.

Proposition 10.2.1. In normal coordinates, the geodesic emanated from
the origin in the direction v is the Euclidean ray γv (t) = tv .

The geodesics emanated from the origin are Euclidean rays run at constant
speed. This is only valid at the origin! The geodesics that do not cross the
origin are not necessarily Euclidean lines. One consequence is the following.

Proposition 10.2.2. In normal coordinates we have

gi j(0) = ηi j ,
∂gi j
∂xk

(0) = 0,(34)

Γkij(0) = 0,
∂Γkij
∂x l

(0) +
∂Γkjl
∂x i

(0) +
∂Γkl i
∂x j

(0) = 0.(35)

Proof. The geodesic equation (33) is satisfied by the curves x(t) = tv , ∀v ∈
Rn. Plugging x(t) in the equation we get

v iv jΓkij(0) = 0

for every v ∈ Rn, and hence Γkij(0) = 0 since Γkij = Γkji by linear algebra. By
deriving the geodesic equation we get the third order equations

...
x k + ẍ i ẋ jΓkij + ẋ i ẍ jΓkij + ẋ i ẋ j

∂Γkij
∂x l

ẋ l = 0.

If we substitute x(t) = tv again we get

v iv jv l
∂Γkij
∂x l

(0) = 0

for every v ∈ Rn. Exercise 2.7.3 now yields the last equality. Concerning gi j ,
the first equality is a consequence of d(expp)0 = id and the second follows
from Γkij(0) = 0 and (30). �

Of course the Christoffel symbols Γkij and the derivatives of gi j are guaran-
teed to vanish only at the origin, and not at the other nearby points. Indeed
the second derivatives

∂2gi j
∂xk∂x l

(0)
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do not vanish in general. We will see that these quantities, that depend on four
indices i , j, k, l , are linearly related with the components of a very important
tensor field of type (1, 3) called the Riemann tensor, which is often non-zero.

We can see the normal coordinates as the result of a doomed attempt
to find some coordinates near p where gi j = ηp,q everywhere. This is not
possible, as we will see, and the best that we can get is that gi j = ηp,q up to
the first order at a preferred point.

10.2.3. The Riemannian case: geodesic balls. On a Riemannian mani-
fold it is possible, at every given point, to find some small neighbourhoods that
look roughly (but not exactly!) like small Euclidean balls. These are called
geodesic balls.

On any metric space X, for every point p ∈ X and radius r > 0 we define
as usual the metric ball

B(p, r) =
{
x ∈ X | d(x, p) < r

}
.

Let (M, g) be a Riemannian manifold, and p ∈ M a point. The positive-
definite g(p) gives TpM the structure of a metric space. Let r > 0 be suffi-
ciently small such that the exponential map

expp : B(0, r)→ M

is defined and is an embedding. The image expp
(
B(0, r)

)
in M is called the

geodesic ball of radius r centred at p.
A geodesic ball is indeed diffeomorphic to a ball, because it is the diffeo-

morphic image of B(0, r). If we fix an orthonormal basis for TpM, we get an
identification TpM = Rn and some normal coordinates on the geodesic ball.
In normal coordinates, the geodesic ball is like the Euclidean ball B(0, r) ⊂ Rn
with a metric tensor gi j that varies smoothly on x ∈ B(0, r), and that is equal
to the Euclidean δi j only at first order at p = 0.Fare esempio sfera?

10.2.4. The Gauss Lemma. We now prove a fundamental lemma on
geodesic balls that has many important geometric consequences. Its proof is
non-trivial and very instructive since it uses many of the subtle properties of
the Levi-Civita connection that were studied in the previous pages.

Let (M, g) be a Riemannian manifold and p ∈ M a point. Consider a
geodesic ball B = expp(B(0, r)). We recall that r > 0 is implicitly small
enough so that expp is well-defined and an embedding on B(0, r).

For every 0 < r ′ < r , we let the geodesic sphere of radius r ′ be the image

S(p, r ′) = expp(∂B(0, r ′)).

Like geodesic balls, geodesic spheres exist only for small r ′ > 0, and they
are indeed diffeomorphic (but often not isometric) to Euclidean spheres. Recall
that the geodesics emanated from the origin are Euclidean rays.
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s

t

Figure 10.3. The Gauss Lemma says that the vectors x and y are or-
thogonal. To prove this, we extend x and y to two commuting vector
fields X (blue) and Y (green). Then we show that 〈X, Y 〉 is constant
along the rays, and hence vanishes everywhere.

Lemma 10.2.3 (Gauss Lemma). The Euclidean rays emanated from the
origin and the geodesic spheres are everywhere orthogonal.

It is worth saying that normal coordinates are not conformal in general,
that is the angles induced by g are usually not equal to the Euclidean angles:
this is only guaranteed to be true for the angles between rays and spheres.

Proof. We use normal coordinates and identify the geodesic ball B with
B(0, r) ⊂ Rn. Consider a ray s generated by some x ∈ Sn−1 and a geodesic
sphere S = ∂B(0, r ′) with r ′ < r , intersecting at the point r ′x . Of course

Tr ′xs ⊕ Tr ′xS = Tr ′xRn = Rn.

The line Tr ′xs is generated by x itself, and let y ∈ Tr ′xS be any vector.
We need to prove that g(r ′x)(x, y) = 0. Let W ⊂ Rn be the linear subspace
generated by the vectors x and y . By restricting everything to B(0, r) ∩W
we may suppose for simplicity that we are in dimension n = 2.

Write B∗ = B \ {0}. We may suppose that the Euclidean norm of y is r ′.
Up to rotating everything we get x = (1, 0) and y = (0, r ′), both considered
as tangent vectors at r ′x = (r ′, 0). We can extend x and y to the vector fields

X =
∂

∂ρ
, Y =

∂

∂θ

in B∗, see Figure 10.3. These are the vector fields induced by the polar
coordinates ρ, θ. We denote the scalar product g(p) by 〈, 〉, omitting p.

Our aim is to prove that

∂

∂ρ
〈X, Y 〉 = 0
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Figure 10.4. The Geometric Gauss Lemma says that geodesic spheres
centered at a point p are orthogonal to the geodesics exiting from p. On
a sphere, when p is the north pole it says that parallels are orthogonal to
meridians, as we all know.

on every ray. When X, Y → 0, we have that ‖X‖ stays bounded while Y → 0,
so 〈X, Y 〉 → 0. These two facts altogether imply that 〈X, Y 〉 = 0 everywhere
in B∗, so in particular g(r ′x)(x, y) = 〈X, Y 〉(r ′x) = 0 as required.

Since ∂
∂ρ and ∂

∂θ are induced by some coordinates change, they commute,
and hence [X, Y ] = 0. Using Proposition 9.3.5 we find

∂

∂ρ
〈X, Y 〉 = 〈∇XX, Y 〉+ 〈X,∇XY 〉.

We have ∇XX = 0 everywhere because the radii are geodesics. Since
[X, Y ] = 0 and the torsion vanishes, we get ∇XY = ∇Y X and therefore

∂

∂ρ
〈X, Y 〉 = 〈X,∇Y X〉 =

1

2

∂

∂θ
〈X,X〉 = 0

because 〈X,X〉 = 1 everywhere (the radii are geodesics, hence the radial norms
are equal to the Euclidean norm). The proof is complete. �

The Gauss Lemma says that the metric tensor at every point x in the
geodesic ball decomposes orthogonally into a radial part that coincides with
the Euclidean metric, and a tangential part, tangent to the geodesic sphere,
that may be quite arbitrary.

Figures 10.4 and 10.5 show the Gauss Lemma in action on the sphere and
on the hyperbolic plane. On S2, the geodesic spheres centered at the north
pole are clearly the parallels. On H2, we have the following.

Exercise 10.2.4. The geodesic sphere at (x, y) ∈ H2 of radius r > 0 is the
Euclidean circle with centre (x, y cosh r) and Euclidean radius y sinh r .

Figure 10.5 shows some geodesic rays and spheres emanating from a fixed
point. We can appreciate visually that they are all orthogonal. Remember that
H2 is a conformally equivalent to the Euclidean plane, so angles are represented
correctly (whereas lengths are not).
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Figure 10.5. The Gauss Lemma on the half-plane model H2 of the
hyperbolic plane. Thick curves are geodesics, dotted curves are geodesic
spheres. These two families of curves meet at right angles.

10.2.5. Minimising curves. We now start to study the tight connection
between geodesics and distance between points.

Let M be a Riemannian manifold and p, q ∈ M two points. We are
interested in the smooth curves that connect p to q, that is the γ : [a, b]→ M

with γ(a) = p and γ(b) = q. Recall that the length L(γ) of γ is independent
of its parametrisation. Recall also that d(p, q) is the infimum of all the lengths
of all the smooth curves connecting p and q. This infimum may not be realised
in some cases; if it does, that is if there is a curve γ with L(γ) = d(p, q), then
the curve γ is called minimising.

Exercise 10.2.5. If γ is minimising, the restriction of γ to any closed subin-
terval [c, d ] ⊂ [a, b] is also minimising, that is L(γ|[c,d ]) = d(γ(c), γ(d)).

Let p ∈ M a point. Let B = expp(B(0, r)) ⊂ M be a geodesic ball centred
at p with radius r , and q ∈ B be any other point. We know that B contains
a unique radial geodesic γp,q : [0, 1]→ B connecting p to q.

Proposition 10.2.6. The geodesic γp,q is a minimising curve. Every other
minimising curve in M connecting p to q is obtained by reparametrising γp,q.

Proof. The point q belongs to the geodesic sphere S = expp(∂B(0, r ′))

with r ′ = L(γp,q). Every curve γ in M connecting p to q contains an initial
subcurve η supported in the closure of the geodesic ball expp(B(0, r ′)), that
connects 0 to some point q′ ∈ S that may be different from q.

By the Gauss Lemma, the velocity η′(t) decomposes g-orthogonally into a
radial component η′(t)r (parallel to the rays exiting from p) and a tangential
component (tangent to the geodesic spheres) η′(t)t . We get

L(γ) ≥ L(η) =

∫
‖η′(t)r + η′(t)t‖ ≥

∫
‖η′(t)r‖ ≥ r ′ = L(γp,q).

The third (in-)equality holds because the two vectors are g-orthogonal.
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Therefore L(γ) ≥ L(γp,q), and the equality holds if and only if η = γ

and η′(t)t = 0, η′(t)r > 0 ∀t, that is if and only if γ(t) is obtained by
reparametrising γp,q. �

Here are two geometric corollaries.

Corollary 10.2.7. The geodesic sphere of radius r centred at p consists
precisely of all the points in M at distance r from p.

Corollary 10.2.8. The geodesic ball of radius r centred at p consists pre-
cisely of all the points in M at distance < r from p.

Recall that geodesic spheres and balls exist only for sufficiently small r . In
particular for every p ∈ M and sufficiently small r we have

expp
(
B(0, r)

)
= B(p, r).

For large r we only have the inequality

expp
(
B(0, r)

)
⊂ B(p, r).

10.2.6. Totally normal neighbourhoods. Let M be a Riemannian mani-
fold. We have discovered that every point p ∈ M has a neighbourhood U that
is nice with respect to p, and now we want to be more democratic and show
that we may pick a U that is also nice with respect to every point q ∈ U.

We say that an open subset U ⊂ M is totally normal if for every q ∈ U
there is a geodesic ball centred at q containing U.

Example 10.2.9. On the Euclidean Rn every bounded open set is a totally
normal neighbourhood. On the sphere Sn, every open set that does not contain
any pair of antipodal points is a totally normal neighbourhood.

Proposition 10.2.10. Every p ∈ M has a totally normal neighbourhood U.

Proof. Recall that exp : V −→ M is defined on some open neighbourhood
V ⊂ TM of M. We consider the map

F : V −→ M ×M
(p, v) 7−→ (p, expp(v)).

For every p ∈ M we have F (p, 0) = (p, p) and a natural isomorphism
T(p,0)V = TpM × TpM, so that dF(p,0) is an endomorphism. The differential

dF(p,0) =

(
id 0

∗ d(expp)0

)
=

(
id 0

∗ id

)
is invertible and hence F is a local diffeomorphism at (p, 0). Therefore there
are a neighbourhood W of p and a δ > 0 such that the restriction of F to

W ′ =
{

(p, v)
∣∣ p ∈ W, ‖v‖ < δ

}
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is a diffeomorphism onto its image F (W ′). In particular the metric ball B(q, δ)

is a geodesic ball for all q ∈ W .
Pick a neighbourhood U ⊂ W of p such that U × U ⊂ F (W ′). By con-

struction U ⊂ B(q, δ) for all q ∈ U. �

10.2.7. Locally minimising curves. We have defined the geodesics as
the solutions of certain differential equations, and we can finally characterise
them using only the distance between points.

Let M be a Riemannian manifold. We say that a curve γ : I → M is locally
minimising if every t ∈ I has a compact neighbourhood [t0, t1] ⊂ I such that
the restriction γ|[t0,t1] is minimising. By Exercise 10.2.5, a minimising curve is
also locally minimising, but the converse does not hold in general.

Being locally minimising and being a geodesic are both local properties of
a curve. In fact, they are the same property, up to reparametrising.

Theorem 10.2.11. A curve γ : I → M is locally minimising ⇐⇒ it is ob-
tained by reparametrising a geodesic.

Proof. For every t ∈ I, pick a totally normal neighbourhood U containing
γ(t) and let [t0, t1] ⊂ I be a neighbourhood of t such that γ([t0, t1]) ⊂ U.
There is a geodesic ball B(γ(t0), r) containing U and hence γ([t0, t1]). We
apply Proposition 10.2.6 with p = γ(t0) and q = γ(t1), and get that γ|[t0,t1]

is minimising if and only if it is a reparametrised geodesic. �

The theorem is also true for piecewise smooth curves (see Remark 9.2.8),
since by means of transition functions we can reparametrise them as smooth
curves that have velocity zero at the angles. Geodesics are precisely the locally
minimising curves, in a very robust manner.

10.2.8. Convex subsets. We can extend the usual notion of convexity to
all Riemannian manifolds.

Definition 10.2.12. A subset S ⊂ M of a Riemannian manifoldM is convex
if any two points p, q in S are joined by a unique (up to reparametrisation)
minimising geodesic γ in M. It is strictly convex if any two points p, q in the
closure S̄ are joined by a unique (up to reparametrisation) minimising geodesic
whose interior is contained in the interior of S.

Example 10.2.13. On the Euclidean space Rn, these definitions match with
the usual notions of (strict) convexity. On the sphere Sn, the geodesic ball
B(p, r) is convex when r ≤ π/2 and strictly convex when r < π/2.

We will prove that geodesic balls of sufficiently small radius are strictly
convex. To this purpose, we need the following.

Lemma 10.2.14. For every point p ∈ M there is a r0 > 0 such that B(p, r0)

is a geodesic ball, and every geodesic tangent to the geodesic sphere S(p, r)

stays locally outside B(p, r), for every 0 < r < r0.
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As an example, on Sn the maximum r0 with this property is r0 = π/2.

Proof. Use normal coordinates, that is represent a geodesic ball B(p, r̄) as
B(0, r̄) ⊂ Rn for some small r̄ > 0. For every (x, v) ∈ B(0, r̄)×Sn−1 pick the
geodesic γx,v : Jx,v → B(0, r̄) with 0 ∈ Jx,v , γx,v (0) = x , and γ′x,v (0) = v .
Consider the map

F (x, v) =
∂2

∂t2

(
‖γx,v (t)‖2

)∣∣∣
t=0
.

Here ‖·‖ is the Eucldean norm. When x = 0, the geodesic is radial γ0,v (t) = tv

and hence F (0, v) = 2. By continuity there is a 0 < r0 < r̄ such that
F (x, v) > 0 for all ‖x‖ ≤ r0, and hence ‖γx,v (t)‖2 has a strict local minimum
at t = 0, whenever ‖x‖ ≤ r0. �

We can now prove that small geodesic balls are strictly convex.

Proposition 10.2.15. For every point p ∈ M there is a r0 > 0 such that
B(p, r) is a strictly convex geodesic ball, for every 0 < r < r0.

Proof. We know that there is a r1 > 0 such that B(p, r1) is a geodesic
ball and every geodesic tangent to the geodesic sphere S(p, r) stays locally
outside B(p, r), for every 0 < r ≤ r1.

Using totally normal neighbourhoods we can find a 0 < r0 < r1/2 such
that every pair of points q, q′ ∈ B(p, r0) has a unique minimising geodesic
γq,q′ of length at most r1/2. (We can do this because on a totally normal
neighbourhood the minimising geodesic, and hence its length, varies smoothly
on the points.)

In particular γq,q′ is contained in B(p, r1). If we represent B(p, r1) in
normal coordinates, we see that the maximum of ‖γq,q′(t)‖2 must be at one
of its endpoints, otherwise γq,q′(t) would be tangent to a geodesic sphere
locally from inside. Therefore B(p, r) is strictly convex for every r ≤ r0. �

Convex subsets have two nice properties: they are closed under intersec-
tion, and contractible (exercise). These imply the following:

Proposition 10.2.16. Every smooth manifold M has a locally finite open
covering {Ui} where every non-empty intersection of Ui ’s is contractible.

Proof. Put an arbitrary metric on M and use convex neighbourhoods. �

10.2.9. Injectivity radius. Let (M, g) be a Riemannian manifold. The
injectivity radius injpM at a point p ∈ M is the supremum of all r > 0 such
that the restriction of expp to B(0, r) is defined and is an embedding.

Proposition 10.2.17. The supremum is actually a maximum.

Proof. By Exercise 3.12.10 “embedding” is equivalent to “injective immer-
sion”. If the restriction of expp to B(0, ri) is an injective immersion for ri → r ,
then the restriction to B(0, r) also is. �
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We get a function inj : M → (0,+∞] that sends p to injpM. The injectivity
radius injM of M is the infimum of this function.

Example 10.2.18. The injectivity radius of Sn is π, since inj is constantly
π at every point p ∈ Sn. The injectivity radius of Rn and hyperbolic space is
+∞, since it is so at every point. See Examples 10.1.13, 10.1.14, and 10.1.15.

Proposition 10.2.19. The function inj is lower semi-continuous, that is

lim inf
pi→p

injpiM ≥ injpM.

Proof. If the restriction of expp to the compact set B(0, r) is defined
and an embedding, then exppi also is for every pi sufficiently close to p by
Proposition 5.7.9, which applies (with the same proof) also to manifolds with
boundary. �

Corollary 10.2.20. The function inj has a positive minimum on every com-
pact subset K ⊂ M. In particular, if M is compact then injM > 0.

Compactness is necessary here. On M = Rn \ {0} with the Euclidean
metric, we have injxM = ‖x‖ and hence injM = 0.

10.2.10. The pseudo-Riemannian case. We now extend some of the
previous results to the more general pseudo-Riemannian case. We will furnish
also an enhanced version of the Gauss Lemma that is valid on the whole domain
of the exponential map.

Despite the absence of distances and geodesic balls, we may still define
a reasonable notion of totally normal neighbourhood on pseudo-Riemannian
manifolds.

Definition 10.2.21. Let M be a pseudo-Riemannian manifold. An open
subset Z ⊂ M is a normal neighbourhood at p ∈ Z if there is an open star-
shaped neighbourhood U ⊂ TpM of 0 where expp is defined and an embedding,
and with Z = expp(U).

If M is not Riemannian, an open subset Z ⊂ M is totally normal if it is a
normal neighbourhood at every point q ∈ Z.

On a Riemannian manifold this notion of totally normal neighbourhood is
slightly different from the one given in the previous pages, so to avoid ambiguity
we restricted it to pseudo-Riemannian manifolds that are not Riemannian.

Theorem 10.2.22. Every p ∈ M has a totally normal neighbourhood.

Proof. We already know this for a Riemannian M, so we stick to the non-
Riemannian case.

Pick some normal coordinates x1, . . . , xn on a normal neighbourhood of p.
Consider for small r > 0 the open ball B(r) = {(x1)2 + · · ·+ (xn)2 < r}. We
claim that if r if sufficiently small the ball B(r) is totally normal.
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To prove this we recall that exp: V → M is defined on some open neigh-
bourhood V ⊂ TM of M. We consider the map

F : V −→ M ×M
(p, v) 7−→ (p, expp(v)).

Using normal coordinates and the identification TxB(r) = Rn for all x ∈
B(r) we may write F locally near (p, 0) as

F : B(r ′)× B(r ′) −→ B(r)× B(r)

for a sufficiently small r ′ > 0. We have already proved that dF(p,0) is invert-
ible and hence F is a local diffeomorphism at (p, 0). Therefore there are a
neighbourhood W ⊂ B(r ′) × B(r ′) of (0, 0) and r ′′ < r such that F sends
diffeomorphically W to B(r ′′)× B(r ′′).

Since Γkij(0) = 0, after taking an even smaller r ′′ > 0 if necessary we may
suppose that the symmetric matrix

δi j −
n∑
k=1

Γkijx
k

is positive definite at every x ∈ B(r ′′). We prove that B(r ′′) is totally normal.
For every q ∈ B(r ′′) we set Wq = W ∩TqM. Since F (Wq) = {q}×B(r ′′),

we have expq(Wq) = B(r ′′). We conclude by showing Wq is star-shaped. Pick
v ∈ Wq ⊂ B(r ′). The geodesic x(t) = γv (t) = F (p, tv) lies in B(r) for all
t ∈ [0, 1], and we have x(0) = q, x(1) = q′ ∈ B(r ′′). We find

d2
(
‖x(t)‖2

)
dt2

= 2
(
〈ẋ , ẋ〉+ 〈ẍ , x〉

)
= 2
(
〈ẋ , ẋ〉 − 〈ẋ i ẋ jΓkijek , x〉

)
= 2
(
δi j − Γkijx

k
)
ẋ i ẋ j > 0.

Therefore ‖x(t)‖2 reaches its maximum at one of its endpoints, and hence
x(t) ∈ B(r ′′) for all t ∈ [0, 1]. We deduce that tv ∈ Wq for all t ∈ [0, 1]. �

Totally normal subsets Z are useful to study geodesics. First of all, they
furnish a safety zone where geodesics cannot be killed nor trapped: when
extended, these must hit the boundary ∂Z in both directions in finite time.

Proposition 10.2.23. Inside a totally normal set Z, every geodesic can be
extended either for all times, or until it reaches a point in the topological
boundary ∂Z.

Proof. Given a non-trivial geodesic γ in Z, consider a point p lying in
γ. Now Z = expp(U) for a star-shaped U ⊂ TpM, and we can reparametrise
γ(t) = expp(tv) as a radial geodesic with respect to p, hence we conclude. �

Corollary 10.2.24. A geodesic γ : (a, b) → M is extendible at b ⇐⇒ it is
continuously extendible at b.
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s

t

Figure 10.6. A (particularly nice) example of smooth family of curves γs(t).

Proof. (⇒) is obvious, so we turn to (⇐). If γ extends to a continuous
map γ : (a, b]→ M, pick a totally normal neighbourhood Z of p = γ(b). We
have γ([c, b]) ⊂ Z for some a < c < b. By Proposition 10.2.23 the geodesic
γ can be prolonged after b since γ(b) 6∈ ∂Z. �

Remark 10.2.25. Let γ : (a, b) → M be a maximal geodesic. If b < +∞,
then γ′(t) ∈ TM must diverge (exit from any compact subset) as t → b, see
Section 1.3.7. On a Riemannian manifold, we know that ‖γ′(t)‖ is constant,
so we can easily deduce that γ(t) must diverge, and from this fact we obtain
Corollary 10.2.24 without using totally normal neighbourhoods. On a more
general pseudo-Riemannian manifold this argument is fallacious: there are
compact pseudo-Riemannian manifolds with geodesics γ that do not extend
to R, see Exercise 10.6.1. There γ′(t) diverges while γ(t) does not.

Proposition 10.2.26. Let Z ⊂ M be a totally normal set. For any p, q ∈ Z,
there is a unique geodesic γp,q : [0, 1]→ Z with γp,q(0) = p, γp,q(1) = q.

Proof. The set Z is a normal neighbourhood for p, hence every point q ∈ Z
is connected radially to p by a unique geodesic. �

10.2.11. Family of curves. To prove the enhanced version of the Gauss
Lemma we will need to study some smooth families of curves and vector fields
along them.

Definition 10.2.27. A family of curves is a smooth map f : (−ε, ε)×I → M

where I ⊂ R is some interval.

We write γs(t) = f (s, t) and think of it as a family of curves γs depending
on s. We only require f to be smooth, so both the curves and the way they
vary can be pretty complicated in general. If f is an embedding, its image is
a surface S ⊂ M that we can visualise as a nice disjoint family of embedded
curves as in Figure 10.6. If df(s,t) is injective at some point (s, t), then f is
locally an embedding and we get this picture at least for the points near (s, t).

A vector field along f is a smooth map X : (−ε, ε) × I → TM such that
X(s, t) ∈ Tf (s,t)M for every (s, t). This is like having a vector field on each
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curve γs , that varies smoothly with s. Two important examples are

S(s, t) = df(s,t)

(
∂

∂s

)
, T (s, t) = df(s,t)

(
∂

∂t

)
.

These are the tangent vector fields of the curves f (·, t) and f (s, ·) = γs .
We call S and T the coordinate vector fields of f . If f is an embedding, its
image is a surface S ⊂ M and a vector field along f may be interpreted simply
as a tangent vector field on S. This interpretation works locally near every
point (s, t) such that df(s,t) is injective.

Let M be equipped with a symmetric connection ∇. Let X be a vector
field along f . As we did for curves, we can now define the covariant derivatives
of X along the variables s and t. We let DtX(s, t) be the covariant derivative
of X(s, ·) along the curve f (s, ·), and DsX(s, t) be the covariant derivative of
X(·, t) along f (·, t). Both DsX and DtX are new vector fields along f .

Lemma 10.2.28. If ∇ is symmetric, we get

DtS = DsT.

Proof. If f is an embedding, then S and T are vector fields on the image
surface S. Since these are f -related with the commuting coordinate fields ∂

∂s

and ∂
∂t , we get [S, T ] = 0, and hence ∇TS = ∇ST by the symmetry of the

connection. The proof is complete.
On a more general f , we work in coordinates. Now f has image in Rn and

S(s, t) =
∂f

∂s
, T (s, t) =

∂f

∂t
.

Therefore

DtS = Dt

(
∂f

∂s

)
=

∂2f

∂t∂s
+
∂f i

∂t

∂f j

∂s
Γkijek .

By symmetry Γkij = Γkji and hence we get the same expression for DsT . �

10.2.12. The enhanced Gauss Lemma. Let now (M, g) be a pseudo-
Riemannian manifold. At every p we have the exponential map expp : Vp → M,
defined on some open star-shaped subset Vp ⊂ TpM. For every v ∈ TpM we
identify Tv (TpM) = TpM canonically (since TpM is a vector space). By
assigning the same scalar product g(p) = 〈, 〉 to each tangent space we get a
pseudo-Riemannian structure on TpM and hence on Vp.

Both Vp and M are pseudo-Riemannian manifolds, and expp : Vp → M is
not an isometry in general: as we will see, the curvature of M is responsible
for that. In some sense, the exponential map is an isometry only radially. This
is precisely the content of the following important result, see Figure 10.7.

Lemma 10.2.29 (Enhanced Gauss Lemma). For every v ∈ Vp we have

〈(d expp)v (v), (d expp)v (w)〉 = 〈v , w〉 ∀w ∈ Tv (TpM) = TpM



10.2. NORMAL COORDINATES 299

0

v v

w

TpM

M

p

expp

γv

expp(v)

(d expp)v (v)

(d expp)v (w)

Figure 10.7. The Gauss Lemma says that expp is a kind of radial isom-
etry: the scalar products with the radial vectors v are preserved, but the
map may distort in the directions w orthogonal to the radial vector v .
Both 〈v, v〉 and 〈v, w〉 are preserved, but 〈w,w〉 may not be.

0 v

w

TpM M

p

expp

Figure 10.8. The family of curves used to prove the Gauss Lemma.
Each γs is a geodesic exiting from p.

