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1 Outline

Riemannian geometry is a vast subject encompassing diverse aspects. In the
course, I will focus on three main topics.

Jacobi fields and their applications

Jacobi fields are vector fields along a geodesic, which arise by considering geodesic
variations, i.e. variations of a geodesic through geodesics. They can be used to
express the differential of the exponential map at a point and the Hessian of the
square distance from a given point. These geometric properties of Jacobi fields
are used in the proof of certain theorems which put constraints on the topology
of a Riemannian manifold satisfying special curvature conditions, much in the
same spirit as the classical Gauss-Bonnet theorem for surfaces.

I will cover the celebrated theorems of Myers and Cartan-Hadamard, as well
as two theorems involving the injectivity radius, namely Klingerberg’s theorem
on the injectivity radius of a metric with bounded positive sectional curvature
and Berger’s sphere theorem.

This part of the course will follow Chapter 6 of [2].

The isometry group

There are two notions of isometry one can give on a Riemannian manifold:
as metric spaces, or as smooth maps that preserve the scalar product. By a
theorem of Myers-Steenrod, the two definitions turn out to be equivalent. Even
less obvious is the fact (also due to Myers-Steenrod) that the group of isometries
is a manifold, and more precisely, a Lie group.

I will give a proof of this fact using the language of moving frames, as given
in Chapter 2 of [1]. This approach is mostly useful for generalizing from the
isometry group to groups that preserve a G-structure, but even if there will
be no time to investigate this, introducing the language of principal bundles,
somewhat ubiquitous in differential geometry, has its own merit.

I will also show that the group of isometries has dimension at most 1
2n(n+1),

and maximal dimension is achieved by spaces of constant curvature. This ties
in with the last topic of the course.
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Symmetric spaces

A Riemannian manifold M is locally symmetric if the curvature tensor is paral-
lel; spaces of constant curvature are a special case. This condition implies that
around each point x there is an isometry fixing x with differential − id : TxM →
TxM . If one further assumes M is complete and simply connected, the symme-
try extends to a global isometry; one then says that M is globally symmetric,
or simply a symmetric space.

Symmetric spaces are in particular homogeneous spaces, i.e. they take the
form G/H, where G is a Lie group and H a closed subgroup; accordingly, they
are studied in terms of the corresponding Lie algebras.

I will give some structural results, in addition to some results on the cur-
vature, fundamental group, and isometry group of a Riemannian symmetric
space.

For this part of the course, I will refer to Chapter 8 of Wolf’s book [3]. Notice
that chapter and book go far beyond what I will be able to cover in the course.

2 Practical information

This course takes off where “Istituzioni di Geometria” ends. It is advisable to
follow “Geometria e Topologia differenziale” first, then “Istituzioni di Geome-
tria”, before taking Riemannian geometry.

Failing that, the students will have to fill in some prerequisites on their own.
The following will be assumed as prior knowledge:

• smooth manifolds and fiber bundles;

• Riemannian metrics; Levi-Civita-connection, curvature;

• vector fields; Lie derivative; flow of a vector field

• geodesics and exponential map;

• basics of Lie algebras and Lie groups. Notice that I will not assume that
the audience is familiar with roots, Dynkin diagrams and the classification
of simple Lie algebras.

I do not expect to deviate from the indicated bibliography. However, I plan
to write lecture notes as I go, to expand on the details as needed.
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