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1. Introduction

The method of convex duality, applied to the problem of optimal investment in
an incomplete market, is based on a minimax theorem. Usual minimax theorems
require a compactness condition, but the natural space of functions for the problem
of optimal investment is the space of all measurable functions, endowed with the
topology of convergence in measure.

The characterization of relatively compact subsets of this space is terribly
complicated, however Schachermayer has introduced a result which is in some
sense a substitute of compactness (on the cone of positively valued measurable
functions), i.e. the construction of a convergent sequence of functions by taking
convex combinations from the original sequence.

The object of this paper is the proof of a minimax theorem (on a suitable
space of functions) which does not require compactness conditions and is based on
this substitute of compactness.

In Section 2, there is a generalization of the Schachermayer’s lemma to the
case of a net (or generalized sequence) of positively valued measurable functions.

Section 3 contains the proof of the main result: the Minimax theorem. Section
4 illustrates how this result can be applied to the optimal investment problem.
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2. A substitute of compactness in L0
+

Let (E, E) be a measurable space and µ a σ-finite positive measure on E : we denote
by L0 = L0(E, E , µ) the space of all measurable real–valued functions f defined
on E, endowed with the topology of convergence in measure. Since this topology
depends only on the equivalence class of µ, we suppose that µ is a probability
measure i.e. µ(E) = 1.

The topology of convergence in measure is generated by the distance d(f, g) =∫
arctg(|f − g|) dµ: the space L0, equipped with the metric d, is complete.

The characterization of relatively compact subsets of L0 is terribly cumber-
some and very hard to apply in practice: see for instance [4] pag. 330 for a precise
formulation.

Nevertheless, L0 has been considered an interesting object in many problems
related to the theory of stochastic processes; in particular, an important lemma
due to W. Schachermayer (see [3] Lemma A1.1 for an easy proof) furnishes in
some sense a substitute of compactness in L0, or better in the convex cone L0

+

of positively valued measurable functions. This result has been established for a
sequence of functions, but for our purposes we have to extend it to a net (or
generalized sequence) of functions.

More precisely, let I be a directed set, and (fi)i∈I a net of functions contained
in L0

+. For every i ∈ I, let Γi = Conv {fj , j ≥ i} be the convex envelope of all
functions fj with index j ≥ i and Γ0 = Conv {fi , i ∈ I}. We have the following
result, whose proof is a modification of the result proved in [3]; for convenience of
the reader, we give a complete proof.

Lemma 2.1. It is possible to determine, for every i ∈ I, a function gi ∈ Γi in such
a way that the net (gi)i∈I converges in measure to a [0, +∞] valued function g.

Moreover, there exists an increasing sequence i1 ≤ in ≤ . . . contained in I
such that the sequence (gin

)n≥1 converges almost everywhere and

g = lim
i∈I

gi = lim
n→∞ gin

.

Proof. Let u : [0, +∞] → [0, 1] be defined by u(x) = 1 − e−x: it is an exercise
to prove that, given α > 0, there exists β > 0 such that if |x − y| > α and
min(x, y) ≤ α−1, we have

u

(
x + y

2

)

≥ u(x) + u(y)
2

+ β.

Therefore, given g, h ∈ L0
+, we have

β µ
{|g − h| > α , min(g, h) < α−1

} ≤
∫

u

(
g + h

2

)

dµ −
∫

u(g) + u(h)
2

dµ.

(2.1)
We consider the functions as [0, +∞]-valued, and we recall that a net (xi)i∈I

is a Cauchy net in [0, +∞] if and only if, for every α > 0, there exists i0 such that,
for i, j ≥ i0 we have |xi − xj | ≤ α or min(xi, xj) ≥ α−1.



Vol. 2 (2005) A Minimax Theorem 105

Therefore, in order to prove that (gi)i∈I is Cauchy in L0
+, we have to prove

that, given α > 0 and ε > 0, there exists j0 such that, for i, j ≥ j0, we have

µ
{|gi − gj | > α , min(gi, gj) < α−1

} ≤ ε. (2.2)

Now set, for every i,

si = sup{
∫

u(g) dµ | g ∈ Γi}, and s0 = sup{
∫

u(g) dµ | g ∈ Γ0}.

