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Introduction

The course is divided into two parts, of 40 and 20 hours respectively. The first
part covers the basics of the differential geometry of curves and surfaces in three-
dimensional space. The second part is an introduction to differential topology.

First Part Highlights

• Curvature and torsion: these two quantities are associated to a space curve.
They vary along the curve and describe the way the curve bends and twists in
space.

• Shape operator: it is associated to each point p of a surface in 3-space. It
is a self-adjoint operator defined on the tangent plane at p. Around a point
a generic surface looks like the graph of a real function f(x, y) with an iso-
lated, non-degenerate critical point at the origin. The eigevalues of the shape
operator determine whether f has a local maximum, minimum or a saddle
point.

• Gaussian curvature: it is the determinant of the shape operator. For example,
the Gaussian curvature of a standard round sphere is positive at every point
while that of a standard plane vanishes everywhere.

• Gauss’s Theorema Egregium: the Gaussian curvature is determined by angles
and distances on a surface regardless of the way the surface is embedded in
3-space. This theorem implies that it is impossible to draw a planar map of
any portion of the earth preserving path lengths.

• Geodesics: these are special curves on a surface which locally minimize the
distance between any two of their points.

• Theorem of Gauss-Bonnet: the integral of the Gaussian curvature over the sur-
face can be expressed in terms of the Euler characteristic, which only depends
on the global topology of the surface.
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Second Part Highlights

• Smooth manifolds: these can be defined as specific subsets of Euclidean spaces.
They are endowed with a dimension and tangent spaces. For instance, the
orthogonal group O(n) is a smooth manifold of dimension n(n− 1)/2. There
is a well-defined notion of a smooth map between smooth manifolds.

• Degree modulo 2: it is a quantity associated to a map f between two compact,
smooth manifolds. The degree modulo 2 is unchanged by smooth homotopies
of f . It can be used to prove Brower’s theorem.

• Brower’s theorem: states that a continuous map from the n-dimensional ball
to itself must have a fixed point.

• Degree: it is the analogue of the degree modulo 2 for smooth maps between
smooth, compact and oriented manifolds.

• Hairy ball theorem: says that there is no smooth tangent vector field on an
even-dimensional sphere.

• Index of a smooth vector field at an isolated zero: it is the degree of the map
obtained by restricting the normalization of the vector field to the boundary
of a small ball centered at the isolated zero.

• Poincaré-Hopf theorem: it generalizes the hairy ball theorem. Given a smooth
vector field v with isolated zeros on a smooth, compact manifold M , the sum
of the indices of the zeros of v is equal to the Euler characteristic χ(M), which
only depends on the global topology of M .

Additional information

• Prerequisites: calculus in one and several variables and some general topology.

• Exam structure: a written test on the first part and an oral examination on
the second part. There will be a total of 6 exam sessions.

• Textbooks:

(i) M. P. Do Carmo, “Differential Geometry of Curves and Surfaces”, Courier
Dover Publications, 2016.

(ii) V. Guillemin, A. Pollack, “Differential Topology”, AMS Chelsea Publish-
ing, 1974.

(iii) J. Milnor, “Topology from the Differentiable Viewpoint”, UP of Virginia,
Charlottesville, 1965.

(iv) T. Shifrin, “Differential Geometry: A First Course in Curves and Sur-
faces”, available at
http://alpha.math.uga.edu/ shifrin/ShifrinDiffGeo.pdf
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