Istituzioni di Matematica II, 27/11/2019.

Coloro che fanno il compitino devono risolvere gli esercizi 1,2,3; chi fa il compito straordinario deve risolvere tutti gli esercizi (eccetto la seconda parte del terzo).

1. Sia $f_a(x,y,z) = \frac{1}{3}x^3 + \frac{2}{3}z^3 + (x-a)(y^2+z^2) - x, \quad a \in \mathbb{R}.$

Al variare di $a \in \mathbb{R}$, trovare tutti i punti critici della funzione f_a . Classificare i punti critici di f_a quando a = 0.

- 2. Determinare gli estremi della funzione $f_a(x,y,z)$ dell'esercizio precedente quando a=0, sul vincolo $x^2+y^2+z^2=1$.
- 3. Sia Auna matrice 2×2 e sia \vec{F} il campo piano dato da

$$\vec{F}(x,y) = A \left[\begin{array}{c} x \\ y \end{array} \right]$$

(cioè le due componenti del campo sono le due componenti del vettore colonna ottenuto moltiplicando la matrice A per il vettore colonna $\left[egin{array}{c} x \\ y \end{array} \right]$).

Dire per quali matrici il campo \vec{F} è conservativo, e indicarne in questo caso un potenziale.

[solo compitino] Sia A simmetrica 2×2 e \vec{F} un campo della forma

$$\vec{F} = f(x,y) \cdot A \begin{bmatrix} x \\ y \end{bmatrix},$$

con f(x,y) funzione differenziabile in \mathbb{R}^2 . Dire che condizioni deve soddisfare A affinché esistano campi conservativi \vec{F} con f(x,y) non costante, e darne un esempio in questo caso.

- 4. Calcolare il volume del solido $C=\{(x,y,z)\in\mathbb{R}^3:\ x^2+y^2+\frac{z^2}{9}\leq 1,\ z\geq 1\}.$
- 5. Sia data una molecola A, A, A, G, B con 3 atomi A a formare un triangolo equilatero, 1 atomo G posto al centro del triangolo e un atomo sull'asse passante per il centro del triangolo e ortogonale al piano Π del triangolo, a distanza 1 dal piano Π .
 - (a) Determinare il carattere della rappresentazione totale Γ del gruppo C_{3v} completando la tabella (I) allegata;
 - (b) Decomporre la rappresentazione Γ nelle componenti irriducibili, utilizzando la tavola di caratteri allegata (e la tabella (I)).

Il gruppo C_{3v} ha 6 elementi $E,\ 2C_3,\ 3\sigma_v$ e ha 3 rappresentazioni irriducibili $(A_1,\ A_2,\ B)$ con tavola dei caratteri

$$\begin{array}{c|cccc}
\theta & E & 2C_3 & 3\sigma_v \\
2\cos(\theta) \pm 1 & \dots & \dots \\
u_n & \dots & \dots \\
\hline
\chi(R) & \dots & \dots
\end{array}$$
(I)

Si ricorda che il carattere della rappresentazione totale si determina considerando, per ogni elemento del gruppo, il numero u_n di atomi che rimangono al loro posto, e moltiplicando $(u_n)*(2cos(\theta)\pm 1)$ secondo che l'elemento sia una rotazione propria o impropria di angolo θ .

Γ_i	E	$2C_3$	$3\sigma_v$
A_1	1	1	1
A_2	1	1	-1
B	2	-1	0