Proof. Consider the family of curves f : (−ε, ε)× [0, 1]→ M,

f (s, t) = expp
(
t(v + sw)

)
.

See Figure 10.8. Here ε > 0 is small enough so that tvs ∈ Vp ∀s, t. Let
S and T be the coordinate vector fields along f . The curve γs = f (s, ·) is
the geodesic with initial velocity v + sw . Therefore DtT = 0 and 〈T, T 〉 =

〈v + sw, v + sw〉. By Lemma 10.2.28, we get

∂

∂t
〈S, T 〉 =

〈
DtS, T

〉
+
〈
S,DtT

〉
= 〈DsT, T 〉 =

1

2

∂

∂s
〈T, T 〉 = 〈v , w〉.

Since 〈S, T 〉(0, 0) = 〈0, v〉 = 0, we deduce that 〈S, T 〉(t, 0) = t〈v , w〉, and
therefore 〈S, T 〉(1, 0) = 〈v , w〉. This is in fact the thesis. �
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10.3. Completeness

A Riemannian manifold M is also a metric space, so it makes perfectly
sense to consider whether it is complete or not – a notion that is meaningless
for unstructured smooth manifolds. We prove here the Hopf – Rinow Theorem,
that shows that completeness may actually be stated in multiple equivalent
ways, one of which involves only geodesics.

10.3.1. Geodesically complete manifolds. Let M be a manifold. A con-
nection ∇ on M is geodesically complete if every maximal geodesic γ(t) in M
is defined for all times t ∈ R. A pseudo-Riemannian manifold is geodesically
complete if its Levi-Civita connection is.

Example 10.3.1. The pseudo-Riemannian manifolds Rp,q, Sn, and Hn are
geodesically complete. See Section 10.1.2.

Let M be a Riemannian manifold. We say that M is complete if its un-
derlying metric space is. This notion is not present on more general pseudo-
Riemannian manifolds, since no reasonable distance is defined on them.

Recall that the distance d(p, q) of two points p, q ∈ M is the infimum of
the lengths of all the curves γ joining p and q; if such an infimum is realised by
γ, then γ is called minimising and we have discovered in the last section that
a minimising curve γ must be a geodesic (up to a reparametrisation). Here is
one nice consequence of geodesical completeness:

Proposition 10.3.2. If a Riemannian manifold M is connected and geodesi-
cally complete, every two points p, q ∈ M are joined by a minimising geodesic.

Proof. Pick a geodesic ball B(p, r) at p, with geodesic sphere S(p, r). If
q ∈ B(p, r) we are done. Otherwise, let p0 ∈ S(p, r) be a point at minimum
distance from q. Let v ∈ TpM be the unique unit vector such that γv (r) = p0.

By hypothesis, the geodesic γv (t) = expp(tv) exists for all t ∈ R. Set
d = d(p, q). We now show that γv (d) = q. To do so, let I ⊂ [0, d ] be the
subset of all times t such that d(γv (t), q) = d − t. This set is non-empty and
closed, and using Theorem 10.2.11 we deduce that it is also open (exercise).
Therefore I = [0, d ] and we are done. �

Corollary 10.3.3. If a Riemannian manifoldM is connected and geodesically
complete, the exponential map expp : TpM → M is surjective at every p ∈ M.
Moreover for every r > 0 we have

(36) expp(B(0, r)) = B(p, r).

Here B(p, r) is the metric ball, and recall that it is a geodesic ball only
for sufficiently small r . When r is big, the metric ball is of course not neces-
sarily homeomorphic to a ball. When M is not complete, the equality (36) is
guaranteed only for small r > 0, and only the inclusion ⊂ is valid in general.
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10.3.2. The Hopf – Rinow Theorem. The following important theorem
says that different notions of completeness are actually equivalent.

Theorem 10.3.4 (Hopf – Rinow). Let M be a connected Riemannian man-
ifold. The following are equivalent:

(1) M is geodesically complete.
(2) A subset K ⊂ M is compact ⇐⇒ it is closed and bounded.
(3) M is complete.

Proof. (1)⇒(2). Let K ⊂ M be a subset. Compact always implies closed
and bounded, so we prove the converse. Take a point p ∈ M. If K is bounded,
there is a r > 0 such that K ⊂ B(p, r) = expp(B(0, r)), where in the last
equality we use that M is geodesically complete and Corollary 10.3.3. Hence
K is contained in the compact set expp(B(0, r)). If K is closed, it is also
compact.

(2)⇒(3). Every Cauchy sequence is bounded, so it has compact closure.
Therefore it contains a converging subsequence, and hence it converges.

(3)⇒(1). Let γ : I → M be a maximal geodesic. We know that I is open,
and since M is complete we prove that it is also closed. If ti ∈ I converges to
some t∗ ∈ R, then γ(ti) is a Cauchy sequence (because γ is a Lipschitz map!)
and hence converges to some p ∈ M. We pick a chart near p and note that
both γ(t) and γ′(t) stay both bounded as t → t∗, so the solution extends
past t∗ and we get t∗ ∈ I, see Section 1.3.7. �

Corollary 10.3.5. Every compact Riemannian manifold is geodesically com-
plete.

Quite surprisingly, this fact is no longer true for general pseudo-Riemannian
manifolds: see Exercise 10.6.1. Here is another non-trivial corollary.

Corollary 10.3.6. Every closed submanifold N of a geodesically complete
Riemannian manifold M is also geodesically complete.

Proof. The inclusion map N ↪→ M is always 1-Lipschitz. Therefore, if N
is closed and M is complete, we easily deduce that N is complete. �

Corollary 10.3.7. Every smooth manifold has a geodesically complete Rie-
mannian metric.

Proof. By Whitney’s Embedding Theorem, every smooth manifold is dif-
feomorphic to a closed submanifold of Rn. �

The following simple criterion is natural and useful.

Proposition 10.3.8. LetM be a connected Riemannian manifold and p ∈ M
a point. If expp is defined on the whole of TpM then M is complete.
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Proof. The proof of Proposition 10.3.2 applies as is, to show that every
q ∈ M is joined to p by a minimising geodesic. With this in hand, we can
follow the (1)⇒(2) proof of the Hopf – Rinow Theorem and deduce that a
subset K ⊂ M is compact ⇐⇒ it is closed and bounded. Hence by the Hopf
– Rinow Theorem again M is complete. �

10.4. Isometries

A smooth manifold M has plenty of self-diffeomorphisms – many can be
constructed for instance by taking the flows of arbitrary complete vector fields.
On the contrary, a pseudo-Riemannian manifold has typically few non-trivial
self-isometries – very often none.

We prove here that isometries are “rigid,” in the sense that they are deter-
mined by their first order behaviour at any point. Using this we classify all the
isometries of the spaces Rp,q, Sn, and Hn.

By combining smooth coverings and local isometries we get the powerful
notion of pseudo-Riemannian covering. We introduce some notable examples.

10.4.1. Rigidity. The following theorem says that every isometry is de-
termined by its first-order behaviour at any point of the (connected) domain.

Proposition 10.4.1. Let f , g : M → N be two isometries between pseudo-
Riemannian manifolds. If M is connected, and there is a p ∈ M such that

f (p) = g(p), dfp = dgp,

then f = g.

Proof. Let U ⊂ M consist of all points q ∈ M such that f (q) = g(q) and
dfq = dgq. The set U is clearly closed, and we now prove that it is also open.
Since p ∈ U and M is connected, we deduce that U = M and we are done.

We prove that U is open. Pick q ∈ U. Isometries send geodesics to
geodesics, so for every v ∈ TqM we get

f ◦ γv = γdfq(v).

Since dfq = dgq, we deduce that f = g on the support of γv . By varying v and
using that expq is a local diffeomorphism at the origin we deduce that f = g

on an open neighbourhood Z of q. Therefore Z ⊂ U and we are done. �

10.4.2. Action on frames. We now want to study the manifolds that
have a particularly high degree of symmetries.

Let M be a connected pseudo-Riemannian manifold. A frame on M is the
datum of a point q ∈ M and an orthonormal basis v1, . . . , vn of TqM, ordered
such that 〈vi , vi〉 is 1 if i ≤ p and −1 if i > p. (The signature is (p, n − p).)

The isometry group Isom(M) ofM acts naturally on its frames. The action
is free by Proposition 10.4.1. In some natural sense, the manifolds with “the
highest degree of symmetries” are those where this action is transitive. On
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such manifolds, for any pair of frames there is a unique isometry sending the
first to the second. Here are some important examples.

Proposition 10.4.2. The isometry groups of Rp,q, Sn, Hn are:

Isom(Rp,q) = {x 7→ Ax + b | A ∈ O(p, q), b ∈ Rp,q
}

Isom(Sn) = O(n + 1),

Isom(Hn) = O+(n, 1).

For Hn we use the hyperboloid model In. In all these cases the isometry group
acts transitively on the frames.

Proof. Using linear algebra we see that the proposed groups are indeed
isometries and act transitively on frames (exercise). Since they act transitively
on frames, they form the whole isometry group (because its action is free). �

10.4.3. Homogeneous and isotropic manifolds. We have seen that the
most symmetric pseudo-Riemannian manifolds are those whose isometry groups
act transitively on frames. We now introduce some weaker symmetry require-
ments that are also very interesting.

Let M be a connected pseudo-Riemannian n-manifold. We say that M is
homogeneous if for any pair of points p, q ∈ M there is an isometry of M
sending p to q. We say that M is isotropic at some point p if for every pair of
vectors v , w ∈ TpM with 〈v , v〉 = 〈w,w〉 there is an isometry fixing p whose
differential at p sends v to w . The manifold M is isotropic if it is so at every
point p ∈ M.

Of course if Isom(M) acts transitively on frames then M is both homo-
geneous and isotropic. We propose a few instructing exercises. Let M be a
Riemannian manifold. Pensare al caso pseudo-

Riemanniano

Exercise 10.4.3. If M is homogeneous, it is complete.

Exercise 10.4.4. If M is isotropic, it is homogeneous.

Exercise 10.4.5. IfM is isotropic at a single point p ∈ M it is not necessarily
homogeneous (construct a counterexample).

A pseudo-Riemannian manifold M is locally homogeneous if for every two
points p, q ∈ M there is an isometry ϕ : U(p) → V (q) of some of their
neighbourhoods U(p) and V (q) sending p to q. Similarly M is locally isotropic
at p ∈ M if there is an open neighbourhood U(p) of p such that g|U(p) is
isotropic at p. The manifold M is locally isotropic if it is so at every p ∈ M.

We will see that manifolds with constant sectional curvature are locally
homogeneous and locally isotropic. These manifolds belong to a wider class
of objects called locally symmetric spaces that we will study in the next pages.
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10.4.4. Pseudo-Riemannian coverings. Every time we introduce some
structure on manifolds, we get a corresponding notion of covering. Pseudo-
Riemannian structures make no exception.

A (pseudo-)Riemannian covering is a smooth map π : M → N between
(pseudo-)Riemannian manifolds that is both a smooth covering and a local
isometry. Much of the machinery introduced in Section 3.5 for smooth cover-
ings adapt to pseudo-Riemannian coverings with the same (omitted) proofs.

Structures can be lifted: every time we have a topological covering π : M̃ →
M and M has a (pseudo-)Riemannian structure, this structure lifts from M to
M̃ so that π is promoted to a (pseudo-)Riemannian covering.

Quite conversely, ifM is a (pseudo-)Riemannian manifold and Γ < Isom(M)

acts freely and properly discontinuously, the quotient M/Γ has a unique struc-
ture of a (pseudo-)Riemannian manifold such that the projection π : M → M/Γ

is a (pseudo)-Riemannian covering.

Example 10.4.6. The group Zn < Isom(Rn) of translations acts freely
and properly discontinuously, so the quotient torus T n = Rn/Zn inherits the
structure of a Riemannian manifold.

Analogously the lens spaces L(p, q) = S3/Γ introduced in Section 3.5.6
inherit a Riemannian structure from S3 since Γ < O(4) = Isom(S4). The
resulting map S3 → L(p, q) is a Riemannian covering.

We leave a couple of exercises. Let M and N be connected pseudo-
Riemannian manifolds of the same dimension.

Exercise 10.4.7. Let f : M → N be a local isometry. If M is geodesically
complete, then f is a pseudo-Riemannian covering.

Hint. Prove that normal open subsets of N are well covered by lifting
geodesics from N to M. �

Exercise 10.4.8. Let f : M → N be a pseudo-Riemannian covering. Show
that M is geodesically complete ⇐⇒ N is geodesically complete.

10.4.5. Killing vector fields. Let (M, g) be a pseudo-Riemannian mani-
fold. We defined the Lie derivative L of tensor fields in Section 5.4.8.

Definition 10.4.9. A Killing vector field on M is a vector field X such that

LXg = 0.

Remember that a vector field X gives rise to a flow Φ: U → M defined
on a maximal domain U ⊂ M ×R. We set Ut = {p ∈ M | (p, t) ∈ U} and get
a diffeomorphism Φt : Ut → Φt(U) by setting Φt(p) = Φ(p, t).

Proposition 10.4.10. A vector field X is Killing ⇐⇒ Φt is an isometry ∀t.

Proof. We have LXg = 0 ⇐⇒ g is invariant under the flow, that is each
Φt is an isometry. �
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Figure 10.9. If the flow is defined for (−ε, ε) on Aε, it is so also on Z.

Example 10.4.11. On Rp,q every constant vector field is a Killing field; the
flow consists of translations. On R2, another Killing vector field is X(x, y) =

(−y , x); its flow consists of rotations around the origin. On S2 the vector field
X(x, y , z) = (−y , x, z) is Killing; the flow consists of rotations around the z
axis. The same X is Killing on the hyperboloid model I2 of hyperbolic space.

We are interested in Killing vector fields because they gives rise to a one-
parameter family of isometries Φt , defined on some open set Ut . If the Killing
vector field X is complete, we get a one-parameter family Φt ∈ Isom(M) of
isometries for M. In general, a Killing vector field may not be complete! For
instance, pick any non-trivial constant vector field X on a proper open subset
V ⊂ Rn of Euclidean space: here the isometries Φt never extend to V .

Here is a simple criterion on M that guarantees the completeness of every
Killing vector field.

Proposition 10.4.12. If M is geodesically complete, every Killing vector
field X on M is complete.

Proof. We may suppose M connected. Let Aε ⊂ M be the set of points
p where the integral curve starting from p exists at least on (−ε, ε). We pick
ε > 0 with Aε 6= ∅ and show that Aε = M. This suffices by Lemma 5.2.4.

Let Z ⊂ M be a totally normal subset. We show that if Aε ∩Z = ∅, then
Z ⊂ Aε. This easily implies that Aε = M. Pick p ∈ Aε ∩ Z and q ∈ Z. They
are joined by a geodesic γ : [0, 1]→ M. Using the flow Φt of X we define

γt(s) = Φt(γ(s))

for every (s, t) lying in the maximal subset U ⊂ [0, 1]×R where this quantity
is defined. See Figure 10.9. Since p = γ(0) ∈ Aε we have 0 × (−ε, ε) ⊂ U.
Since γ0 = γ and each Φt is an isometry, each γt is a geodesic where it is



306 10. GEODESICS

defined. Since X is complete, geodesics are actually defined everywhere and
hence [0, 1]× (−ε, ε) ⊂ U. Therefore q = γ(1) ∈ Aε. �

Proposition 10.4.13. The following are equivalent for a vector field X:

(1) X is Killing.
(2) X〈V,W 〉 = 〈[X, V ],W 〉+ 〈V, [X,W ]〉 for any local vector fields V,W .
(3) ∇X is a g-skew-adjoint (1, 1)-tensor field, that is

〈∇vX,w〉+ 〈v ,∇wX〉 = 0 ∀v , w ∈ TpM ∀p ∈ M.

(4) 〈∇vX, v〉 = 0 for all v ∈ TpM, ∀p ∈ M.

Proof. The field X is Killing ⇔ LXg = 0 ⇔ (LXg)(V,W ) = 0 for any
local (i.e. defined on some open subset) vector fields V,W . By Exercise 5.4.14

LX(g(V,W )) = (LXg)(V,W ) + g(LXV,W ) + g(V,LXW ).

Therefore, using again Exercise 5.4.14 at various points, we find The proof is
complete. �

Here is one nice concrete applications of Killing vector fields.

Proposition 10.4.14. If X is Killing and γ : I → M is a geodesic, then

〈γ′, X〉 = C

is constant for all t ∈ I.

Proof. By deriving it we get

〈Dtγ′, X〉+ 〈γ′, DtX〉 = 〈γ′,∇γ′X〉 = 0

by Proposition 10.4.13-(4). �

In presence of a Killing vector field, one may try to use this simple equation
to determine the geodesics directly, without calculating the Christoffel symbols.

Example 10.4.15. The Schwarzschild half-plane is the following Lorentzian
surface (P, g). Fix M > 0. Use the coordinates (r, t) for R2 and consider the
half-plane P = {r > 2M}. Set h(r) = 1− 2M/r and

g =

(
1/h(r) 0

0 −h(r)

)
.

Since g depends only on r , the vector field ∂
∂t is Killing and 〈γ′, ∂∂t 〉 = C

is constant on every geodesic γ. We now classify for the lightlike geodesics
γ(s) = (r(s), t(s)). These must satisfy

(ṙ)2

h(r)
− (ṫ)2h(r) = 0, −h(r)ṫ = C.

These equations can be solved, and one finds that the lightlike geodesics are

γ(s) =
(
s + 2M,±(s + 2M ln s) + c

)
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2M r

t

Figure 10.10. The lightlike geodesics on the Scharzschild half-plane,
together with the light cones at some points.

where c ∈ R. By drawing the lightlike geodesics as in Figure 10.10 we get a
visual understanding of the Schwarzschild half-plane.

Exercise 10.4.16. Rediscover the geodesics of the half-space model H2 of
hyperbolic space (already determined in Exercise 10.1.9) using Killing vector
fields, without computing the Christoffel symbols.

If X and Y are Killing vector fields on (M, g), then [X, Y ] also is, because
of Exercise 5.9.3. This shows that the Killing vector fields form a subalgebra
of the Lie algebra X(M) of all vector fields on M.

10.5. Gradient, divergence, Laplacian, and Hessian

The reader who has read the various chapters on smooth manifolds may
have felt deprived of some of the analytic concepts that were familiar in the
study of functions and vector fields in Rn, like gradient, divergence, Lapla-
cian, and Hessian. We can finally define all of them on a pseudo-Riemannian
manifold (M, g), using g and the Levi-Civita connection ∇.

10.5.1. Gradient. Let (M, g) be a pseudo-Riemannian manifold. The
differential df of a function f is a tensor field of type (0, 1), and by raising its
index we get a vector field gradf called the gradient of f . In coordinates:

(gradf )i = gi j(df )j = gi j
∂f

∂x j
.

Of course this is the usual gradient on the Euclidean Rn.
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Exercise 10.5.1. Let f : M → R be a map. If c ∈ R is a regular value, the
gradient of f is everywhere orthogonal to the level submanifold f −1(c).

10.5.2. Divergence. Let M be a manifold equipped with a connection
∇. Using the connection we can define the divergence of various tensor fields,
actually without needing any metric tensor, by first taking their covariant de-
rivative, and then contracting the new index with an old one.

In coordinates, the divergence of a tensor field T of type (h, k) is

∇iT
i1,...,ij−1,i ,ij+1,...,ih
j1,...,jk

.

The operation is possible only when h ≥ 1, and in case h ≥ 2 it depends on
the position j of the upper index that is contracted.

As an example, the divergence of a vector field X is the smooth function

div(X) = ∇iX i .
In coordinates

div(X) = ∇iX i =
∂X i

∂x i
+X jΓii j .

On the Euclidean Rn this is the usual divergence. On a more general
pseudo-Riemannian manifold (M, g), the divergence maintains the fundamen-
tal property it has in the Euclidean space: it measures at the first order how
the volume changes along the flow of X. This is shown in the following propo-
sition. Let M be oriented, and let ω be the volume form derived from g.

Proposition 10.5.2. We have the following equality

div(X)ω = LX(ω)

Proof. This equality must be proved for every p ∈ M. We use normal
coordinates at p. By the Cartan magic formula the right term equals

dιXω = d

(
n∑
i=1

(−1)i−1X i | det gjk |dx1 ∧ · · · ∧ d̂x i ∧ · · · ∧ dxn
)

=

n∑
i=1

∂

∂x i
(
X i | det gjk |

)
dx1 ∧ · · · ∧ dxn

=

n∑
i=1

∂X i

∂x i
| det gjk |dx1 ∧ · · · ∧ dxn =

n∑
i=1

∂X i

∂x i
ω = ∇iX iω = divXω.

In the third equality we used that ∂g
∂x i

= 0 and hence ∂ det g
∂x i

= 0, in the last
that the Christoffel symbols vanish and hence the covariant derivative at p = 0

equals the directional derivative. �

In this proof (and in more that will follow) we used normal coordinates
to prove the equality of two given tensor fields. In normal coordinates many
computations simplify considerably; in particular the Christoffel symbols vanish
and so the covariant derivatives at p magically reduce to the directional ones.



10.5. GRADIENT, DIVERGENCE, LAPLACIAN, AND HESSIAN 309

Proposition 10.5.3. If X is a vector field and f a function on M, we get

div(f X) = f div(X) + g(gradf , X).

Proof. By the Leibniz rule:

div(f X) = ∇i(f X i) = (df )iX
i + f∇i(X i) = gi j(gradf )jX i + f div(X).

The proof is complete. �

During the proof of Proposition 10.5.2 we noticed that div(X)ω = d(ιXω)

is an exact n-form. We now would like to apply Stokes’ Theorem, and to this
purpose we briefly introduce boundaries in the realm of Riemannian geometry.

10.5.3. Pseudo-Riemannian manifolds with boundary. The whole the-
ory of pseudo-Riemannian manifolds and of connections extends to manifolds
M with boundary with the appropriate modifications. The few adjustments
that are to be made are usually straightforward: the metric tensor g is defined
on the whole of M, the theorems (like the existence of normal coordinates)
are still valid at the interior points of M, and sometimes also at the bound-
ary points after the appropriate modifications. For instance, given a point
p ∈ ∂M and a vector v ∈ TpM, there is a unique geodesic γv starting from
p with direction v only if the vector v points towards the interior of M. To
preserve clarity, a manifold is always intended to be boundaryless except when
mentioned explicitly.

Like any submanifold, the boundary ∂M of a pseudo-Riemannian manifold
with boundary may inherit a structure of pseudo-Riemannian manifold if the
restriction of g to TpM is nowhere degenerate (this is always guaranteed if M
is Riemannian). If ∂M is a pseudo-Riemannian manifold, it comes equipped
with an outward normal field ν, a vector field in M with support in ∂M defined
by requiring that ν(p) be the only unit vector (that is, g(ν(p), ν(p)) = ±1)
that lies in the outward half-space of TpM cut by Tp∂M. If M is oriented, then
∂M gets an orientation as well and it is hence also equipped with a volume
form ω∂M , induced by g|∂M . At every p ∈ M we get

ω(p)(ν(p), v1, . . . , vn−1) = ω∂M(p)(v1, . . . , vn−1)

for every v1, . . . , vn−1 ∈ TpM.

Theorem 10.5.4 (Divergence theorem). Let X be a compactly supported
vector field on an oriented pseudo-Riemannian manifold M with (possibly
empty) boundary. Then∫

M

div(X)ω =

∫
∂M

g(X, ν)ω∂M .

Proof. By Cartan’s magic formula div(X)ω = LX(ω) = dιXω. By Stokes∫
M

div(X)ω =

∫
M

dιXω =

∫
∂M

ιXω =

∫
∂M

g(X, ν)ω∂M .
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The proof is complete. �

10.5.4. Divergence and codifferential of k-forms. We have encoun-
tered the codifferential δ of k-forms in Section 7.5.7, and we now show that
it coincides in fact with the divergence (up to raising an index). Let (M, g) be
an oriented pseudo-Riemannian manifold.

Proposition 10.5.5. In coordinates, for every α ∈ Ωk(M) we have

(δα)i1,...,ik−1
= −∇jαj i1,...,ik−1

Proof. Recall that δα = (−1)kn+n+1+m ∗ d ∗ α where g has segnature
(p,m). Let us use normal coordinates. By linearity we may suppose that

α = f dx1 ∧ · · · ∧ dxk .

From Exercise 2.5.3 we deduce that

∗α = f

√
| det g|

(n − k)!
g1j1 · · · gkjk εj1···jndx

ik+1 ∧ · · · ∧ dx in ,

d ∗ α =
∂

∂x l

(
f

√
| det g|

(n − k)!
g1j1 · · · gkjk

)
εj1···jndx

l ∧ dx ik+1 ∧ · · · ∧ dx in .

In normal coordinates, when we evaluate everything at 0 we simply get

d ∗ α = (−1)m
′ ∂f

∂x l
dx l ∧ dxk+1 ∧ · · · ∧ dxn

where m′ is the number of −1’s among g11, . . . , gkk . Finally

∗d ∗ α =

k∑
l=1

(−1)mgl l(−1)(n−k)(k−1)+l−1 ∂f

∂x l
dx1 ∧ · · · ∧ d̂x l ∧ · · · ∧ dxk

= (−1)kn+n+1+m
k∑
l=1

(−1)lgl l
∂f

∂x l
dx1 ∧ · · · ∧ d̂x l ∧ · · · ∧ dxk ,

δα =

k∑
l=1

(−1)lgl l
∂f

∂x l
dx1 ∧ · · · ∧ d̂x l ∧ · · · ∧ dxk .

Therefore

(δα)i1,...,ik−1
= −

k∑
l=1

gl l
∂f

∂x l
εl ,i1,...,ik−1

where as usual εj1,...,jk is zero, except when (j1, . . . , jk) is a permutation of
(1, . . . , k), and in this case it is the sign of the permutation.

On the other hand, at the origin in normal coordinates we have

−∇jαj i1,...,ik−1
= −

n∑
l=1

gl l
∂

∂x l
αl ,i1,...,ik−1

= −
k∑
l=1

gl l
∂f

∂x l
εl ,i1,...,ik−1

.

The proof is complete. �
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For the sake of completeness, we write an analogous formula for the dif-
ferential d . The formula shows that, although d is defined without using g, it
can be recovered from ∇ in a quite reasonable way: the differential d is the
antisymmetric part of ∇, times a constant k + 1.

Exercise 10.5.6. In coordinates, for every α ∈ Ωk(M) we have

(dα)i1,...,ik+1
= (k + 1)∇[i1αi2,...,ik+1].

Corollary 10.5.7. A k-form α is closed ⇐⇒ ∇α is symmetric.

Recall that a k-form ω is harmonic if ∆ω = 0, equivalently if dω = 0 and
δω = 0. Every vector field X induces a 1-form ω = g(X, ·), with ωi = gi jX

j .

Corollary 10.5.8. The 1-form ω is harmonic ⇐⇒ divX = 0 and ∇X is a
g-self-adjoint tensor field of type (1, 1).

10.5.5. The Laplacian. The Laplacian ∆f of a function f ∈ C∞(M) was
already defined in Section 7.5.8 as

∆f = (δd + dδ)f = δdf .

The same Laplacian may be defined in a more familiar way as a composition
of the gradient and the divergence (with a minus sign):

Proposition 10.5.9. We have ∆f = −div(gradf ).

Proof. In coordinates

δdf = −∇j(df )j = −∇j(gradf )j .

The proof is complete. �

Proposition 10.5.10. In coordinates we get

∆f = −gi j
(

∂2f

∂x i∂x j
−
∂f

∂xk
Γkij

)
.

Proof. We find

∆f = −∇i(gradf )i = −∇i(gi j(df )j) = −gi j∇i(df )j

whence the formula. We have used that ∇gi j = 0. �

This is the usual Laplacian on the Euclidean Rn. By applying Proposition
10.5.3 with X = gradh, we find that for any pair of functions f , h ∈ C∞(M):

(37) div(f gradh) = −f ∆h + g(gradf , gradh)

We can now integrate by parts like in the familiar Euclidean Rn:

Proposition 10.5.11 (Green’s formula). Let f , h ∈ C∞(M) be functions on
an oriented Riemanian manifold M with (possibly empty) boundary. Then∫

M

f ∆h =

∫
M

g(gradf , gradh)−
∫
∂M

g(ν, gradh)f .
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Proof. By integrating (37) and applying the Divergence Theorem,

−
∫
M

f ∆h +

∫
M

g(gradf , gradh) =

∫
M

div(f gradh) =

∫
∂M

g(ν, f gradh).

