Compito di Geometria I - 16/9/2016

Nome e cognome (stampatello)

I parte (riempire dove richiesto). Attenzione: ogni domanda esatta punti

matricola.....

1,5; ogni domanda errata -1. Occorre ottenere almeno 3 punti in questa parte altrimenti il compito sarà considerato totalmente insufficiente (la parte successiva non verrà neppure guardata).	
1) Dati	i punti $P_1 \equiv (1, -2, 1), P_2 \equiv (0, -1, 1), P_3 \equiv (2, -1, -1)$:
a) scrive P_3 :	ere un'equazione cartesiana del piano Π passante per i tre punti $P_1,P_2,$
$\Pi:$;
b) Deter	rminare l'area del triangolo $P_1P_2P_3$
Area	=
c) Scrive	ere le coordinate del baricentro $G \in \Pi$ del triangolo $P_1P_2P_3$;
$G \equiv$	(\ldots,\ldots,\ldots)
d) Deter onale a l	rminare un'equazione parametrica della retta r passante per G e ortog- Π .
$r: \left\{ ight.$	$x = \dots$ $y = \dots$ $z = \dots$
	rminare sulla retta r un punto P_4 tale che il volume del tetraedro P_4 valga 1
$P_4 \equiv$	(\ldots,\ldots,\ldots)
	crivere una matrice M a coefficienti reali di ordine 2 tale che M sia izzabile su $\mathbb C$ ma non su $\mathbb R$
M =	
	ere due matrici A e B che abbiano come polinomio caratteristico $p(\lambda) = i \lambda^2 + \lambda$ e tali che A sia diagonalizzabile mentre B non lo sia (su \mathbb{C}).
A =	; B =

1

c) Sia $\underline{e}_1 \equiv (1,0) \in \mathbb{R}^2.$ L'insieme delle matrici

$$S:=\{A\in\mathcal{M}_2(\mathbb{R}): \text{il vettore }\underline{e}_1$$
 è autovettore di $A\}$

è un sottospazio vettoriale di $\mathcal{M}_2(\mathbb{R})$ di dimensione

$$dim(S) = \dots$$

d) Scrivere la segnatura della matrice $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

$$segnatura(A) = \ (\ \dots\ ,\ \dots\ ,\ \dots\)$$

- e) Scrivere tutte le soluzioni complesse dell'equazione $z^2-2iz-2=0$
 - $z = \dots z$

II parte (risolvere su un foglio: fogli diversi per esercizi diversi.)

Esercizio 1. Sia $V=\mathbb{R}[x]$ e sia $T_\alpha:V\to V,\ \alpha\in\mathbb{R},\ \alpha\neq 0$, l'applicazione data da

$$T_{\alpha}(p(x)) = \frac{1}{\alpha}(p(x+\alpha) - p(x))$$

1. Dimostrare che T_{α} è lineare e vale

$$grado(T_{\alpha}(p(x)) < grado(p(x))$$

per ogni p(x) in V.

2. Sia Q l'endomorfismo di V dato da $Q(p(x)) = x \cdot p(x)$. Sia $V_n = \mathbb{R}_n[x]$. Per il punto precedente le due composizioni $f := T_\alpha \circ Q$ e $g := Q \circ T_\alpha$ mandano V_n in sé stesso, per ogni n. Dimostrare che le restrizioni di f e g a V_2 sono entrambe diagonalizzabili (come endomorfismi di V_2), mentre la differenza f - g non lo è

[sugg.: si possono calcolare le matrici associate alle basi canoniche].

3. Dedurre che f e g non possono essere diagonalizzate simultaneamente.

Esercizio 2. Nello spazio vettoriale complesso \mathbb{C}^2 dotato del prodotto hermitiano canonico $\varphi((x,y),(z,w))=\overline{x}z+\overline{y}w$, siano date le due basi ortonormali $\mathcal{B}_1=\{\underline{u}_1\equiv(1,0),\ \underline{u}_2\equiv(0,1)\}$ e $\mathcal{B}_2=\{\underline{v}_1\equiv(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}),\ \underline{v}_2\equiv(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})\}.$

- 1. Determinare 2 matrici simmetriche reali A_1 , A_2 tali che A_i abbia \mathcal{B}_i come base di autovettori relativi agli autovalori 1 e -1 (i=1,2). Si richiede qui che il vettore di base con indice 1 sia autovettore per l'autovalore 1, mentre quello di indice 2 sia autovettore per l'autovalore -1.
- 2. Dopo aver verificato che $|\varphi(\underline{u}_i,\underline{v}_j)|^2=1/2$ per ogni coppia di indici $i,j\in\{1,2\}$, determinare una terza base ortonormale $\mathcal{B}_3=\{\underline{w}_1,\underline{w}_2\}$ di \mathbb{C}^2 tale che valga ancora $|\varphi(\underline{w}_i,\underline{u}_j)|^2=1/2$ e $|\varphi(\underline{w}_i,\underline{v}_j)|^2=1/2$, per ogni coppia $i,j\in\{1,2\}$.
- 3. Determinare una matrice $hermitiana \ A_3 \in \mathcal{M}_2(\mathbb{C})$ che abbia \underline{w}_1 come autovettore relativo all'autovalore 1 e \underline{w}_2 come autovettore relativo all'autovalore -1.

Regolamento: Chi ottiene un voto sufficiente può optare per la conferma senza bisogno dell'orale (ci sarà solo una breve discussione sullo svolgimento dello scritto). Sono tenuti a fare l'orale quelli con voto insufficiente (≥ 14).