We have that (si)i∈I is a decreasing net of numbers and let s∞ = infi∈I si =
limi∈I si (0 ≤ s∞ ≤ 1).

Choose a sequence (in)n≥1 such that s∞ = limn→∞ sin
: we can suppose

that in ≤ in+1 and |s∞ − sin
| ≤ 1

n . For every n, choose gin
∈ Γin

such that∫
u(gin

) dµ ≥ sin
− 1

n .
Given i ∈ I, there exists n such that sin+1 ≤ si ≤ sin

, and let gi ∈ Γi such
that

∫
u(gi) dµ ≥ sin+1 − 1

n .
Suppose i, j ≥ in : since gi+gj

2 ∈ Γin
, we have

∫
u( gi+gj

2 ) dµ ≤ sin
, but∫

u(gi) dµ ≥ sin
− 2

n and the same for
∫

u(gj) dµ. Therefore, starting from equation
(2.1), we obtain

β µ
{|gi − gj | > α , min(gi, gj) < α−1

} ≤ 2
n

(2.3)

and the net (gi)i∈I is Cauchy for the convergence in measure.
Also the sequence (gin

)n≥1 is Cauchy, and it is evident that limn→∞ gin
=

limi∈I gi : taking a suitable subsequence, we obtain convergence everywhere. �

Note that the limit g is [0, +∞]-valued, but if we suppose that every fi belongs
to a convex bounded subset of L0

+, it is easy to verify that the limit g is real-valued
(recall that a subset C ⊂ L0

+ is bounded if, for every ε > 0, there exists α > 0
such that, for every f ∈ C , µ {|f | > α} < ε).

Corollary 2.2. Let X a set and, for every x ∈ X, let Cx a convex closed subset of
L0

+. Suppose that

1. for some x̄ ∈ X , Cx̄ is bounded in L0
+ ;

2. for every finite subset {x1, . . . , xn} of X, we have that Cx1 ∩ . . . ∩ Cxn
�= ∅ .

Then we have also that
⋂

x∈X Cx �= ∅.
Proof. Let I be the set of finite subsets of X, ordered by inclusion; for every
i = {x1, . . . , xn}, choose fi ∈ Cx1 ∩ . . .∩Cxn

. Taking gi as in Lemma 2.1, it is easy
to check that the limit g is a real-valued function (since it is contained in Cx̄) and
belongs to

⋂
x∈X Cx. �

Corollary 2.3. Let C be a convex subset of L0
+ and Φ : C → [−∞, +∞[ concave

upper semicontinuous (with respect to the convergence in measure).
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Suppose that, for some real b, the set Cb = {f : Φ(f) ≥ b} is bounded non-
empty: then there exists f̄ ∈ C such that

sup
f∈C

Φ(f) = Φ(f̄).

Proof. Let (fn)n≥1 be a sequence such that

sup
f∈C

Φ(f) = lim
n→∞Φ(fn) = α

and let gn ∈ Γn = Conv {fn, fn+1, . . .} converging a.e. to a function f̄ : it is evident
that the limit f̄ belongs to Cb (which is convex, closed and bounded).

By the concavity of Φ, we have also that limn→∞ Φ(gn) = α and, since Φ is
upper semicontinuous, Φ(f̄) ≥ α. �

3. The minimax theorem

Let Φ : C × M → R be a real valued function defined on a product set: we have
evidently

m1 = sup
x∈C

inf
y∈M

Φ(x, y) ≤ inf
y∈M

sup
x∈C

Φ(x, y) = m4. (3.1)

We call minimax theorem a result which states, under suitable conditions, the
equality m1 = m4.

The usual hypotheses for a minimax theorem are that C and M are convex
sets, Φ is concave with respect to x (i.e. the functions x → Φ(x, y), for y fixed,
are concave) and convex with respect to y ; moreover a sort of semicontinuity and
compactness is needed.