The proof is complete. �

Corollary 10.5.12. If M is compact and ∂M = ∅, for any f , h ∈ C∞(M)∫
M

f ∆h =

∫
M

h∆f .

We already obtained this result in Exercise 7.5.9.

Corollary 10.5.13. If M is compact and ∂M = ∅, for any f ∈ C∞(M)∫
M

∆f = 0.

10.5.6. The Hessian. Let M be equipped with a connection ∇. The
Hessian of a function f ∈ C∞(M) is the tensor field ∇2f = ∇(∇f ) = ∇(df )

of type (0, 2). Its coordinates are

∇i∇j f =
∂2f

∂x i∂x j
−
∂f

∂x l
Γli j .

If ∇ is symmetric, the Hessian ∇2f also is. This applies of course to the case
where ∇ is the Levi-Civita connection of a pseudo-Riemannian metric g.

By looking at the expressions in coordinates we see immediately that the
Laplacian is minus the trace of the Hessian:

∆f = −gi j∇i∇i f .

10.6. Exercises

Exercise 10.6.1 (The Clifton – Pohl torus). Consider the manifold M = R2 \ {0}
with the Lorentzian metric

g(x, y) =
2

x2 + y2

(
0 1

1 0

)
.

Every map f (x, y) = (λx, λy) is an isometry. In particular we may quotient M by the
isometry f (x, y) = (2x, 2y) and get a surface T diffeomorphic to a torus. The metric
tensor pushes forward to a Lorentzian structure on T . Prove that the following curves

γ(t) =

(
1

1− t , 0

)
, η(t) = (tan(t), 1)

are both maximal geodesics defined on (0,∞) and (−π2 ,
π
2 ). Therefore T is compact

but not geodesically complete.

Exercise 10.6.2. Consider the half-plane model H2 of hyperbolic space. Let v0 =

(0, 1) be a tangent vector at (0, 1) ∈ H2. Let vt be the parallel transport of v0 along
the curve γ(t) = (t, 1). Show that vt makes an angle t with the vertical axis. Deduce
that γ is not a geodesic.

Hint. Use the Christoffel symbols from Example 10.1.9. �
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Exercise 10.6.3. Consider the connection ∇ on R3 having Christoffel symbols

Γ3
12 = Γ1

23 = Γ2
31 = 1,

Γ3
21 = Γ1

32 = Γ2
13 = −1,

and Γkij = 0 in all the other cases. Show that the connection is compatible with the
Euclidean metric tensor but it is not symmetric. Determine its geodesics.

Exercise 10.6.4. Consider the ball model Bn of hyperbolic space. Pick v ∈ Sn−1.
Show that the maximal geodesic through the origin with direction v is

γv (t) = tanh(t/2)v =
et − 1

et + 1
v .

Deduce that the exponential map expp : TpHn → Hn is a diffeomorphism ∀p ∈ Hn.

Exercise 10.6.5. Identify R2 with C and write the half-plane model as H2 = {z ∈
C | =z > 0}. Show that the transformations

z 7→
az + b

cz + d

with a, b, c, d ∈ R and det
(a b
c d

)
> 0 are isometries of H2.

Exercise 10.6.6. Consider the hyperboloid model In ⊂ Rn,1. Show that for any
p, q ∈ In we get

cosh d(p, q) = −〈p, q〉.

Exercise 10.6.7. Prove that two connections∇,∇′ onM have the same geodesics
⇐⇒ the difference D = ∇−∇′ is an antisymmetric tensor.1 Deduce the following:

(1) ∇ = ∇′ ⇐⇒ they have the same geodesics and torsion.
(2) For any ∇ there is a unique ∇′ with the same geodesics and without torsion.

Hint. Prove that D is antisymmetric ⇐⇒ D(X,X) = 0 for any vector field X
⇐⇒ ∇′XX = ∇XX for any vector field X ⇐⇒ they share the same geodesics. �

Exercise 10.6.8. Let (M, g) be a Riemannian manifold. For every p and v ∈ Vp ⊂
TpM, and every curve η in Vp connecting 0 and v such that d(expp)η(t) is non-singular
for every t, show that

L(expp ◦η) ≥ ‖v‖
with an equality if and only if η is a reparametrisation of the radial line t 7→ tv .

Exercise 10.6.9. Let (M, g) be a Lorentzian manifold. Let p ∈ M be a point and
η a curve in Vp starting from 0. If expp ◦η is time-like, then η is entirely contained in
one of the two timelike cones of TpM.

Exercise 10.6.10. Let (M, g) be a Lorentzian manifold. For every p and v ∈ Vp ⊂
TpM, and every curve η in Vp connecting 0 and v such that d(expp)η(t) is non-singular
for every t, show that

L(expp ◦η) ≤ ‖v‖
with an equality if and only if η is a reparametrisation of the radial line t 7→ tv .

1Recall from Proposition 9.2.9 that D is a tensor field of type (1, 2) and hence we can
interpret D(p) as a bilinear map TpM × TpM → TpM. By antisymmetry here we mean that
D(p)(v, w) = −D(p)(w, v) for any p ∈ M and v, w ∈ TpM. In coordinates: Dk

ij = −Dk
ji .





CHAPTER 11

Curvature

How can we distinguish two psuedo-Riemannian manifolds? Globally, they
may have different topologies – and this is often detected by invariants like
the fundamental group or De Rham cohomology – so we are now interested
in constructing some local invariants. Can we measure locally how a pseudo-
Riemannian manifold differs from being the more familiar Rp,q space?

The answer to all these questions is curvature, and the most complete
answer is a formidable tensor field called the Riemann curvature tensor. This
tensor field is pretty complicated and one sometimes wishes to examine some
more reasonable tensor fields obtained from it via appropriate contractions:
these are the Ricci tensor and finally the scalar curvature. A more geometric
invariant which is in fact equivalent to the Riemann curvature tensor is the
sectional curvature.

11.1. The Riemann curvature tensor

Let M be a smooth manifold, equipped with a connection ∇. We have
already experienced with the torsion tensor T that one of the most efficient
and natural ways to encode some information from ∇ is to build an appro-
priate tensor field. Tensor fields are lovely because they furnish some pre-
cise data at every single point p ∈ M. The torsion tensor is useless in the
pseudo-Riemannian context, since T = 0 by assumption, so we must look for
something else.

11.1.1. Definition. Recall that a tensor field of type (1, n) on M is a
multilinear map

TpM × · · · × TpM︸ ︷︷ ︸
n

−→ TpM

that depends smoothly on p.

Definition 11.1.1. The Riemann curvature tensor R is a tensor field on
M of type (1, 3) defined as follows. For every point p ∈ M and vectors
u, v , w ∈ TpM we set

R(p)(u, v , w) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

where X, Y, Z are vector fields extending u, v , w on some neighbourhood of p.

315
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Of course it is crucial here to prove that this (quite intimidating, we must
admit) definition is well-posed.

Proposition 11.1.2. The tangent vector R(p)(u, v , w) is independent of
the extensions X, Y, and Z.

Proof. Armed with patience and optimism, we write everything in coordi-
nates and get

∇X∇Y Z = ∇X
(
Y i
∂Zk

∂x i
ek + Y iZjΓkijek

)
= X j

∂Y i

∂x j
∂Zk

∂x i
ek +X jY i

∂2Zk

∂x j∂x i
ek +X jY i

∂Z l

∂x i
Γkjlek

+Xm
∂Y i

∂xm
ZjΓkijek +XmY i

∂Z j

∂xm
Γkijek +XmY iZj

∂Γkij
∂xm

ek

+XmY iZjΓli jΓ
k
lmek .

There are 7 terms. If we calculate the difference ∇X∇Y Z − ∇Y∇XZ the
terms number 2, 3, and 5 cancel, and the terms 1 and 4 form the expression

[X, Y ]i
∂Zk

∂x i
ek + [X, Y ]iZjΓkijek = ∇[X,Y ]Z.

From this we deduce that R(p)(u, v , w) consists only of the terms number 6
and 7 that depend (linearly) on u, v , and w and not on their extensions. The
proof is complete. �

The tensor field R is therefore well-defined. To check that it is indeed
smooth, we work on a chart and note that during the proof we have also
found implicitly the coordinates of R in terms of the Christoffel symbols and
their derivatives. After renaming indices we get

(38) Ri jk
l = R(ei , ej , ek)l =

∂Γljk
∂x i
−
∂Γlik
∂x j

+ ΓlimΓmjk − ΓljmΓmik .

In particular Ri jk l depends smoothly on the point. In particular we have

R(u, v , w)l = Ri jk
luiv jw k .

The only example that we make for the moment is rather trivial.

Example 11.1.3. On the pseudo-Riemannian manifold Rp,q the Christoffel
symbols vanish and therefore Ri jk l = 0 everywhere.

Like torsion, parallel transport, and geodesics, the Riemann tensor is nat-
urally associated to ∇. Therefore, as usual, if a diffeomorphism ϕ : M → N

carries the connection ∇ on M to the connection ϕ∗∇ on N, it also sends the
Riemann tensor R of the first to the Riemann tensor ϕ∗R of the second.

As every tensor field, the Riemann tensor gives a C∞(M)-multilinear map

R : X(M)× X(M)× X(M) −→ X(M)
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γs,t

p

w

γs,t

p

w
hs,t(w)

Figure 11.1. Given two commuting vector fields X and Y extending
v and w , for every small s, t > 0 a quadrilateral loop γs,t based in p is
defined as the concatenation of four integral curves of X, Y,−X, and −Y
that last precisely the time s, t, s, t respectively. By Proposition 5.4.13,
on a chart we may write X and Y as two coordinate vector fields, so γt
is a rectangle of sides s × t as in the picture. The holonomy along γs,t is
the parallel transport along γs,t (left). The Riemann tensor measures the
deviation of the holonomy hs,t along γs,t from the identity (right).

that can be written elegantly as

R(X, Y, Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

It is sometimes useful to consider another version of the Riemann tensor,
where all the indices are in their lower position:

Ri jkl = Ri jk
mglm.

In this version the Riemann tensor is a tensor of type (0, 4). Of course we can
transform it back to the original (1, 3) tensor using glm, so there is no loss of
information in using one version instead of the other.

11.1.2. Holonomy along small quadrilaterals. At this stage, the Rie-
mann tensor may look frustratingly complicated. Why do we need as much as
four indices to encode curvature? We answer to this question by describing a
simple and intuitive geometric interpretation.

The geometric interpretation is roughly the following. Look at Figure 11.1.
If we parallel-transport a vector w along a small quadrilateral, we end up with
a different vector. The Riemann tensor furnishes (at the second order) the
rate of change of this vector. To diligently produce this output, the Riemann
tensor needs three input vectors: two to describe the quadrilateral, plus w . It
transforms three vectors into a vector, so it is a tensor field of type (1, 3).

Here is a rigorous description. Let u, v ∈ TpM be two tangent vectors at
some point p ∈ M. It is always possible (exercise: pick a chart) to extend
them locally to two commuting vector fields X and Y . Pick a third vector
w ∈ TpM and extend it to any vector field Z. Since [X, Y ] = 0 we get

R(p)(u, v , w) = ∇X∇Y Z −∇Y∇XZ.

For sufficiently small t > 0, let γs,t be the closed loop based in p con-
structed as in Figure 11.1-(left) as the concatenation of four integral curves of
X, Y , −X, and −Y , lasting precisely the time s, t, s, t respectively. Of course
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the loop γs,t closes up because the two vector fields (and hence their flows)
commute. We can now parallel-transport the vector w along the curve γs,t
as shown in the figure, to find at the end a new vector hs,t(w) ∈ TpM, called
the holonomy of w along γs,t .

Theorem 11.1.4. We have

hs,t(w) = w − R(p)(u, v , w)st + o(s2 + t2).

Proof. On a chart X = e1 and Y = e2. The quadrilateral has vertices
A = (0, 0), B = (s, 0), C = (s, t), D = (0, t). Let w(s) be the vector w
parallel-transported along A. Then dw i

ds + w kΓi1k = 0 which gives

dw i

ds
= −w kΓi1k ,

d2w i

ds2
= −

dw k

ds
Γi1k − w k

∂Γi1k
∂x1

= w jΓk1jΓ
i
1k − w k

∂Γi1k
∂x1

and therefore the Taylor expansion for w(s) is

w i(s) = w i − w kΓi1ks +

(
w jΓk1jΓ

i
1k − w k

∂Γi1k
∂x1

)
s2 + o(s2)

where the Christoffel symbols and their derivatives are calculated in (0, 0). We
now let w(s, t) be the vector w(s) parallel-transported along B. Analogously,

w i(s, t) = w i(s)− w k(s)Γi2kt +

(
w jΓk2jΓ

i
2k − w k(s)

∂Γi2k
∂x2

)
t2 + o(t2)

where the Christoffel symbols and their derivatives are now calculated at (s, 0).
By carefully combining the two formulas, together with

Γi2k(s, 0) = Γi2k +
∂Γi2k
∂x1

s + o(s)

we get

w i(s, t) =w i − w kΓi1ks +

(
w jΓk1jΓ

i
1k − w k

∂Γi1k
∂x1

)
s2

− (w k − w lΓk1ls)

(
Γi2k +

∂Γi2k
∂x1

s + o(s)

)
t

+

(
w jΓk2jΓ

i
2k − w k

∂Γi2k
∂x2

)
t2 + o(s2 + t2).

By reordering terms we finally find

w i(s, t) =w i − w kΓi1ks − w kΓi2kt +

(
w jΓk1jΓ

i
1k − w k

∂Γi1k
∂x1

)
s2

+

(
w lΓk1lΓ

i
2k − w k

∂Γi2k
∂x1

)
st+

(
w jΓk2jΓ

i
2k − w k

∂Γi2k
∂x2

)
t2 +o(s2 + t2).
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All the Christoffel symbols and their derivatives are now calculated at (0, 0).
If w i∗(s, t) is the vector transported from A to C passing through B we get an
analogous formula, and their difference is

w i(s, t)−w i∗(s, t) =

(
w lΓk1lΓ

i
2k−w lΓk2lΓi1k−w k

∂Γi2k
∂x1

+w k
∂Γi1k
∂x2

)
st+o(s2 +t2)

= R21j
iw jst + o(s2 + t2).

Since R21j
i = −R12j

i , this completes the proof. �

Note the analogies with Proposition 5.4.10. The endomorphism

R(p)(u, v , ·) : TpM −→ TpM

whose coordinates are Ri jk luiv j measures the second-order deviation of the
holonomy along a small quadrilateral with sides u and v .

11.1.3. The Riemann tensor in normal coordinates. Recall from Sec-
tion 10.2 that the exponential map expp furnishes some nice normal coordi-
nates around each point p ∈ M, such that Γkij = 0 at the point. In these
coordinates the expression (38) simplifies and we get

(39) Ri jk
l =

∂Γljk
∂x i
−
∂Γlik
∂x j

.

Of course this equation is valid only at the point p. If (M, g) is a pseudo-
Riemannian manifold, we can deduce a reasonable expression for Ri jkl directly
in terms of the metric tensor:

Proposition 11.1.5. At the point p, in normal coordinates we have

(40) Ri jkl =
1

2

(
∂2gj l
∂x i∂xk

+
∂2gik
∂x j∂x l

−
∂2gi l
∂x j∂xk

−
∂2gjk
∂x i∂x l

)
.

Proof. In normal coordinates the first derivatives of g in p vanish. Then

Ri jkl = glmRi jk
m = glm

(
∂Γmjk
∂x i
−
∂Γmik
∂x j

)
=

1

2
glmg

hm

(
∂

∂x i

(
∂gkh
∂x j

+
∂ghj
∂xk

−
∂gjk
∂x l

)
−

∂

∂x j

(
∂gkh
∂x i

+
∂ghi
∂xk

−
∂gik
∂x l

))
=

1

2

(
∂2gj l
∂x i∂xk

+
∂2gik
∂x j∂x l

−
∂2gi l
∂x j∂xk

−
∂2gjk
∂x i∂x l

)
.

The proof is complete. �

Note the absence of repeated indices: the element Ri jkl is just the sum of
four second partial derivatives of the metric g. We could not have hoped for
a simpler formula. Of course the use of normal coordinates is crucial here.

We have expressed the Riemann tensor in function of the metric and of the
Christoffel symbols. Now we study the converse problem and try to express
the metric tensor in terms of the Riemann tensor. Recall that in normal



320 11. CURVATURE

coordinates gi j(0) = ηi j =
(
Ip 0
0 −Iq

)
and ∂gi j

∂xk
(0) = 0. The first interesting terms

in the Taylor expansion for gi j are the second order derivatives, and these are
precisely Rikj l up to a constant:

Proposition 11.1.6. In normal coordinates we have

gi j(x) = ηi j +
1

3
Rikj l(0)xkx l + o

(
‖x‖2

)
.

Proof. We would like to express the second derivatives or gi j or the first
derivatives of Γkij in terms of the Riemann tensor. The equations (39) and
(40) are very useful, but they only do the converse job and we are not able to
invert them. We need an additional relation between the partial derivatives of
the Γkij , furnished by Proposition 10.2.2 that says

∂Γijk
∂x l

(0) +
∂Γikl
∂x j

(0) +
∂Γil j
∂xk

(0) = 0.

Combining this with (39) we get

Ri jk
l(0) + Rikj

l(0) = 3
∂Γljk
∂x i

(0).

Now we can express the first derivatives of the Christoffel symbols in terms
of the Riemann tensor. We write the Taylor expansion

gi j(x) = ηi j +
1

2

∂2gi j
∂x l∂xk

(0)xkx l + o
(
‖x‖2

)
= ηi j +

1

2

∂

∂x l
(

Γmkigmj + Γmkjgmi
) ∣∣∣
x=0

xkx l + o
(
‖x‖2

)
= ηi j +

1

2

(
∂Γmki
∂x l

(0)ηmj +
∂Γmkj
∂x l

(0)ηmi

)
xkx l + o

(
‖x‖2

)
= ηi j +

1

6

(
Rlki j(0) + Rl ikj(0) + Rlkj i(0) + Rl jki(0)

)
xkx l + o

(
‖x‖2

)
= ηi j +

1

6

(
Rl ikj(0) + Rl jki(0)

)
xkx l + o

(
‖x‖2

)
= ηi j +

1

6

(
Rki l j(0) + Rl jki(0)

)
xkx l + o

(
‖x‖2

)
= ηi j +

1

3
Rikj l(0)xkx l + o

(
‖x‖2

)
.

We have used that gi j(0) = δi j ,
∂gi j
∂xk

(0) = 0, and the equalities Rlki j+Rlkj i = 0

and Rki l j = Rl jki = Rikj l , that are easy consequences of Proposition 11.1.5
and will be highlighted in the next section. �

In normal coordinates, the Riemann tensor measures the second-order de-
viation of gi j from the constant metric ηi j .
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11.1.4. Symmetries. Being a (1, 3)-tensor field, we expect the Riemann
tensor R to contain a tremendous amount of information on g, and this is
what really happens. To help mastering this huge amount of data, we start by
unraveling some symmetries.

Proposition 11.1.7. The following symmetries hold in any coordinate chart:
(1) Ri jkl = −Rj ikl = −Ri j lk ,
(2) Ri jkl = Rkl i j ,
(3) Ri jk l + Rjki

l + Rkij
l = 0.

Before entering in the proof, note that these symmetries may be stated
more intrinsically as follows: for every p ∈ M and u, v , w, z ∈ TpM we get

(1) R(p)(u, v , w, z) = −R(p)(v , u, w, z) = −R(p)(u, v , z, w),
(2) R(p)(u, v , w, z) = R(p)(w, z, u, v),
(3) R(p)(u, v , w) + R(p)(v , w, u) + R(p)(w, u, v) = 0.

In the first two we interpret R as a (0, 4) tensor field, while in the last we take
the original (1, 3) tensor field. We will use R slightly ambiguously in this way.

From this intrinsic description we deduce immediately that if some of the
above relations (1)-(3) is verified for some basis of TpM, then it is automati-
cally verified with respect to any basis.

Another intrinsic description consists in saying that some tensor obtained
by symmetrising or antisymmetrising some (not all) indices vanishes. We can
write (1) and (3) as follows:

R(i j)kl = Ri j(kl) = 0, R(i jk)
l = 0.

The symmetry (2) is harder to write in this way because it involves the symul-
taneous antisymmetrisation of non-adjacent indices.

Proof. Take normal coordinates at p. There Ri jkl has the convenient
expression (40), which displays (1) and (2) immediately. Analogously for Ri jkl
we use (39) to deduce (3) easily. The proof is complete. �

The Riemann tensor has a priori n4 independent components, but thanks
to its symmetries these reduce to a smaller number. In normal coordinates we
can lower the index of symmetry (3) and work fully with tensors of type (0, 4).

Proposition 11.1.8. The (0, 4) tensors on Rn satisfying the symmetries

Ri jkl = −Rj ikl = −Ri j lk , Ri jkl = Rkl i j , Ri jkl + Rikl j + Ri l jk = 0

form a vector subspace of T 4(Rn) of dimension
1

12
n2(n2 − 1).

Proof. The formula is(
n

2

)
+ 3

(
n

3

)
+

4!

8
·

2

3

(
n

4

)
=

1

12
n2(n2 − 1).
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The addenda count the number of independent components with 2, 3, and 4
distinct indices respectively. Those with 2 and 3 distinct components transform
to Rabab and Rabac via the symmetries (1) and (2), so counting them is easy.
Those with 4 components are 4!

(
n
4

)
in total; the symmetries (1)-(2) produce

orbits with 8 elements, while (3) contributes by canceling one orbit out of
three, hence with a 2

3 factor. �

Example 11.1.9. In dimension 2, the space has dimension 1 and is governed
by R1212. In dimension 3, the space has dimension 6 and is determined by

R1212, R1313, R2323, R1213, R2123, R3132.

In dimension 4, the dimension is 20 and governed by the coordinates

R1212, R1313, R1414, R2323, R2424, R3434, R1213, R2123, R3132, R1214,

R2124, R4142, R1314, R3134, R4143, R2324, R3234, R4243, R1234, R1432.

11.1.5. The Bianchi identity. Let M be equipped with a connection ∇.
If ∇ is the Levi-Civita connection of some metric tensor g, then ∇g = 0.
What about ∇R? The covariant derivative of R is typically not zero. We can
interpret ∇R as a tensor field of type (1, 4), with coordinates ∇aRi jk l . This
complicated symmetric tensor inherits all the symmetries of R, plus one more
called the Bianchi identity :

Proposition 11.1.10 (Bianchi identity). We have

∇aRi jk l +∇iRjak l +∇jRaik l = 0.

Proof. Take normal coordinates at p = 0. The Christoffel symbols vanish
in 0 and hence by Proposition 9.2.11 the covariant derivatives of R in 0 coincide
with the directional derivatives. Therefore

∇aRi jk l =
∂Ri jk

l

∂xa
=

∂

∂xa

(
∂Γljk
∂x i
−
∂Γlik
∂x j

+ ΓlimΓmjk − ΓljmΓmik

)
=

∂2Γljk
∂xa∂x i

−
∂2Γlik
∂xa∂x j

where we have used (38) and the vanishing of the Christoffel symbols at p = 0.
The conclusion is now a straightforward computation. �

11.1.6. Flat implies Euclidean. We have already noticed that the Rie-
mann tensor measures the local deviation of a metric tensor g from the Eu-
clidean metric. We now show that it does so in a complete way: we prove
that a metric tensor g is locally Euclidean if and only if the Riemann tensor
vanishes. Let us first fix some definitions.

We say that a Riemannian manifold M is Euclidean if it is locally isometric
to Rn, that is every p ∈ M has an open neighbourhood U(p) ⊂ M which is
isometric to some open subset of the Euclidean Rn.

We say that M is flat if its Riemann tensor vanishes everywhere.

Theorem 11.1.11. A Riemannian manifold M is Euclidean ⇐⇒ it is flat.



11.1. THE RIEMANN CURVATURE TENSOR 323

Proof. It is easy to check that Euclidean implies flat: on an open set of
Rn equipped with the Euclidean tensor we have Γkij = 0 and hence R = 0.

We now prove the converse. LetM be flat. Pick a point inM and represent
a small neighbourhood of it via normal coordinates B(0, r) ⊂ Rn. Pick a small
cube (−ε, ε)n contained in B(0, r).

We now extend the orthonormal basis e1, . . . , en at 0 to a frame on the
cube, as follows: we first parallel-transport the basis along the axis x1, then
along x2, and so on until xn. At the i-th step the frame is defined only on
the slice Si = {xi+1 = . . . = xn = 0} of the cube, and at the end it is
defined everywhere. It is smooth because parallel transport depends smoothly
on the initial data. We have thus constructed a frame X1, . . . , Xn that is
an orthonormal basis at every point of the cube, such that Xi(0) = ei . By
construction we have

∇eiXk = 0 on Si ∀k.
We now prove that in fact

∇ejXk = 0 on Si ∀k,∀j ≤ i .

We show this by induction on i . The case i = 1 is done, so we suppose that it
holds for i and prove it for i + 1. We already know that ∇ei+1

Xk = 0 on Si+1.
If j ≤ i , by our induction hypothesis we have ∇ejXk = 0 on the hyperplane
Si . To conclude it suffices to check that ∇ei+1

(∇ejXk) = 0 on Si+1. The
coordinate fields e1, . . . , en commute, hence flatness R = 0 gives

∇ei+1
(∇ejXk) = ∇ej (∇ei+1

Xk) = ∇ej (0) = 0.

The inductive proof is completed and when i = n it shows that

∇ejXk = 0 ∀k, j

everywhere on the cube. Since ∇ is symmetric we have

[Xi , Xj ] = ∇XiXj −∇XjXi = 0− 0 = 0.

By Proposition 5.4.13 there is a chart ϕ : U → V with U ⊂ (−ε, ε)n that
straightens these vector fields, that is that transports Xi into ei . The map ϕ
is an isometry between U and V with its Euclidean metric, because it sends
pointwise an orthonormal basis X1, . . . , Xn to the orthonormal basis e1, . . . , en.
The proof is complete. �

11.1.7. Family of curves. We will soon discover a tight relation between
the Riemann tensor and the spreading behaviour of families of geodesics. For
the moment, we simply prove that R measures the non-commutativity of the
covariant derivative also on vector fields on families of curves.

Let M be equipped with a connection ∇ and f : (−ε, ε) × I → M be a
family of curves. We defined in Section 10.2.11 the notions of vector field X
along f , and its covariant derivatives DsX and DtX. The coordinate vector
fields are S and T . Many manipulations of vector fields in M extend trivially
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to this context: in particular, given vector fields X1, X2, X3 along f , it makes
sense to define a fourth one R(X1, X2, X3) using the Riemann tensor R as

R(X1, X2, X3)(s, t) = R(X1(s, t), X2(s, t), X3(s, t)).

The following fact should not be too surprising.

Proposition 11.1.12. For every vector field X on f we have

DsDtX −DtDsX = R(S, T,X).

Proof. If f is an embedding, then S, T , X may be considered as vector
fields on the image of f , and the equality is just the definition of R together
with the fact that S and T commute.

As for Lemma 10.2.28, for a more general f we work in coordinates. Now
f has image in Rn and we write x(s, t) = f (s, t). From (26) we get

DtX =
∂X

∂t
+
∂x i

∂t
X jΓkijek ,

DsDtX =
∂2X

∂s∂t
+
∂

∂s

(
∂x i

∂t
X jΓkijek

)
+
∂x i

∂s
(DtX)jΓkijek .

We now use normal coordinates at the point x(s, t). We gratefully obtain
Γkij = 0 at the point and there the expression becomes

DsDtX =
∂2X

∂s∂t
+
∂x i

∂t
X j
∂Γkij
∂s

ek =
∂2X

∂s∂t
+
∂x i

∂t
X j
∂x l

∂s

∂Γkij
∂x l

ek .

