INFINITESIMAL FOURIER TRANSFORMATION FOR
THE SPACE OF FUNCTIONALS

TAKASHI NITTA

Topic #4: Nonstandard Methods in Functional Analysis.

[Joint work with and Tomoko Okada.1]

A functional is a function from the space of functions to a number field, for example, \(f : \{ a : (-\infty, \infty) \to (-\infty, \infty) \} \to (-\infty, \infty) \). These three \(\infty \)'s are written as the same notation, but these original meanings are quite different. The purpose of this proceeding is to formulate a Fourier transformation for the space of functionals, as an infinitesimal meaning. For it we divide three \(\infty \)'s to three types of infinities. We extend \(\mathbb{R} \) to \(\star(\star\mathbb{R}) \) under the base of nonstandard methods for the construction. The domain of a functional is the set of all internal functions from a \(\ast \)-finite lattice to a \(\ast \)-finite lattice with a double meaning. Considering a \(\ast \)-finite lattice with a double meaning, we find how to treat the domain for a functional in our theory of Fourier transformation, and calculate two typical examples.

Department of Education, Mie University, Kamihama, Japan

E-mail address: nitta@edu.mie-u.ac.jp

1 Division of General Education, Aichigakuin University, Nisshin, Japan. E-mail: m98122c@math.nagoya-u.ac.jp.