For instance, we have a minimax theorem if the functions y → Φ(x, y) are
lower semicontinuous and M is compact (or, equivalently, the functions x →
Φ(x, y) are upper semicontinuous and C is compact): see for instance [1] The-
orem 8.1 pag. 126 or [9] Theorem 45.8 for such results.

The object of this section is to prove a minimax theorem by using the sub-
stitute of compactness introduced in the previous section (Lemma 2.1).

Before stating the theorem, we introduce two further numbers m2 and m3 as
follows: let F (respectively G) be the collection of finite subsets of M (respectively
of C) , and define

m2 = sup
K∈F

inf
y∈M

max
x∈K

Φ(x, y), (3.2)

m3 = inf
H∈G

sup
x∈C

min
y∈H

Φ(x, y). (3.3)

It is easy to check the inequalities m1 ≤ m2 ≤ m4 and m1 ≤ m3 ≤ m4.

Lemma 3.1. Suppose that C and M are convex sets and that the function Φ is
concave with respect to x ∈ C and convex with respect to y ∈ M : then we have the
equalities m1 = m2 and m3 = m4.
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Proof. The equality m1 = m2 is proved in [1] Proposition 8.3 pag. 124 (see also [2]
Theorem 2 pag. 316); the second equality is easily obtained by applying the same
proposition to the function Ψ(x, y) = −Φ(y, x). �

We can now state our main result.

Theorem 3.2. Let C be a convex subset of L0
+, M a convex set and Φ : C×M → R.

Suppose that
1. for every y ∈ M , the function f → Φ(f, y) is upper semicontinuous and

concave;
2. for every f ∈ C, the function y → Φ(f, y) is convex;
3. for every y ∈ M and b ∈ R, the set Cy,b = {f ∈ C |Φ(f, y) ≥ b} is closed

and bounded in L0
+.

Then we have the equality m1 = m4; moreover there exists f̄ ∈ C such that

inf
y∈M

Φ(f̄ , y) = inf
y∈M

sup
f∈C

Φ(f, y).

Proof. Since we have the equality m3 = m4, it is sufficient to prove the equality
m1 = m3; more precisely that we have

sup
f∈C

inf
y∈M

Φ(f, y) = inf
H∈G

sup
f∈C

min
y∈K

Φ(f, y). (3.4)

Let a = m3 = infH∈G supf∈C miny∈K Φ(f, y): for every H = {y1, . . . , yn} the
function mini=1,...,n Φ(f, yi) (which is concave upper semicontinuous) attains its
maximum in C (see Corollary 2.3).

This means that the sets Cy,a ( y ∈ M ) have the finite intersection property,
more precisely that Cy1,a ∩ . . . ∩ Cyn,a �= ∅.

By Corollary 2.2, also
⋂

y∈M Cy,a �= ∅: a function f̄ ∈ ⋂
y∈M Cy,a satisfies the

equality
inf

y∈M
Φ(f̄ , y) = inf

y∈M
sup
f∈C

Φ(f, y).

�

In a similar way we obtain the following result, which is an analogue of the
well known Von Neumann’s Minimax Theorem.

Corollary 3.3. Let C, D be convex subsets of L0
+, and Φ : C × D → R. Suppose

that
1. for every g ∈ D , the function f → Φ(f, g) is upper semicontinuous and

concave;
2. for every g ∈ D and b ∈ R , the set Cg,b = {f ∈ C |Φ(f, g) ≥ b} is closed

and bounded in L0
+;

3. for every f ∈ C , the function g → Φ(f, g) is lower semicontinuous and
convex;

4. for every f ∈ C and b ∈ R , the set Df,b = {g ∈ D |Φ(f, g) ≤ b} is closed
and bounded in L0

+.
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Then there exists a saddle point (f̄ , ḡ) such that

Φ(f̄ , ḡ) = sup
f∈C

inf
g∈D

Φ(f, g) = inf
g∈D

sup
f∈C

Φ(f, g).