The equality follows from the expression (39) of R in normal coordinates. �

11.2. Sectional curvature

We have seen in Section 11.1.2 that the Riemann curvature tensor mea-
sures the second order displacement of vectors that are parallel-transported
along small quadrilaterals. We now propose a related geometric interpreta-
tion where quadrilaterals are replaced by small surfaces, or more punctually by
planes in TpM. This geometric interpretation is called the sectional curvature.

11.2.1. Definition. Let M be a pseudo-Riemannian manifold and R be
its Riemann curvature tensor field in the (0, 4) version. Let p ∈ M be a point
and σ ⊂ TpM be a non-degenerate tangent plane, that is a two dimensional
linear subspace where the restriction g(p)|σ is non-degenerate. We now assign
to σ a number K(σ) called the sectional curvature along σ, as follows.

Let u, v ∈ σ be arbitrary generators. We define

K(σ) =
R(p)(u, v , v , u)

Q(u, v)

where
Q(u, v) = 〈u, u〉〈v , v〉 − 〈u, v〉2
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is not zero since σ is non-degenerate. When g(p)|σ is positive definite, this is
the square of the area of the parallelogram spanned by u and v .

Proposition 11.2.1. The sectional curvature K(σ) is well-defined.

Proof. Thanks to the symmetries of R, the quantity K(σ) does not change
(exercise) if we substitute (u, v) with one of the following:

(v , u), (λu, v), (u + λv, v).

By composing such moves we can transform (u, v) into any other basis. �

11.2.2. K determines R. The Riemann tensor of course determines the
sectional curvatures by definition; we now see that also the converse holds:

Proposition 11.2.2. The sectional curvatures K(σ) along non-degenerate
planes σ ⊂ TpM determine the Riemann tensor R(p).

Proof. The sectional curvatures determine R(p)(u, v , v , u) for all pairs
of vectors u, v ∈ TpM that generate a non-degenerate plane; since these
are easily proved to be dense in the set of all pairs of vectors, the sectional
curvature determines R(p)(u, v , v , u) for any pair u, v . The vector R(p)(u +

w, v, v , u + w) is therefore determined, and it equals

R(p)(u, v , v , u) + 2R(p)(u, v , v , w) + R(p)(w, v, v , w).

Therefore the sectional curvatures also determine R(p)(u, v , v , w) ∀u, v , w .
Analogously, the vector R(p)(u, v + z, v + z, w) is determined and it equals

R(p)(u, v , v , w) + R(p)(u, v , z, w) + R(p)(u, z, v , w) + R(p)(u, z, z, w)

so the sectional curvatures determine the value of

R(p)(u, v , z, w) + R(p)(u, z, v , w) = R(p)(u, v , z, w)− R(p)(z, u, v , w)

for all u, v , w, z . If we look at the three numbers

R(p)(u, v , z, w), R(p)(v , z, u, w), R(p)(z, u, v , w)

we see that their sum is zero and their differences are determined: hence the
three numbers are also determined. �

We are not losing any information if we consider sectional curvatures in-
stead of the Riemann tensor.

11.2.3. Constant sectional curvature. A pseudo-Riemannian manifold
(M, g) has constant sectional curvature K if K(σ) = K for every tangent
plane σ ⊂ TpM at every point p ∈ M. This seems a very restrictive hypothesis
– and indeed it is – however, it turns out that there are plenty of constant
sectional curvature manifolds around.
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Proposition 11.2.3. The manifold M has constant sectional curvature K
⇐⇒ the Riemann tensor may be written as

R(u, v , w, z) = K
(
〈u, z〉〈v , w〉 − 〈u, w〉〈v , z〉

)
.

Proof. If R is of this type, we easily get K(σ) = K. Conversely, if K(σ) =

K for all non-degenerate σ, then R must be of this type by Proposition 11.2.2
(one only has to check that the proposed R has all the symmetries listed in
Proposition 11.1.7). �

In coordinates, we write the expression for R as

Ri jkl = K(gi lgjk − gikgj l).

Proposition 11.2.4. If Isom(M) acts transitively on the frames of M, then
it has constant sectional curvature.

Proof. Since Isom(M) acts transitively on frames, it acts transitively on
all the non-degenerate tangent planes σ ⊂ Tp(M) at all points p ∈ M having
the same signature (2, 0), (1, 1), or (0, 2). Therefore non-degenerate planes
σ with the same signature (a, b) have the same curvature K(a,b). We now
prove that K(2,0) = K(1,1) = K(0,2) using the fact that R is smooth.

At a fixed p, the pairs (u, v) of vectors generating a non-degenerate plane
with fixed signature (a, b) form an open subset U(a,b) ⊂ TpM × TpM. We get

R(u, v , u, v) = K(a,b)

(
〈u, u〉〈v , v〉 − 〈u, v〉2

)
for every (u, v) ∈ U(a,b). The open subset U(2,0) ∪ U(1,1) ∪ U(0,2) is dense in
TpM × TpM. Since R is smooth, we get K(2,0) = K(1,1) = K(0,2). �

As a corollary, the manifolds Rp,q, Sn, and Hn have constant sectional
curvature K. We already know that K = 0 in the first case, and we will soon
discover that K = +1 and K = −1 for the sphere and the hyperbolic space.

11.3. The Ricci tensor

The Riemann tensor has four indices and contains a huge amount of in-
formation. In many contexts we may wish to reduce this data to a more
manageable object: with tensor fields, this information reduction can be ac-
complished in a very natural way by contracting some pair of indices. There is
essentially only one way to do this here, and it leads to a tensor field of type
(0, 2) called the Ricci tensor.

11.3.1. Definition. The Riemann curvature tensor R is a tensor field of
type (1, 3) and it is of course natural to study its contractions, that are tensor
fields of type (0, 2). There are three possible contractions of Ri jk l , namely:

Ri jk
i , Ri jk

j , Ri jk
k .
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Using the symmetries of R we see easily that the first two differ only by a sign
and the third vanishes. Therefore there is essentially only one way to get a
non-trivial tensor field by contraction, and this yields the Ricci tensor :

Ri j = Rkij
k .

This is a tensor field of type (0, 2). Since Ricci has the same initial as Riemann,
we indicate it by Ric , but we denote its components simply by Ri j . The Ricci
tensor also defines a C∞(M)-bilinear map

Ric : X(M)× X(M) −→ C∞(M).

Proposition 11.3.1. The Ricci tensor is symmetric.

Proof. We have

Ri j = Rkij
k = Rkijhg

hk = Rhjikg
hk = Rhji

h = Rj i .

The proof is complete. �

Like the metric tensor, the Ricci tensor is a symmetric tensor field of
type (0, 2). Note however that the Ricci tensor need not be positive definite
and may also be degenerate: for instance, on an open set U ⊂ Rn with the
Euclidean metric, all the tensors that we introduce vanish, including Ricci.

11.3.2. In normal coordinates. Let (M, g) be a pseudo-Riemannian man-
ifold. What geometric information is carried by the Ricci tensor? In normal
coordinates, it measures the second order variation of the determinant of g,
much as the Riemann tensor measures the second order variation of g itself.
Set as usual η =

(
Ip 0
0 −Iq

)
where (p, q) is the signature of g.

Proposition 11.3.2. In normal coordinates we have

det gi j(x) = det η

(
1−

1

3
Ri j(0)x ix j

)
+ o

(
‖x‖2

)
.

Proof. For any n × n matrix A we have

det(η + A) = det η det(I + η−1A) = det η(1 + tr(η−1A)) + o
(
‖A‖

)
.

Combining this with Proposition 11.1.6 we get

det gi j(x) = det η

(
1 +

1

3
Rikj l(0)ηi jxkx l

)
+ o

(
‖x‖2

)
= det η

(
1−

1

3
Rikl j(0)ηi jxkx l

)
+ o

(
‖x‖2

)
= det η

(
1−

1

3
Rkl(0)xkx l

)
+ o

(
‖x‖2

)
.

The proof is complete. �

Let ω be the volume form determined by g. As a consequence, the Ricci
tensor measures (in normal coordinates) the second order variation of ω.
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Corollary 11.3.3. In normal coordinates we have

ω =

(
1−

1

6
Ri j(0)x ix j + o

(
‖x‖2

))
dx1 ∧ · · · ∧ dxn.

Proof. This follows by applying the formula

ω =
√
| det gi j |dx1 ∧ · · · ∧ dxn

together with
√

1 + t = 1 + 1
2t + o(|t|). �

Pick a point p ∈ M and a non-zero tangent vector v ∈ TpM. Corollary
11.3.3 implies that the volume of a small cone of geodesics exiting from p

around v is smaller or bigger than the corresponding Euclidean cone, according
to the sign of Ric(v , v).

Remark 11.3.4. If (M, g) is a Riemannian manifold, by the spectral the-
orem at every p ∈ M we can find a basis for TpM that is simultaneously
orthonormal for g(p) and orthogonal for Ric(p). Therefore we can choose
normal coordinates at p where gi j(0) = δi j and Ri j(0) is a diagonal matrix.

11.3.3. Sum of sectional curvatures. Let (M, g) be a pseudo-Riemannian
manifold. Pick p ∈ M and an orthonormal basis e1, . . . , en of TpM.

Proposition 11.3.5. We have

Ric(ei , ei) = 〈ei , ei〉
∑
j 6=i

K(σ(ei , ej))

where σ(ei , ej) is the plane generated by ei and ej .

Proof. The left hand-side equals
n∑
j=1

Rj i i
j =

n∑
j=1

Rj i i j〈ej , ej〉=〈ei , ei〉
n∑
j=1

Rj i i j
〈ei , ei〉〈ej , ej〉

=〈ei , ei〉
∑
j 6=i

K(σ(ei , ej)).

The proof is complete. �

The number Ric(ei , ei) is 〈ei , ei〉 times the sum of the sectional curvatures
of the n− 1 coordinate planes containing the vector ei . More generally if v is
a unit vector we deduce that Ric(v , v) is 〈v , v〉 times the sum of the sectional
curvatures along the planes that contain v and the other vectors of any fixed
orthonormal basis containing v .

Corollary 11.3.6. If (M, g) has constant sectional curvature K, then

Ric = (n − 1)Kg.

11.4. The scalar curvature

If you think that a tensor of type (0, 2) is yet too complicated an invari-
ant, on a pseudo-Riemannian manifold you can still contract it and get an
interesting number, called the scalar curvature.
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11.4.1. Definition. Let (M, g) be a pseudo-Riemannian manifold. The
scalar curvature at a point p ∈ M is

R = gi jRi j .

Note that we need the metric g here: the scalar curvature is not defined for
a general connection ∇. With respect to an orthonormal basis, the scalar
curvature is simply the trace of the Ricci tensor. The scalar curvature is still
indicated with the same letter R as the Riemann and Ricci curvature: the
number and position of the indices are enough to distinguish from objects like
R, Ri j , Ri jk l , and Ri jkl .

Which kind of geometric information is conveyed by the scalar curvature?
On a Riemannian manifold (M, g), it furnishes some data on the volumes of
small geodesic balls. Let p ∈ M be a point and B(p, r) a geodesic ball of radius
r centered at p (remember that this notion is well defined only for sufficiently
small r > 0). We recall that the volume of a Euclidean ball B(0, r) ⊂ Rn is

Vol
(
B(0, r)

)
= Vn(r) =

π
n
2

Γ
(
n
2 + 1

) rn
where Γ is Euler’s gamma function.

Proposition 11.4.1. We have

(41) Vol
(
B(p, r)

)
= Vn(r) ·

(
1−

1

6(n + 2)
R(p)r2 + o(r3)

)
.

Proof. Following Remark 11.3.4, we work in normal coordinates around
p = 0 where the Ricci tensor Ri j(0) is diagonal with entries λ1, . . . , λn. The
scalar curvature is its trace R(0) = λ1 + · · ·+ λn. By Corollary 11.3.3 we get

Vol
(
B(p, r)

)
=

∫
B(0,r)

ω =

∫
B(0,r)

(
1−

1

6
Ri j(0)x ix j + o

(
‖x‖2

))
dx1∧· · ·∧dxn.

We now compute∫
B(0,r)

Ri j(0)x ix jdx1 ∧ · · · ∧ dxn =

∫
B(0,r)

(λ1(x1)2 + · · ·+ λn(xn)2)dx1 ∧ · · · ∧ dxn

=

n∑
i=1

λi

(∫
B(0,r)

(x i)2dx1 ∧ · · · ∧ dxn
)

=

(
n∑
i=1

λi

)
1

n

∫
B(0,r)

ρ2dx1 ∧ · · · ∧ dxn
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where ρ2 = (x1)2 + · · · (xn)2. Let dΩ be the volume form in the Euclidean
Sn−1. The last expression equals

R(0)

n

∫
B(0,r)

ρ2 · ρn−1dρ ∧ dΩ =
R(0)

n

(∫ r

0

ρn+1dρ

)(∫
Sn−1

dΩ

)
=
R(0)

n
·
rn+2

n + 2
Vol(Sn−1).

With similar calculations, the volume of the Euclidean ball of radius r is

Vn(r) =
rn

n
Vol(Sn−1)

so we find ∫
B(0,r)

Ri j(0)x ix jdx1 ∧ · · · ∧ dxn =
R(0)

n + 2
Vn(r)r2.

Finally, we get

Vol
(
B(p, r)

)
= Vn(r)

(
1−

R(0)

6(n + 2)
r2 + o(r3)

)
.

The proof is complete. �

The scalar curvature measures the second order deviation of the ratio
between volumes of small geodesic balls and Euclidean balls with the same
small radius. Note that this is an intrinsic property of a point p ∈ M, that
is coordinates independent. In particular, if R(p) is negative (respectively,
positive), geodesic balls of small radius r centered at p have strictly larger
(respectively, smaller) volume than the Euclidean ones with the same radius r .

Example 11.4.2. On a surface, the equation (41) becomes

Vol
(
B(p, r)

)
= πr2

(
1−

R(p)

24
r2 + o(r3)

)
= πr2 −

R(p)

24
πr4 + o(r5).

On a 3-manifold, we get

Vol
(
B(p, r)

)
=

4

3
πr3

(
1−

R(p)

30
r2 + o(r3)

)
=

4

3
πr3 −

2R(p)

45
πr5 + o(r6).

11.4.2. The contracted Bianchi identity. By contracting the Bianchi
identity twice, we get the following formula that relates the divergence of Ric
with the covariant derivative of R. Here Raj = gakRkj as usual.

Corollary 11.4.3. We have

∇aRaj =
1

2
∇jR

Proof. The operation of raising or lowering some indices commutes with
∇ since ∇g = 0. Therefore the Bianchi identity can be written as

∇aRi j kl +∇iRjakl +∇jRai kl = 0.
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By contracting twice we get

0 = ∇aRkl kl +∇kRlakl +∇lRakkl = −∇aRlk kl +∇kRlakl +∇lRkalk

= −∇aR + 2∇kRak

whence the conclusion. �

11.4.3. Effects of a metric rescaling. Let (M, g) be a as usual pseudo-
Riemannian manifold. If we rescale the metric g by a factor λ 6= 0, we get
a new metric tensor g′ = λg with the same Levi-Civita connection ∇ as g,
see Remark 9.3.10. Therefore we get the same geodesics, the same parallel
transport, the same Riemann curvature tensor R, and the same Ricci tensor
Ric . Much of the geometry of the manifold is unaltered.

Beware that the Ricci curvature tensor R that is unaffected is the origi-
nal (1, 3) version, that is purely defined using ∇. The (0, 4) version is then
obtained by lowering an index via g, and hence it is altered as R′ = λR.

Similarly we find that the sectional curvature, the scalar curvature, and
the volume form change as follows:

K′(σ) =
1

λ
K(σ), R′ =

1

λ
R, ω′ = λ

n
2ω.

11.4.4. Low dimensions. In dimensions 2 and 3 the information carried
by the curvature tensors reduce considerably and is more manageable.

Let S be a surface equipped with a Riemannian metric. At every point
p ∈ S the tangent plane TpS has a sectional curvature K(p), and the whole
Riemann tensor is determined by this number by Proposition 11.2.2. There-
fore all the information encoded by the Riemann tensor reduces to a more
comfortable smooth function K : S → R, which is in fact equal to half the
scalar curvature R: on an orthonormal basis e1, e2 for TpS we get

R(p) = 2R1212(p) = 2K(p).

Let M be a Riemannian 3-manifold. At a point p ∈ M we fix an or-
thonormal basis e1, e2, e3 for TpM and note that the components Ri jkl of the
Riemann tensor are determined by the Ricci tensor: at least two of the four
indices i , j, k, l must coincide and therefore Ri jkl is either zero or equal to an
entry of the Ricci tensor Ri j . Summing up, we have discovered the following.

Proposition 11.4.4. The Riemann curvature tensor is determined by the
scalar curvature in dimension n = 2 and by the Ricci tensor in dimension n = 3.

11.5. Pseudo-Riemannian submanifolds

Let N ⊂ M be a pseudo-Riemannian submanifold of a pseudo-Riemannian
manifold (M, g). The submanifold N has two kinds of geometrical properties:
the intrinsic ones depend only on the manifold (N, g|N) itself, while the extrin-
sic ones describe how N is embedded in M. The same N may have different
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intrinsic and extrinsic properties: for instance, it may be intrinsically flat and
extrinsically curved, or viceversa.

11.5.1. Second fundamental form. We have seen in Section 9.3.6 that
the tangential part of the connection ∇M on N is the connection of N:

∇N = π ◦ ∇M .

We are now interested in the normal part of ∇M . Let νN be the normal
bundle of N in M. A section s of the bundle T2N⊗νN is the datum, for every
p ∈ N, of a bilinear map s(p) : TpN × TpN → νN.

The second fundamental form of N ⊂ M is the section II of T2N ⊗ νN
defined as follows. For every v , w ∈ TpN, we extend w to a vector field W on
N near p and then put

II(p)(v , w) = (∇Mv W )⊥

where Z⊥ ∈ νpN indicates the normal component of Z ∈ TpM.

Proposition 11.5.1. The tensor field II is well-defined and symmetric.

Proof. Let V extend v along N. We get

(∇Mv W )⊥ = (∇Mw V )⊥ − [V,W ]⊥ = (∇Mw V )⊥

since [V,W ] is tangent to N. This shows that II(p)(v , w) does not depend on
the extension W and is symmetric. �

Historically, the “second fundamental form” follows the “first fundamental
form”, that is just the metric I(v , w) = g(v , w). Both the first and second
fundamental forms are symmetric operators on the tangent spaces, with value
respectively in R and in the normal space.

If M has codimension 1 and is equipped with a normal unit field n, we may
identify νN = N × R and hence II can be interpreted as a symmetric tensor
field of type (0, 2) like I. In this case we get a useful formula:

Proposition 11.5.2. If M ⊂ N is a hypersurface with unit normal field n,

II(p)(v , w) = −〈w,∇Nv n〉n.

Proof. We have〈
II(p)(v , w), n

〉
=
〈
∇Nv W, n

〉
= −〈w,∇Nv n〉n

where we used Exercise ?? and the fact that 〈W, n〉 = 0 everywhere. �

With this formula, it suffices to calculate n in a neighbourhood of p to
determine II(p).
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11.5.2. The Gauss equation. By definition, for every pair of tangent
fields X, Y in N we get

∇MX Y = ∇NXY + II(X, Y ).

This decomposition, sometimes called the Gauss formula, leads to a relation
between curvatures and second fundamental form called the Gauss equation:

Proposition 11.5.3 (Gauss equation). For every u, v , w, z ∈ TpN we have

RN(u, v , w, z) = RM(u, v , w, z) +
〈

II(u, z), II(v , w)
〉
−
〈

II(u, w), II(v , z)
〉
.

Here RN and RM are the Riemann tensors of N and M.

Proof. Extend the vectors to vector fields U, V,W,Z locally on N. We may
take U and V to commute, so that

RN(u, v , w, z) =
〈
∇NU∇NVW −∇NV ∇NUW,Z

〉
.

We get:〈
∇NU∇NVW,Z

〉
=
〈
∇NU∇MV W,Z

〉
−
〈
∇NU
(

II(V,W )
)
, Z
〉

=
〈
∇MU ∇MV W,Z

〉
− U

〈(
II(V,W )

)
, Z
〉

+
〈

II(V,W ),∇NUZ
〉

=
〈
∇MU ∇MV W,Z

〉
+
〈

II(V,W ), II(U,Z)
〉
.

We have used that Z is tangent to N, that II(V,W ) is normal to N, and
Exercise ??. This leads directly to the Gauss equation. �

Corollary 11.5.4. If u, v ∈ TpM generate a non-degenerate plane σ, then

KN(σ) = KM(σ) +

〈
II(u, u), II(v , v)

〉
−
〈

II(u, v), II(u, v)
〉

〈u, u〉〈v , v〉 − 〈u, v〉2 .

11.5.3. Quadrics. We now describe a class of pseudo-Riemannian hyper-
surfaces with constant curvature that generalise the sphere Sn and the hyper-
bolic space Hn in the hyperboloid model. Recall that Rp,q is Rp+q equipped
with the constant metric tensor

〈x, y〉 = −x1y1 − · · · − xqyq + xq+1yq+1 − · · ·+ xp+qyp+q.

This is a pseudo-Riemannian manifold with signature (p, q) with constant
sectional curvature K = 0. Set Q(x) = 〈x, x〉 and define the quadrics

Sp,q =
{
x ∈ Rp+1,q | Q(x) = 1

}
, Hp,q =

{
x ∈ Rp,q+1 | Q(x) = −1

}
.

Proposition 11.5.5. Each Sp,q ⊂ Rp+1,q and Hp,q ⊂ Rp,q+1 is a pseudo-
Riemannian submanifold with signature (p, q). We have

TxS
p,q = x⊥ ∀x ∈ Sp,q, TxH

p,q = x⊥ ∀x ∈ Hp,q.



334 11. CURVATURE

Proof. We show this with Sp,q, the proof for Hp,q is the same. Note that

〈x + y , x + y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y , y〉

implies that dQx(y) = 2〈x, y〉. We have Sp,q = Q−1(1) and 1 is a regular
value for Q : Rp+1,q → R, so Sp,q is a smooth hypersurface and

TxS
p,q = ker dQx = ker(y 7→ 2〈x, y〉) = x⊥

for every x ∈ Sp,q. Since 〈x, x〉 = 1, the restriction of 〈, 〉 to the hyperplane
x⊥ has signature (p, q). �

Of course we have Sn,0 = Sn and Hn,0 is isometric to two disjoint copies
of the hyperboloid model of hyperbolic space. The topology of these spaces
is easily determined.

Proposition 11.5.6. The following diffeomorphisms hold:

Sp,q ∼= Sp × Rq, Hp,q ∼= Rp × Sq.

Proof. We work with Sp,q, the case Hp,q being similar. The map

Ψ: Rq × Sp −→ Sp,q, Ψ(x, y) =
(
x,
√

1 + ‖x‖2y
)

is a diffeomorphism, with inverse (x, y) 7→
(
x, (1 + ‖x‖2)−1/2y

)
. �

Remark 11.5.7. The linear isomorphism Rp+1,q → Rq,p+1,

ι(x1, . . . , xq, xq+1, . . . , xp+q+1) = (xq+1, . . . , xp+q+1, x1, . . . , xq)

sends the metric tensor of Rp+1,q to minus the metric tensor of Rq,p+1. This
restricts to a diffeomorphism ι : Sp,q → Hq,p that sends the metric tensor of
the first to minus the metric tensor of the second. Therefore Hp,q is isometric
to Sp,q with the sign of 〈, 〉 inverted, that is rescaled it by a factor λ = −1. As
discussed in Section 11.4.3, the geometries of Sp,q and Hq,p are pretty much
the same, although their sectional and scalar curvatures differ by a sign, and
the signatures (p, q) and (q, p) are inverted.

11.5.4. Isometries and curvature of the quadrics. Set n = p + q as
usual. We define O(p, q) ⊂ GL(n,R) to be the subgroup of all the linear
isometries of Rn that preserve the scalar product 〈x, y〉 = txIp,qy with

Ip,q =

(
−Iq 0

0 Ip

)
.

That is,
O(p, q) =

{
A ∈ GL(n,R)

∣∣ tAIp,qA = Ip,q
}

Proposition 11.5.8. The isometry groups of Sp,q and Hp,q are

Isom(Sp,q) = O(p + 1, q), Isom(Hp,q) = O(p, q + 1).

The group acts freely and transitively on the frames of Sp,q and Hp,q.
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Proof. For every A ∈ O(p, q), the map x 7→ Ax preserves 〈, 〉 and hence
it restricts to an isometry of both Sp,q and Hp,q. It is a simple linear algebra
exercise to show that O(p, q) acts transitively on the frames of both Sp,q and
Hp,q, and hence it coincides to its isometry group. �

The isometry group of M = Sp,q or Hp,q acts transitively on frames, so it
acts transitively on the set of all tangent planes σ ⊂ TxM at all points x ∈ M.
In particular the sectional curvature K(σ) = K is constant for every σ. We
calculate this number K.

Proposition 11.5.9. The manifolds Sp,q and Hp,q have constant sectional
curvature K = 1 and K = −1 respectively.

Proof. It suffices to work out Sp,q since Hp,q is the (−1)-rescaling of Sq,p.
The outer normal vector field on Sp,q is simply n(x) = x , because TxSp,q = x⊥

for all x ∈ Sp,q. For every vector field X in Rp,q we have

∇Xn = X i
∂x i

∂x i
ei = X.

By applying Proposition 11.5.2 to Sp,q ⊂ Rp,q we get

II(v , w) = −
〈
w,∇vn

〉
n = −〈v , w〉n

and therefore by Corollary 11.5.4

K = 0 +
〈u, u〉〈v , v〉 − 〈u, v〉2

〈u, u〉〈v , v〉 − 〈u, v〉2 = 1.

The proof is complete. �

11.5.5. Geodesics in the quadrics. By generalising further the argu-
ments exposed in Section 10.1.2, we can easily prove the following.

Proposition 11.5.10. Pick p ∈ Sp,q and v ∈ p⊥ = TpS
p,q. We have:

γv (t) = cos(‖v‖t) · p + sin(‖v‖t) · v
‖v‖ if v is spacelike,

γv (t) = cosh(‖v‖t) · p + sinh(‖v‖t) · v
‖v‖ if v is timelike,

γv (t) = p + tv if v is lightlike.

The same holds for Hp,q, with the words “spacelike” and “timelike” inverted.

Proof. In all cases γv (t) ∈ Sp,q and γ′′v (t) is a multiple of γv (t), hence it
is orthogonal to Sp,q for all t. �

Corollary 11.5.11. The quadrics Sp,q and Hp,q are geodesically complete.
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11.5.6. Totally geodesic submanifolds. Geodesics are the straightest
curves in a pseudo-Riemann manifold, and we now introduce the “straightest
possible k-submanifolds” in all dimensions k ≥ 2.

Definition 11.5.12. Let (M, g) be a pseudo-Riemannian manifold. A semi-
Riemannian submanifold N ⊂ M is totally geodesic if the second fundamental
form vanishes.

A totally geodesic submanifold N ⊂ M has no extrinsic curvature, but it
may pretty well have an intrinsic curvature: in fact, by the Gauss equation (see
Proposition 11.5.3) the Riemann tensor RN of N is just the restriction of that
RM of M, so N has the same intrinsic curvature of M.

We may define a semi-Riemannian manifold using geodesics only.

Proposition 11.5.13. Let N ⊂ M be a pseudo-Riemannian submanifold.
The following are equivalent:

(1) N is totally geodesic.
(2) Parallel transport along curves in N of vectors tangent to N is the

same with respect to ∇N and ∇M .
(3) Every geodesic of N is also a geodesic of M.
(4) For every v ∈ TN, the geodesic γv of M lies initially in N.

Proof. (1)⇒(2). Let γ be a curve in N. A parallel vector field in N is
parallel also in M since II = 0. Therefore parallel transports are the same.

(2)⇒(3). A curve γ is a geodesic ⇔ γ′ is parallel.
(3)⇒(4). The geodesic γNv of N is also a geodesic of M, so by uniqueness

of geodesics in M with starting vector v it coincides initially with γv .
(4)⇒(1). For every tangent v ∈ TpN at any p ∈ N, we have ∇Mv (γ′v ) = 0

and hence II(p)(v , v) = 0. Therefore II = 0. �

Example 11.5.14. Every affine subspace of Rp,q whose tangent space is
non-degenerate is a totally geodesic submanifold.

Proposition 11.5.15. The intersection of a non-degenerate vector sub-
space W ⊂ Rp,q of signature (p′, q′) with Sp,q or Hp,q is a totally geodesic
submanifold X isometric to Sp

′,q′ or Hp
′,q′ .

The submanifold X is actually empty if X is isometric to S0,q′ or Hp
′,0.

Proof. We work with Sp,q, the case of Hp,q being analogous. The intersec-
tion X = W t Sp,q is transverse since for every x ∈ X we have TxSp,q = x⊥

and x ∈ TxW , hence TxSp,q + TxW = Rp,q. Therefore X is a submanifold.
If we pick an orthonormal basis of W and complete to one of Rp,q, we

identify isometrically X with Sp
′,q′ . Proposition 11.5.10 shows that the ge-

odesic in Sp,q starting from p ∈ X with velocity v ∈ TpX = W ∩ TpSp,q is
contained in the plane U ⊂ W generated by p and v and is hence contained
in X. By Proposition 11.5.13-(4) the submanifold X is totally geodesic. �
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Figure 11.2. How to construct a family of geodesics γs(t) starting from
two vectors u, w (left) and more generally from three vectors u, v , and
w (right) based at the same point p. In both cases we write γ = γ0 and
draw few geodesics with s ∈ [0, ε).

11.5.7. Warped products. We introduce a class of semi-Riemannian man-
ifolds that appear in various contexts.

Definition 11.5.16. Let B and F be two semi-Riemannian manifolds, and
f : B → (0,+∞) a smooth function. The warped product M = B×f F is the
semi-Riemannian manifold B × F equipped with the metric tensor

g(p, q) =

(
gB(p) 0

0 f 2(p)gF (q)

)
.

If f ≡ 1, this is the usual product of pseudo-Riemannian manifolds. In
general, we should think at M as fibering over the base B with a fiber F that
is shrinked by a factor f (p) above each point p ∈ B.

Example 11.5.17. A surface of revolution in R3 is a warped product. The
Euclidean Rn \ 0 is a warped product (0,+∞)×f Sn−1 with f (r) = r .

11.6. Jacobi fields

We now study families of geodesics that depend on one parameter. We
prove that these tend to spread when the curvature is negative, and to con-
centrate when the curvature is positive. The main tool is a kind of vector
fields on geodesics called Jacobi fields, that measures the first-order variation
of families of geodesics.

11.6.1. Families of geodesics. Let M be a manifold equipped with a
connection ∇. A family of geodesics is a family of curves f : (−ε, ε)× I → M

where γs(t) = f (s, t) is a geodesic ∀s. Recall that f is smooth by assumption.

Example 11.6.1. Fix p ∈ M and two vectors u, w ∈ TpM. Then

γs(t) = expp(t(u + sw))

is a family of geodesics for s ∈ (−ε, ε). We found a family of this type in the
proof of the Gauss Lemma, see Figure 10.8. These geodesics are exiting from
p in the direction u + sw . See also Figure 11.2-(left).
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Example 11.6.2. The previous example can be generalised by allowing the
starting point γs(0) to move along another geodesic η as in Figure 11.2-(right).

Here are the details. Pick three vectors u, v , w ∈ TpM. Build the geodesic
η(s) = expp(v) for s ∈ (−ε, ε). Parallel-transport the vectors u and w to two
vector fields U(s) and W (s) along η. Define

γs(t) = expη(s)(t(U(s) + sW (s))).

When v = 0 this reduces to the previous example.

11.6.2. Jacobi fields. Let γ be a geodesic. A Jacobi field is a vector field
on γ that describes the first-order variation of a family of geodesics around γ.

More precisely, let M be a manifold equipped with a symmetric connection
∇, and f describe a family of geodesics γs with γ = γ0. The vector field

J(t) = df(0,t)

(
∂

∂s

)
on γ is the Jacobi field of f . It is a vector field on the geodesic γ. The
following proposition is crucial because it connects the Riemann tensor R with
the first-order variation of families of geodesics, encoded by J.

Proposition 11.6.3. Every Jacobi field J satisfies the Jacobi equation

(42) DtDtJ + R(J, γ′, γ′) = 0.

Proof. Consider the coordinate fields S, T of the family of geodesics f .
By Lemma 10.2.28 we have DtS = DsT . Since each γs is a geodesic, we also
get DtT = 0. By combining these with Proposition 11.1.12 we find

R(S, T, T ) = DsDtT −DtDsT = −DtDtS.
At the points s = 0 this gives the desired equality. �

11.6.3. Solutions of the Jacobi equation. We now study the solutions
of the Jacobi equation. We may write the equation conveniently as follows:
pick an arbitrary orthonormal basis e1, . . . , en at Tγ(t)M for some t ∈ I and
parallel-transport it all along γ. Now every vector field X on γ may be written
as X = X iei and we simply get

DtX = Ẋ iei , DtDtX = Ẍ iei .

The Jacobi equation (42) now can be written as

(43) J̈ i + J j γ̇k γ̇ lRjkl
i = 0.

This is a system of second-order linear differential equations. Therefore
for any time t0 ∈ I and any pair of tangent vectors v1, v2 ∈ TpM at the point
p = γ(t0) there is a unique solution J of (42) with initial values

J(t0) = v1, (DtJ)(t0) = v2.

The solutions of the Jacobi equation are parametrised by their initial values
(v1, v2) ∈ TpM × TpM at p and hence form a vector space of dimension 2n.
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Proposition 11.6.4. The Jacobi field J of the family described in Example
11.6.2 and Figure 11.2-(right) has the initial values

J(0) = v , (DtJ)(0) = w.

Proof. Let S and T be the coordinate vector fields of the family. We have

J(0) = S(0, 0) = v ,

(DtJ)(0) = (DtS)(0, 0) = (DsT )(0, 0) = w.

The proof is complete. �

We already know that every Jacobi field is a solution of the Jacobi equation,
and we now prove the converse (under some mild but necessary hypothesis).
Let γ be a geodesic in M.

Proposition 11.6.5. Suppose that either the geodesic γ is defined on a
compact interval I, or the manifold M is geodesically complete.

Every solution to the Jacobi equation is a Jacobi field on γ.

Proof. Let J be a solution of the Jacobi equation. Pick t0 ∈ I and set

p = γ(t0), u = γ′(t0), v = J(t0), w = (DtJ)(t0).

We use the vectors u, v , and w to construct a family of geodesics γs as in
Example 11.6.2 (see Figure 11.2). This family exists for all s ∈ R if M is
geodesically complete, and for all s ∈ (−ε, ε) in any case if I is compact. By
Proposition 11.6.4 the Jacobi field of γs has the same initial values of J and
hence it coincides with J. �

We are mostly interested in the case where the interval I = [t0, t1] is
compact, so γ is a geodesic connecting p = γ(t0) to q = γ(t1). In this setting
the Jacobi fields J on γ are precisely the solutions of the Jacobi equations,
and they form naturally a 2n-dimensional vector space. Each Jacobi field J
is determined by its initial values J(t0), (DtJ)(t0) ∈ TpM at t0, which can
be arbitrary. More generally, it is determined by any values J(t), (DtJ)(t) ∈
Tγ(t)M at any fixed time t ∈ I.

11.6.4. Tangential and normal Jacobi fields. If (M, g) is a pseudo-
RIemannian manifold, we may decompose every Jacobi field into its tangential
and normal components, and both these components are again Jacobi fields.
We explain this procedure here.

Let γ : I → M be a geodesic, defined on some compact interval I. A
vector field X on γ is tangential (normal) if X(t) is tangent to (orthogonal
to) γ′(t) for all t. Tangential Jacobi fields are easily classified.

Proposition 11.6.6. Every tangential Jacobi field is of the form

J(t) = aγ′(t) + btγ′(t)
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for some a, b ∈ R. A Jacobi field J is tangential⇐⇒ both J(t0) and (DtJ)(t0)

are tangent for some (and hence all) time t0 ∈ I.

Proof. The given J is the Jacobi field of the family of geodesics

γs(t) = γ((1 + bs)t + as)

obtained simply by reparametrising γ = γ0 linearly. Its initial values at t0 are

J(t0) = (a + bt0)γ′(t0), (DtJ)(t0) = bγ′(t0)

and by varying a, b ∈ R we get all possible pairs of tangent vectors at γ(t0).
From this the conclusions easily follow. �

Recall that a geodesic γ in M is lightlike if 〈γ′(t), γ′(t)〉 = 0 for some
(equivalenty, all) time t. If γ is not lightlike, every vector field X on γ decom-
poses uniquely as X = X⊥ +X || into a normal and a tangential component.

Proposition 11.6.7. If J is a Jacobi field, both components J⊥, J || also
are.

Proof. We have by definition

J || =
〈J, γ′〉
〈γ′, γ′〉γ

′.

By applying Exercise ?? twice and recalling that Dtγ′ = 0, we get

DtDtJ
|| =
〈DtDtJ, γ′〉
〈γ′, γ′〉 γ′.

We deduce easily that J || satisfies the Jacobi equation (which reduces in fact
to DtDtJ || = 0), since J does. By linearity then also J⊥ does. �

Proposition 11.6.8. The following are equivalent for a Jacobi field J:

(1) J is normal,
(2) J(t) and (DtJ)(t) are both orthogonal to γ′(t), for some t,
(3) J(t1) and J(t2) are both orthogonal to γ′ for two distinct t1 6= t2.

Proof. For any Jacobi field J, set g(t) = 〈J(t), γ′(t)〉 and prove that
g′′(t) = 0. Therefore g(t) = at + b and this easily implies the assertion. �

The tangent and normal Jacobi fields form two subspaces of dimension 2

and 2n−2. If γ is not lightlike, these subspaces are transverse. We are mostly
interested in normal fields.
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11.6.5. Jacobi fields and exponential map. We now look more closely
at the families of geodesics that have a common starting point p. These
families are in fact all restrictions of the exponential map expp : Vp → M,
defined on some maximal star-shaped open subset Vp ⊂ TpM. We now study
the tight relations between the exponential map and Jacobi fields.

Let M be a manifold equipped with a symmetric connection ∇. Pick a
point p ∈ M and a vector v ∈ Vp ⊂ TpM. This determines a geodesic
γv : Iv → M that can be written as usual as γv (t) = expp(tv).

For every vector w ∈ TpM, we may define the family of geodesics

γs(t) = expp(t(v + sw))

with γ0 = γv , see Figure 11.2-(left). The Jacobi field J of this family is

(44) J(t) = (d expp)tv (tw).

This equality is important because it connects Jacobi fields with the dif-
ferential of the exponential map expp at an arbitrary point tv ∈ Vp. Any
information on the Jacobi fields may be used to understand the map expp on
its whole domain – not only at the origin as we did until now. In particular
in the next pages we will find some conditions that will certify that expp is
(or is not) an immersion at any given point in its domain (recall that expp is
guaranteed to be an immersion only at the origin).

The Jacobi field J in (44) has initial data J(0) = 0 and (DtJ)(0) = w .

11.6.6. Conjugate points. Let M be a manifold equipped with a sym-
metric connection ∇. Let γ a geodesic connecting two points p and q.

Definition 11.6.9. The points p and q are conjugate along γ if there is a
non-zero Jacobi field J on γ that vanishes at both endpoints p and q.

Suppose that γ : [0, a]→ M, with p = γ(0), v = γ′(0) and q = γ(a). So

γ(t) = expp(tv).

Proposition 11.6.10. The points p and q are conjugate along γ ⇐⇒ av is
a singular point for expp.

Proof. Any Jacobi field J along γ vanishing at p has initial data J(0) = 0

and (DtJ)(0) = w for some w ∈ TpM, and by uniqueness it is of the form
(44). The formula shows that J(a) = 0 ⇔ aw ∈ ker(d expp)tv . �

Remark 11.6.11. The proof also shows that the dimension of all the Jacobi
fields J that vanish at both endpoints equals dim ker(d expp)av . This number
is called the multiplicity of the conjugate point q. The multiplicity is at most
n−1, since the space of all Jacobi fields that vanish at p has dimension n and
contains γ′ that does not vanish at q (unless γ is constant, but in this case
we see easily that p and q are not conjugate). If M is a pseudo-Riemannian
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manifold, a Jacobi field that vanishes at both endpoints must be normal by
Proposition 11.6.8-(3).

Example 11.6.12. Pick Sn and a point p ∈ Sn. As shown in Example
10.1.14, when ‖v‖ = π we get exp(v) = −p. Therefore −p is a conjugate
point along any geodesic γ exiting from p with maximal multiplicity n − 1.

Warning 11.6.13. The existence of a Jacobi field on γ that vanishes at
the endpoints p, q does not guarantee that there are other nearby geodesics
connecting p and q. It only furnishes a family γs of geodesics starting from p,
whose endpoints are at a distance o(s) from q.

Proposition 11.6.14. If p and q are not conjugate along γ, for every v ∈
TpM, w ∈ TqM there is a unique Jacobi field J on γ with J(0) = v , J(a) = w .

Proof. Let J be the 2n-dimensional vector space of all Jacobi fields on γ.
Consider the map J → TpM × TpM, J 7→ J(0), J(a). The map is injective
since p and q are not conjugate, hence it is surjective. �

11.6.7. The Cartan – Hadamard teorem. In the previous pages we have
connected the Riemann tensor R and the Jacobi fields J via the Jacobi equation
(42), and then the Jacobi fields with the exponential expp via (44). We now
weld these two connections and study the effects of R on expp and on the
geometry and topology of M.

We say that a Riemannian manifold M has negative, non-positive, ecc.
sectional curvature if the sectional curvature K(σ) is negative, non-positive,
ecc. for every plane σ ⊂ TpM at every point p ∈ M.

Theorem 11.6.15 (Cartan – Hadamard). Let (M, g) be a complete con-
nected Riemannian manifold with non-positive sectional curvature. For every
p ∈ M the exponential map expp : TpM → M is a smooth covering.

Proof. Let γ(t) be a geodesic emanating from p. Let J be a Jacobi field
on γ with J(0) = 0. Set f (t) = 〈J(t), J(t)〉. By Exercise ?? we have

f ′(t) = 2〈DtJ, J〉

f ′′(t) = 2〈DtDtJ, J〉+ 2‖DtJ‖2

= −2R(J, γ′, γ′, J) + 2‖DtJ‖2 ≥ 0.

Therefore there are no conjugate points and hence expp is a local diffeo-
morphism. We now equip TpM with the pull-back metric g∗ = exp∗p(g), so
that expp is promoted to a local isometry between Riemannian manifolds.

A crucial observation here is that the geodesics through 0 for g and g∗

are exactly the same. In particular, they exist for al R, and hence (TpM, g
∗)

is complete by Proposition 10.3.8. From Exercise 10.4.7 we deduce that expp
is a Riemannian covering. �
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Corollary 11.6.16. Let M be a complete connected Riemannian manifold
with non-positive sectional curvature. The universal cover of M is diffeomor-
phic to Rn.

Proof. The universal cover M̃ inherits from M the structure of a Rie-
mannian manifold with non-positive sectional curvature, that is also complete
by Exercise 10.4.8. The exponential map TpM̃ → M̃ at any p ∈ M̃ is a smooth
covering, and since M̃ is simply connected it is a diffeomorphism. �

Corollary 11.6.17. Let M be a simply connected complete Riemannian
manifold with non-positive sectional curvature. The exponential map at any
point is a diffeomorphism. In particular any two points p, q ∈ M are joined by
a unique geodesic (which is necessarily minimising).

Corollary 11.6.18. A compact manifold M with finite fundamental group
does not admit any Riemannian metric of non-positive sectional curvature.

Proof. Since π1(M) is finite, its universal covering M̃ is also compact, but
M̃ ∼= Rn, a contradiction. �

11.6.8. Tidal forces. The Jacobi equation has an immediate physical in-
terpretation. If we construct a geometric model of spacetime where free falling
bodies travel along geodesics, then a set of nearby objects falling onto a planet
forms a family of geodesics; the Jacobi field J may be interpreted as the mutual
distance of two falling bodies, J ′ as their relative velocity, and J ′′ as their rela-
tive acceleration; in this setting, the Jacobi equation (42) reproduces Newton’s
second law of motion, saying that the acceleration J ′′ is equal to the value of
some gravitational field that is determined by R. The gravitational field in our
spacetime model should somehow be encoded in R.

We are led to the following definition. Let (M, g) be a pseudo-Riemannian
manifold. For any non-trivial v ∈ TpM, we define the tidal force operator as

Fv : v⊥ −→ v⊥, Fv (u) = R(u, v , v).

Exercise 11.6.19. The operator Fv is self-adjoint, with trace −Ric(v , v).

Let us say that a vector v is cospacelike if v⊥ is positive-definite. This holds
in the most interesting cases: when M is Riemannian or when M is Lorentzian
and v is timelike. If v is cospacelike, we may use the spectral theorem and
find an orthonormal basis v1, . . . , vn−1 of v⊥ where the tidal force operator is
diagonal. If ‖v‖ = 1 we write σ = 〈v , v〉 = ±1 and easily deduce that the
eigenvectors are just the sectional curvatures multiplied by −σ:

Fv (vi) = −σK(Span(v , vi))vi .
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11.7. Calculus of variations

On a Riemannian manifold, a geodesic is a curve that locally minimises the
distance. Sometimes a geodesic γ connecting p and q minimises the distance
also globally, and in this case γ is a minimum of the length functional on all
curves going from p to q. In general, a geodesic may not be a minimum for
the length functional, not even locally, but it is still a critical point with a
well-defined index, like with Morse functions in Section 6.4.8.

The index is also defined in the slightly more general (and physically inter-
esting) setting of cospacelike geodesics in pseudo-Riemannian manifolds.

11.7.1. First variation of the length and energy. Let M be a pseudo-
Riemannian manifold. Let α : [a, b] → M be a timelike or spacelike curve
connecting two points p and q. We have ‖α′(t)‖ > 0 for all t by hypothesis.
The sign σ = sgn〈α′, α′〉 = ±1 depends on whether the curve is spacelike or
timelike.

We now consider families of (timelike or spacelike) curves γs extending γ0

with the same endpoints γs(a) = p, γs(b) = q. We define the length function

L : (−ε, ε) −→ R, L(s) = L(γs).

We are interested in particular at its behaviour at 0. Recall the coordinate
vector fields S and T of the family of curves. Here we are interested in the
variational vector field V (t) = S(0, t) on γ.

Lemma 11.7.1. We have

L′(0) = σ

∫ b

a

〈
γ′/‖γ′‖, DtV

〉
dt.

Proof. We get

L′(s) =
d

ds

∫ b

a

‖γ′s(t)‖dt =

∫ b

a

d

ds
‖T‖dt =

∫ b

a

d

ds

√
σ〈T, T 〉dt

=

∫ b

a

2σ〈DsT, T 〉
2
√
σ〈T, T 〉

dt = σ

∫ b

a

〈DtS, T 〉
‖T‖ dt.

We have used Lemma 10.2.28. For s = 0 we get the result. �

The derivative L′(0) is called the first variation of L along the family γs .
The following proposition shows that the geodesics are precisely the curves
with constant speed c whose first variation vanishes on all families.

Proposition 11.7.2. If c = ‖γ′‖ > 0 is constant, we get

L′(0) = −
σ

c

∫ b

a

〈Dtγ′, V 〉dt.

In particular L′(0) = 0 for all families of curves γs ⇐⇒ γ is a geodesic.



11.7. CALCULUS OF VARIATIONS 345

Proof. Since d
dt 〈γ

′, V 〉 = 〈Dtγ′, V 〉+ 〈γ′, DtV 〉, we integrate by parts

L′(0) =
σ

c

∫ b

a

〈
γ′, DtV

〉
dt =

σ

c
〈γ′, V 〉

∣∣∣b
a
−
σ

c

∫ b

a

〈Dtγ′, V 〉dt.

The curves γs have the same endpoints, hence V (a) = V (b) = 0 and
the formula is proved. If γ is a geodesic, then Dtγ′ = 0 and therefore L′(0).
If γ is not a geodesic, then Dtγ

′(t) 6= 0 for some t, and using a bump
function with support near t one constructs easily a vector field V along γ
with V (a) = V (b) = 0 that gives L′(0) 6= 0 when substituted in the formula.

Any V with V (a) = V (b) = 0 is the variational vector field of some γs , for
instance we may take γs(t) = expγ(t)(sV (u)). �

Corollary 11.7.3. Let γ be any (spacelike or timelike) curve connecting p
and q. We have L′(0) for all families γs ⇐⇒ γ is a reparametrised geodesic.

Proof. If we reparametrise γ so that it has constant speed c > 0, and
reparametrise correspondingly all the families γs , the length functional L is
unaffected. So we may suppose that γ has constant speed and then apply
Proposition 11.7.2 to conclude. �

It may be useful to think of all the curves connecting p to q as points in
some infinite-dimensional manifold, of variations γs as paths in this manifold,
and of the variation vector fields V at a curve γ as vectors in the (infinite-
dimensional) tangent space of γ. With this interpretation, the length L is
a function on this manifold, and the critical points for L are precisely the
reparametrised geodesics.

If you are annoyed by the fact that any reparametrisation of a geodesic is
a critical point, you probably prefer to substitute the length with the energy,
that is defined as follows. The energy of γ is

E(γ) =

∫ b

a

〈γ′(t), γ′(t)〉.

Note that the energy may be negative if the scalar product is not definite
positive. This quantity has a less appealing geometric meaning than the length,
but the removal of the square root has some pleasant consequences. The
computation of E′(0) is simpler than that of L′(0) and is left as an exercise.

Exercise 11.7.4. For every family γs of curves connecting p and q we get

E′(0) = 2

∫ b

a

〈γ′, DtV 〉dt = −2

∫ b

a

〈Dtγ′, V 〉dt.

In particular E′(0) = 0 for all families of curves γs ⇐⇒ γ is a geodesic.

Note that this is valid for any curve γ, not only spacelike or timelike. We
needed the hypothesis ‖γ′s‖ > 0 above because the norm is not smooth at
zero, but this is not required anymore for 〈γ′s , γ′s〉.
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11.7.2. Second variation of the length. Let γ : [a, b]→ M be a space-
like or timelike geodesic on M connecting two points p, q. We have L′(0) = 0

for any family γs , so it is natural to look at the second derivative L′′(0), called
the second variation of the length.

We write σ = sgn〈γ′, γ′〉 = ±1 and c = ‖γ′‖. Let S, T be the coordinate
fields of the family γs and V (t) = S(0, t) be the variational vector field. Recall
that every vector field X on γ decomposes as X⊥ + X || into a normal and
tangential component. Since γ is a geodesic, we deduce easily that (DtX)⊥ =

Dt(X
⊥) and we can hence write it as DtX⊥.

Proposition 11.7.5. We have

L′′(0) =
σ

c

∫ b

a

(
〈DtV ⊥, DtV ⊥〉 − R(V, γ′, γ′, V )

)
dt.

Proof. We have

L′′(s) =

∫ b

a

d2

ds2
‖γ′s(t)‖dt = σ

∫ b

a

d

ds

〈DtS, T 〉
‖T‖ dt

= σ

∫ b

a

(
〈DsDtS, T 〉+ 〈DtS,DsT 〉

)
‖T‖ − σ〈DtS, T 〉2/‖T‖

‖T‖2

= σ

∫ b

a

R(S, T, S, T ) + 〈DtDsS, T 〉+ 〈DtS,DtS〉 − σ〈DtS, T 〉2/‖T‖2

‖T‖

In the second equality we used the calculation done during the proof of Lemma
11.7.1. Define the vector field A(t) = DsS(0, t) on γ′. With s = 0 we get

L′′(0) =
σ

c

∫ b

a

−R(V, γ′, γ′, V ) +
d

dt
〈A, γ′〉+ 〈DtV,DtV 〉 −

〈DtV, γ′〉2

〈γ′, γ′〉

=
σ

c
〈A, γ′〉

∣∣∣b
a

+
σ

c

∫ b

a

−R(V, γ′, γ′, V ) + 〈DtV ⊥, DtV ⊥〉.

Since A(a) = A(b) = 0, the proof is complete. �

Remark 11.7.6. By the symmetries of R, we may write this equality as

L′′(0) =
σ

c

∫ b

a

(
〈DtV ⊥, DtV ⊥〉 − R(V ⊥, γ′, γ′, V ⊥)

)
dt.

Here only the normal component V ⊥ is present.

Corollary 11.7.7. If a Riemannian M has non-positive curvature, we get
L′′(0) ≥ 0 for every family γs , with a strict inequality if V is not tangential.

On a Riemannian manifold M with non-positive curvature, every geodesic
is shorter than its small perturbations. When M is complete, this may also be
deduced by applying Corollary 11.6.17 to the universal cover M̃.
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11.7.3. The index form. We now define a bilinear symmetric form on
the vector space of all fields V tangent to the geodesic γ. This bilinear form
I, called the index form, should be interpreted as the hessian of the functional
L. Given two fields V,W tangent to γ and vanishing at the endpoints, we set

I(V,W ) =
σ

c

∫ b

a

(
〈DtV ⊥, DtW⊥〉 − R(V, γ′, γ′,W )

)
dt.

The constants σ, c are defined as above. We note immediately that

I(V, V ) = L′′(0)

where L(s) = L(γs) and γs is any family of curves with variational vector field
V . The first thing to note is that a tangential vector field V lies in the radical
of I, that is I(V,W ) = 0 for any W . In fact we have

I(V, V ) = I(V ⊥, V ⊥).

If we integrate by parts, we find

(45) I(V,W ) = −
σ

c

∫ b

a

〈
DtDtV

⊥ − R(V ⊥, γ′, γ′),W⊥
〉
dt.

From this we deduce that the Jacobi fields (that vanish at the endpoints)
are also in the radical of I. Recall that such a Jacobi field exists (by definition)
only when the endpoints are conjugate along γ.

Exercise 11.7.8. The radical consists of those fields V whose normal com-
ponent V ⊥ is a Jacobi field.

11.7.4. Cospacelike geodesics. In some lucky cases the intersection form
I is positive or negative semidefinite, that is I(V, V ) ≥ 0 or I(V, V ) ≤ 0 for all
V . This holds for instance if the geodesic γ is (correspondingly) the shortest
or the longest path joining p and q. These cases may occur only in two distinct
settings, both very important from a mathematical and physical perspective.

Proposition 11.7.9. Suppose that I is positive or negative semidefinite.
Then, after possibly substituting the metric tensor g with −g, one of the
following cases holds:

(1) M is Riemannian and I is positive semidefinite.
(2) M is Lorentzian, γ is timelike, and I is negative semidefinite.

Proof. Suppose that there is a unit vector v ∈ γ′(t)⊥ ⊂ Tγ(t)M such
that the sign σ′ = 〈v , v〉 is opposite to the sign σ of 〈γ′(t), γ′(t)〉, that is
σσ′ = −1. Parallel transport v to a field V on γ, pick n ∈ N and define the
field

X(t) =
1

n
sin

2πn(t − a)

b − a V (t).
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This field vanishes at the endpoints. We find

I(X,X) =
σ

c

∫ b

a

σ′
(

2π

b − a cos
2πn(t − a)

b − a

)2

−
1

n2
sin2 2πn(t − a)

b − a R(V, γ′, γ′, V )

=
1

c

∫ b

a

−
(

2π

b − a cos
2πn(t − a)

b − a

)2

−
σ

n2
sin2 2πn(t − a)

b − a R(V, γ′, γ′, V ).