4. Application to the problem of Optimal Investment

A huge literature has been dedicated in recent years to the problem of Optimal In-
vestment in incomplete markets (also known as the Utility maximization problem);
we refer to the seminal paper [5] for a general presentation of the problem.

Following [5] and [6], we state it in an abstract setting. Given a measurable
space (E, E) endowed with a probability measure µ, we consider two subsets C and
D of L0

+ with these hypotheses:

1. C is bounded in L0
+ and contains the constant 1;

2. C and D are in a polarity relation, more precisely:

f ∈ C ⇐⇒
∫

fg dµ ≤ 1 , for every g ∈ D

g ∈ D ⇐⇒
∫

fg dµ ≤ 1 , for every f ∈ C

Therefore, C and D are convex, closed and solid subsets of L0
+ (C is said to be

solid if, f ∈ C and 0 ≤ g ≤ f , imply that g ∈ D); note that the elements of D are
integrable (since 1 ∈ C). We need the following easy result.

Lemma 4.1. There exists a function g ∈ D which is strictly positive everywhere.

Proof. For every A ∈ E with µ(A) > 0, there exists gA ∈ D with
∫

A
gA dµ > 0:

otherwise the functions nIA , n ≥ 1 would be elements of C by the polarity relation,
but this is impossible since C is bounded. A suitable infinite convex combination of
the form g =

∑
n≥1 2−ngAn

gives the result (as in the Halmos–Savage Theorem).
�

We define, for x > 0, C(x) = xC = {xf | f ∈ C}; and analogously D(y) =
yD. Let now U be a utility function: we assume that U(x) = −∞ for x < 0,
that U is real valued, concave, increasing and differentiable for x > 0, and that
satisfies the so called Inada’s conditions, more precisely U ′(0) = limx↘0 U ′(x) =
+∞ , U ′(+∞) = limx↗∞ U ′(x) = 0.

Let V be the convex conjugate function of U (the Legendre transform of
−U(−x)) defined for y > 0 by V (y) = supx>0 [U(x) − xy]: V is convex decreasing
and we have that U(x) = infy>0 [V (y) + xy] (see [7] for details).

The goal of the utility maximization problem is to maximize the average value
of U(f) in the set C(x): the value function of this problem is denoted by

u(x) = sup
f∈C(x)

∫
U(f) dµ. (4.1)
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The function x → u(x) is concave increasing, and we assume that

u(x) < +∞ for some (hence for all) x > 0.

The dual problem of (4.1) is to minimize the average value of V (g) in the set D(y):
its value function is defined by

v(y) = inf
g∈D(y)

∫
V (g) dµ. (4.2)

The function y → v(y) is convex decreasing. These problems are been extensively
analyzed in the papers [5] and [6]; we are only interested in a proof of the following
result.

Theorem 4.2. There exists y0 such that v(y) is finitely valued for y > y0 and the
functions u and v are conjugate in the sense that

u(x) = inf
y>0

[v(y) + xy] , (4.3)

v(y) = sup
x>0

[u(x) − xy] . (4.4)

Remark 4.3. The statements of Theorem 4.2 correspond to Theorem 2.1 in [5] and
this is the only result in the papers [5] and [6] where a minimax theorem is used.
The authors adapt a minimax result taken from [9] (see also [8] for an alternative
approach based on a minimax theorem from [2]): we feel that the result stated in
the previous section gives a more direct and natural proof.

Proof. Let us suppose that the utility function U is uniformly bounded from above,
i.e. that U(+∞) = limx↗+∞ U(x) = m < +∞.

Recall that a positive function f ∈ C(x) if and only if
∫

fg dµ ≤ x for every
g ∈ D: the problem (4.1) can be written in the form

u(x) = sup
f≥0

inf
y>0

[∫
U(f) dµ − y

(

sup
g∈D

∫
fg dµ − x

)]

.

Let us introduce the convex subset E of L0
+ defined by

H =
{

f ≥ 0
∣
∣
∣
∣

∫
U(f) dµ > −∞ and sup

g∈D

∫
fg dµ < +∞

}

.