If n is sufficiently big we get I(X,X) < 0, so I cannot be positive semidefinite.
Analogously we find that if v and γ′ have the same sign then I cannot be
negative semidefinite. �

We denote both cases with a single word by saying that a geodesic γ is
cospacelike if γ′(t)⊥ is a positive definite hyperplane in Tγ(t) for some (and
hence all) t. A geodesic is cospacelike precisely if it is of one of the two types
just mentioned: either M is Riemannian, or M is Lorentzian and γ is timelike.

11.7.5. Conjugate points. Let γ : [a, b] → M be a cospacelike geodesic
on a pseudo-Riemannian manifold M, connecting two points p and q. We
have defined the index form I on the space of all variation vector fields on γ,
and shown that its radical consists of those fields V whose normal component
is a Jacobi field. We write I⊥ to denote the restriction of I to the V that are
orthogonal to γ. We now relate the definiteness of I⊥ with the existence of
conjugate points on γ.

Theorem 11.7.10. The following holds.

(1) If p has no conjugate points along γ, the index form I⊥ is definite.
(2) If q is the only conjugate point of p along γ, then I⊥ is semidefinite

and not definite.
(3) If p has a conjugate point γ(t0) with a < t0 < b, then I⊥ is indefinite.

By Proposition 11.7.9, if (1) or (2) holds the index form I⊥ is positive or
negative (semi-)definite depending on whether γ is spacelike or timelike.

Proof. (1). Pick Jacobi fields J1, . . . , Jn−1 on γ such that J1(0) = . . . =

Jn−1(0) = 0 and (DtJ1)(0), . . . , (DtJn−1)(0) form a basis of γ′(a)⊥. Jacobi
fields are orthogonal to γ, and since there are no conjugate points the vectors
J1(t), . . . , Jn−1(t) form a basis of γ′(t)⊥ for all t ∈ (a, b]. We remark that

(46) 〈Ji , DtJj〉 = 〈DtJi , Jj〉

To prove this, we see easily that the derivative along t of the difference of the
two members is zero (using the Jacobi equation and the symmetries of R), so
this difference is constant, and is actually zero at t = a.

Every orthogonal variation field V may be written as V = V iJi . With some
effort, we will prove below that

(47) 〈DtV,DtV 〉 − R(V, γ′, γ′, V ) = 〈V̇ iJi , V̇ iJi〉+
d

dt
〈V, V iDtJi〉.
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This will allow to conclude that

I(V, V ) =
σ

c

∫ b

a

〈DtV,DtV 〉 − R(V, γ′, γ′, V )

=
σ

c

∫ b

a

〈V̇ iJi , V̇ iJi〉+
σ

c
〈V, V iDtJi〉

∣∣∣b
a

=
σ

c

∫ b

a

〈V̇ iJi , V̇ iJi〉

is positive or negative definite according to the sign σ of γ′. We turn to (47):

d

dt
〈V, V iDtJi〉 =

d

dt
〈V jJj , V iDtJi〉 = 〈V̇ jJj , V iDtJi〉+ 〈V jDtJj , V iDtJi〉

+ 〈V jJj , V̇ iDtJi〉+ 〈V jJi , V iDtDtJi〉

= 2〈V̇ jJj , V iDtJi〉+ 〈V jDtJj , V iDtJi〉 − R(V, γ′, γ′, V )

= 〈DtV,DtV 〉 − 〈V̇ jJj , V̇ iJi〉 − R(V, γ′, γ′, V ).

In the second equality we used (46) and the Jacobi equation.
(2) The same argument above shows that I is semidefinite; the presence

of a Jacobi field shows that the radical is non trivial and hence I is not definite.
(3) Let J be a non-trivial Jacobi field with J(a) = J(t0) = 0. Let V be

the field on γ that equals J on [a, t0] and is zero on [t0, b]. This field is only
C0 and not smooth at t0, so we smoothen it to a normal field by modifying it
a little in the interval [t0 − ε, t0 + ε]. For every field W , using (45) we find

I(V,W ) = −
σ

c

∫ t0+ε

t0−ε

〈
DtDtV − R(V, γ′, γ′),W

〉
dt

= −
σ

c

〈
(DtV )(t0 + ε)− (DtV )(t0 − ε),W (t0)

〉
+O(ε)

=
σ

c

〈
(DtJ)(t0),W (t0)

〉
+O(ε).

In particular I(V, V ) = O(ε). Note that (DtJ)(t0) 6= 0 because J is non trivial.
Pick a field W such that W (t0) = (DtJ)(t0). For every δ ∈ R we have

I(V + δW, V + δW ) = 2δ
σ

c

〈
(DtJ)(t0), (DtJ)(t0)

〉
+ δ2I(W,W ) +O(ε).

Since γ is cospacelike we have 〈(DtJ)(t0), (DtJ)(t0)〉 > 0. If ε > 0 and |δ|
are sufficiently small, we get both negative and positive numbers, according to
the sign of δσ. Therefore I is indefinite. �

Remark 11.7.11. A more geometric proof (or at least intuition) towards
Theorem 11.7.10 may be taken in the Riemannian case. We may obtain point
(1) as a consequence of Exercise 10.6.8. Point (3) can be accepted intuitively
by saying that if we substitute the first segment [0, t0] of γ with a nearby
geodesic of the same length, we get a new curve with the same length as γ
but having an angle at t0 that can be then smoothened, to produce a strictly
shorter nearby curve. This argument is however not rigorous: nearby geodesics
do not have the same endpoint (see Warning 11.6.13) nor the same length.
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11.7.6. Bonnet – Myers Theorem. On a Riemannian manifold M, the
Cartan – Hadamard Theorem says that when the curvature is non-positive
there are no conjugate points, and hence the exponential map at any point is
a covering. As a topological consequence, the universal cover of M is Rn.

In the opposite direction, we now show that positive sectional curvature on
a Riemannian M forces the existence of conjugate points. We then deduce as
a topological consequence that the universal cover of the manifold is compact.

Actually, we do not really need all the sectional curvatures to be positive,
only their averages as measured by the Ricci tensor. Recall that Ric(v , v)

may be interpreted as the average of the sectional curvatures of the planes
containing v times the sign of 〈v , v〉, and is also minus the trace of the tidal
force operator Fv .

Let M be a pseudo-Riemannian manifold.

Proposition 11.7.12. Let γ be a unit speed and cospacelike geodesic in M
connecting p and q. If

Ric(γ′, γ′) ≥ (n − 1)C2, L(γ) ≥ π/C

for some C > 0, then p has a conjugate point along γ.

Proof. We may suppose that γ : [0, π/C] → M. Let σ be the sign of
〈γ′, γ′〉. We construct an orthogonal non-trivial vector field V on γ such that
σI(V, V ) ≤ 0, and Theorem 11.7.10 then implies that there are conjugate
points along γ.

Construct an orthonormal basis γ′, e1, . . . , en−1 at γ(0) and then parallel
transport it along γ. Consider for i = 2, . . . , n − 1 the vector field

Vi = sin(Ct)ei .

Note that V vanishes at the endpoints. We calculate

σI(Vi , Vi) =

∫ π/C

0

(
C2 cos2(Ct)− sin2(Ct)R(ei , γ

′, γ′, ei)
)
dt.

By summing along the orthogonal indices, since γ is cospacelike we get
n∑
i=2

σI(Vi , Vi) =

∫ π/C

0

(
(n − 1)C2 cos2(Ct)− sin2(Ct)Ric(γ′, γ′)

)
dt

≤
∫ π/C

0

(
(n − 1)C2 cos2(Ct)− (n − 1)C2 sin2(Ct)

)
dt = 0.

Therefore there is a Vi such that σI(Vi , Vi) ≤ 0. �

As for Cartan – Hadamard Theorem, we get a beautiful application for
Riemannian manifolds. For a constant c ∈ R, we write Ric ≥ c to indicate
that Ric(v , v) ≥ c for any unit vector v ∈ TpM at any p ∈ M. Equivalently,
the tensor Ric − cg is positive semidefinite at any p ∈ M.
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Theorem 11.7.13 (Bonnet – Myers). Let M be a complete connected
Riemannian manifold with Ric ≥ (n − 1)C2 > 0. Then M is compact with
diameter ≤ π/C, and π1(M) is finite.

The diameter of a metric space X is the sup of d(p, q) as p, q ∈ X vary.

Proof. We prove that the diameter is ≤ π/C. By contradiction, suppose
that p, q ∈ M have distance> π/C. SinceM is complete, there is a minimising
geodesic γ connecting p and q, see Proposition 10.3.2. Since L(γ) > π/C,
the point p has a conjugate along γ by Proposition 11.7.12. Theorem 11.7.10
hence says that I(γ) is indefinite and thus γ is not minimising, a contradiction.

Finite diameter and complete easily imply compact. The universal cover M̃
inherits a Riemannian structure with the same inequality Ric ≥ (n−1)C2 > 0.
By what just said M̃ is compact, hence the covering M̃ → M has finite index
and π1(M) is finite. �

Remark 11.7.14. It is not enough to require Ric > 0, since the paraboloid
z = x2 + y2 in R3 has K > 0 everywhere and is not compact.

11.8. Locally symmetric spaces

We introduce a class of pseudo-Riemannian manifolds that contains the
constant curvature ones and can be studied elegantly within a uniform frame-
work. These are the manifolds where the Riemann tensor R is constant and
are called locally symmetric spaces.

11.8.1. Definition. As alluded in the introduction, we say that a con-
nected pseudo-Riemannian manifold (M, g) is a locally symmetric space if
∇R = 0. Here is an important example.

Proposition 11.8.1. If M has constant curvature, it is locally symmetric.

Proof. We know from Proposition 11.2.3 that R is constructed from g by
tensor products and linear combinations, hence ∇g = 0 implies ∇R = 0. �

The product of two locally symmetric spaces is locally symmetric: note
that this is not true for constant curvature manifolds (unless both manifolds
have zero constant curvature). Therefore locally symmetric spaces form a
strictly larger class than constant curvature ones, as they include for instance
S2 × S2 or S2 × R.

11.8.2. Polar maps. Let (M, g) and (N, h) be two pseudo-Riemannian
manifolds. Consider two points p ∈ M and q ∈ N. Let f : TpM → TqN

be a given linear map. For every normal neighbourhood Z of p such that
f (exp−1

p (Z)) ⊂ Vq we have a well-defined polar map

ϕ = expq ◦f ◦ exp−1
p : Z −→ N.
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If f is an isomorphism and Z is sufficiently small, this map is a diffeomor-
phism onto its image, a normal neighbourhood of q. In general we have

(48) ϕ(γv (t)) = γf (v)(t)

for any v ∈ TpM and for any t such that γv (t) ∈ Z. We get

dϕp = f .

If N is complete, the polar map is defined on any normal neighbourhood
Z of p. The following proposition says that any local isometry sending p to q
must be the extension of a polar map of a linear isometry.

Proposition 11.8.2. If ψ : M → N is a local isometry sending p to q, then
ϕ = ψ|Z for any polar map ϕ : Z → N of its differential dψp.

Proof. A local isometry ψ sends geodesics to geodesics and therefore (48)
is fulfilled also by ψ, with f = dψp. �

11.8.3. Local isometries. A nice feature of locally symmetric spaces is
that every isometry of tangent spaces that preserves the Riemann tensors may
be realised locally by a local isometry of manifolds.

Lemma 11.8.3. Let (M, g) and (N, h) be locally symmetric spaces. Let
p ∈ M, q ∈ N and f : TpM → TqN be a linear isomorphism. Suppose that f
preserves both the metric and the Riemann tensors, that is

f ∗(h(q)) = g(p), f ∗(RN(q)) = RM(p).

Then any polar map ϕ of f is a local isometry.

Proof. Let ϕ : Z → ϕ(Z) be a polar map. We must show that for every
expp(v) ∈ Z the differential dϕexpp(v) = dϕγv (1) is an isometry. Recall that

ϕ(γv (t)) = γf (v)(t).

Fix an orthonormal basis e1, . . . , en for TpM and parallel transport it along
the geodesic γv . Since f preserves the metric tensor, the basis e ′1 = f (e1), . . . , e ′n =

f (en) of TqN is also orthonormal and we parallel transport it along the geodesic
γf (v).

Since f preserves the Riemann tensors, both RM and RN have the same
coordinates Ri jk l in p and q with respect to the chosen basis. Moreover, since
∇RM = 0 and ∇RN = 0, the coordinates of RM and RN are constantly the
same Ri jk l at every point of γv and γf (v) with respect to the transported basis.

By what just said, the Jacobi equations along these two geodesics, written
in coordinates as in (43), are exactly the same. By (44) the differential dϕγv (1),
written in coordinates, is the identity, hence an isometry. �

This lemma has important consequences. We refer to Section 10.4.3.

Corollary 11.8.4. Every locally symmetric spaceM is locally homogeneous.
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Proof. For every p ∈ M, let Ap ⊂ M be the subset consisting of all q ∈ M
such that there is an isometry ϕ : U(p)→ V (q) of neighbourhoods sending p
to q. We prove that Ap = M.

Let Z be a normal neighbourhood of p. By parallel-transporting along
radial geodesics we construct for every q ∈ Z an isomorphism TpM → TqM

that preserves both the metric and the Riemann tensor (since ∇g = 0 and
∇R = 0). By Lemma 11.8.3 we get q ∈ Ap. Therefore Z ⊂ Ap and hence Ap
is open. The connected manifold M is partitioned in open non-empty subsets
{Ap}p∈M , hence Ap = M for every p ∈ M. �

Two locally homogeneous manifolds M and N are locally isometric if the
disjoint union M t N is again locally homogeneous. That is, for some (equiv-
alently, every) p ∈ M, q ∈ N there is an isometry U(p)→ V (q) of neighbour-
hoods sending p to q.

Corollary 11.8.5. Two symmetric spaces M, N are locally isometric ⇐⇒
there is a curvature-preserving linear isometry TpM → TqN for some p, q.

Corollary 11.8.6. Every constant curvature manifold M is locally homoge-
neous. Two pseudo-Riemannian manifolds M and N with the same signature
and the same constant sectional curvature K are locally isometric.

Proof. The signature and K determine R, see Proposition 11.2.3. �

If a pseudo-Riemannian manifold M has constant curvature K, it is harm-
less to suppose that K ∈ {−1, 0, 1}, since this can always be achieved by
rescaling the metric by an appropriate factor.

Corollary 11.8.7. A pseudo-Riemannian M with signature (p, q) and con-
stant curvature 1, 0,−1 is locally isometric respectively to Sp,q, Rp,q, Hp,q.

The following corollary explains the term “locally symmetric” and furnishes
an alternative curvature-free definition of locally symmetric spaces.

Corollary 11.8.8. A semi-Riemannian manifold M is locally symmetric⇐⇒
at every p ∈ M any polar map of −id : TpM → TpM is a local isometry.

Proof. (⇒). The linear map −id preserves both the metric and the Rie-
mann tensor, so by the lemma any polar map is an isometry.

(⇐). The polar map is an isometry and hence preserves R and ∇R. Since
its differential at p is −id we deduce that for every u, v , w, z ∈ TpM

∇uR(v , w, z) = −∇−uR(−v ,−w,−z) = −∇uR(v , w, z)

and therefore ∇R(p) = 0. This holds at every p ∈ M. �

In other words, M is locally symmetric⇐⇒ at every p there is a local isom-
etry that fixes p and whose differential at TpM is −id (such a local isometry
must restrict to a polar map).
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α α̃

p

Z1

Z2

Z3 Z4

p′

M N

qϕ

Figure 11.3. The developing map ϕ. The dots on the left indicate the
points p = α(0), α(t1), α(t2), α(t3), α(1) = q

11.8.4. Developing map. We would like to extend the local isometries
found in the previous section to a global map. To accomplish this task we
need a simply connected domain and a geodesically complete target.

Theorem 11.8.9. LetM, N be locally symmetric spaces. IfM is simply con-
nected and N is geodesically complete, any curvature-preserving linear isometry
f : TpM → TqN is the differential of a unique local isometry ϕ : M → N.

Proof. The construction of ϕ from f is similar to that (usually taught in
the topology courses) of the lift of a map X → Y to a X → Ỹ when Ỹ → Y

is a covering and X is simply connected. The role of “well-covered subsets” is
somehow played here by the “totally normal subsets”.

For any point p′ ∈ M, we define ϕ(p′) as follows. Pick an arc α : [0, 1]→
M joining p and p′. Cover the arc with finitely many totally normal sets
Z1, . . . , Zk . We may suppose that 0 = t0 < t1 < · · · < tk = 1 and
α([ti−1, ti ]) ⊂ Zi for all i , see Figure 11.3. We define inductively a local
isometry ϕi : Zi → N for i = 1, . . . , k , by applying Lemma 11.8.3 to f for ϕ1

and then to (dϕi)ti for ϕi+1 for each i > 0.
By construction the local isometries ϕi glue along α and project it to a

new smooth curve α̃ : [0, 1] → N. More precisely, we set α̃(t) = ϕi(t) if
t ∈ [ti−1, ti ], see Figure 11.3. We define ϕ(p′) = α̃(1).

We leave as an exercise to show that the curve α̃ does not depend on the
chosen covering {Zi}. If we pick another curve α′ joining p to p′, since M
is simply connected there is a homotopy (fixing the endpoints) from α to α′,
which can be projected (exercise) to a homotopy (fixing the endpoints) from
α̃ to α̃′. Therefore α̃(1) = α̃′(1) and ϕ(p′) is uniquely defined.

We have defined a map ϕ : M → N. By prolonging α smoothly with curves
that lie in Zk we easily get that ϕ|Zk = ϕk is a local isometry near p′. Since
p′ is generic, we get that ϕ is a local isometry. �

The local isometry ϕ is sometimes called the developing map of f .
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Corollary 11.8.10. Two geodesically complete simply connected locally
symmetric spaces M and N are isometric ⇐⇒ there is a curvature-preserving
linear isometry TpM → TqN for some p, q.

Proof. (⇒) is obvious. (⇐) From the theorem we get a local isometry
ϕ : M → N, which is a pseudo-Riemannian covering by Exercise 10.4.7. Since
M and N are both simply connected, ϕ is an isometry. �

11.8.5. Manifolds with constant curvature. Theorem 11.8.9 has a re-
ally strong impact to the theory of constant curvature pseudo-Riemannian
manifolds. We start by analysing the Riemannian ones.

Corollary 11.8.11. Every complete simply connected Riemannian manifold
with constant curvature −1, 0, 1 is isometric to Hn, Rn, Sn respectively.

Completeness is of course crucial: many open subsets of Hn, Rn, Sn are
simply connected and not complete, and have constant curvature: these are
certainly not isometric to Hn, Rn, Sn.

Before stating a similar result for more general pseudo-Riemannian mani-
folds, let us recall that Sp,q and Hp,q are geodesically complete, and also simply
connected (see Proposition 11.5.6) in all cases except S0,n ∼= Hn,0 ∼= Rn tRn
and S1,n−1 ∼= Hn−1,1 ∼= S1×Rn−1. Therefore we define S̃0,n and H̃n,0 as one
of the two components of S0,n and Hn,0, and S̃1,n−1, H̃n−1,1 as the universal
covers of S1,n−1, Hn−1,1, with the induced metric (which is still geodesically
complete by Exercise 10.4.8).

Corollary 11.8.12. Every geodesically complete simply connected pseudo-
Riemannian manifold with signature (p, q) and constant curvature −1, 0, 1 is
isometric to Hp,q (H̃p,q if q ≤ 1), Rp,q, Sp,q (S̃p,q if p ≤ 1) respectively.

Let us denote for simplicity by X(p,q)
K the unique simply connected pseudo-

Riemannian manifold with signature (p, q) and constant curvatureK = −1, 0, 1

We now drop the simply connected hypothesis and obtain an elegant the-
orem that uses many of the techniques that we have seen to characterise
algebraically all the complete manifolds with constant curvature and arbitrary
signature.

Theorem 11.8.13. Every geodesically complete pseudo-Riemannian mani-
fold with signature (p, q) and constant curvature K ∈ {−1, 0, 1} is obtained
as a quotient X(p,q)

K /Γ for some subgroup Γ < Isom
(
X(p,q)
K

)
acting freely and

property discontinuously. We get a 1-1 correspondence
geodesically complete manifolds

with constant curvature K

and signature (p, q)

up to isometry

←→


subgroups Γ < Isom
(
X(p,q)
K

)
acting freely

and properly discontinuously

up to conjugation

 .
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Proof. Every M = X(p,q)
K /Γ with Γ < Isom(X(p,q)) acting freely and prop-

erly discontinuously is a smooth manifold that inherits a constant curvature
structure, and is geodesically complete by Exercise 10.4.8. Conversely, given
a geodesically complete constant curvature M, its universal cover also inherits
a geodesically complete constant curvature structure and is simply connected,
hence it is isometric to X(p,q)

K by Corollary 11.8.12. Since the universal cover-
ing is regular, by Proposition 1.2.8 we have M = X(p,q)/Γ where Γ is the deck
transformations group, that acts freely and properly discontinuously. Moreover
Γ acts and by isometries by construction.

When passing from the manifold M to the group Γ, the only choice we
made is an isometry between the universal cover of M and X(p,q)

K . Different
choices produce conjugate groups Γ. This shows the 1-1 correspondence. �

11.9. Miscellaneous facts

11.9.1. Killing fields on manifolds with negative Ricci curvature. Let
X be a Killing field on a Riemannian manifold M. We study the function

f (p) =
1

2
‖X(p)‖2.

We may compute its gradient, Hessian, and Laplacian.

Lemma 11.9.1. The following holds:

(1) gradf = −∇XX,
(2) (∇2f )(v , v) = ‖∇vX‖2 − R(v ,X,X, v),
(3) ∆f = −‖∇X‖2 + Ric(X,X).

Proof. Extend v to a vector field V . Recall from Proposition 10.4.13 that
∇X is a skew-adjoint (1, 1) tensor field and 〈∇vX, v〉 = 0. Therefore

∇v f = 〈∇vX,X〉 = −〈v ,∇XX〉,
gradf = −∇XX,

(∇2f )(v , v) = 〈∇v (gradf ), v〉 = −〈∇v∇XX, v〉
= −〈∇X∇V X, V 〉 − 〈∇[V,X]X, V 〉 − R(V,X,X, V )

= −X〈∇V X, V 〉+ 〈∇V X,∇XV 〉+ 〈[V,X],∇V X〉 − R(V,X,X, V )

= 〈∇V X,∇V X〉 − R(V,X,X, V ),

If we pick an orthonormal basis at the point we find

∆f = −gi j∇i∇j f = −
n∑
i=1

‖∇iX‖2 +

n∑
i=1

R(ei , X,X, ei)

= −‖∇X‖2 + Ric(X,X).

The proof is complete. �

Here is an interesting consequence.
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Theorem 11.9.2 (Bochner). If M is a compact oriented Riemannian man-
ifold with Ric ≤ 0, every Killing field is parallel. If Ric < 0, there are no
non-trivial Killing fields.

Proof. Let X be a Killing field and set f (p) = 1
2‖X(p)‖2. Corollary 10.5.13

and Lemma 11.9.1 give

0 =

∫
M

∆f =

∫
M

−‖∇X‖2 +

∫
M

Ric(X,X).

If Ric ≤ 0 we get ∇X = 0 and Ric(X,X) = 0. If Ric < 0 we get X = 0. �

Compactness is required, since the Euclidean R2 has the Killing field
X(x, y) = (−y , x), that is clearly not parallel. Note also that every con-
stant vector field in Rn descends to a parallel Killing field in the flat torus
T = Rn/Zn . Hence Ric ≤ 0 is not enough to exclude the presence of non-
trivial Killing fields.

11.9.2. Killing fields on manifolds with positive sectional curvature.
We now prove the following.

Proposition 11.9.3 (Berger). On an even-dimensional compact Riemannian
manifold M with positive sectional curvature, every Killing field X has a zero.

Proof. Consider again f (p) = 1
2‖X(p)‖2. Suppose by contradiction that

X has no zeroes. Then f has a global positive minimum at some p. Being a
minimum, we have gradf (p) = 0 and ∇2f (p) ≥ 0. Therefore at p we get

∇XX = 0, ‖∇vX‖2 − R(v ,X,X, v) ≥ 0

for every v ∈ TpM. Since M is even-dimensional, the kernel of the skew-
adjoint operator ∇X at p is also even-dimensional. It contains X(p), and
hence also some other vector v linear independent from X(p). Hence ∇vX =

0, and the hypothesis on the sectional curvature gives R(v ,X,X, v) > 0, a
contradiction. �

This fact is not true on odd-dimensional manifolds, since on S2n−1 we may
have the Killing field X(x1, . . . , x2n) = (x2,−x1, . . . , x2n,−x2n−1).

11.10. Exercises

Exercise 11.10.1. Let ϕ : M → M be an isometry of a Riemannian manifold.
Show that the fixed points form a disjoint union of closed geodesic submanifolds of
M (possibly of different dimensions).

Exercise 11.10.2. Let X be a Killing vector field on a Riemannian manifold (M, g).
Show that X restricts to a Jacobi field on any geodesic. Deduce that X is determined
by the values of X(p) and ∇X(p) at any point p ∈ M. Remembering that ∇X(p) is
antisymmetric, deduce that the Killings field form a Lie algebra of dimension at most
(n + 1)n/2.
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Exercise 11.10.3. Let X be a Killing vector field on a Riemannian manifold (M, g).
The zero set of X is a disjoint union of geodesic submanifolds of even codimension.



CHAPTER 12

Lie groups

A Lie group is a group that is also a smooth manifold. Lie groups are
everywhere: most symmetry groups that one encounters in geometry are nat-
urally Lie groups. The fundamental examples are matrix groups like GL(n,R)

and O(n).

12.1. Basics

We define the Lie groups and start to investigate their properties.

12.1.1. Definition. A Lie group is a smooth manifold G equipped with a
group structure, such that the multiplication and inverse maps

G × G −→ G, (g, h) 7−→ gh,

G −→ G, g 7−→ g−1

are both smooth. This is equivalent to requiring the map G×G → G, (g, h) 7→
gh−1 to be smooth.

Here are some important examples.

Example 12.1.1 (Abelian). The first examples of Lie groups are Rn with
the sum operation and S1 with the product, where we see S1 ⊂ C as the unit
complex numbers. These Lie groups are abelian.

Example 12.1.2 (Linear and orthogonal groups). A more elaborated and
equally important example is the general linear group GL(n,R) of all n × n
invertible matrices with the product operation. This Lie group contains also
many other interesting Lie groups, such as the special linear group SL(n,R),
the orthogonal group O(n), and the special orthogonal group SO(n). We
studied the topology of these manifolds in Section 3.9.

Example 12.1.3 (Products). The product G × H of two Lie groups is
naturally a Lie group. For instance, the n-torus S1 × · · · × S1 is an abelian
compact Lie group of dimension n.

Example 12.1.4 (Affine transformations). Another example is the group
Aff(Rn) = GL(n,R) o Rn of all affine transformations of Rn. As a set, we
have Aff(Rn) = GL(n,R) × Rn and we use this bijection to assign a smooth
manifold structure to Aff(Rn). The group structure is not a direct product,
but the group operations are smooth nevertheless.

359
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A Lie group of dimension 0 is called discrete. Every countable group G
like Z may be given the structure of a Lie group by assigning it the discrete
topology. Of course a discrete Lie group is connected if and only if it is trivial.

12.1.2. Homomorphisms. A Lie group homomorphism is a smooth ho-
momorphism f : G → H between Lie groups. As usual, this is an isomorphism
if f is invertible, that is if f is a diffeomorphism, and an automorphism if in
addition G = H. For instance, every conjugation G → G, x 7→ g−1xg by some
fixed element g ∈ G is an automorphism of the Lie group G.

Example 12.1.5. The Lie groups S1 and SO(2) are isomorphic, via the
map

S1 −→ SO(2), e iθ 7−→
(

cos θ − sin θ

sin θ cos θ

)
.

12.1.3. Left and right multiplication. If g ∈ G, the left and right mul-
tiplications by g are the maps

Lg : G → G, x 7→ gx,

Rg : G → G, x 7→ xg.