The problem (4.1) can be stated equivalently in the form

u(x) = sup
f∈H

inf
y>0

[∫
U(f) dµ − y

(

sup
g∈D

∫
fg dµ. − x

)]

.

We apply Theorem 3.2 to the function Φ1 : H× R
+ → R defined by

Φ1(f, y) =
∫

U(f) dµ − y

(

sup
g∈D

∫
fg dµ − x

)

.

(Note that Theorem 3.2 is stated for a real–valued function Φ , and Φ1 : H×R
+ →

R is real valued, whilst Φ1 : L0
+ × R is [−∞, +∞[ valued).
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The function Φ1 satisfies the hypotheses (1) and (2) of Theorem 3.2: in par-
ticular, concerning the semicontinuity, note that f → supg∈D

∫
fg dµ is lower

semicontinuous.
Consider now the convex closed sets Hy,b = {f ∈ E |Φ1(f, y) ≥ b} : note that

if
∫

U(f) dµ − y
(
supg∈D

∫
fg dµ − x

) ≥ b , then supg∈D
∫

fg dµ ≤ m−b
y + x = x̄,

and therefore f ∈ C(x̄) which is bounded in L0
+. We have therefore

u(x) = inf
y>0

sup
f∈H

[∫
U(f) dµ − y

(

sup
g∈D

∫
fg dµ − x

)]

= inf
y>0

sup
f∈H

inf
g∈D

[∫
(U(f) − yfg) dµ + yx

]

.

We consider the function Φ2 : H×D → R defined by Φ2(f, g) =
∫

(U(f) − yfg) dµ:
also this function satisfies the hypotheses (1) and (2) of Theorem 3.2.

Again, if
∫

(U(f) − yfg) dµ ≥ b, we have
∫

fg dµ ≤ m−b
y = m̄. If we consider

a strictly positive function g ∈ D (see Lemma 4.1 for the existence of such a
function), the set

{
f ∈ L0

+ | ∫
fg dµ ≤ m̄

}
is bounded in L0

+.
We can apply Theorem 3.2 and we have that

u(x) = inf
y>0

inf
g∈D

[

sup
f∈H

∫
(U(f) + yfg) dµ + yx

]

.

Note that, for every integer n, the set Ln =
{
f ≥ 0

∣
∣ 1
n ≤ f ≤ n

}
is contained in

H : it is therefore easy to convince ourselves that we have

sup
f∈H

∫
(U(f) + yfg) dµ = sup

f≥0

∫
(U(f) + yfg) dµ =

∫
V (yg) dµ

and therefore

u(x) = inf
y>0

[

inf
g∈D

∫
V (yg) dµ + yx

]

= inf
y>0

[v(y) + xy] .

We have proved (4.3) for the case where the utility function U is uniformly
bounded from above, and (4.4) is equivalent to (4.3) (see e.g. [7] for details).

For the general case, consider for every n a utility function Un satisfying the
Inada’s conditions and such that

{
Un(x) = U(x), if U(x) ≤ n,
Un(x) ≤ (n + 1),

and define the functions V n, un and vn as above. It is immediate to verify that
V n ↗ V and consequently vn ↗ v: the last statement, which is not immediate,
can be proved with hardly any modifications as in Lemma 3.3 of [5]. From these
properties, we have u(x) ≥ infy>0[v(y) + xy].

Conversely, if f ∈ C(x) and g ∈ D(y), we have

U(f) ≤ V (g) + fg,
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and integrating
∫

U(f) dµ ≤
∫

(V (g) + fg) dµ ≤
∫

V (g) dµ + xy.

Consequently u(x) ≤ v(y) + xy. �

Remark 4.4. The proof of Theorem 4.2 shows in particular (as a consequence of
Theorem 3.2) that if the utility function U is uniformly bounded from above, the
problem (4.1) always has a solution (i.e. the supremum is in fact a maximum); but
for the general case this is not proved. In fact this is not true, and the papers [5]
and [6], give necessary and sufficient conditions for the existence of a solution to
the problem (4.1).
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