Both maps are diffeomorphisms, with inverses Lg−1 and Rg−1 , but are not Lie
group isomorphisms, unless g = e. The maps Lg and Rg′ commute for all
g, g′ ∈ G. Conjugation by g is just Lg−1 ◦ Rg.

12.1.4. Lie subgroups. Let G be a Lie group. A Lie subgroup of G is
the image of any injective Lie group homomorphism H ↪→ G that is also an
immersion. We identify H with its image and write H < G. For instance, O(n)

is a Lie subgroup of GL(n,R).
We require H to be “injectively immersed” in G instead of the stronger and

nicer “embedded” because we do not want to rule out the following types of
Lie subgroups:

Example 12.1.6. Pick λ ∈ R \ Q and consider the injective immersion
R → S1 × S1, t 7→ (e2πit , e2πiλt). The image is a dense Lie subgroup of
S1 × S1. See Exercise 5.5.4.

The reason for allowing non-embedded Lie subgroups will be apparent in
the next section. We exhibit more examples.

Example 12.1.7. The Lie group Aff(Rn) may be embedded as a Lie sub-
group of GL(n + 1,R), by representing the affine transformation x 7→ Ax + b

via the matrix (
A b

0 1

)
.
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Example 12.1.8. The Heisenberg group is the Lie subgroup of SL(3,R)

formed by all the matrices 1 a c

0 1 b

0 0 1


where a, b, c ∈ R vary. It is diffeomorphic to R3, but it is not abelian.

12.1.5. Identity connected component. Let G be a Lie group. We de-
note by G0 ⊂ G the connected component of G containing the identity e ∈ G.
The following may be seen as the first interesting result in Lie groups theory.
The proof mixes topological and group theory arguments.

Proposition 12.1.9. The component G0 is a normal Lie subgroup.

Proof. For every g ∈ G, the left multiplication Lg is a diffeomorphism and
hence permutes the connected components of G. If g ∈ G0, then Lg sends e
to g and hence sends G0 to itself. Therefore gh ∈ G0 for all g, h ∈ G0, so G0

is closed under multiplication.
Analogously, the inverse map g 7→ g−1 permutes the connected compo-

nents of G and fixes e, hence leaves G0 invariant. Therefore G0 is a subgroup.
Along the same line, for every g ∈ G the conjugation x 7→ g−1xg is a diffeo-
morphism that fixes e and hence leaves G0 invariant. So G0 is normal. �

The quotient G/G0 is naturally a discrete Lie group.

Example 12.1.10. We have O(n)0 = SO(n), while GL(n,R)0 consists of
all invertible matrices with positive determinant.

12.1.6. Identity neighbourhoods. Let G be a Lie group. If U, V ⊂ G are
subsets, we construct more subsets as follows:

UV = {uv | u ∈ U, v ∈ V }, U−1 = {u−1 | u ∈ U}.
If U, V are neighbourhoods of the identity, then both UV and U−1 also are.
We can use this to prove the following.

Proposition 12.1.11. If G is connected, any neighbourhood U of the iden-
tity generates G.

Proof. We can suppose that U is open and U = U−1, otherwise we substi-
tute U with U ∩U−1. The subgroup generated by U is H = ∪∞n=1U

n. Each Un

is open, so H is an open subgroup of G. Its left cosets are also open. Since G
is connected, we get G = H. �

12.1.7. Universal cover. Let G be a connected Lie group, and G̃ be its
universal cover. We show that the Lie group structure lifts from G to G̃.

Proposition 12.1.12. There is a natural Lie group structure on G̃ such that
the cover π : G̃ → G is a Lie groups homomorphism.
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Proof. We fix an arbitrary identity ẽ ∈ π−1(e). Since G̃ is simply con-
nected, both the product G × G → G and the inversion G → G lift to two
smooth maps G̃× G̃ → G̃ and G̃ → G̃ between the universal covers, such that
(ẽ, ẽ) goes to ẽ and ẽ goes to ẽ, respectively. These define a product and
inverse structure on G̃. Using the unique lift property of paths we can prove
that these indeed satisfy the group axioms (exercise). �

We have discovered that every connected Lie group has a universal cover.
The universal cover of S1 is of course R. For n ≥ 3, the spin group is defined
as the universal cover of SO(n):

Spin(n) = S̃O(n).

12.1.8. Coverings. Let a covering of Lie groups be a homomorphism of
connected Lie groups G → H that is also a smooth covering. The universal
cover G̃ → G constructed above is one example. In general, it is quite easy to
understand when a Lie group homomorphism is a covering.

Proposition 12.1.13. A Lie group homomorphism f : G → H between con-
nected Lie groups is a smooth covering ⇐⇒ dfe is invertible.

Proof. The implication ⇒ is obvious, so we prove ⇐. Since dfe is invert-
ible, there are open neighbourhoods U and V of e ∈ G and e ∈ H such that f
maps diffeomorphically U to V .

For every h ∈ H, and every g ∈ f −1(h), we define

Vh = Lh(V ), Ug = Lg(U).

These are open neighbourhoods of h and g, and one sees easily that

f −1(Vh) =
⊔

g∈f −1(h)

Ug.

The restriction of f to Ug is a diffeomorphism onto Vh, therefore f is a smooth
covering. �

Here is a concrete way to build coverings of Lie groups:

Proposition 12.1.14. Let G be a Lie group and Γ < Z(G) be a discrete
central subgroup. The quotient G/Γ is naturally a Lie group and G → G/Γ is
a regular covering of Lie groups, with deck transformation group Γ.

Proof. The action of Γ on G by multiplication is smooth, free, and properly
discontinuous (exercise). Proposition 3.5.5 applies. �

We now want to prove a converse of this proposition.

Proposition 12.1.15. Let G be a connected Lie group. Every discrete
normal subgroup Γ ⊂ G is central.
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Proof. Pick γ ∈ Γ. For every g ∈ G, choose a path gt ∈ G connecting
g0 = e and g1 = g. By normality g−1

t γgt is a path in Γ, that must be constant,
so g−1γg = γ for all g ∈ G. �

Here is a converse for Proposition 12.1.14:

Proposition 12.1.16. Every covering of Lie groups G → H is as in Propo-
sition 12.1.14. That is, Γ = kerG is discrete and central and H = G/Γ.

Proof. The kernel Γ is the fibre of e and is hence discrete. Being also
normal, it is central by the previous proposition. �

By assembling all our discoveries, we obtain the following.

Corollary 12.1.17. Every connected Lie group is a quotient G/Γ of a simply
connected Lie group G along some discrete central subgroup Γ.

The classification of connected Lie groups hence reduces to the classifi-
cation of simply connected ones (and their discrete central subgroups). The
classification of simply connected Lie groups is hence a fundamental topolog-
ical problem, that is elegantly transformed into an algebraic one through the
fundamental notion of Lie algebra that we introduce in the next section.

We close our investigation with a corollary.

Corollary 12.1.18. The fundamental group of every Lie group is abelian.

12.2. Lie algebra

One of the most important aspects of Lie groups G is the leading role
played by the tangent space TeG at the identity e ∈ G, that has a natural
structure of Lie algebra, see Definition 5.4.2.

12.2.1. Left-invariant vector fields. Let G be a Lie group. We now
consider the tangent space TeG at the identity e ∈ G. We note that for every
g ∈ G the differential of Lg yields an isomorphism

(dLg)e : TeG −→ TgG

on tangent spaces. Therefore we can use left-multiplication to identify canon-
ically all the tangent spaces to TeG, and this is a crucial aspect of Lie groups.

In particular, every fixed vector v ∈ TeG extends canonically to a vector
field X in G by left-multiplication, as follows:

X(g) = (dLg)e(v).

The vector field X is left-invariant, that is it is invariant under the diffeomor-
phisms Lh, for all h ∈ G. Indeed we have

X(hg) = (dLhg)e(v) = (dLh)g ◦ (dLg)e(v) = (dLh)g(X(g)).
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Every left-invariant vector field is clearly constructed in this way. We have
obtained a natural isomorphism between TeG and the subspace of X(G) con-
sisting of all the left-invariant vector fields. (Recall that X(G) is the space of
all vector fields in G.) We will henceforth identify these two spaces along this
isomorphism.

By replacing Lg with Rg in the construction we would get analogously a
natural isomorphism between TeG and the subspace of all right-invariant vector
fields. Note that a left-invariant vector field is not necessarily right-invariant,
so the two subspaces of X(G) may differ.

12.2.2. Parallelisability. The first important consequence that we can
draw form our discovery is the following.

Proposition 12.2.1. Every Lie group G is parallelisable.

Proof. Every basis v1, . . . , vn of TeG extends by left-multiplication to n
left-invariant vector fields X1, . . . , Xn on G that trivialise the bundle. �

Corollary 12.2.2. Every Lie group G is orientable.

12.2.3. Lie algebra. Let G be a Lie group. We have identified TeG with
the subspace of left-invariant vector fields in X(G). We now note the following.

Proposition 12.2.3. If X, Y ∈ X(G) are left-invariant, then [X, Y ] also is.

Proof. If two vector fields X, Y are invariant under some diffeomorphism,
then their bracket also is. �

This observation shows that the space TeG of all left-invariant vector fields
is closed under the Lie bracket [, ]. In other words TeG is a Lie subalgebra of
X(G), and it is such an important object that it deserves a new symbol:

g = TeG.

This is the Lie algebra of the Lie group G. The Lie algebra of Lie groups like
GL(n,R), O(n), etc. is usually denoted as gl(n,R), o(n), etc.

12.2.4. Examples. On Rn, a vector field is left-invariant if and only if it
is constant, and the bracket of two constant vector fields is zero. Therefore
the Lie algebra of Rn is Rn with the trivial Lie bracket. A Lie algebra with
trivial Lie bracket is called abelian.

Analogously, the Lie algebra of S1 is R with trivial Lie bracket. The Lie
algebra of a product of Lie groups is just the product of their Lie algebras:
in particular the Lie algebra of S1 × · · · × S1 is again Rn with the trivial Lie
bracket.

A more interesting example is GL(n,R). Being an open subset of the
vector space M(n) of all n × n matrices, its Lie algebra gl(n,R) is M(n) as a
vector space, and we only need to understand the Lie bracket.
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Proposition 12.2.4. The Lie bracket of A,B ∈ gl(n,R) is

[A,B] = AB − BA.

Proof. Since GL(n,R) is an open subset of M(n), a vector field is simply a
map GL(n,R)→ M(n). Every vector A ∈ M(n) tangent at the origin extends
by left-multiplication to the vector field X 7→ XA. Similarly to Exercise 5.4.7,
one can check (exercise) that the bracket of two vector fields X 7→ XA and
X 7→ XB is X 7→ X(AB − BA). �

In particular, the Lie algebra gl(n,R) is non-abelian as soon as n ≥ 2.

12.2.5. Homomorphisms. Every Lie group homomorphism f : G → H

induces a linear map f∗ : g→ h which is just the differential f∗ = dfe .

Proposition 12.2.5. The map f∗ : g→ h is a Lie algebra homomorphism.

Proof. The homomorphism f commutes with left-multiplication, that is

f ◦ Lg = Lf (g) ◦ f

for every g ∈ G. This implies that a left-invariant vector field X ∈ g and its
image f∗(X) ∈ h are f -related. Exercise 5.4.8 says that for every X, Y ∈ g

the vector fields [X, Y ] and [f∗(X), f∗(Y )] are also f -related, so f∗([X, Y ]) =

[f∗(X), f∗(Y )] as required. �

During the proof we have also discovered that for every X ∈ g the vector
fields X and f∗(X) are f -related.

12.2.6. Lie subgroups. A Lie subgroup H < G is by definition the image
of an injective immersion and homomorphism, so by the previous discussion
the Lie algebra h of H is naturally a Lie subalgebra of g.

This implies in particular that the Lie algebra of any Lie subgroup of
GL(n,R) is completely determined as soon as we know its tangent space at
the identity: there is no need of computing the Lie bracket again since it will
always be [A,B] = AB − BA.

For instance, we know from Propositions 3.9.1 and 3.9.2 that

sl(n,R) =
{
A ∈ M(n,R)

∣∣ trA = 0
}
,

o(n,R) = so(n,R) =
{
A ∈ M(n,R)

∣∣ tA = −A
}
,

where both sl(n,R) and o(n,R) are subalgebras of gl(n,R). One verifies easily
that they are indeed both closed under the Lie bracket multiplication.

12.2.7. From Lie subalgebras to Lie subgroups. Here is a striking ap-
plication of the Frobenius Theorem.

Theorem 12.2.6. Let G be a Lie group. For every subalgebra h ⊂ g there
is a unique connected Lie subgroup H < G whose Lie algebra is h.
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Proof. A subalgebra h ⊂ g is in particular a subspace of g = TeG, and by
left-multiplication it extends to a distribution D in G, defined as

(49) Dg = (dLg)e(h) ⊂ TgG

for every g ∈ G. Since h is a subalgebra, the distribution D is involutive.
To prove this, pick k left-invariant vector fields X1, . . . , Xk generating h. By
construction they are tangent to D. Since h is a subalgebra, their brackets
[Xi , Xj ] are still in h and hence are also tangent to D. Now Exercise 5.5.10
shows that D is involutive.

By the Frobenius Theorem 5.5.9, there is a foliation F of G tangent to
D. Let H be the leaf of F containing the identity e. It is an injectively
immersed manifold in G, with tangent space TeH = h. For every g ∈ G, the
diffeomorphism Lg preserves D and hence permutes the leaves of F . If h ∈ H,
then Lh−1 sends h ∈ H to e ∈ H and hence preserves the leaf H. This implies
that H is a subgroup, and hence a Lie subgroup.

If H < G is connected with Lie algebra h, we leave as an exercise to show
that H must be obtained from h in the way just described, so it is unique. �

We have discovered a beautiful natural 1-1 correspondence:{
connected Lie subgroups of G

}
←→

{
Lie subalgebras of g

}
.

We note that the subgroup H < G corresponding to h is not guaranteed to be
embedded, and there is no easy way to understand from h alone whether H < G

is embedded or not. In fact, the pleasure of obtaining such a powerful and
elegant theorem is the main reason for allowing non-embedded Lie subgroups
in our definition.

12.2.8. Foliations. The proof of Theorem 12.2.6 also displays a nice geo-
metric phenomenon that is worth emphasising. Let G be a Lie group. Given a
subalgebra h ⊂ g, by left-multiplication we get an integrable distribution D as
in (49), and hence a foliation F of G. We write Fh to stress its dependence
on h. The construction implies easily the following fact.

Proposition 12.2.7. Let H < G be a Lie subgroup with Lie subalgebra
h ⊂ g. The left cosets of H are unions of leaves of the foliation Fh.

Corollary 12.2.8. Every embedded Lie subgroup H < G is closed.

Proof. Every embedded union of leaves in a foliation is closed. �

12.2.9. Local homomorphisms. We now pass from subgroups to homo-
morphisms; that is, we ask ourselves if every Lie algebra homomorphism should
be induced by some Lie group homomorphism. This is true only locally.

A local homomorphism between two Lie groups G and H is a smooth map
f : U → H defined on some neighbourhood U of e ∈ G, such that

f (ab) = f (a)f (b) ∀a, b, ab ∈ U.
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Here is a partial converse to Proposition 12.2.5.

Theorem 12.2.9. Let G,H be Lie groups and F : g → h be a Lie algebra
homomorphism. There is a local homomorphism f : U → H with dfe = F .

Proof. The graph of the map F is

f =
{(
X, F (X)

) ∣∣ X ∈ g
}
⊂ g× h

and it is a Lie subalgebra of g × h, the Lie algebra of G × H. By Theorem
12.2.6 there is a Lie subgroup K ⊂ G ×H with Lie algebra f.

The projections π1 : K → G and π2 : K → H are Lie group homomor-
phisms. The differential of π1 at (e, e) ∈ K is invertible (it is (X, F (X)) 7→ X)
so π1 is a local diffeomorphism at (e, e). Thus we can define on some open
neighbourhood U of e ∈ G the local homomorphism

f : U → H, f = π2 ◦ π−1
1 .

Its differential is clearly F . �

With similar techniques we obtain also a uniqueness result.

Proposition 12.2.10. Let G,H be Lie groups. If G is connected, two ho-
momorphisms f , f ′ : G → H with the same differentials f∗ = f ′∗ must coincide.

Proof. Following the previous proof, the graphs of f and f ′ are two con-
nected Lie subgroups K,K′ ⊂ G × H with the same Lie subalgebra f, and
hence must coincide, that is f = f ′. �

If G is simply connected, existence is also achieved.

Proposition 12.2.11. Let G,H be Lie groups. If G is simply connected,
every Lie algebra homomorphism g→ h is the differential of a unique Lie group
homomorphism G → H.

Proof. In the proof of Theorem 12.2.9, the map π1 : K → G is a smooth
covering by Proposition 12.1.13. Being G simply connected, the map π1 is an
isomorphism, so we can define f = π2 ◦ π−1

1 : G → H and conclude. �

12.2.10. Simply connected Lie groups. The results just stated have the
following important consequence.

Corollary 12.2.12. Two simply connected Lie groups are isomorphic ⇐⇒
their Lie algebras are.

Proof. Every isomorphism g→ h gives rise to two homomorphisms G → H

and H → G, whose composition is the identity because its differential is. �

Remember that Corollary 12.1.17 reduces the problem of classifying con-
nected Lie groups to the simply connected ones. Now Corollary 12.2.12 in turn
translates this task into the purely algebraic problem of classifying all the Lie



368 12. LIE GROUPS

algebras (to be precise, only the Lie algebras that arise from some Lie groups
are important for us).

Two Lie groups G,H are locally isomorphic if there are neighbourhoods
U and V of e ∈ G and e ∈ H and a diffeomorphism f : U → V such that
f (ab) = f (a)f (b) whenever a, b, ab ∈ U.

Corollary 12.2.13. Let G,H be two connected Lie groups. The following
are equivalent:

• G and H are locally isomorphic;
• G and H have isomorphic universal covers;
• g and h are isomorphic Lie algebras.

12.2.11. Abelian Lie groups. We now apply the techniques just intro-
duced to classify all the abelian Lie groups. We will need the following.

Proposition 12.2.14. The differentials of the multiplication m : G×G → G

and the inverse i : G → G are

g× g −→ g, (X, Y ) 7−→ X + Y, g −→ g, X 7−→ −X.
Proof. For the first, by linearity it suffices to prove that (X, 0) 7→ X, which

is obvious since ge = g. The second follows from m(g, i(g)) = g. �

Here is a smart application.

Proposition 12.2.15. If a Lie group G is abelian, then g also is.

Proof. Since G is abelian, the map G → G, g 7→ g−1 is an endomorphism.
Therefore its derivative g → g, X 7→ −X is a Lie algebra endomorphism.
Hence for every X, Y ∈ g we get

−[X, Y ] = [−X,−Y ] = [X, Y ]

which implies [X, Y ] = 0. �

Recall that in every dimension n there is a unique abelian Lie algebra Rn.
We will also need the following.

Exercise 12.2.16. Let Γ < Rn be a discrete subgroup. There is a basis
v1, . . . , vn of Rn where v1, . . . , vk generate Γ. In particular Γ ∼= Zk .

Here is a complete classification of abelian Lie groups.

Theorem 12.2.17. Every abelian Lie group is isomorphic to

S1 × · · · × S1︸ ︷︷ ︸
k

×Rn−k

for some 0 ≤ k ≤ n.
Proof. By Proposition 12.2.15 the Lie algebra of an abelian group G is

Rn, which is also the Lie algebra of the Lie group Rn. By Corollary 12.2.12
then G̃ = Rn, and by Corollary 12.1.17 we have G = Rn/Γ for some discrete
Γ < Rn. Now Exercise 12.2.16 applies. �
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12.3. Examples

Having proved a number of general theorems, it is due time to exhibit and
study more examples of Lie groups.

12.3.1. Complex matrices. We introduce some Lie groups using com-
plex matrices. To this purpose we identify Cn with R2n in the usual way, by
sending (z1, . . . , zn) to (<z1,=z1, . . . ,<zn,=zn). We consider every complex
endomorphism of Cn as a particular real endomorphism of R2n and thus see
M(n,C) as a linear subspace of M(2n,R), and more than that as a subalgebra
with respect to matrix multiplication.

Our first example is the complex general linear group

GL(n,C) =
{
A ∈ M(n,C)

∣∣ detA 6= 0
}
.

This is an open subset of M(n,C) and hence a Lie group of dimension 2n2. It
is a Lie subgroup of GL(2n,R), with Lie algebra

gl(n,C) = M(n,C)

where we see M(n,C) as a Lie subalgebra of M(2n,R), with the same Lie
bracket [A,B] = AB − BA. Note the Lie subgroup inclusions:

GL(n,R) ⊂ GL(n,C) ⊂ GL(2n,R).

These Lie groups have dimensions n2, 2n2, and 4n2 respectively. When n = 1

these reduce to
R∗ ⊂ C∗ ⊂ GL(2,R).

In the second inclusion, every element ρe iθ ∈ C∗ is interpreted as the product
of a ρ-dilation with a θ-rotation:

ρ

(
cos θ − sin θ

sin θ cos θ

)
.

The determinant is a Lie group homomorphism det : GL(n,C) → C∗. As
in the real case, the complex special linear group is its kernel

SL(n,C) =
{
A ∈ GL(n,C) | detA = 1

}
.

This is a Lie subgroup, with Lie algebra

sl(n,C) =
{
A ∈ M(n,C)

∣∣ trA = 0
}
.

The Lie group GL(n,C) contains the unitary group U(n), that consists of
all unitary matrices:

U(n) =
{
A ∈ GL(n,C)

∣∣ t
ĀA = I

}
.

Exercise 12.3.1. The unitary group is a Lie subgroup of GL(n,C) of dimen-
sion n2, whose Lie algebra consists of all the n × n skew-Hermitian matrices:

u(n) =
{
A ∈ M(n,C)

∣∣ t
Ā+ A = 0

}
.

Hint. Adapt the proof of Proposition 3.9.2 to the complex case. �
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Finally, the special unitary group is

SU(n) =
{
A ∈ GL(n,C)

∣∣ t
ĀA = I, detA = 1

}
.

Exercise 12.3.2. This is a Lie subgroup of dimension n2−1 with Lie algebra

su(n) =
{
A ∈ M(n,C)

∣∣ t
Ā+ A = 0, trA = 0

}
.

We note that
SU(n) = U(n) ∩ SL(n,C).

Exercise 12.3.3. The Lie groups GL(n,C), SL(n,C), U(n), and SU(n) are
all connected.

12.3.2. More matrix Lie groups. We further introduce some Lie sub-
groups of GL(n,R) that are widely used in geometry.

Example 12.3.4 (Indefinite orthogonal groups). Remember that

O(p, q) =
{
A ∈ GL(n,R)

∣∣ tAIp,qA = Ip,q
}

where Ip,q =
(
Ip 0
0 −Iq

)
. Similarly to the proof of Proposition 3.9.2, we check

easily that the group of matrices O(p, q) is indeed a submanifold of GL(n,R)

of dimension n(n−1)
2 with Lie algebra

o(p, q) =
{
A ∈ M(n)

∣∣ tAIp,q + Ip,qA = 0
}
.

Every matrix in O(p, q) has determinant ±1, and SO(p, q) is the index-two
subgroup consisting of those with determinant 1. We have so(p, q) = o(p, q).

The Lie groups O(p, q) and O(q, p) are isomorphic. If p, q > 0, the Lie
group O(p, q) is not compact (exercise).

Example 12.3.5 (Indefinite unitary groups). Proceeding exactly as above
with the standard hermitian product of signature (p, q) on Cp+q, we construct
the Lie groups

U(p, q) =
{
A ∈ GL(n,C)

∣∣ t
ĀIp,qA = Ip,q

}
with Lie algebra

u(p, q) =
{
A ∈ M(n,C)

∣∣ t
ĀIp,q + Ip,qA = 0

}
.

The matrices of U(p, q) with unit determinant form a Lie subgroup SU(p, q),
with Lie algebra

su(p, q) =
{
A ∈ M(n,C)

∣∣ t
ĀIp,q + Ip,qA = 0, trA = 0

}
.

We have dim U(p, q) = n2 and dim SU(p, q) = n2 − 1, with n = p + q.

Example 12.3.6 (Symplectic groups). Let R2n or C2n be equipped with the
standard symplectic (that is, antisymmetric and non-degenerate) form

ω(x, y) = txJy
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where

J =

(
0 −In
In 0

)
.

Let Sp(2n,R) or Sp(2n,C) be group of all linear isomorphism preserving the
symplectic form. That is,

Sp(2n,R) =
{
A ∈ GL(n,R)

∣∣ tAJA = J
}
.

The Lie algebra is

sp(2n,R) =
{
A ∈ M(n)

∣∣ tAJ + JA = 0
}
.

The complex case is analogous. The dimensions of Sp(2n,R) and Sp(2n,C)

are n(2n + 1) and 2n(2n + 1) respectively.

Example 12.3.7 (Affine extensions). For every Lie subgroup G < GL(n,R)

we may consider its affine extension

G oRn =
{
x 7→ Ax + b

∣∣ A ∈ G, b ∈ Rn
}
⊂ Aff(Rn).

This is a Lie subgroup of Aff(Rn), which is in turn a Lie subgroup of GL(n +

1,R), recall Example 12.1.7. Its Lie algebra is the subalgebra of gl(n + 1,R)

consisting of all matrices (
A b

0 0

)
where A ∈ g and b ∈ Rn.

12.3.3. Low dimensions. We now try to embark on a more systematic
classification of connected Lie groups with increasing dimension. We use the
powerful Lie groups – Lie algebra correspondence proved in the previous pages,
which can be reassumed as follows:

(i) Every connected Lie group is the quotient G/Γ of a simply connected
Lie group G by a discrete central subgroup Γ < G.

(ii) Every simply connected Lie group G is totally determined by its Lie
algebra g.

An optimistic strategy to produce all connected Lie groups would be the
following:

(1) Classify all Lie algebras g.
(2) Try to build a simply connected Lie group G for each Lie algebra g.
(3) Quotient G by its central discrete subgroups.

Dimension one. The only one-dimensional Lie algebra is the abelian R,
so the 1-dimensional connected Lie groups are R and S1.
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Dimension two. In dimension two, we find two Lie algebras:
• The abelian R2.
• The Lie algebra aff(R) of Aff(R).

Proposition 12.3.8. These are the only two 2-dimensional Lie algebras up
to isomorphism.

Proof. Let a be a 2-dimensional Lie algebra. Pick a basis X, Y ∈ a and note
that the whole structure is determined by the element [X, Y ]. If [X, Y ] = 0

then a is abelian. Otherwise, after changing the basis we easily reduce to the
case [X, Y ] = Y and we get aff(R). Indeed, We see Aff(R) ⊂ GL(2,R) as the
set of all matrices (

a b

0 1

)
with a, b ∈ R. Its Lie algebra is generated by the matrices

A =

(
1 0

0 0

)
, B =

(
0 1

0 0

)
.

We have [A,B] = B, so aff(R) ∼= a. �

The simply connected Lie group with algebra aff(R) is Aff(R)0. We can
easily classify the two-dimensional connected Lie groups up to isomorphism:

Proposition 12.3.9. The two-dimensional connected Lie groups are

R2, S1 × R, S1 × S1, Aff(R)0.

Proof. Since the centre of Aff(R)0 is trivial, there is no other connected
Lie group with Lie algebra aff(R) except Aff(R)0 itself. �

Dimension three. In dimension three we find many more Lie algebras.
Here are some:

(1) The abelian R3.
(2) The Heisenberg algebra, which is the subalgebra of sl(3,R) formed

by the matrices 0 a c

0 0 b

0 0 0


with a, b, c ∈ R. This is the Lie algebra of the Heisenberg group.

(3) The direct product R⊕ aff(R).
(4) The Lie algebra of the affine isometries of R2.
(5) The Lie algebra of the affine isometries of R1,1.
(6) The Lie algebra sl(2,R).
(7) The Lie algebra so(3).

Each of these seven algebras is the Lie algebra of some Lie group. Unfortu-
nately, this is not the end of the story: the are uncountably many Lie algebras
in dimension three, as the following exercise shows.to be checked
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Exercise 12.3.10. Consider R3 with basis X, Y, T and Lie bracket defined
by

[T,X] = X, [T, Y ] = tY, [X, Y ] = 0.

This defines a Lie algebra gt for all t ∈ R. If tu 6= 1 then gt and gu are not
isomorphic. Every gt is a subalgebra of gl(n,R) for some n and is hence the
Lie algebra of some Lie subgroup of GL(n,R).

It is actually possible to classify all the three-dimensional Lie algebras: this
was done by Bianchi in 1898 who subdivided them into 11 classes, two of
which are continuous families. However, these examples already suggest that
it is practically impossible to classify all connected Lie groups without adding
further assumptions like, for instance, that the Lie group should be compact,
or abelian, or some weaker assumption.

We now write some isomorphisms between some notable three-dimensional
Lie algebras. Let × be the cross product of vectors in R3.

Proposition 12.3.11. The Lie algebras so(3) and su(2) are both isomorphic
to the algebra (R3,×).

Proof. A basis for so(3) is given by the matrices

A =

0 0 0

0 0 −1

0 1 0

 , B =

 0 0 1

0 0 0

−1 0 0

 , C =

0 −1 0

1 0 0

0 0 0

 .
We have

[A,B] = C, [B,C] = A, [C,A] = B.

Therefore so(3) ∼= (R3,×). Analogously su(2) is generated by the matrices

A =
1

2

(
0 1

−1 0

)
, B =

1

2

(
0 i

i 0

)
, C =

1

2

(
i 0

0 −i

)
whose Lie brackets are again as above. �

This implies that SO(3) and SU(2) have the same universal cover. In fact,
we will write an explicit double cover SU(2)→ SO(3) soon.

Proposition 12.3.12. The Lie algebras sl(2,R) and so(2, 1) are isomorphic.

Proof. A basis for sl(2,R) is

A =
1

2

(
1 0

0 −1

)
, B =

1

2

(
0 1

1 0

)
, C =

1

2

(
0 1

−1 0

)
.

We have
[A,B] = C, [B,C] = −A, [C,A] = −B.

The Lie algebra so(2, 1) consists of matrices of the form(
M b
tb 0

)
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with tM +M = 0. A basis is

A =

0 0 1

0 0 0

1 0 0

 , B =

0 0 0

0 0 1

0 1 0

 , C =

 0 1 0

−1 0 0

0 0 0

 .
Their Lie brackets are as above. �

The derived algebra [g, g] of a Lie algebra g is the subalgebra generated by
all the brackets [X, Y ] as X, Y ∈ g varies. The derived algebra is trivial ⇐⇒ g

is abelian.

Exercise 12.3.13. In the seven Lie algebras listed above, the dimension of
[g, g] is zero for (1), one for (2, 3), two for (4,5), and three for (6,7).

12.4. The exponential map

Similar to Riemannian manifolds, Lie groups G are equipped with an expo-
nential map g → G. For matrix groups, this is the usual matrix exponential,
and this finally explains the reason for adopting this name...

12.4.1. Definition. Let G be a Lie group. Pick an arbitrary left-invariant
vector field X ∈ g.

Proposition 12.4.1. The vector field X is complete.

Proof. Let γg : Ig → G be the maximal integral curve of X at g. Since X
is left-invariant, we have γg = Lg ◦ γe and Ig = Ie for all g ∈ G. By Lemma
5.2.4 the vector field is complete. �

Being complete, the vector field X ∈ g induces a flow ΦX : G × R→ G.

Definition 12.4.2. The exponential map exp: g −→ G is

exp(X) = ΦX(e, 1).

The map exp is smooth because ΦX(e, 1) depends smoothly on the initial
values X of the system.

12.4.2. One-parameter subgroups. In the Riemannian case, the restric-
tions of the exponential map to the vector lines are geodesics; here, these are
“one-parameter subgroups.”

Let G be a Lie group. For every X ∈ g we consider the curve γX : R→ G,

γX(t) = exp(tX).

As in the Riemannian case, by construction we have γλX(t) = γX(λt).

Proposition 12.4.3. The map γX : R → G is the integral curve of the
left-invariant field X with γX(0) = e. It is a Lie group homomorphism.
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Proof. We have

γX(t) = exp(tX) = ΦtX(e, 1) = ΦX(e, t)

so γX is the integral curve for X with γX(0) = e. Since X is left-invariant,

γX(s)γX(t) = LγX(s)(γX(t)) = γX(s + t).

Therefore γX is a Lie groups homomorphism. �

A Lie group homomorphism R→ G is called a one-parameter subgroup of
G. It turns out that every one-parameter subgroup arises in this way.

Proposition 12.4.4. Every one-parameter subgroup of G is a γX for some
element X ∈ g.

Proof. Given f : R → G, we set X = f∗(1). Since f∗ = (γX)∗, we have
f = γX by Proposition 12.2.10. �

The Lie algebra g thus parametrises all the one-parameter subgroups in G.

12.4.3. Properties. We now list some properties of the exponential map.

Proposition 12.4.5. Let G be a Lie group. The following hold.

• The differential d exp0 : g→ g is the identity. Hence the exponential
map is a local diffeomorphism at 0.
• If f : G → H is a Lie group homomorphism, the following diagram
commutes:

g
f∗ //

exp

��

h

exp

��
G

f
// H

Proof. Everything follows readily if we interpret g and h as sets of one-
parameter subgroups. �

In particular, if H ⊂ G is a subgroup, the exponential map h → H is just
the restriction of the exponential map g→ G.

12.4.4. Matrix exponential. We finally motivate the use of the term
“exponential map”. Recall that the exponential of a square matrix A is

eA =

∞∑
k=0

1

k!
Ak .

If A and B commute, then eA+B = eAeB = eBeA. In particular eA is invertible
with inverse e−A.

Proposition 12.4.6. The exponential map exp: gl(n,R)→ GL(n,R) is

exp(A) = eA.
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Proof. For every A ∈ gl(n,R) consider the curve α : R → GL(n,R),
α(t) = etA. We can differentiate it and find α′(t) = AetA. So α is a
smooth curve and in fact a one-parameter subgroup of GL(n,R). By Propo-
sition 12.4.4 we have α = γα′(0) = γA. In particular eA = exp(A). �

By restriction, the same exponential map works for all the Lie subgroups of
GL(n,R) like SL(n,R) or O(n). We discover in particular that the exponential
of an antisymmetric matrix is orthogonal, and that of a traceless matrix has
determinant one; these facts follow also from the following exercise.

Exercise 12.4.7. We have e
tA = t(eA) and det eA = etrA.

From these examples we discover that, as in the Riemannian case, the
exponential map needs not to be surjective, not even if G is connected.

Proposition 12.4.8. The exponential map sl(2,R) → SL(2,R) is not sur-
jective.

Proof. If g = exp(A), it has a square root
√
g = exp

(
A
2

)
. However

B =

(
−4 0

0 −1
4

)
has no square root (exercise: use Jordan normal form). �

12.4.5. Applications. In the rest of this section we will use the exponen-
tial map to prove these remarkable non-trivial facts. Let G be a Lie group.
Then:

(1) Every closed subgroup H < G is a Lie subgroup.
(2) If H / G is closed and normal, the quotient G/H is a Lie group.
(3) The kernel and the image of any homomorphism G → H of Lie

groups are Lie subgroups of G and H.

12.4.6. The closed subgroup theorem. As promised, we start by proving
the following powerful theorem, which transforms a purely topological condi-
tion (closeness) into a much stronger differential one (being a smooth embed-
ded submanifold).

Theorem 12.4.9. Let G be a Lie group. Every closed subgroup H ⊂ G is
an embedded Lie subgroup.

To prove this theorem we need a lemma. Recall that exp(X + Y ) 6=
exp(X) exp(Y ) in general.

Lemma 12.4.10. Let G be a Lie group. For every X, Y ∈ g we have

exp(X + Y ) = lim
n→∞

(
exp

X

n
exp

Y

n

)n
.
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Proof. When t is sufficiently small we have

exp(tX) exp(tY ) = exp
(
ψ(t)

)
where ψ is the smooth map

ψ : R γX×γY−→ G × G m−→ G
exp−1

−→ g.

Here m is the multiplication and exp−1 is defined only in a neighbourhood of
e. The map ψ is defined only near 0 and ψ′(0) = X + Y . Therefore we have

ψ(t) = t(X + Y ) + t2Z(t)

for some smooth map Z defined only near 0. This implies

exp(tX) exp(tY ) = exp
(
ψ(t)

)
= exp

(
t(X + Y ) + t2Z(t)

)
.

If n is sufficiently big, we deduce that(
exp

X

n
exp

Y

n

)n
=

(
exp

(
1

n
(X + Y ) +

1

n2
Z

(
1

n

)))n
= exp

(
X + Y +

1

n
Z

(
1

n

))
.

This completes the proof. �

We can now turn back to the proof of Theorem 12.4.9

Proof. We must prove that H ⊂ G is an embedded submanifold. Let h ⊂ g

be the subset defined as

h =
{
X ∈ g

∣∣ exp(tX) ∈ H ∀t ∈ R
}
.

We first prove that h is a subspace of g. To do so, we pick X, Y ∈ h, and prove
that X+Y ∈ h. We know that exp tX

n , exp tY
n ∈ H, hence

(
exp tX

n exp tY
n

)n ∈
H. Since H is closed, by the previous lemma we get exp(t(X + Y )) ∈ H for
every t ∈ R and therefore X + Y ∈ h.

We now construct neighbourhoods U and W of 0 ∈ g and e ∈ G such that
exp |U : U → W is a diffeomorphism and

(50) exp(h ∩ U) = H ∩W.
This shows that H is an embedded submanifold near e, and hence everywhere
by left multiplication.

Let f ⊂ g be a complementary subspace for h. We leave as an exercise to
prove that there is an open neighbourhood Uf of 0 ∈ f such that

(51) H ∩ exp
(
Uf \ {0}

)
= ∅.

Instead of the exponential map, it is now convenient to consider the map

f : h× f −→ g, f (X, Y ) = exp(X) exp(Y ).

We still have df0 = id, so there are neighbourhoods Uh, Uf of 0 ∈ h, f such that

f : Uh × Uf −→ G
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is a diffeomorphism onto its image. We suppose that Uf also satisfies (51).
We now set U = Uh × Uf and prove that

(52) f (h ∩ U) = H ∩ f (U).

We have h ∩ U = Uh and exp(Uh) ⊂ H, therefore f (h ∩ U) ⊂ H ∩ f (U). On
the other hand, if h ∈ H ∩ f (U) then h = exp(X) exp(Y ) with X ∈ Uh and
Y ∈ Uf. Now h, exp(X) ∈ H implies that exp(Y ) ∈ H and hence by (51) we
get Y = 0. Therefore h ∈ exp(Uh).

We have proved (52), which in turn implies (50) by taking W = exp(U).
This concludes the proof. �

By combining the theorem with Corollary 12.2.8 we get

Corollary 12.4.11. Let G be a Lie group. A subgroup H < G is an embed-
ded Lie subgroup ⇐⇒ it is closed.

12.4.7. Kernel. Here is an immediate application of the closed subgroup
theorem.

Proposition 12.4.12. Let f : G → H be a homomorphism of Lie groups.
The kernel ker f is an embedded Lie subgroup of G.

Proof. It is closed since f is continuous. Theorem 12.4.9 applies. �

We want to prove an analogous theorem for the image. It is more conve-
nient to first study the quotients of Lie groups.

12.4.8. Quotient of Lie groups. We now recycle the proof of the closed
subgroup theorem to obtain the following.

Theorem 12.4.13. Let G be a Lie group and H < G a closed subgroup. The
quotient G/H has a natural structure of smooth manifold such that π : G →
G/H is a fibre bundle.

Proof. We know that G is foliated into the the cosets of H. Since H is
closed, it is embedded, and hence its cosets also are. We now need to show
that the cosets fit like fibers in a bundle.

As in the proof of Theorem 12.4.9 we pick a complementary subspace f

for h ⊂ g and consider the map

f : f× h −→ g, f (X, Y ) = exp(X) exp(Y ).

Let Uf, Uh be neighbourhoods of 0 ∈ f, h such that

f : Uf × Uh −→ G

is a diffeomorphism onto its image and Im f ∩H = f (0× Uh) = exp(Uh). We
now pick a smaller neighbourhood U ′f ⊂ Uf such that u1, u2 ∈ U ′f ⇒ u1 − u2 ∈
Uf. This implies that

exp(U ′f)
(

exp(U ′f)
)−1 ⊂ exp(Uf).
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We consider the multiplication map

m : exp(U ′f)×H −→ G, m(g, h) = gh.

The map m is injective: if g1h1 = g2h2, then g2g
−1
1 = h−1

2 h1 ∈ H, but since
g2g
−1
1 ∈ exp(Uf) we deduce that g2g

−1
1 = e, so g1 = g2 and h1 = h2.

The map m is an open embedding, after replacing U ′f with a smaller
open neighbourhood: we have dm(e,e) = id, so dm(g,e) is invertible for ev-
ery g ∈ exp(U ′f) up to taking a smaller U ′f. Hence dm(g,h) is invertible by
right-multiplication for every h ∈ H.

Finally, we assign to G/H its quotient topology. The map

U ′f −→ G/H, X 7−→ exp(X)H

is a homeomorphism onto its image. More generally, for every g ∈ G the map
U ′f → G/H,X 7→ g exp(X)H is a homeomorphism onto its image and we use
these maps as charts to give G/H a smooth structure.

The space G/H is now a smooth manifold and the map G → G/H is a
fibre bundle, with fibre diffeomorphic to H. �

When H is a normal subgroup, things of course improve.

Corollary 12.4.14. Let G be a Lie group and H / G a closed normal sub-
group. The quotient G/H has a natural structure of Lie group, and G → G/H

is a Lie group homomorphism.

12.4.9. Image. After taking care of kernels and quotients, we can finally
consider images of Lie group homomorphisms. It is remarkable how many
non-trivial theorems are necessary to prove this reasonable-looking fact.

Proposition 12.4.15. Let f : G → H be a homomorphism of Lie groups.
The image Im f is a Lie subgroup of H.

Proof. Since ker f is closed and normal, the quotient G/ker f is a Lie
group. The induced map G/ker f → H is an injective immersion: hence its
image is an injectively immersed manifold and a subgroup of H, that is a Lie
subgroup. �

The image is of course not guaranteed to be embedded.

Remark 12.4.16. The use of the term one-parameter subgroup in Section
12.4.2 for any Lie group homomorphism R→ G is now fully legitimated, since
its image is indeed a Lie subgroup of G.

12.5. Lie group actions

Lie groups arise often as symmetry groups, and are more generally designed
to act on spaces of various kind.
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12.5.1. Definition. Let M be a smooth manifold and G a Lie group. A
Lie group action of G on M is a homomorphism

G −→ Diffeo(M)

that is also smooth in the following sense: the induced map

G ×M −→ M, (g, x) 7−→ g(x)

should be smooth. A manifold M equipped with a Lie group action of G is
sometimes called a G-manifold.

Here are some important examples:

• The group GL(n,R) or Aff(Rn) acts on Rn.
• The group O(n) acts on Sn−1 ⊂ Rn.
• The group U(n) acts on S2n−1 ⊂ Cn.
• Every Lie group G acts on itself by left-multiplication g(x) = gx , by
right-multiplication g(x) = xg−1, and by conjugation g(x) = gxg−1.

An action of R onM was called a one-parameter group of diffeomorphisms
in Section 5.2.2.

12.5.2. Lie algebras. As usual, Lie algebras are there to help us, by en-
coding elegantly the infinitesimal side of the story. Let ρ : G → Diffeo(M) be
a Lie group action on M. This induces a homomorphism

ρ∗ : g −→ X(M)

as follows. For every p ∈ M we have a map

G −→ M, g 7−→ g(p)

whose image is the orbit of p. The differential of this map at e ∈ G is a linear
map g → Tp(M). By collecting all these linear maps as p ∈ M varies we get
our homomorphism ρ∗ : g→ Γ(TM) = X(M).

Exercise 12.5.1. For every X ∈ g, the vector field ρ∗(X) on M is complete
with flow Φt : M → M. We have Φt(p) = exp(tX)(p) for every p ∈ M.

In some sense Diffeo(M) is an infinite-dimensional Lie group and X(M) is
its Lie algebra. A morphism ρ of Lie groups should then induce one ρ∗ of Lie
algebras: we leave a rigorous proof of this fact as an exercise.Pare sia in realtà un anti-

homomorphism. Controllare

Exercise 12.5.2. The homomorphism ρ∗ is a Lie algebra homomorphism.

Exercise 12.5.3. Let ρ be the action of GL(n,R) on Rn. For every A ∈
gl(n,R) = M(n) the vector field ρ∗(A) is Rn → Rn, X 7→ AX.
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12.5.3. Stabilisers and orbits. When dealing with group actions, the first
thing to do is always to investigate stabilisers and orbits. Let a Lie group G
act on a smooth manifold M.

Proposition 12.5.4. For every p ∈ M the stabiliser Gp < G is an embedded
Lie subgroup, whose Lie algebra is

gp =
{
X ∈ g

∣∣ ρ∗(X)(p) = 0
}
.

Moreover the induced map

G/Gp −→ M, g 7−→ g(p)

is an injective immersion, whose image is the orbit of p.

Proof. The stabiliser Gp is closed (exercise), so it is an embedded Lie
subgroup. By Exercise 12.5.1 we have ρ∗(X)(p) = 0 for every X ∈ gp.
Conversely, if ρ∗(X)(p) = 0 then p = Φt(p) = exp(tX)(p) for all t and hence
exp(tX) ∈ Gp for all t, so X ∈ gp.

The map G/Gp → M is smooth because G → M is. Its differential at
e is injective because if X ∈ g \ gp then ρ∗(X)(p) 6= 0. It is hence injective
everywhere by left-multiplication. �

We have discovered that stabilisers are Lie subgroups, and orbits are im-
mersed submanifolds. The manifold M is hence partitioned into immersed
submanifolds (the orbits) that may have varying dimension.

Example 12.5.5. Let S1 act on R2 by rotations. The orbits are the circles
centered at the origin, and the origin itself.

Example 12.5.6. Every similarity or congruence class of matrices in the
space M(n) of all n× n real matrices is an immersed submanifold. This holds
because each such class is an orbit of the action of GL(n,R) by conjugation
or congruence.

For the same reason, every conjugacy class in a Lie group G is an immersed
submanifold.

As usual, one wonders whether injective immersions can be promoted to
embeddings. The usual counterexample shows that non-embedded orbits may
occur: the action

R −→ Diffeo(S1 × S1), s 7→
(

(e it , e iu) 7→ e i(t+s), e i(u+λs)
)

has dense orbits if λ 6∈ Q. Things improve if an additional hypothesis is fulfilled.

12.5.4. Proper actions. Let G be a Lie group acting on a manifold M

Definition 12.5.7. The action is proper if the following map is:

G ×M −→ M ×M, (g, p) 7−→
(
g(p), p

)
.
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If the action is proper, the stabilisers Gp < G are compact for every p ∈ M.
The orbits are also nicer.

Proposition 12.5.8. If the action is proper, orbits are embedded and closed.

Proof. The induced map G/Gp → M, g 7→ g(p) is proper. By Exercise
3.8.5 A proper injective immersion is an embedding and has closed image. �

If G is compact, then every action of G is proper.

12.5.5. Homogeneous spaces. Recall that a G-manifold is a manifoldM
equipped with the action of a Lie group G.

Definition 12.5.9. If the action is transitive, the G-manifold M is called a
homogeneous space.

Example 12.5.10. Let G be a Lie group and H < G a closed subgroup.
The left action of G on G/H is transitive: hence G/H is a homogeneous space.

It turns out that every homogenous space is precisely of this form.

Proposition 12.5.11. If G acts transtitively on M, for every p ∈ M the
map

G/Gp −→ M

is a G-equivariant diffeomorphism.

Proof. This is a corollary of Proposition 12.5.4. �

In other words, a homogeneous space is just a quotient G/H of a Lie group
G by a closed subgroup H. A homogeneous space is one where “all points look
the same”, since G act transitively on them.

12.5.6. Examples. There are many interesting examples of homogeneous
spaces, and we list some here.

Example 12.5.12. The group SO(n) acts transitively on Sn−1, with sta-
biliser isomorphic to SO(n − 1). Therefore we get the homogeneous space

SO(n)/SO(n − 1) ∼= Sn−1.

By Theorem 12.4.13 we have a fibre bundle SO(n)→ Sn−1 with fibre SO(n−
1).

Example 12.5.13. The group Isom+(Rn) of the orientation-preserving Eu-
clidean affine isometries acts transitively on Rn with stabiliser isomorphic to
SO(n). We get the homogeneous space

Isom+(Rn)/SO(n) ∼= Rn

and a fibre bundle Isom+(Rn)→ Rn with fibre SO(n).
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Example 12.5.14. The group O(n) acts on the grassmannian Grk(Rn) with
stabiliser isomorphic to O(k)×O(n − k). We get the homogeneous space

O(n)/O(k)×O(n−k)
∼= Grk(Rn)

and a fibre bundle O(n)→ Grk(Rn) with fibre O(k)×O(n − k).

In fact, we could have used this construction to define a natural smooth
manifold structure on the grassmannian. We do this with another interesting
set. A flag on a n-dimensional vector space V is a nested sequence

0 ⊂ V1 ⊂ . . . ⊂ Vn = V

of i-dimensional subspaces Vi ⊂ V . In the following example we build a natural
smooth manifold structure on the set of all flags in V .

Example 12.5.15. The group GL(n,R) acts on the space F of all the flags
in Rn. The stabiliser of the coordinate flag Vi = Span(e1, . . . , ei) is the closed
subgroup H < GL(n,R) of all upper triangular invertible matrices. There-
fore the space of all flags in Rn is naturally identified with the homogeneous
manifold GL(n,R)/H.

Exercise 12.5.16. The group SL(2,C) acts transitively on P1(C) as follows:

ρ

(
a b

c d

)
: [w, z ] 7−→ [aw + bz, cw + dz ].

The stabiliser is a Lie group diffeomorphic to C∗ × C. We get a fibre bundle
SL(2,C)→ P1(C) with fibre C∗ × C.

12.6. Exercises

Exercise 12.6.1. Show that the exponential map exp: so(n) → SO(n) is surjec-
tive.

Exercise 12.6.2. Show that the only connected Lie groups of SO(3) are {e},
SO(3), and the subgroups isomorphic to S1 that describe the rotations around some
axis.
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Differential form, 175
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compactly supported, 219
exact, 207
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action, 359
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Lorentz transformation, 197
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Normal bundle, 102
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Orbit, 361
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Parallel transport, 255
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Piecewise smooth map, 256
Poincaré duality, 225

Poincaré Lemma, 211, 221
Potential, 205
Product of manifolds
of pseudo-Riemannian manifolds, 247

Products of manifolds, 56
Projective space, 18, 55, 229
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Proper time, 200
Puncture, 152

Regular point, 81
Regular value, 81
Ricci curvature tensor, 307
Riemann curvature tensor, 297
Rigidity, 289

Sard Lemma, 18
Scalar curvature, 310
Second fundamental form, 313
Sectional curvature, 305
Segre embedding, 67
Segre map, 26
Signature, 229
Simultaneity, 199
Smooth exhaustion, 62
Smooth map, 14, 57
Spacetime interval, 199
Special relativity, 195
Sphere, 54
Sphere inversion, 245
Stabiliser, 12, 361
Stokes’ Theorem, 187
Submanifold, 76
pseudo-Riemannian, 264, 313

Submersion, 77
Surgery, 157, 161
Symmetric algebra, 38

Tangent bundle, 100
Tangent space, 62, 147
Taylor Theorem, 14
Tensor, 27
algebra, 32
antisymmetric, 38

totally decomposable, 43
antisymmetrisation, 38
contraction, 33
metric, 190

Euclidean, 191
symmetric, 38
symmetrisation, 38

Tensor bundle, 103
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Tensor field, 106
Tensor product, 23, 32
Thom form, 233
Thom transversality Theorem, 139
Tidal force, 324
Topological space, 5

connected, 6
Hausdorff, 6
locally compact, 7
pracompact, 8
second-countable, 6

Topology
product, 5
quotient, 6
subspace, 6

Torsion, 260
Torus, 69
Totally normal subset, 278

Riemannian, 281
Transition function, 16
Transition map, 53
Transversality, 137, 234
Transverse maps, 138
Tubular neighbourhood, 131

closed, 149

Unit disc, 147

Vector bundle, 97
dual, 110
orthogonal, 110
pull-back, 99
Riemannian metric, 107
section, 103
shrinking, 111
subbundle, 105

Vector field, 115
along curves, 254
left-invariant, 343

vector field
Killing, 292

Vector type, 242
Velocity, 67
Veronese embedding, 48, 66
Volume form, 183, 249

Euclidean, 191

Whitney embedding Theorem, 87
World path, 197


	Introduction
	Part 1.  Preliminaries
	Chapter 1. Preliminaries
	1.1. General topology
	1.2. Algebraic topology
	1.3. Multivariable analysis
	1.4. Projective geometry

	Chapter 2. Tensors
	2.1. Multilinear algebra
	2.2. Tensors
	2.3. Scalar products
	2.4. The symmetric and exterior algebras
	2.5. Orientation
	2.6. Grassmannians
	2.7. Exercises


	Part 2.  Differential topology
	Chapter 3. Smooth manifolds
	3.1. Smooth manifolds
	3.2. Smooth maps
	3.3. Partitions of unity
	3.4. Tangent space
	3.5. Smooth coverings
	3.6. Orientation
	3.7. Submanifolds
	3.8. Immersions, embeddings, and submersions
	3.9. Examples
	3.10. Homotopy and isotopy
	3.11. The Whitney embedding
	3.12. Exercises

	Chapter 4. Bundles
	4.1. Fibre bundles
	4.2. Vector bundles
	4.3. Tangent bundle
	4.4. Sections
	4.5. Riemannian metric
	4.6. Exercises

	Chapter 5. The basic toolkit
	5.1. Vector fields
	5.2. Flows
	5.3. Ambient isotopy
	5.4. Lie brackets
	5.5. Foliations
	5.6. Tubular neighbourhoods
	5.7. Transversality
	5.8. The Ehresmann Theorem
	5.9. Exercises

	Chapter 6. Cut and paste
	6.1. Manifolds with boundary
	6.2. Cut and paste
	6.3. Connected sums and surgery
	6.4. Handle decompositions
	6.5. Classification of surfaces
	6.6. Exercises

	Chapter 7. Differential forms
	7.1. Differential forms
	7.2. Integration
	7.3. Exterior derivative
	7.4. Stokes' Theorem
	7.5. Metric tensors and differential forms
	7.6. Special relativity and electromagnetism
	7.7. Exercises

	Chapter 8. De Rham cohomology
	8.1. Definition
	8.2. The Poincaré Lemma
	8.3. The Mayer – Vietoris sequence
	8.4. Compactly supported forms
	8.5. Poincaré duality
	8.6. Intersection theory
	8.7. Exercises


	Part 3.  Differential geometry
	Chapter 9. Pseudo-Riemannian manifolds
	9.1. The metric tensor
	9.2. Connections
	9.3. The Levi-Civita connection
	9.4. Exercises

	Chapter 10. Geodesics
	10.1. Geodesics
	10.2. Normal coordinates
	10.3. Completeness
	10.4. Isometries
	10.5. Gradient, divergence, Laplacian, and Hessian
	10.6. Exercises

	Chapter 11. Curvature
	11.1. The Riemann curvature tensor
	11.2. Sectional curvature
	11.3. The Ricci tensor
	11.4. The scalar curvature
	11.5. Pseudo-Riemannian submanifolds
	11.6. Jacobi fields
	11.7. Calculus of variations
	11.8. Locally symmetric spaces
	11.9. Miscellaneous facts
	11.10. Exercises

	Chapter 12. Lie groups
	12.1. Basics
	12.2. Lie algebra
	12.3. Examples
	12.4. The exponential map
	12.5. Lie group actions
	12.6. Exercises

	Index


